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NATTIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-685

AN EXPLICIT LINEAR FILTERING SOLUTION FOR
THE OPTIMIZATION OF GUIDANCE SYSTEMS
WITH STATISTICAL INPUTS

By Elwood C. Stewart
SUMMARY

The determination of optimum filtering characteristics for guidance
system design is generally a tedious process which cannot usually be
carried out in general terms. In this report a simple explicit solution
is given which is applicable to many different types of problems. It is
shown to be applicable to problems which involve optimization of constant-
coefficient guidance systems and time-~varying homing type systems for
several stationary and nonstationary inputs. The solution is also appli-
cable to off-design performance, that is, the evaluation of system per-
formance for inputs for which the system was not specifically optimized.
The solution is given in generalized form in terms of the minimum theo-
retical error, the optimum transfer functions, and the optimum transient
response. The effects of input signal, contaminating noise, and limita-
tions on the response are included. From the results given, it is possible
in an interception problem, for example, to rapidly assess the effects on
minimum theoretical error of such factors as target noise and missile
acceleration. It is also possible to answer important questions regarding
the effect of type of target maneuver on optimum performance.

INTRODUCTION

There are a number of statistical theories which have been derived
in recent years for the purpose of determining optimum system design and
optimum theoretical performance. Three problems are invariably encountered
in the application of these theories. The first problem is that the solu~-
tions generally involve long and tedious computations. Moreover, explicit
solutions can rarely be obtained because of the complexity of the equations
and the many factors involved. For this reason solutions are usually
carried out numerically for specific cases. Such a procedure contributes
little to a basic understanding of the problem and makes it difficult to
draw general conclusions as to the relation of the guidance and control
task to both the best theoretical performance which can be achieved and
to the optimum system design. Such considerations are important, for




example, in evaluating the effect on theoretical minimum error of such
factors as limited vehicle maneuverability, the amount of noise, etc.

A second problem is concerned with off-design performance, that is,
the evaluation of system performance for inputs for which the system was
not specifically designed. In general the actual input to a system will
be different than the design input. For example, the actual noise level
might be different than design noise level, or the actual and design sig-
nal inputs might even be different processes. For this and other cases
it is important to evaluate the deterioration in error for these off-design
conditions.

A third problem in system optimization concerns the choice of signal
component of the input, which in the interception problem is the target
motion. Since the target may move in many different ways, it is important
to consider two aspects: (1) the effects of type of signal characteristic
for which the system is optimized, and (2) the effect on performance of
subjecting the system to signal inputs for which the system was not
specifically designed.

This report will be concerned with the above three problems. The
first two sections are concerned principally with the first problem. In
the first section will be derived explicitly a simple but approximate
solutiog to the filtering problem. Because of the length of this section
a resume is given at the end. In the second section will be shown the
applicability of this solution to many different problems of interest;
such problems involve the optimization of constant-coefficient guidance
systems and time-varying homing systems, for stationary and nonstationary
signal inputs. The third section is concerned with the off-design problem
(the second problem). The last section is an example concerned with the
third problem, the effect of type of signal input on the performance of
optimum and nonoptimum systems.

LIST OF IMPORTANT SYMBOLS

am acceleration of target, ft/sec?
A= mean-square acceleration, ft/sec?
c steady-state output defined in equation (k)
2 2
E mean-square error, ft
Heo optimum compensating network transfer function
He fixed network transfer function
Mp quantity related to c, (see egs. (B62))

N noise magnitude or zero frequency spectral density, ftz/radian/sec
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weigh%ing function

quantity related to cg (see egs. (B21l) and (B2k4))
restricted quantity

mean-square restricted quantity

varigble in the Laplace transform

time at collision, sec

unit impulse

dimensionless frequency, w/B (see eq. (28))

output in adjoint diagram sketch (c)

optimum closed~loop transfer function

constant multiplier in ¢ (see eq. (23))

input parameter, 1/sec (see eg. (28))

vehicle parameter, sec (see eq. (37))

error, ft

dimensionless parameter in optimum transfer function, 7B
the kth determinant

input dimensionless parameter, §/B

input parsmeter in freguency characteristic of Vg, 1/sec (see
eq. (21))

Lagrangian multiplier, sec#

constant muitiplier in Vg, £t2/sec® (see eq. (21))
frequency factor of input

frequency factor of input analogous to spectral density
angular frequency, radians/sec

complex conjugate of ( )

ensenble average of ( )




Subscripts
S signal 3
1% restricted quantity
a acceleration :
n noise
€ ELROr

EXPLICIT FILTERING SOLUTION

System Description

The type of guidance system with which we will be concerned has been
described previously in references 1 and 2, but for completeness a brief
summary will be desirable here. A great many guidance and interception
problems can be represented by the block diagram shown in sketch (a).
This representation can be shown to apply, for example, to certain space

Guidance system Y

Compensating Output F_;§ystem

R
s ——ﬂ——— r——
filter H¢ Z-/// element Hy¢ output
Sa

turating quantity r

il

e =

T Error €

Sketch (a)

navigation and missile problems which are time-invariant, or even to time-
varying navigation problems, as will be shown later. It does not apply
however, to guidance systems which operate part of the time as an open-
loop system, such as certain interception weapons systems, fire control
systems, etc. The two inputs to the guidance system are the signal xg,
which contains the true information about the motion of the target to be
intercepted, and the noise xp, which enters unavoidably with the desired
signal. The outputs of interest are two in number. The first is the
error € which is a measure of how far the system output deviates from
the desired signal part of the input. The second is the saturating quan-
tity r. Although there may be many quantities subject to saturation in
a guidance system, it has been shown (see ref. 1) that only the most
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critical quantity need be considered. In the interception problem this
quantity is the thrust producing quantity, such as the deflection of a
ginbaled rocket engine or of a control surface of a missile. In order
that this quantity will appear explicitly, the guidance system is split
into a compensating filter and an output element. The output element,
which represents the dynamics of the vehicle, is assumed to be the fixed
element because it is relatively unalterable compared to the remainder of
the system. The other element is the compensating network which the
designer is free to choose.

The above representation for the guidance system does not represent
the actual physical form of any particular system; that is, any linear
missile guidance system of the type discussed above regardless of its form
or the number of feedback loops can be put into the equivalent form shown.
Conversely, for any given characteristics of the compensating and fixed
filters, there are any number of corresponding physical systems which can
be constructed.

Performance Equations

The purpose of this section will be to present the exact performance
equations, that is, the expressions for the error and restricted quantities
which will apply for any given system. These equations will serve as a
starting point for optimization problems as well as off-design problems.

The diagram shown in sketch (a) can always be redrawn into the form
shown in the following sketch. Here the two inputs are taken to be

Xp (1)
— ] ¢n(s) Wn(s) L 9 :
+ S
xg (1) it
—— ¢ (s) W ()
Sketeh (b)

impulsive in character. Such a representation is a natural one both
because nearly all inputs can be represented by a series of impulses and
because the adjoint theory to be used later requires impulse type inputs.
Each of these two inputs is then modified by a frequency factor @(s)
before entering the system transfer function W(s). The actual signal
input, = {t] . to Ws(s) may be an analytic signal, such as a step, ete.,
or some kind of random process. However, the noise input, xn(t), to Wn(s)
will be restricted to be a stationary random process, which occurs soO
often in practice. The output, 6,(t), may represent either of the two
outputs of interest, the error or the restricted quantity, if Wg and Wp

are properly defined. The mean-square ensemble average, GOZ(T), at a




particular time T is given by the following expression, assuming no
correlation between the two inputs:

8= T) =% 2(T)  + 05T} (1)

Each of these components can be evaluated by use of the corresponding
adjoint diagram (see refs. 3 and 4 for a description of the adjoint theory).
The adjoint system corresponding to sketch.(b) is shown below where it can
be seen that now there are two outputs, Yn and yo, and only one input, ug,

AT = B (s) Wn (s) —

s

Uo

T 1 e s) Ws (s)

Sketch (c)

which is always an impulse. For the moment let us confine our interest
to only one of these components, the kth. The mean-~squared ensemble
value of the output Qk(t) at a particular time T can be expressed in
terms of the adjoint response yk(T) by the following general expression

L
o1 2(T) = f () B(m) a (2)

where Pk(T) is a weighting function dependent on the nature of the input
process in the real time domain. Such an expression is valid for linear
systems which are subjected to either analytical inputs, such as a step,
impulse, etc., or to random processes. For example, for a stationary
random process, P(T) = 2x% while for a step input which starts at t;,
P(7) = u[7T-(T-t,)], the unit impulse. For the situation illustrated in
sketch (c), we may now use the relation (2) to rewrite (1) as

fiaae ooy b i
0,3(T) = f ye2(7)Pg(r)ar + f Yu2(7)Py(T)ar (3)

It often happens that because of the nature of the input frequency func-
tion og(s) and the system Wg(s), the output y,(T) has a steady-state
value c. Thus it will be found convenient to let

yt(T) = YS(T) ke (%)

MThe 2 is due to definitions of spectral density (see ref. L, p. 9).
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Since in the cases in which we will be interested Pk(T) is independent
of T, equation (3) becomes

i 41 T
GOZ(T) = Psk/h ytZ(T)dT & EPSCL/p yt(T)dT + PSCZT + PnL/“ ynZ(T)dT (5)
o o o

By the definition in equation (4), we know that yy » O as T - . Further-
more, in the usual case, y(T) becomes so small for reasonable values of T

0 it

that b/ﬁ yta(T)dT <<L/\ ytZ(T)dT. Physically, this inequality corresponds
AL (¢]

to the assumption that the system response time is less than the interval

of interest T. Thus by increasing the upper limits to o and by trans-

forming to the frequency domain®, we can re-express equation (5) as

6,2(T) = Ejﬁtf IYt(w) [2dw + 2Pge lim Yi(s) -+ Pgc®T
00 S0
+20 [7 g (ia(e) Paw (6)
o5 n al

=00

An expression for Yt(s) can be obtained from equation (h) and sketch (c):

Yi(s) = og(s)Wg(s) - < (7
where
¢ = lim sp (s)W,(s) (8)
50
Thus,

oD = 22 [ |os(wis(w) - & [faw + 2pge 1tm l:cps(s)ws(s) g %J
=00 50

+ P,c®T + g%k/qm ,@n(w)Wh(w)’Zdw (9)

Equation (9) gives the mean-square ensenble or time average of any quantity
at time T in terms of the system transfer function and the input weight-
ing and frequency functions.

®Note that 2n f ml y(T) |BaT = f °°, Y(w) |Zdw.

(@] ~00




Now the expressions for the error € and restricted quantity r
can be written. We introduce EZ and R® to represent either mean-square
time or ensenble averages of the error and restricted quantity, respec-
tively. If sketch (a) is interpreted in terms of sketch (b), we can
deduce the following.

For error €: Wg(s) = 1-Y(s)

Wy(s) = ¥(s) ‘ (10)
For restricted quantity =: Ws(s) = Y(s)/He(s)

Wy(s) = ¥(s)/He(s)

Therefore the error and restricted quantities become, from equation (9),

E2 = En '@s(w)[l-Y(w)] 7 dw + 2Psce lim <og(s)[1-Y(s)] - %;}
50
P [oe]
+ Pgc 2T + 2—?{f |y (0) ¥ (w) |Zdw (11)
P pd 2
= §i J Qséﬁ)w(w) i %g St Pt ii? {%Sé:)Z(S) if + Puo T
Pn i CPn(w)Y(w) =
i o '2—7{\‘-/;0 —_Hf(w) dw (12)

These two expressions will be useful throughout the remainder of the
report.

Optimum System Transfer Function

Tn this section will be given a simplified explicit solution for the
optimum system based on certain simplifying approximations.

Exact equations.- The optimization problem is one of determining
the optimum over-all system transfer functions which will minimize

E2 + pR® (13)

e
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where p 1is a Lagrangian multiplier having the units of (E/R)Z, and E
and R are given by equations (11) and (12). Such minimization could
probably be carried out by brute force. However, anticipating the nature
of the final solution can simplify the problem. After a little reflection
one might expect that both the steady-state terms, Cce and c,, would be
zero. We will assume that this is the case and after we have the answer,
we can check back to verify the assumption. Equations (11) and (12) now
become

[oe) P 0 2
E2 =f 1= 6w) 2 ﬁc%)—l—dw +f | Y(w) |2 EI% dw (1)

e PnI@n(w)|2 dw

o (15)

: f“‘ Y(w) [2 Pglpg(w) |2 f“‘ Y(w)
R= = dw +

& Hf(w) 245 Hf(w)
The first term of each of these expressions is due entirely to signal,
the second to noise. Although these equations are written in terms of
the fixed filter Hr(w) and the over-all system transfer function Y(w)
(instead of the compensating network as described in sketch (a)), they can
be expressed in terms of the fixed filter and the compensating filter by
the relation

Y(w) = Ho(w)He(w) (16)

An expression for the optimum compensating network which minimizes
(13) can be readily found. If we make the following definitions

2
Yg(w) = %"ﬂ— . (17)

2
Poloy(w) |
21

then it is clear that the V's are analogous to spectral densities and
that the solution for the optimum compensating network function, Hyg(w), '
is given by (see ref. 5 or 1)

co ™)) 00 . eiC(:‘t
Ebfin) = m f e f Hf(mi ‘f?o(j) dov dt (19)
(@] =00 3

where

Aw) = [He(1w)He(iw) + pl[¥g(w) + ¥p(w)]
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As discussed in reference 1, the optimum compensating network Heo can
only be determined by the simultaneous solution of equations (15) and (19)
€0 as to result in the desired restriction. Evaluation of equation (14)
then follows. Of the various factors involved in these equations the
quantities which must normally be known are the input quantities ws(w)
and Yp(w), and the fixed network Hp(w). Unfortunately even for very
simple forms for these functions, the complexity of operations involved
in the solution of these equations does not permit the general solution
to be obtained explicitly. We will be interested in certain forms for
these functions which will now be discussed.

Simplified forms for inputs and fixed network.- A very common and
important form for the inputs which occurs in many physical problems and
particularly in the interception of targets is the following

vu(w) = = (20)
w + &
or:
Vel(w) = ;Zz;%;ggy (21)
and
Vp(w) = N (22)

where wg(w) corresponds to the second derivative of the signal. The form
in (20) or (21) is valid for many stationary and nonstationary processes
as will be seen. Furthermore this form is general enough to approximate

a variety of experimentally determined input data. The other function
wn(w), the noise frequency factor, is approximated by a constant. This

is a good approximation, since in most physical situations the bandwidth
of the actual noise is much broader than that of the optimum system trans-
fer function Yo(w). Obviously, from equation (17) thé actual filters
which appear in sketch (c) would be

N

= af(s 2
i £(s) (23)

CPS(S) =

CPn( s) = \/ﬁ (21*)

The functions ¢ and ¥ are merely two different ways of expressing the
signal input function. Thus the gain o« of the actual filter in
sketeh (¢) is related to the magnitude o of the input frequency function
by
Psaz
2

] DB
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The other function, He, is the fixed element representing the dynamics
of the vehicle. This function is generally very complicated; when the
output is taken to be a displacement quantity as it is here, the fixed
network will be of the form

n n-1
ans tan_ 18 Tt . . .+l

e(s) =k (26)

e SRy

m
mS tPp.18
Even for cases in which m and n are only 1 or 2, the solution of equa~
tion (19) cannot be achieved in general terms. However, there are several
sound reasons to believe that such a complicated He 1s both unnecessary
and undesirable, and that it can be approximated by

By » == (27)

The reasoning is as follows. First, it can be shown that the fixed net=
work given by equation (27) is optimum. In this sense it should be noted
that we are considering optimization within a class of optimum systems.
That is, for each fixed network Hy there is an optimum over-all guidance
system and corresponding minimum error. However, the relationship between
the fixed network and the minimum error is so complicated there is no a
priori way to tell which fixed network will be best. Nevertheless, the
results of reference 2 show that the He given by equation (27) results
in an over-all system which is the best of all these systems. Thus (27)
is a desirable form for the fixed network and should be striven for.
Second, even if the dynamics are not the ideal ones given in equation (27),
their effect on increased error may be small, We certainly cannot tell
from the equations just how sensitive the minimum error will be to changes
in the fixed network from the optimum form in (27) since, as we have seen,
we could not even tell whether the effect would be beneficial or detri-
mental. However, it has been shown in reference 2 that the effect on
minimum error of the dynamic factors in equation (26) is small as long

as the natural frequencies are not too low and the damping ratios are
reasonably small. A good many vehicles fall in this category.

Solution.~ With these forms for Vg(w) and He(w), it is possible to
solve equation (19) exactly. This exact solution is given in appendix A,
and it can be seen to be quite unwieldy. For practical purposes we would
like to know if suitable simplifications can be made without sacrificing
appreciable accuracy.

Such simplifications can be made as discussed in appendix A, The
nature of this solution will now be outlined. First of all for the forms
of V¥g(w), ¥p(w), and He(w) given in equations (21), (22), and (27), the
error equation (14%), the restricted quantity equation (15), and optimum
compensating network equation (19) can be made dimensionless by means of
the following substitutions:




152

w = Bx

S[o/N ] (28)
W= E/B

Obviously, the parameters B and v are associated entirely with the input
characteristics (i.e., signal and noise). The dimensionless analog of
equations (14), (15), and (19) become

joe)
1l

o g g 1 ¢ e 2
NB_[OO md}(+ilY(X)ldX (29)
22 2 oo 2 ()
L
1 'm _ipxt [® B2 ¥g(2) PP
Heo(x) = Eﬁiﬁ??i}/ﬁ & Jf (2) B dz dt (31)
©) =00

where

Alx) = [Hf(X)Hf(X) + é}[vs(x) 5r ¢n(X)]

Note that the left side of (30) becomes RPkfZ, where ky is the vehicle
gain. Since the fixed network has only two poles, both at zero, the
quantity Rke is merely the acceleration. Thus

A% = R%ks7 (32)

Tt- should also be noted that the functional form of the quantities in the
above equations is changed by the transformation (28) .

The solution of equation (31) for the optimum compensating network
Heo(w) is somewhat involved. For this reason the details of the deriva~
tion are discussed in appendix A. It is shown that if

)-H/s ( )
E << BE

which is satisfied for nearly all cases of interest, the approximate opti-
mum closed-loop transfer function, Yy, can be expressed in dimensionless
form as follows:

ES B Ol
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i -PxZ + iN2 (W24q)x + 1
(ix+1) (=x2+ix+1) (-n2x2+1 2nx+1)

Yo(x) = Yo(x;va,m) (34)

or
P o ~/_(~/'+n) 4
Yo(s) 3 (35)
—+l><BlZ+ l><BJ_ S B_ls+l>
P2 NRWRH)
i By Ba1
NE L E(sE) | (edE0E  WEME o JBWEM) o
T Bp= £,2 By" Ba
(36)
where
P = P(v1,7) (see eq. (A8L))
¥ = ptianli® (37)
Ni=naPa
The corresponding open-loop transfer function po 1is
i 3 ~Px2 + T J2[24)x 4+ 1 B oAb )
ST o L e G ) ik
(V2#)= - P (V2)® - P (2m)® -
(38)
Byl J_QTFn)
st Bi2 ® Ba
A o= 2 (s ¢ LBl fowp Loy o RN L L
813 (2+n)2 = P] B12[(V2+n)2 - P] Bil(2+n)2 - }
(39)

It will be seen that this solution for Yo(x) and uo(x) is dependent on
only two dimensionless constants vi and n. (The subscript 1 has been
attached to v and B 1in order to associate these quantities with the
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inputs for which the system was optimized. Iater a subscript 2 will also
be used to associate these quantities with the actual input which may or -
may not be the same as that for which the system was Optimized.) It is
clear from the definition in (28) that v; is dependent solely on the
target characteristics. The other parameter, 7, is dependent on the prod-
uct of the input parameter B, and the vehicle parameter 7. The param-
eter 7 1is clearly associated with the vehicle from the above definitions;
that is, y depends on the vehicle gain kf and on the Lagrangian multi-
plier p which is used to place the desired restriction on vehicle accel-
eration. The determination of p is discussed in later paragraphs.
Obviously p =7y =1 = 0 corresponds to the Wiener case with no restric-
tions, and in this case the transfer function simplifies considerably.

Performance Equations of Optimum Systems

=~ =

Having found the optimum system one can now determine the error and
acceleration. Because we are interested in the performance of optimum
systems for a variety of inputs, we must return to the more general
expressions given in equations (11) and (12).

The error equation (11) is seen to consist of four terms which are
defined to be, respectively,

E2 = B, + Eo® + B + B® (L0)

The first three terms are due to the signal while the last is due to
noise. It is shown in appendix B that each of these components can be
expressed in dimensionless form as follows

E,% \/ﬁwll_Yo(x) + x2q |2 eV,
NoB2BN = ~ il i sVa2, g}
<é2526 L x*(x2+v52) 86 ha 1(v1,v2,m) (k1)
B1°
Ear :
—-———N 5 = = )-l-Jle(a2+Qa4) = fg(Vl,Vg,T]) ()+2)
2B2
B1>
E.2
63 = 212 = f£3(v1,v2,n) (43)
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e R aiis,
o ~LZ; | ¥ () [Tax = —d S £4(v1,m) (L)

where N1, A2, Az, and A\, are determinants given in appendix B and Q
is a parameter yet to be explained.

There are several general comments to be made concerning these
equations. First, it will be seen that all the components of error can
be readily evaluated by means of simple algebraic expressions or deter-
minants. Second, the subscript 1 has been attached to certain quantities
to identify them with the input for which the system is optimized, while
the subscript 2 has been attached in order to identify these quantities
with the actual input. Third, it can be seen that all the dimensionless
components of error are functions of three parameters, vi, vz, and 7.
Actually for many cases, these components are functions of only two param-
eters. For example, for optimization problems (where the input is the
same as that for which the system is designed), it is necessary that
V1 = V2. In other problems, where the design input and the actual input
gre nob Ghe same, we will see that either ‘vq or Vo 'is zZere. «in these
cases, the components will be functions of only two parameters. Fourth,
it should be noted that the total error cannot be obtained in dimensionless
form by adding equations (41) through (44) since the nondimensionalizing
factors are not all the same for all components. And last is the factor
Q which is somewhat involved and needs some explanation. From the defi-
nition in equation (B2k4),

Q= pEm A (15)
oo s(s+E2)

and (36) for the optimum Y,, it can be shown that Q will always be zero
mless, Vi # O and v = 0, and in such a case its value will be dependent

solely on vj and 7. That is,

Q.= ~ag - P = Q(vi,n) 15 g SG I
} (16)

= @ otherwise

The physical meaning involved here is simple. For an accelerating target
at least two integrations are always required in the forward part of the
open-loop system. As can be shown from equation (36) for the optimum Ve s
the least number, namely 2, occurs when Vi # 0, or when the system is
optimized for a signal of the form Vy(w) = o/(w+v®). In such a case Q
will not be zero only if the signal input to this system is of the form
d/wg, that is, vo = 0. A nonstationary input of this form will be
discussed in the next section.

Consider now evaluation of the restricted quantity given in
equation (12). It is indicated in appendix B that when He and c, are
substituted in equation (12), the vehicle gain kf will combine with R
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so that the left side of (12) will become Rzkfz. Since there are no
poles of the fixed network other than at zero the quantity Rks 1is merely
acceleration. Equation (12) can then be expressed as

Vi i e W 0 IR Wl ol }
(47)
o S
where the signal component is
A2 = A3% 4 A% 4+ AP (48)
Each of these components can be written in dimensionless form as
°°| Y(X) 2 i 7\5
She S i = Vi,V Ly
<N282> f X2 + V22 eo }\2 gl( Ly 2;71) ( 9)
A22 =0 (50)
2 Do
Az~ = PgTua My (51)
A e A
2 - [ a0 1P = 228 = () (52)
N2y ) 4

where again the A's are determinants and are given by the complete
expressions in appendix B. As before, one can show that the components
are functions of three parameters vi, vz, and 71, although for most cases,
the components will be functions of only two parameters. Also, the total
acceleration cannot be obtained in dimensionless form by adding equa=
tions (49) through (52). Iater, however, when we have reason to put

B1 = Bo (or simply B), the components can be added. The parameter My
is quite similar to the previous parameter Q. From its definition

T L R TR (53)
5o (s+E2) so 8 T &2
it is clear that

My =0 if ivo # 0 } (54

=1 if v =0

Physically, this condition is obviously dependent on the nature of the
input signal.

=D e
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Resumé

Because of the length of the previous sections, a resumé will now
be given in order to summarize the problem, assumptions, and solution.
The class of guidance systems considered above are those described in
sketch (a) and the accompanying discussion. Our primary objective in this
report has been discussed. in the Introduction. Briefly, it is to relate
performance, both optimum and off-design performance, explicitly to the
guidance and control task, that is, to those parameters which are normally
included in the statement of the problem.

Since a system cannot be optimized for all inputs and all restrictioms,
it is necessary to specify certain quantities. It is necessary to know
something of the signal and noise inputs, the number of saturating ele-~
ments, and the fixed network (see eq. (19) and succeeding discussion) .
Although a solution can be obtained for any choices of these quantities,
we would like to choose them so that we can get an explicit solution and
yet have these choices be as physically meaningful as possible. The
choices which were made are:

(1) The signal is of the form given in equation (20). This form
fits several inputs, as will be seen in following sections.

(2) The noise is stationary, white, and uncorrelated with the
signal (see discussion following eq. (22)).

(3) Only the most critical saturating quantity (acceleration)
and one fixed network need be considered (see p. 9 of ref. 1 for jus-
tification). Furthermore, even though the fixed network is generally
very complicated, it can be adequately represented by He = kf/82
(see the discussion in connection with eq. (27), and ref. 2).

There are, in addition, several assumptions made in obtaining the explicit
solution:

(4) The system response time is less than the interval of flight
time O to T (to be justified in a later section).

(5) The weighting factor P 1is independent of T.

(6) The following inequality, which is not really essential,
greatly simplifies the expressions (see eq. (33) and discussion) .

4y®
757 £ e

The solution consists of two parts: the optimum transfer functions,
and the performance equations for the optimum systems. The dimensionless
optimum transfer functions are given by equations (34) and (38). It is
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seen that they have been expressed in terms of two dimensionless

paremeters, vy and n (defined in egs. (28) and (37), and described below %
eq. (39)). The transfer function (34%) is optimum for several inputs and

forms the basis for optimum time~varying homing systems (as will be shown

in later sections) .

The performaence equations for the optimum system consist of the
error equations (41) through (44) and the acceleration equations (49)
through (52) . All of them are given in dimensionless form as functions
of the three parameters vi, vz, and n. These equations can be used for
constant-coefficient systems and time-varying homing systems, and for
certain stationary and nonstationary inputs. They can also be used for
evaluating off-design performance. Such uses of these equations are
illustrated in following sections.

== e

OPTIMUM PERFORMANCE

Tt will be the purpose of this section to show how the solution Jjust
derived applies to several distinct types of optimization problems, and .
to present the corresponding theoretical optimum performance curves. The
problems considered involve different types of systems and inputs, both
time-invariant systems and time-varying homing systems, and several types
of signal characteristics both stationary and nonstationary.

Time~Invariant Systems

There are many guidence and control problems that can be described
by constant-coefficient differential equations with stationary signal
inputs which possess frequency characteristics of the form (20). It is
of interest to enumerate some random processess which fall in this cate-
gory. All have been described previously elsewhere, although in different
terms. When they are expressed in terms of the same definitions, these
processes and their descriptions can be summarized as in figure 1. It
will be seen that in signals A and B, both the amplitude and the interval
length are random variables, while in C only the interval is random.

The optimum performance curves for systems subjected to signal inputs
of the form (20) can be readily obtained in dimensionless form from the
performance equations presented in the last section. For this case let
us see what some of the parameters should be. First, since we are con-
cerned here only with optimization problems, the input to the system is
to be identical with that for which the system is optimized. In this case
B, equals Bo and vy equals vz, and we may therefore use simply B and Vv 4
(also N with no subscript) . Furthermore, since the system is to be
optimized for inputs of the form (20), it is necessary that v not be
zero. Second, it is clear that the form for the signal input given in
equation (20) is applicable to all the processes in figure 1 provided the
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symbols o and & are properly interpreted in terms of the particular
process of interest. Third, for stationary processes the input weighting
function Py in equation (2) is 2x; that is, Py = Py = 2x. Fourth, the
factors Q and My which are involved in the performance equations can be
seen from equations (46) and (54) to be both zero. To summarize the param-
eters involved, then, we must have in the performance equations

Vi=Va=v#0
B1 =Bz =B (55)
My =Q=0

As a result of these values, several components can be dropped from
the performance equations since

E2=E3=A3=O

Also, since B3 = P2 =B the components of error and acceleration can be
combined to give

2 2 2
g B (56)

NB NB NB

AZ AZ A2
==+ = (57)
NB

Each of these components is still given by the equations ey (L), (h9),
and (52). It is only the labeling of the left side of these equations
which has been changed since B does not occur on the right. Plobs ,of
each of the components of error and acceleration as well as their total
are presented as functions of v and n in figures 2(a) through 2(d) . The
dependent quantities may be taken to represent either ensemble or time
averages.

The curves presented in figures 2(a) through 2(d) may be used to
evaluate optimum performance for any set of conditions for which
hv6/27 << 1. Given any signal or target parameter and noise as defined
by v, B, and N, and a vehicle with any rms acceleration capability A,
the factor 1n can be found from figure 2(da) . From this 17, the minimum
error can be determined from figure 2(b), and the optimum system transfer
functions from equations (35) and (39). If, however, one is not interes-
ted in knowing the optimum transfer function, the intermediate parameter
n cen be eliminated as shown in figure 2(e), and the minimum error can be
obtained directly as a function of available vehicle acceleration.




20

The impulse responses of the optimum systems are of fundamental
importance. They are useful in establishing minimum launching ranges;
they determine the error or miss due to an impulse of signal or noise;
and they determine the minimum duration of certain nonstationary inputs
for which the solution is valid, as will be seen. The impulse responses
are shown in dimensionless form in figure 3. Note that v has a much
smaller effect on these responses than does 1.

Time~Varying Systems

In this section is considered a class of important control system
problems which is characterized by time-varying differential equations.
The nature of this class of problems is illustrated in the following sketch
by the example of a homing missile intercepting a bomber target. It is
seen that this example is characterized by the fact that the range between

Range

Sketeh (d)

the missile and target changes continuously with time. This range varia-
tion is due to physical facts and hence cannot be avoided. Since range
enters into the coefficients of the differential equation describing this
problem, the problem is necessarily time varying. The time-varying situa-
tion illustrated here may be recognized as belonging to a large and impor-
tant class of problems such as mid-course or terminal guidance in
interplanetary flight, fire control, and aircraft landing.

This time~varying problem has the same ingredients as does the
time-invariant problem just discussed, that is, the target maneuver, the
noise, and the missile maneuverability. In addition, however, the system
is constrained to operate with a forced time variation representing the
varying range. Furthermore, in this type of problem we are concerned with
minimizing the error only at a particular time T (the time of arrival at
the destination), but restricting the vehicle capabilities at all times
t, previous to T. Thus ensenble averages are particularly meaningful.
From these remarks then one can see that this time-varying problem is
similar in concept but basically more complicated than the time-invariant
case discussed in the previous section.

It is not at all obvious that the solution for the time-invariant
case given in the previous section has any connection with the present

== P
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time-varying problem; however, a relationship can be shown. The
optimization of the time-varying problem has been studied in references U
and 6. There an equivalence was shown between the time-invariant and the
time~varying homing problems, so that the solution given in the present
report forms the basis for the optimization of the time-varying system.
More specifically, it is clear from the results of references 4 and 6
that:

(1) The optimum performance curves (for the rms ensemble average
of the error at time T, or miss, and the rms ensemble average of the
acceleration) given in this report in figures 2(a) through 2(e) are
valid for the time-~varying problem.

(2) The synthesis of the optimum homing system can be accomplished
by combining the results of this report and those of reference L for
the homing study. That is, the transfer function Yo(s) given in
equation (35) of this report can be substituted for H(s) in equa~-
tion (22) of reference 4. From this latter equation one may then
synthesize an optimum control system which, incidentally, is also
time~varying.

Tt is not intended to deal further with the details of the optimization
of the time-varying homing systems since this problem was the subject of
references 4 and 6.

Nonstationary Inputs

One of the assumptions generally made in the Wiener theory and in
Newton's modification of this theory is that the input process must be
stationary. However, in many physical problems, especially in the inter-
ception of targets, the input process must be considered as essentially
nonstationary. The reason is that all real target maneuvers will have a
finite beginning and a finite end. Consequently, it will be desirable to
examine the applicability of the solution presented earlier to certain
nonstationary cases of interest in the interception problem.

Nonstationary step signal.- One type input of interest in the target
interception problem is a step of target acceleration as is indicated in
the following sketch, where the beginning of the step 1is equally likely

Target ; ;
3 T
acceleration 0 T

t —

to occur anywhere within the interval of interest. This interval starts
at some finite time, t = O, when the vehicle is launched and extends to
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some time T when the vehicle reaches the target. Such an input is a
random process which is distinctly nonstationary. It should be noted that
this type of maneuver has been used previously in reference 7. Optimiza-
tion for this input will be shown to be a special case of the solution
presented earlier. As will be seen, the solution given here is one which
enables the results for this and other inputs to be unified.

Let us consider first the problem of merely evaluating the mean-
square ensenmble average of the error at time T due to a signal only.
In the real case of interest, of course, a noise signal would be added
to this input. The real time block diagram with a pure signal input is
shown in the following sketch where the time +t; at which the input

Input accderoﬁoi)7 Jnput displacement
[ K&

bt —1) g e - L K (s)

Error

ZVehicle displacement

impulse occurs is uniformly distributed in O to T. This diagram is
obviously of the same general form that was used previously in sketch (v) .
We have

as(s) = = (58)

S

pg(s)

Ws(s) = 1 - Y(s) (59)

where Y(s) is the over-all closed-loop transfer function. Now let us
see what the values of the parameters involved in the solution will be.
First, using equations (17), (58), and the fact that Pg = 1/T (since
t, is uniformly distributed), we have

a 2
¥o(w) = —= (60)
u EﬂTws

This latter function is certainly not a spectral density and can only be
called a frequency function which is associated with the signal. However,
one can see that this factor for the nonstationary process enters the
equations exactly as would a spectral density for a stationary process.
Hence one can derive minimum errors and optimum system transfer functions
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even though the process is distinctly nonstationary. Second, by comparing
equations (60) and (21) we see we need only make the following definitions.

az
(61)
£E=0

Third, since the system is to be optimized for this input, it is necessary
thet &1 = 0, and since the system is to be subjected to this input,
E> = 0. In dimensionless terms (see eq. (28)), this amounts to

V1= Vao=v=0 (62)
Fourth, from equations (46) and (54) we see that

Q=20
(63)
MA = l

Fifth, since the actual input is the same as that for which the system
is optimized,

B1 =PB=2=18

The performance curves can now be readily obtained from the solution
given in equations (41) through (44) and (49) through (52). Note that
again the Es and Es components of error are zero; also Az~ = @22 = aT2
and is therefore not a function of v;, Vs, or n. Thus the performance
equations simplify to

jon E,2 Ep®

N Np NP (6%)
A2 . aT2 A:LZ AT12 6
el S (65)
NB NB NB

The components on the right are still given by equations (41), (k) 5 (uoy,
and (52), and they are now functions of only one parameter, 7, since the
v's are zero.3 At this point it is both illuminating and useful to
examine the transition that occurs from the stationary case just presented

“Note that the E; and A; components given by equations (B37) and
(B72) appear to be indeterminant. However, that this is not the case is
clear by expanding A1, A2, and As along the last row. Hence one can: (l)
simply eliminate the last row and column of A1, Az, and As or (2) merely
use a very small value of vp, say 1074.
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to this nonstationary case. From the details of the equations which are
presented in appendix B one can deduce that Ei, Ep, (and therefore E,

the total error) and Ap components are part of a continuous transition .
from the stationary case. That is, all of these components will be iden-
tical with that for the stationary case for vy = vo = O (see figs. 2(a),
(b), and (c)). For clarity, plots of these components are repeated in:
figures 4(a) and (b). The remaining two components, A; and A, comprise
the total signal component of the acceleration and their values are given
by the appropriate equations. The transition for these two components is
not as simple but can be explained as follows. In the stationary case
when Vi = Vo # O, the Az component was zero. As vi and v approach
zero, the other component A; grows without bound because the first
integral in equation (30) is improper in the limit. Hence it cannot be
plotted on figure 2(c). Physically, this is associated with a final
steady value of the acceleration. In taking this into account as was done
in the derivation one gets a different equation for Aj (in which My = 1
instead of zero) and in addition another component, Az. In other words

as we progress to the nonstationary case, the A; for the stationary case
becomes, in the limit, the two terms A; and Az. As shown in equa-

tion (65) the new term Asz (which is simply aq) can be moved to the left
side of the equation since it is not a function of v or m. The A; com-
ponent is plotted in figure 4(b). The total error, equation (64), and the .
total acceleration, equation (65), are plotted in figures 4(a) and (v) .

If n is eliminated, the data in these two curves can be cross~-plotted

to give figure 4(c), that is, the minimum dimensionless error directly as

a function of dimensionless acceleration. These curves may be used to

evaluate optimum performance in precisely the same manner as described on

page 19 except that they are now much simpler because only the parameter

n 1is involved.

=30

r

The optimum system transfer functions for this case are still given
by equations (35) and (39) if we put vi = 0. We have

(Zm)® _  B(yE+)
e BRep eeeeteer B o L

¥.(s) B1% B (66)
gx=s = 2 2
s i 2 \2n
<ﬁl + %) <ﬁ12 + By + %) <ﬁ12 s + By S + %>
(Bsn)® _ NE(Em)
B.° pue LR Ba TS
nol(s) = (67)

(1+20)" 53[ s s® + s 48 s + 1 ‘
B12(1+2n)% B1(1++2n)

.. The impulse responses of this system described by equation (66) are given
in figure 3 by the vi = vz = O curves; their significance has been
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discussed previously. One can note that the form of the open-loop
transfer function is now different; that is, there are now three integra-
tions required in the forward loop rather than only two. This dizftference
is readily explained. The P which was previously very complicated and
given by equation (A8Y4) approaches a very simple value, P = (J§+n)2, as
v1 approaches zero. This has the effect of increasing one of the time
lags in the forward part of the loop, and in the limit it becomes an
integration--a first-order lag term with infinite time lag. The physical
reason for this extra integration is quite simple. It is due to the
assumption about the input, that is, that there will be one and only one
switch of the acceleration. Actually, this can never be stated with cer-
tainty. Saying that the target definitely maneuvers only once during the
flight interval is certainly not the same as saying gbi sy mol ke i 6o
maneuver more than once, and this difference leads ultimately to the
difference in the number of integrations required of the optimum guidance
system.

Nonstationary signals derived from stationary ones.- Other types of
nonstationary signals of interest are those derived from stationary sig-
nals. The situation is illustrated below where the top sketch shows the

Stationary
E to -0 —=— — o ®
® ©
° s :
o § Nonstationary 0 T
. T g 2

t —

stationary maneuver which extends in both directions to dnfindty. . Lhe
real maneuver, however, will necessarily start at some finite time called
zero and will end at some finite time T ‘when the vehicle reaches the
target, as indicated above. This process might be termed stationary in
the interval O to T, since it is part of a stationary process.

Since the upper of the two inputs does not occur in nature, it is
often stated that this input is unrealistic and cannot be used. Tt is
true that the stationary theory is applicable, strictly speaking, only to
the upper of the two inputs above. However, the nonstationary character
of the lower input is due to the mathematical definition of stationarity.
In the practical case it is clear that it makes little difference to the
vehicle, so far as error is concerned, whether the process persists over
an infinite or finite period so long as the process begins ait. aitime before
the interception point by an amount equal to or greater than the system
response time. (Of course, the process may terminate any time after time
T without affecting the results.) In other words, an infinite period is,
for practical purposes, simply one which is longer than the system response
time. Thus when response times are short, results presented previously
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in figure 2 for time-varying and time~invariant systems apply to the
nonstationary case cited. Fortunately most interception situations fall
in this category. The impulse responses which were presented in
generalized form in figure 3 can be readily used to verify this condition.

OFF~DESIGN PERFORMANCE

In previous sections we have considered only optimization problems,
that is, problems in which the system is subjected to precisely the same
input for which it was specifically designed. Here we will consider off-

design performance, that is, the deterioration in the error when the system

is optimized for one input but subjected to a different input. It is
important to note that the actual input might be different from the design
input for two reasons. First, the two inputs, the actual and design
inputs, might be describable by the same type of process, but the numer-
ical values of the parameters for each input might be different. Such
situations would occur, for example, if a noise level were different from
the design value, or if there were a change in signal magnitude. Second,
the actual and design inputs might be different because the type of
process is different.

In the following sections different off-design cases will be
considered. The manner in which the previous solution can be applied to
these cases will be immediately apparent. However, to avoid confusion
between the various parameters and components of error and acceleration,
each section will be organized thusly: first the parameters involved in
the solution are given; second, the error and acceleration components are
arranged in tabular form together with the figure number for components
which are plotted. It should be noted that the components are given
individually since they cannot be combined because of different nondimen-
sionalizing factors. Where possible, the components are combined. It
should also be noted that certain curves will be identical with previous
curves. Rather than repeat these curves it will only be necessary to
alter the ordinate to the dimensionless form indicated. In so doing, the
ordinates of the curves must be expressed as rms values.

Actual and Design Inputs of Same Type, Values Different

Stationary inputs.- Let us assume that a system has been optimized
for any of the stationary signals (in addition to noise) which have been
discussed previously. Then, let us assume that any (or all) of the spe-
cific values of the input process for which the system was optimized are
changed. The solution already obtained is applicable to these problems.
Since the actual input and design input are both the same type of station~
ary process, but the numerical values describing the processes are not
necessarily the same, we must have

=1
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ve # Vo #0
B1 # B2

Also from equations (46) and (54) we see that

g=0

MA=O

The error and acceleration components for this case can now be
summarized as follows:

2
——Ei—g— = £1(v1,v2,n) not plotted; see equation (B3T7)
NoBo >
By
B= 0
s = 0
2 .
L. afl fa(vai,m) rms values plotted in figure 2(a)
NP1
AR
-———515— = g, (va,v2,m) not plotted; see equation (BT72)
NoB2
Ba
A3=O
2
Ay == gz(vl,n) rms values plotted in figure 2(c)
NoBa

Tt can be seen that the E; and A; components are functions of the three
variables Vi, vo, and n. To display these components with adequate
accuracy, a good many curves would be required, and they are therefore

not plotted. (This is the only case in which three varisbles are required.)
In a specific application the desired curves could be readily obtained

from the equations indicated. The other components are functions of only

the two variables, vi and 1.
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Nonstationary inputs.- Let us now see how the solution applies to
the situation when the system is optimized for specific values of the step
maneuver and noise, but the values of the actual signal and noise are dif-
ferent. TIn this case we must have

V1=V2=O Q,=O

B1 # B2 Mp =1

From these values, the performance curves can be obtained from the
solution given in equations (41) through (44) and (L49) through (52). The
components are

= £1{n) rms values plotted in figure 4(a)
<‘232 >
EZ =0
E3 = 0
By~ : : N
= 320 rms values plotted in figure 4(a)
NoBa
ticay = = g,(n) rms values plotted in figure L4(Db)
<#252 > <§252 >
A2 = aTz
An” ) 1 lotted in fi 4(Dp)
== gg(n) rms values plotted in figure
N=B1

We see that since the Az component is a constant, it has been combined
with the total signal component As as follows

A2 - aTZ = A,2

In this way, total acceleration can be obtained directly from figure 4(p) .
Also note that all the components (other than As) are functions of only
the one variable 1.

¢ =1 ol
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Actual and Design Inputs of Different Types

System optimized for stationary signal, actual signal nonstationary.-
Iet us assume that a system has been optimized for any of the stationary
signals (in addition to noise) which we have discussed previously, but
that this system is to be evaluated against a different type of maneuver
such as the nonstationary single step maneuver also discussed before. The
previous solution can be shown to be immediately applicable. From the
discussion of earlier sections it is clear that we must have

vi# 0 Q#0
V2=O :MA=1

B1 # B2

For these values the error and acceleration components can be
summarized as follows

E12+E22 > .
Ve £1(v1,n) + £2(v1,m) rms values plotted in figure 5(a)
B1° >
Es® ) >
S = fa(v1,n) rms values plotted in figure 5(b)
B2
< B S > (BlT)
c
En~ . :
i = £,(v1,n) rms values plotted in figure 2(a)
2B1
2_ 2 A =
Bs ag = : — = g, (v1,m) rms values plotted in figure 5(c)
<#252 > <§2§2 >
Ba Bx
2 2
A3 = aT
A 2
2 = = go(va,m) rms values plotted in figure 2(c)
NzB i

Tt is worth noting that now none of the components are zero and that they
are all functions of the two parameters vi and 1. Also, as in the pre-
vious section, the Az component can be combined with the total signal
component Ag. In a later section a specific example will be considered.
Tt is also worth noting that the E; and A; components appear to be
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indeterminant. This is not the case, however. Possibly the simplest
procedure (which is readily shown from the equations) is merely to
eliminate the last row and column of A;, Ao, and As.

System optimized for nonstationary signal, actual signal stationary.-
For this situation let us assume that the system has been optimized for
the nonstationary signal (and noise) discussed previously, that is, a
single step of acceleration occurring any time during the time of flight.
The actual signal, however, is to be any of the possible stationary sig-
nals described before. In this case we see that we must have

v1 =0 Q=0
v2#0 M =0 A
2 :
B1 # B2 7
L
The error and acceleration components now are %
= f1(va,n) rms values plotted in figure 6(a) .
< 2B2
Es =0
Eg =0
En -
=i ) rms values plotted in figure 4(a)
N=B1
5=
———l—g—-= g1(v=,n) rms values plotted in figure 6(b)
<#éﬁz >
Ba
A3=O
& e
= = go(n) rms values plotted in figure L4(b)
NoBa
Note only that the E; and Ay components are functions of vz and 7 )
while the noise components are functions of only mn. In the next section
a specific example of this case will be considered. "
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EXAMPLE OF EFFECT OF TYPE OF SIGNAL INPUT

The effect on performance of the type of signal input is of particular
interest in guidance system design. The reason is that one hardly ever
knows with certainty what type of process the input will be. Consequently,
two aspects of the problem are important:

1. The effect on performance of the type of signal input for which
the system is optimized, and

2. The effect on performance of subjecting a system optimized for
one type of input to an input of different type.

The two problems posed above really amount to a comparison of inputs.
The question is: What is a good way to compare two inputs which are dif-
ferent types of processes? Unfortunately, the answer is not clear cut.
We can see that since the processes are different and therefore the param-
eters describing the processes are different, the parameters could be
chosen arbitrarily and independently. In this case the two effects on
performaence we are examining could be arbitrarily large. The previous
sections could be used to obtain the exact amount of this difference.
However, a more reasonable comparison might be based on finding conditions
under which the inputs are equivalent in terms of performance. It would
appear that [ might be a good parameter on which to base the equivalence.
For one thing, from the definition B = SJo/N it can be seen that B con-
tains all the information gbout the input signal and noise. Furthermore
the dominant modes in the optimum transfer function are determined by B.
Thus one might expect that different types of inputs which have the same
B  would be approximately equivalent.

Let us illustrate the latter approach by a specific example. We will
compare the nonstationary input described on page 21 with the stationary
random input, Case C. For a realistic comparison, it is reasonable that
the maximum acceleration should be limited to the same value for both
inputs. Since the values of P for these two inputs are

W
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Stationary input C: B

$ (69)
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we see that these will be the same only if
e S

Now let us examine the effect on performance when the above criterion
is used. It is clear that the results of the previous sections contain
the desired answers. However, since the nondimensionalizing factors were
not always the same, it will be necessary to remove these factors by using
specific numerical values. Since the equations and curves are dimension-
less, comparisons could be made for other cases of interest. Let us take
arbitrarily, the flight time, the maximum acceleration, and the noise mag-
nitude to be the following values:

= 0. gee
am = 0.95 g
N = 15 ft3/radian/sec

then for the stationary maneuver we would have 7 = 40 seconds. For these
condazions « By = L«Qiand = Y = sls =V = 0.05%

Now we can answer the first question, the effect of choice of target
maneuver on which system design is based. This effect is shown by com-
paring the performances of Two systems each optimized for the two inputs
just discussed. The performence curves can be readily obtained from fig-
ures 2(e) and 4(c), and the result is shown in figure 7 where minimum
theoretical error for each input is plotted against the vehicle rms accel-
eration capability. It can be seen the differences between these two
curves is quite small over the entire range of vehicle acceleration and
amounts to only a few feet. Thus the difference in optimizing for these
two apparently different inpubs is small provided the PB's are the same.
Tt is of interest to note that this difference in performance is small
even though the actual change in acceleration for the stationary maneuver
is twice as severe as for the nonstationary maneuver.

The second question, the effect of using an input for which the
system was not designed, can also be readily answered. By utilizing the
data in figures 5 and 6, one can readily evaluate the effect of using the
nonstationary input with a system optimized for the stationary input and
vice versa. The result is shown in figure 7 by the two sets of points,
rather than curves, in order to avoid confusion. It might be a little
surprising that the deterioration in error from the optimized curves is
so slight.

TSR

3




i NP e

33
CONCLUDING REMARKS

It seems desirable to emphasize the viewpoint which has been taken
in this report. In general, optimization theory expresses certain types
of operations to be performed in order to determine an optimum system. i
One would like to be able to carry out these operations in order to draw
general conclusions about the best theoretical performance which can be
achieved and the design of optimum guidance systems from a knowledge of
the guidance and control task. It cannot be done without some loss, or
narrowing down of this task. That is, it is impossible to choose a system
which is optimum for all inputs and all restrictions. Here the desired
solution has been obtained: first, by restricting the class of input
signals but yet restricting it to a very useful and important class which
includes certain stationary and nonstationary inputs; second, by simplify-
ing the form of the fixed network or output element as was indicated by \
the results of a previous study; and third, by making approximations in
the analysis so that a simple explicit solution could be obtained without |
sacrificing significant accuracy. The latter two are actually not very
restrictive.

There are many ways in which the solutions presented here might be
used. First, they might be used to determine the best theoretical per=-
formance which could be achieved for any specific case where the vehicle
and target characteristics are quantitatively known. The result might
then be compared to the performance of any other system to indicate possi-
bilities for improvement. Second, the results might be used in preliminary
design to evaluate the relative importance of each of the factors which
affect minimum error. Such evaluations are useful in determining those
design changes which would be worthwhile in attaining smaller errors. Or
last, the results might be used to reach conclusions about the effect of
different input signals, or target motions, as was discussed in the last
section.

It is believed that the solution given might also be applied to
other signal inputs not considered here. An example of such a signal
which is of practical importance in the interception problem is a target
maneuver consisting of a single switch of acceleration from a negative
to a positive value at some random time.

An important extension is needed to the nonlinear problem. It will
be recalled that the results presented here are based on rms values of
the restricted quantity, the acceleration. However, most systems have
hard limits. To insure that the system remains linear, the rms values
must be chosen small enough compared to the saturation limits. In most
cases the answer so obtained is near optimum, that is, the rms values
required to keep the system essentially linear are still large enough that
there is not much deterioration in error even from the infinite rms value.
However, there is an increasing number of guidance systems which must
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operate under more difficult and adverse circumstances in which the vehicle
maneuverability becomes small. In these cases the error increases rapidly
and it is important to utilize the maneuverability of the vehicle in a
more efficient way, that is, by nonlinear control.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Oct. 24, 1960
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APPENDIX A
DERIVATION OF OPTIMUM SYSTEM TRANSFER FUNCTION

It will be the purpose of this appendix to derive an approximate
solution for the optimum system transfer function Yo. As described in
the text we must first find the optimum compensating network Heco- An
expression for Hg, Wwas given in the text in dimensionless form by
equation (31) and it is repeated here.

)

R 1Bzt
Hoplx) = E_ﬂ]\':'L'(—T) f —1thf Hf( )‘lfs Z;e ol
(0]

where > (A1)

ANx) = [ﬁETQSﬁf(x)+o}wii(x)

J

In these expressions x 1s a dimensionless angular frequency related to
w by

w = Bx (A2)

5 -sf2 (43)

where the parameters o and N are related to the input quantities as
given in equations (21) and (22). The quentity V¥;4(x) in (A1) is

defined as the sum of signal and noise frequency functions, respectively.

Vylx) = ¥(x)+ 1 (x) © (Al)

The quantities A* and A~ are defined as the factors of. A with poles
and zeroes in the upper and lower half planes, respectively. Thus

A = ATAF (A5)
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The input quantities VYg(x) and ¥, (x) are, from equations (21) and (22)

)

N

Yalx) = EEE) (A6)
V(x) = N (AT)
where
£
==t 8
B (A8)

Tt might appear a little odd that N would appear in equation (A6) for
the signal frequency function, but this is due to the nondimensionalizing
factor in (A3). Note also that some of the poles of Vs(x) 1ie on the
real axis which the theory in deriving equation (A1) does not permit.

This problem was discussed in appendix A of reference 1, where the correct
procedure was indicated. The procedure consisted in modifying equation
(A6) so as to displace the poles at zero slightly off the real axis, and
after the final answer was obtained letting the magnitude of this dis-
placement go to zero-. Such a procedure is quite unwieldy. In the
interests of keeping the expressions as simple as possible, the form in
(A6) can be used if one is careful to remember at the critical points that
the poles should actually be slightly off the real axis. The remaining
function in (Al) is Hf, and as has been discussed in the text, it can

be well approximated by equation (27). Thus in terms of dimensionless
freqguency:,

e

B2X2

He(x) = - (A9)

Having dispensed with explanations and definitions, we will be concerned
in the following paragraphs with the solution of (A1).

Iet us find some of the functions needed in equation (Al). Starting
with V;4(x), we can combine (Ak), (A6), and (AT)-.
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If we let Xpp represent roots

where

Similarly,

Multiplying, we get

p(x)[-p(-x)]

¥y50x) = Welx) + ¥(x)

xC+12x%+1
x4(x2+12)

p(x)[-p(-x)]

x4 (x+iv)(x-1v)

38
p(x) = TI (x-xp)

m=1

= x3 + box2 + b3x + bo

1

'(Xp1+xp2+xp3)

Il

’Xplxpzxpa

3

o(-x) =TI (g

=il

%3 - box® + byx - by

x6 + (2b;-bp2)x* + (b12-2bgbz)x® - bg

in the upper half plene, we have

2

3(

(A12)

> (A13)

(A1L)

(A15)
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Comparing equations (Al0) and (Al5), we see that the following relation

between the b's must exist
b,2 - Zbgby = 0

Also it is clear that

These latter relations will be needed later.

Next we know that because of (A9),

Therefore

o | x+(ee?/ %)

He(x)He(x) + p

x4

a(x)a(-x)
P =g

(A16)

(ALT)

(A18)

(A19)

(220)

where, if we let Xgn represent roots in the upper half plane, the

polynomial q(x) is

( X-Xgn )
T

|
=

alx) =

Il

n

Il

2
i e b o e
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and
2
Q(—X) o ].-.[ (X+an)
n=y
= x2 - c;x + co (A22)
with
\
¢y = -(xq1+xgz2)
Y- (4239
Co = ¥ga1¥ge
/
Obviously,
k 2
ol el (A2k)

pp*

Now combining equations (A20) and (All) we have for A(x) in (A1),

) = [Felome(aeo v (x)
_ alx)al-x)p(x)[-p(-x)]
2! x8(x+iv)(x-iv) L)
Splitting this expression according to equation (A5) we have
B )= ik a(x)p(x) (226)

% (x-1v)




Lo

p() = L) =Bl it

x%(x+1v)

Here we have to recall the remarks made at the beginning of this appendix
in order to see how to split the x® in (A25).

Now, the first integral in equation (Al) may be evaluated by
wbilizing equations (A6), (A9), and (A27), and the result is

2 Z e'B t
I =J[ Hf(Zii?i)) 2A B dz (A28)
o O ka CY eiBZt
4 B L[; ZZ(Z—iV)q(—Z)[-p(_Z)] g2 (A29)
S e (230)

This integral is readily evaluated by considering z to be a complex
variable and integrating in the upper half plane. We must recall again
that the second order pole at the origin would actually have been dis-
placed slightly above the real axis if we had taken the trouble to do
so at the beginning of the analysis. Thus there are two poles within
the contour, a second order pole at the origin and a simple pole at

z = iv. Tt is easy to show after a little algebra that

d
Res(0) = lim — [z2£(z)]
70 4%
A 1v(bge1+b1co ) +Poco
VboCo ¥@bgEeos

L e 6 (A31)

il

VbpCo

.
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lim [ (z-iv)£(z)]
z~>iv

Res (iv)

~iBvt
e

-2 -p(-1v) la(-iv)

A (232)

il

Thus I; in equation (A30) is

5 Egg 2ri[ Res(0) +Res(iv) ]

L3

& 2nilke B -Bvt
= = —“jg-—'<71 o ;B;Eg i o L > (A33)

The second integral in equation (Al) is denoted by I- and is
merely a Fourier transform of Ij.

o0
T g f e (A3k)
O
DyiNicp —(7l+72)bocox2 + <}71VboCo+ %) x + 1
o YT (435)
oCo (iBx) = (v+ix)
2xilNk 2x2 + 2t . T + 1
AS iNke Ty, <X - €1 ToaX : (A36)
boco B2xZ(v+ix)

Note that in ivaluating equation (A34) it is necessary to carry along the
pole displacements discussed earlier in order to have suitable convergence
factors. In the limit as these displacement terms approach zero, one then
obtains equation (A36) .

Now from equation (Al) the optimum compensating network can be
found.
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DT
oxAt(x) =

Hco(x) =
Substituting equations (A26) and (A36) into (A37) gives

ke  x2(Ty12x2428 1Ty %+1)
bocoBZP p(x)a(x)

BoplZ) =

Tt can be seen from equation (Al2) that

3
i s pm)
m=1

3 x
b I +1
m=1\"“pm

p(x)

1l

Similarly, from equation (A21)

2

II (X‘an )
n=a

1( 2
Co I +1
n=1“"*qn

By utilizing equations (Al7) and (A2k), (A38) becomes

1l

a(x)

B2  x2(T,,2x2+0¢ T x+1)

Hagl®) Sim —
ke 3 / « 2 X
I +l> II ( +1>
m=1 \"¥pm n=y VAR

(A37) -

(A38)

(A39)

(A4O)

(Ak1)
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When we later determine the values of the roots in the denominator, it
will be seen that some of these factors combine to give

H, (x) = P x2( Ty 1 2x3+2 60,1 Ty 1 X+1 ) (ak)
Lk ke (TBlx+l)(T712X2+2§71T71x+l)(TM12X2+2§p1TH1x+l)
where W
1 arug
Tgy = ot T\, = ~ | —=—==
BL Eor Cul p1 <quxq2
Ty, Z = - Taa® = ~(71+72)boco
7 XPZXPg
. (A43)
= - i
=l il
Tl“[’l T Xq_lX.qz

J

Since, as has been shown in the text, the compensating network Heo
and the over-all closed-loop system transfer functions Yo are related

by

To(x) = Heo(x)Hp(x) (Ald)

we can combine equations (A9), (AL2), and (ALL)

T 3o%2 + 2EaTq % + 1
Yo(x) = = s (Ak5)
(T 1x#1)(Ty12x24+208y 1Ty g x+1 ) (T3 2x +26, Ty, 1 %+1)
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The expressions in (A42) for the compensating network and in (Ak5)
for the system transfer function are the general forms expressed in terms
of various roots. We must now relate these roots to the various input
parameters and the restricted quantity in order to get explicit expressions
for the transfer functions. ILet us look first at Xpm which are the
roots of

p(x)[-p(-x)] = x8 + v@x% + 1 =0 (AL6)

The substitution
1
X2 == (ALT)
y

reduces equation (A46) to
v+ 12y +1 =0 (ALB)

The standard form for the transformed cubic is

y3+py +a=0 (Ak9)
where we see that
D= 3=
(A50)
g=1

The general cubic in equation (A49) can be solved by Cardan's method.
However, instead of assuming a solution of the form Y =u + v, it is
neater to use

Fan
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Then following the usual development we can show that

us = A
y° = B
where
p? "1t A g
ORED 27 2 B =0
e [, e
B:__+_q2+)ip_3'—_]__+£ l+_1/_ (A52)
8 D 27 ST a1

and we agree to take the positive square root. Then the first .root yi
is

vy, =3B - Y& (A53)

where we take the real roots. Since A 1is larger than B, define C as

2= g =23 (A54)

Obviously

(A55)
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Then we see that

1 i
e ek A56
Xp1 JG;; c (A56)
From (A43),
AR TEE (57)
Xp1

Tt is well known that the other two roots, yo and ya, of the cubic
can be expressed in terms of the first root y,. However, it is clear
from equation (A43) that we do not need these roots. It is only neces-
sary to know XpoXpg and Xpp + Xp3- We may find these quantities from
(A13) and (A16); that is, from the four equations

b12‘2bob2 = O W

it

by = -(Xpi+xpatips)

b (458)

by = XpiXps + Xp1Xp3 + XpaXps

bo 5 ~Xp1Xpa¥ps

the four unknowns, by, by, XpoXps, and Xpp + Xpz, can be found. The
quentities by and Xp; are known and are given by (A17) and (A56),
respectively. First, from the last equation in (A58) we get

XPZXPS =i = -C (A59)
Hence

Ty s o == = ok (A60)

=M >
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Now we are left with the first three equations with the three unknowns

bs, by, and Xpo + Xp3- Solving, we get

. 2
Xpno + X = iCc [= - C=2
P2 P3 /C

(A61)

(A62)

(A63)

where we must take the positive square root in order to get a positive
damping ratio in the optimum transfer function. From equations (A59)

and (A63) we can now obtain

_M:i E._Cz

2 i) =
g'}’ e XPZXP3 C

Next let us find the roots xgn. From (A19) and (A20),

k
4 o 3

a(x)a(-x) = x e

Iet us define

p
R
kfz

gl = e

Then (A65) is

glae)al =) = =t

(A6L)

(A65)

(A66)

(A67)
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The roots are

il eIt N ] il
G L] B p@h> N 2n - N 2n
(A68)
_.__.‘l >4 _.__j[ _ - ._l_. _];_
*q2 =7 7 € p<14> NE) i N 2n

From these roots and equation (A23) we can obtain cj and ¢ which will

be needed later. i
2
Iz T
L e (A69) 4
i
co = - ﬁé' (AT70) .
|
We can also obtain, from (AL43), the dynemic factors
s = il (AT1)
|
|
2t 3Ty, = 1 NS (AT2)

The dynamic terms in the numerator of (Ak2) or (AL5) are harder to
find. Their values are given in equation (A43), and they depend on 73
and yo. From equations (A31) and (A32) these parameters are

iv(boei+bico) + boto

i, = T (AT3)
bt L L
s v2[-p(-iv) 1l a(-iv)] i g
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Lo
Iet us find 26,,T,; first. Utilizing (A73) we get

b
2 (A75)

o) Co

Putting in the values of the b's and c's from equations (A69), (A70),
(A62), and (Al7) we arrive at

ol My 2 <~/_2_n +C + /?—: - 02> (AT76)

Note that C is a function of v, so that 2gxf3x1 is a function of

only the dimensionless parameters Vv and 7.

The other dynamic term in the numerator of (A42) or (Ak5) is Talz
given by

Ta,12 = '(71"'72 )boco (A77)

Putting (A73) and (AT4) in (AT7T7), and utilizing equation (A76) just
developed, we have

boe iv(bge +eoby) I
2 = v a0 Dt Gl L 8
Ta VAl -p(-1v)1[q(-iv)] T T oEg o (A78)
T 1 .
T E + iv(2lyTya) + 1 (479)

e




50

Note that all the factors in this expression can be shown to be functions

of only v and n. This form could be used for computational purposes.
However, there are two reasons for modifying (A78) further. First, the
explicit function of v and n is not displayed. Second, as Vv becomes
small, T,,2 apparently becomes large; actually, it does not, since by
performing some of the operations in the brackets we can show that the
v2 cancels out. From (A67T),

il n4

a( -x) ’ n4xt + 1 a{x)

Then by use of (A21)

1 B n4
a(-iv) n4x¢ + 1

(-v2 + icqv + co) (480)

Similarly, from (AL6) it can be shown that
p(iv)[-p(-iv)] = 1
so that

—Ezif—j = p(iv) = -iv8 - bov2 + ibjv + by ' (A81)
= AU

Then equation (A78) becomes

4 2~b2 c 3

2 N~Co Po v2 1 dy=2 b o ba i/c1  ba il
T = ee— | - — 4 —_— + 1 e + i —= + SlhE= e == I —
5 v2(n4v4+l) Co L o | > < bo b v b © Lty co D >

As shown by equations (A69) and (A70) the c's are functions of 1
while from (A61) and (A62), the b's are functions of v. Putting in
these relations and multiplying, we can eventually show that

el RO
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Dl

]

Tga® = =P

2 1 2 2
v ——n4v14+l { l:qz + (c+N2n) [ 5 - €% +2nC + E} - [nzc + (n2+2nc)f g - C% + @ + 1}/

+ [-n‘* +2n + 1}? - ngcjé—-zg]vz - [ng - 205 = 7% <C +/% = CZ)}’S} (483)

Note that only Vv and mn are involved; C is a function of Vv as given
previously by equation (ASH).

For convenience let us summarize all the exact values for the
dynamic terms of the optimum transfer function which we have just found.

TBl = iC 1
il
T,\ 2 =s e
74 c
28y Ty = 1 f—:- g=
TulZ = _nz

Toy® = =P

2
{[nz + (c+Zn) [5 - 2 +2nc +%} - [nzc + (n2+J2n0) [E - o2 +\L;3 + 1]1»

T VAl

o [—n“ +2n + Ilcz_ + n2C ,_g_ = cz}vz _ [nz -Bn° =t <C % ,_g_ o C2>va}

2 N | [«[én +C + J%— - Cz:i

(a8L)
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where

i i L4v©
1 el Ly
B-—-'é'+§ l+'2—,_(

Tt will be seen that even though all of the dynamic terms in the
optimum transfer function are dependent on only two parameters, 1 and s
the transfer function is quite unwieldy, and should be simplified if
possible. - For this purpose let us look at equations (A51) and (A52).

For all cases of practical interest it can be shown that

4v®
— < 1
21

so that
A

144
=

B =0
C=1

The dynamic terms can then be shown to reduce to

TBl = 1
28 =
Tr)/l "l
2§,71T71 = 1
2
L= -n2

26,1Ty1 = 1420

Ty = -P
i "41_1 {()Z = (1 +20)%v + [V2n(1+ ¥2n) - n*1v2 + [on*(V2+n) - n°1v° }
N4Vt

20011 = 1 2(/24n)

(A85)

(A86)

(A87)

1. MY s

P
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We may now write the approximate closed-loop dimensionless transfer
function, Yo(x), as follows.

-Px?+1 J2(J2+n)x+1
To - (1x0+1) (~xP+ix+1) (=n2x2+1 J2nx+1) S

where the P in the numerator is the only complicated term. From (A88),
using s = iw = ipx, we have

_B_Sz +'\/_2('\/—2+T]) )

Yols) = e -
2
<% 5 %) <§§ + % + }) <§§-s2 + —%1 s + %)

+\/—__2_______(\[§+ﬂ) s +1

(A89)

L g2
2 B= B
n—z- 8P +J—_ET](——:L——+Jé'T1—)' Shite S-E—\/—EB-)—? 3 + ____(\]—2‘”1)2 8= +\/——2—-———(\l—é+n) s +1
Be g* B3 B2 B
(A90)
_ N(s)
" D(s)

One may readily obtain the corresponding open=-loop transfer function as
given in the text by equations (38) and (39). Note that the dimension-
less form of the transfer fumction is a function of only two variables:
v which is dependent on the input, and n(= By = Bp*/*) which is
dependent on the input and the restricted quantity.
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APPENDIX B

PERFORMANCE EQUATIONS OF OPTIMUM SYSTEMS

The optimum transfer function has been derived in appendix A and
we would like now to derive the performance equations for such an optimum
system. As indicated in the text we must return to equations (11) and
(12). Let us look at the error equation (11) first. The error consists
of four components

E- = B:= 4+ Bo" + Ea® 4+ BEp= (B1)
Ps [ 5
2 _ s B _ Ce
E,< = N0 Pg(w)[1-Y,(w)] T, | dw (B2)
@
Eo® = 2Pgc. lim {cps(s)[l—Yo(S)] - —S‘f} (B3)
S0
Eo® .= Pge 2T (BY)
Br [ 5
E,2 = % on(w)¥o(w) | duw (B5)
—00

Before proceeding to expand the above equations, we will indicate
certain things done in succeeding paragraphs that are common to all of
these equations. The optimum transfer function Y,(s) in the above equa-
tions has been shown to be a function of only three parameters: the mis-
sile parameter n, and the two input parameters B; and v;. The subscript
1l is used to associate them with the input for which the system is opti-
mized. In contrast, all of the parameters other than those in Yo 1in the
above equations are clearly associated with the input to which the system
is subjected, and this may or may not be the same as that for which the
system was optimized. 1In order to distinguish between these two situa-
tions, a subscript 2 will be attached to certain parameters to associate
them with the actual input. Thus equations (20) through (25) would have
the subscript 2 attached to o, &, N, and a. Also from (28)

2 3]
N (6)

When the equations are made dimensionless by setting w = Bix, as in
appendix A, it will be seen (e.g., see eq. (B23)) that in equation (28)
we would have

Vo = A= (BT)
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In the case of B, and Bs the distinction is not very important because
it will be seen in the text that in many cases of interest we will need

to put B; = B> anyway. The distinction between vy, and vo 1s more
important.

Let us look first at the noise component En. From the discussion
following equation (2) we know that Pn = 2x. Next, we may substitute
equation (24) into (B5) (using the subscript 2). And finally we can make
the angular frequency w dimensionless by using the same factor as was
used in appendix A; that is, by letting w = Byx. Then equation (B5)

becomes
Enz N (o] 5
= fm | ¥o(x) |%ax (58)
7 In) 1®
‘_fm S (89)
where
- N(x)
Yo(x) = D(x) (B10)

Such an expression occurs very frequently and can be evaluated by the
method of reference 8; that is, an integral of the form

00
1 g(x)
IR dx Bl1l)
2t 2n1\jf h(x)h(-x) (
—00
where
glx) = bex 2 £ b xEBE L DL baie

(B12)

H(x) = Bcxt b sax b o ay

can be evaluated by the following very simple but elegant expression

G
284 Dn

In (B13)

where Dp 1is the determinant given by

Dn

dmr = aom-r 0 _>_ 2m-r S n

| dmr- |

= 0 otherwise
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and Np is the same as
replaced by bg, b3, .

Dn

except that the first column of Np is
., bp-1. The N(x) and D(x) in equation (B9) .
can be obtained from equation (34) and they are

N(x) = -Px2 + i N2(N247)x + 1 (B1k)
D(x) = in2x> + N2n(1+W2n)x* - i(1+2n)3x5
“[(N2+)Z]x® + AN2(NPHn)x + 1 (B15)
In evaluating (B9) we have, on comparing (B9) and (Bll),
() 12 = &(x) 2
b(x) = B(x) ;
and we see that n = 5. Thus h(x) and g(x) are i
g(x) = box® + b1x® + box* + bax2® + by 1
_ (B16) :
h(x) = apx® + a;x% + asx3 + agx2 + 84X + 8s J
Then it is clear that
ap = in® W
a; = N en(l++2n)
Bou=nen (1 ByTE $ (B17)
ag = -[ (N241)%]
as = iN2( N2+1)
as = 1 |
bo = O 3
by =0
b = P2 S (B18)
bs = 2(N24m)2 - 2P = 2(-az-P) .
be =1 5
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The solution of (B9) according to eguation (B13), then, is

0 a; ap O a; ag O 0

b az as aj ag as aj ag
)\3 = )\4 =

bg 1 ag ag i 84 ag as

A ORI (O} (O L ey

L 4
This is the result given in equation (44). Since A and A4
in determinant form, they will not be expanded. '

Next we will consider the first component of error E;.
tions (8), (10), and (23),

Ce = lim spg(s)Ws(s) = lim saa[1-¥(s) ]
et soo  S52(s+E2)

o lim —E:XLEQ = aosMe
S—0 s(s+£2)

Il

Putting (23) and (B21) in (B2) gives

5 _ Psans2 [T 11-Yo(w) + oM - iwk M |2
By~ = dw

£ Lo w?(w2+£52)

.4

(B19)

(B20)

are simpler

From equa-

(B21)

(B22)

This latter equation can be made dimensionless, as before, if we let

w = Bix. Then

e el 2
gk Poa2 3 ® | 1-Yo(x) + B1 Mcx™ - i1 Mcvox|

o x4 (x2+v52)

—00

—_ dx

(B23)
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Let us define Q:

= Blee = 512 1im _E:XLEE
S=0 S(S"}'EZ)

(B2L)

Now if, in the optimum transfer function given in (A45), we put in the
exact values of the parameters given in (A8L), it can be shown that if
£, # 0 (or vy # 0), 1 - ¥(s) will have two factorable s's 1in the

numerator, while if &, = 0, it will have three. Thus it is clear that

Q#0 if E1#0,E2=0
=0 otherwise _ (B25)

The value of Q if not zero can be deduced from (B24) and (36) for the
approximate optimum transfer function to be

(N2+7)2 - P

= —ag — 2 ; (B26)

Q

The last term in the numerator of (B23) is obviously zero. Now from the
definition of B . in equations (28) and (25) an alternate expression for

Bo is
B2 = qJPsagz/QﬂNZ (B27)

Then (B23) becomes

1Yo (x) + @x2|2 dx
<N2B2 > Xé(X2+V22)

(B28)

This latter expression is given in the text as equation (41). Putting
(B10) in (B28),

<N2rsg >

By obtaining the N(x) and D(x) from equations (Bl4) and (B15) we can show

(B29)

wa | D(x) - N(x) + x°QD(x) |Z

= D(x)D(-x)x4(x2+v22)

D(x) - N(x) + x2QD(x) = xZ {%Qn2x5 + QN2n(1+ N2n)x* + [in2-1g(1+N2)=]x2
+ [ N2n(1+ V21) - Q( \[-é+T])2]X2 + [~1(1+~21)2
+ 1Q NB( NP Ix = [(N2+n)® - P - Q]}' (B30)

=—Jt P>
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Thus in comparing (B29) to (Bll) we must have

h(x) = D(x)(ix+vs) (B31)
i D(x) - N(z; + x2QD(x) (832)

and we see that since D(x) is fifth order, n = 6. The h(x) and g(x)
in equation (B12) will now be of the form

h(x) = eox® + €:x° + esx?* + ezx3 + e4x2 + esx + eg (B33)

10 v r.x® + rox8 4.rxt 4 TS+ ore (B3k4)

glx) = rgx

After considerable algebra we find that the e's and r's can be
expressed in terms of the a's Jjust defined in equation (B17) as
follows:
€o = iao j
e; = la; + voag
€o = lag + voa;
ez = lag + voap > (B35)
€4 = 184 + Voag

es = las + voaa

eg = Vo
J

ro = -Q%a0” b

ri = -2Qag2

ro = -a® + Q2(-2acas + 28383 + ag2)

rs = 29[ -apay - 822 + 8185] > (B36)

+ Q3(-2aza4 + 83°)

ry = 2(a; + Qag)(az + P + Q) - (az + Qaq)?

1l

s

(ag + P + Q)2 J

Now we have
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2
—El_s- = QﬂiIG
(#232 >
B1°
i A
e g_; )\_;- T fl(vl)VZ)n) (B37)

where A7 and Ao are the following determinants

ro Eor 0 OFO0E 0 €1 €5 Q 0 0 O
ri esc €3 €6 0 O ez es €7 €50 0 O
ro €4 €3 €o €37 €9 €s €4 €3 €2 €7 €o
Ay = Aa= (B38)
I's €g €5 €4 €3 €o O eg es €4 €3 €p
re O O eg €s €4 0 0 0O eg es €
BsEO 0 O E0 N eg O O =00 O e

Now for the Es component of error given by equation (B3). Using
equations (23) and (B2l), and making them dimensionless as before, we
can show that

1lim {%S(S)[l Y(s)] - __}_ S 1-Y(x) + Qx2 - ivo0x (B39)

S—0 Bl X=0 XZ(iX+V2)

Since the product v-Q will always be zero, the last term may be dropped

and equation (B3) can be written

ol BP0 g0 1-¥(x) +igx" (BLO)
x2(ix+vs)

Eo
-B1°>  x0

Utilizing equations (B1O), (Blk), and (B15), we get the expansion

e . 2P5a,52Q AR ()% + 6o o+ [-1(14N20)2 + iN2(N240)Qlx -~ [(V34m)2 - P - q]
5 =iy o D(x) (ix+vz)

(BL1)
Now we can see that if Q # 0 (£1 # 0 , &2 = O from eq. (B25)), the
value of (BLl) would be

= - 2P§°“2 [(1+ N2n)2 - q2( ~/_2-+n)] (Bk2)
X1

L2 4

== >
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On the other hand if Q = O we can show from equation (B41l) that Es = 0.
For if Q = O and vs # O, the value of lim {} will be either O or a
constant, depending on whether v; = 0 or not. If vy = 0, the denomi-
nator approaches zero with x; however, according to equation (B25) it
must be that v; = O so that the numerator also approaches zero with x;
the ratio is a constant. Thus we see that (B42) is valid whether @Q 1is
zero or not. Rewriting (BL2) in terms of the a's used previously we have

2
Ex2 = 22595—9 (iaz + 1Qag) (BL43)
B
or using (B27)
= hnQ(ias + iQaq) = fo(vi,va,n) (B4L)

<N232 >

which is the same as given by equation (L42) in the text.

The Es component is quite simple and can be written in terms of
the same quantities as the other components. By use of (B2l) and (B27),
(B4) becomes

Psa2

2 (5) 2
E3 orNo ‘ITNZMG L

Bo 8 N2T2TCQ2
Ba1*

]

Theretore,

= 21Q2 = fg(vy,va,n) (B45)
<N232 >(B JT

A1l of the error components are now in a dimensionless form and
are functions of three parameters, vi, vo, and n. As shown in the text,
for most cases these components reduce to functions of only one or two

parameters.

Now we will consider the equation for the restricted quantity given
earlier by equation (12). The restricted quantity consists of four parts

5 Ras & RS GuR.cadiipaS (BL6)
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where
P 2l (w)Elw) * enlf
SR & LR e
R1 o ) Hr(w) iw W (BYT)
= . CPS(S)Y(S) Cr
R & 2Pgcr 1lim l:——I_IR-gT— = (Bll-8)
Be =lige T (BL9)
P CQ 2
2 _In pn(w)Y(w)
Rn = -é?{ J ——Hm— dw (350)

Tt is worthwhile to note at this point a common feature of all these
equations. When Hr and c, are substituted in the above equations, all
the left sides will become of the form RZke?, where kp is the vehicle
gain. Since there are no poles of the fixed network other than at zero,
the quantity Rke is merely acceleration. :

A% = R®ke® (B51)
Thus rather than (BL46) we will be interested in the equation
AE = A B AR (B52)
Starting first with the noise component, Ry, we see that in a

manner similar to the noise component of error we can express equation
(B50) as

Rn2ke2  Ay2 &
208 2l —00

Here we have put P, = 21, used equations (24) and (27), and nondimen-
sionalized by setting w = Bix. Then using (B1O),

An2 [ x*N(x) |®
NoB o _\f: B)D(x) & 2

By comparing (B5Y4) with (B1l) we see we must let
x*| N(x) |2 (B55)
D(x) (B56)

g(x)

h(x)

Il

= e
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We have from (Blk4),

x4 W(x) |2 = -Px® 4+ [2(VB47)® -

and D(x)
will be of the form

h(x) '= agx

is given by (B15).

S

+ aiXx

Thus we see n

% 4+ asx3 + agx®

g(x) = ngx® + n,%% + nox* + nax2

Thus the a's

Then we have

where
b2 ao
b3 ao

}\6 o

1l aaq
0 0

Consider next the
In a manner similar to

ng =P be
n; = 2(N2+7)% - 2P = by
ng =1
LK = 0
ng =0

A 2

2 = = 2nils
NoBy

ol
= o 82(V1;ﬂ)

O C) Elgid Yelg G @
a1 &g g @4z a1 2o
Na =
as ao A0 a4 as ao
i a4 0 0 il aq

first component A,

are given by (Bl7) and

2P

1l

+

1x6 + x4

el The

ag4X + as

Na

deriving equation (B2l) we find that

Cr

1l

lim spg(s)Ws(s)
S0

WoMp
ke

1l
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(B57)

h(x) and g(x)

(B58)

f (B59)

(B60O)

(B61)

given by equation (BLT).

(B62)
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where
My = lim S¥(8) _ . g4y 28 (B63)
gvo Btt2 a0 SHEE
Obviously there are only two possible values for Mjp:
My = 0O for £ # O
(B6L)
Mp =1 for s = 0
Putting equations (23), (27), and (B62) in (BLT), and then setting
w = Bix, we have
Paa, 2o x) My PP
R.2keZ = A2 = 22 JF = B, dx
1 2 -y Sk Bq(ix+va) iBix 3
P 11 wa | ixY(x) - ixMy - Mpvpl®
R W x2(x24+v2)
Pgao2 e - Mpl®
2% B X2+4+vo2

Note that Mavs is zero in the equation above (B65).
(B65) becomes

Raked o Jf e 5 g
<N252 > <N282 > B

which is the same as given in the text as equation (49).

equation (B1l0O) we have

OO

| N(x) - MaD(x) |®
<§252 > D(x) (ix+vo) 1[D(-x) (-ix+vz)]

Using (B27) now,

Now using

Using (Bl4) and (B15) it can be shown after a little algebra that

(B66)

(B6T)

IN(x) - MaD(x) 12 = Mp®n*x*C + {ﬁA2(1+'J§n)4 - Mp2 N2 (1+N2n) [Mp(N2+0)Z - P]}~x6

+ IMy(NB4n)® - P15 4 [2P(MA71) + 2(MA—1)2(~f§+q)2} x2 + (Mp-1)2

(B68)
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The D(x)(ix+ve) is the same as was used in equation (B31l), and n = 6.

Thus in (Bl12),

W= e x°

g(x) = qox® + g1x8 + @2x® + qax* + qux® + gs

Since

+ e1X° + esx? + egx3 + e4x® + esx + eg

h(x)

g(x)

1l

we see that the e's are the

4

2

D(x) (ix+vs)

IN(x) - MyD(x) |*

same as given in equation
which are obtained from (B68) can be expressed in terms

determined a's and the result is

90

9 1.

5=

as

da4

as

Finally we have, utilizing the method of equation (B13),

Il

_MA2a02

0

—‘MA2322 + gMAal(MAas-l’-P)

(Mpag+P)

2P(Mp-1) -

(Mp-1)%

<N252 >

gﬁiIG

:rtl s

eO ?\2

2ea(My-1)2

= gl(Vl:Vz;ﬂ)

(B69)

(B70)
(B35). The g's

of the previously

~

S (B71)

(B72)
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where
G Ep 0.0 0.0 1565 000 10 0
® es e3 €5 0 O €g € €7 €5 O O
g, €4 €g €5.€7 €g s €a €3 €2 €3 €p
?\5 = ?\2 =
ds € €5 €4 €3 €2 O ez €s €4 €g €p
Ja 0 19 €s €5 €4 0 00 ‘eg’ €5 €4
dse@" 0RO NG e O OGO G e

The second component, Ao, can be shown to be identically zero.

Putting (23), (27), and (B62) in (B43) we can show

Rezkfz = A22

sY(s) - Mas - MAEZJ

2Pgap2Mp lim
s 50 l: 5(5"'52)

B fMa gy [Y(x) . MA:l

B s %0 j_X""'Vz

_ =2Pgu My 14m ((Mp-1) + [1NB(N24+n) (Mp-1)1x - [Ma(NB4m)Z - PIx® + . . .

(BT3)

5 B 1 X0 i ILX+V2

From the relation in (B6Y4) we can see that in equation (BT4)

1im{}=—i for My = 0
V2
X=>0
=+ 0 for My # O

0.

Combining (B75) and (B74) it is clear that i

(B75)

Tt hardly matters what is done with the last term, Az, since it is
not a function of the parameters vi, Vo, Or M. Consequently it can be
moved to the left side of equation (B52). For uniformity let us sub-

. stitute (B62) in (BLY) to give

RaZks® = Ag® = Pgus"My°T

(B76)

et R e
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A. Amplitude random =
Interval 1 random Xslt) (%12
& 5 i (Xg)
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Figure l.- Example signal inputs.
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Dimensionless rms acceleration components

(c) Acceleration components.
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