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SUMMARY

A method is presented for obtaining the nonlinear aerodynamic
stability characteristics of bodies of revolution from free-flight tests.
The necessary conditions for the application of this method are (1) that
the roll rate and damping encountered in a single cycle of oscillation
be small, and (2) that the resulting motion be reasonably planar. Four
approximations to the nonlinear restoring moment are considered and solu~
tions are obtained in closed form:

1. A single-term polynomial in an arbitrary power of the angle of
attack

2. A two-term polynomial having linear and cubic terms

3. A three~term polynomial having linear, cubic, and quintic terms

L. A three~term polynomial having linear, quadratic, and cubic terms

An iteration procedure is formulated to allow the use of each of these
approximations for obtaining the aerodynamic coefficients of bodies of
revolution from free~flight test data. It is found that although the
equations that are solved pertain strictly to planar motion, the solutions -
are applicable to motions that deviate to a fairly large degree from planar
motion.

Two of the approximations are applied to a set of data gathered from
the Ames Supersonic Free~Flight Wind Tunnel. It 1s shown that one of these
approximations is clearly superior to the other in fitting the basic data.
The results of this better approximation are then compared with both data
obtained from a wind tunnel and the results of two other methods for reduc-
ing free-~flight data. All of these comparisons indicate that the present
method yields realistic results. In addition, the results obtained by the
present method are considered to be more valid in most cases than the
results obtained by the other methods and at least as valid in all cases.



INTRODUCTION

A test conducted in a free~flight ballistic range ordinarily yields
the followlng basic data:

1. The location of the model center of gravity in space as a
function of time at a finite number of points

2. The angles.of attack, yaw, and roll as functions of time at
a finite number of points

From these basic data, other information such as the velocity as a function

of time (or distance) and the period of the resulting oscillation can be
determined.

The problem of obtaining the aerodynamic coefficients from these
data involves writing down the equations of motion and solving this set,
if possible, using the glven data. In the most general case, no solution
to the equations of motion exists. It therefore becomes necessary to
make certain assumptions, and hence simplify the equations to a set that
can be solved. :

One assumption that is commonly made to simplify the equations of
motion is that the restoring moment is linear with respect to angle of
attack., Under this assumption, a number of solutions to the problem do
exist (e.g., ref. 1). It has been found, however, that bodies of revolu~
tion at high Mach numbers, especially blunt-nosed slender bodies, experi-
ence extremely nonlinear restoring moments. It i1s thus necessary, in
order to treat bodies of this type, to discard the assumption of a linear
restoring moment and to investigate under what conditions and with what
assumptions a solution to the nonlinear case can be obtalned.

A variety of solutions to this problem exist (e.g., refs. 2 and 3).
However, for a set of data obtained in the Ames Supersonic Free-Flight
Wind Tunnel, the adequacy of these known methods was either doubtful or
unknown. It was thus decided to attempt to gain better insight into the
problem of analyzing the motion of a body governed by a nonlinear restor-
ing moment. A systematic description of this investigation will be given

in this report. Attention is first concentrated on a very simple nonlinear

case. After examination of this solution, the development will proceed
step by step to more complicated cases, eventually arriving at solutions
that can be applied to free~flight data with a great deal of confidence.

SYMBOLS
A constant in equations (8), (17), and (25)
B constant in equation (1)
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restoring moment coefficient, 5T
. dCm
moment~curve slope, 570

moment-curve slope obtained from linear theory (defined in

eq. (6))
incomplete elliptic integral of the first kind

quantity introduced in obtaining the solutions to a number of
integrals (defined in text for the various cases encountered)

constant in equation (25)

*moment of inertia about an axis through the center of gravity
and normal to the axis of symmetry

complete elliptic|integral of the first kind

modulus of elliptic integral (defined in text for the various
cases encountered)

reference length

restoring moment

constant in equations (8), (17), and (25)
constant in equation (17)

exponent in equation (1)

dynamic pressure, % pV2

gsSl

reference area
period of oscillation
time

factor appearing in expressions for ag (defined in text for
the various cases encountered)
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velocity

0 \2
Cim
roots of the polynomial appearing in equation (19)

[¢7

Qm

roots of the polynomial appearing in equation (26)

angle of attack

effective angle of attack (the true value of Cmm at a = ap
is equal to CmaL at o« = o)

maximum angle of attack
(Note that when "reasonably planar motion" is considered,
am refers to the maximum resultant angle of attack.)
minimum resultant angle of attack
angle of sideslip
beta function

gamma, function

argument of elliptic integral (defined in text for the various
cases encountered)
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SOLUTTIONS TO THE PROBLEM

Testing of bodies of revolution in the Ames Supersonic Free-Flight
Wind Tunnel has indicated that the following conditions are satisfied in
many cases:

1. The roll rate of the model is small.

2. The damping of the resulting motion is extremely small when
a single cycle of oscillation is considered.

3. The resulting motion of the model is reasonably planar. (The
definition that is herein adopted of "reasonably planar motion"
is a motlon which has the ratio ag/oy < 0.3 and which roughly
describes an ellipse in the a, B plane.)

It will be assumed in the developments to follow that the roll rate and
damping are identically zero and that the motion is identically planar.
However, the solutions will be considered applicable if the conditions

given above are satisfied.

Moment Consisting of a Single Term in an Arbitrary Power of o

A simple nonlinear case that we can consider is one where the moment?t
can be represented as

M= CmqSl = -Bo® p>1 (1)
hence
Bpa ™t
Cog, = = —%SZ— (2)

Given planar motion, with zero roll rate and damping, our equation of
motion to be solved is

I - M= 0
oxr

I8 + BoP

]
(@]

lIt should be realized that the desired moment is an odd function
[M(~x) = =M(a)] which does not follow from equation (1). The derivation
that follows, however, does not depend on this point.



On multiplying this equation by & and integrating, we obtain

T2 BaPtt

R e

To £find €, we use the fact that ‘o = O when o = op. Thus

Ba,mp+l

p+1

and

o ot llL s 2B +1 _ . pt+1
g j(p+1)1(0“ e

(BT do (3)
2B f“’mpﬂ : Btk

We can determine 'I‘/lk (Where T is the period of the oscillation) by
integrating equation (3) from o« = O to @ = ap; that is,

ftmdt=3=[(P+l)If@m d
> L 2B o qunp+l-ap+l

This integration can be performed by employing the beta function

8(a,b) =flua-l(1 - u)b-13u {a PR

at

£ Joff (0
Thus by letting
p+1
u= (==
&)
=
g _(p+l)ot.p _(p+l)upldob
G x O
we get
11 /(p+1)1 - opdu
5 2B 2
o}
(p + D™ \/O(Jmp-'-l i

O &= =
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= B 2 _>
(o D D=L 0 iy b 72

We can now introduce the relationship between the beta function and
the gamma function that

Bla,b) = ;L(Z)_i%
B comite: L
o

(ép + 2

and since

J

1l

@

I'(a + 1) = al'(a)

Il

our expression for the period reduces to

T=f2ﬁ1(p+3) <P >
(

i

Solving for B, we get

2oI(p + 3)° < > (%)

Al g, T r <_P___
2pri

Putting equation (4) into equation (2) gives our final expression for Cmg,

(5)

2mp(p + 3)% <P > <dm i
F

Cang, = = ol A i

TZqSZ

2p + 2

and a similar expression can be obtained for Cp.



For this simple case, our problem is thus solved. However, for the
more complicated cases to follow that involve more than one unknown, we
will have to develop an indirect method of finding the unknowns. Since
this indirect method also leads to a better intuitive feel for the prob-
lem, it will be developed for this case also. We proceed as follows:
Assuming p = 1 (linear theory) in equation (5), we get

Cma, = CmC(.L 5 %:T:TI (6)

This is the familiar expression for Cm, under linear theory and our
additional assumptions. Now, it can be argued that there exists an angle
of attack (called “E) through which our model has oscillated at which

the local value of Cp, 1is the same as Cmgyy, obtained from linear theory.

To obtain this angle of attack, we equate (5) and (6), substituting o
for a in equation (5). Thus

2
¢ e (10_1_2> A
~2mp(p + 3) P+l <@ I .-k
p+1 4 <?p +5 Qi P2q81 TSl
CPit e
from which
:
: <3 5 2| p-1
B i 2n(p + 1) 2p + 2

o(p +3)% | r @I—:EL) 54

Now, equation (7) tells us that if our model was indeed governed by the
restoring moment assumed in equation (1) (consider p as a known value),
then we can determine the real angle of attack at which the Cmo;, obtained
from linear theory is equal to the local value of Cmy. In effect, the
parameter mE/mm tells us the transformation from a plot of CmmL VS. Om
to a plot of Cmy vs. a.

Figure 1 shows a plot of @E/@m vs. p. It is Interesting to note
that for a cubic moment (M = -Ba3), Cmyp, obtained using linear theory,
should be applied at 0.489 ay. This is considerably lower than the root
mean square value of a sine wave (0,707 am) which one might have expected
to be a fairly close value.

- The downfall of the approximation that was made in equation (1) is
that for p > 1 the moment-curve slope at o = 0° is 0. This is obviously
too severe a restriction to place on our solution. However, it is felt
that this simple analysis has led to an intuitive feel for the problem at
hand. We will now consider a slightly more complicated case.
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Moment Consisting of a Linear and a Cubic Term

This problem has been treated by Rasmussen in reference 2. Rasmussen
considered the two-degrees-of-freedom case (no restriction to planar
motion) and obtained solutions in closed form. As & step in bullding up
the present method of solution, however, it is necessary to treat this case
in the same manner as our previous example. Also, certain approximations
made by Rasmussen in simplifying his final results for application pur-
poses can, for the case of planar motion, be applied in their exact form.
It should be noted that the exact solutions presented in reference 2, when
Specialized to the case of planar motion, can be transformed through
mathematical manipulations into the same solutions at which we will arrive.

Consider the case where the restoring moment governing our model can
be represented as

M = CmgSl = -Aa - mAqS3 (8)
hence
3 otk 2

This assumption is more realistic than our first example since, 1n this
case, the moment-curve slope at a = 0° is not in generaly zeros. . Lh
should »e noted that under this assumption d%Cp/da® = 0 at @ = 0°, The
equation of motion that will be solved is again

o -M=0
on
I8 + Ax + mAa® = O

Following exactly the procedure set forth in the first example, we obtain

% dou
T = 32T
j; JA(202 + mogt - 202 - mut)
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or on letting y = a/mm

r- [2Z [ I = an >0

- ) <y2 -
> (10)
T= | 3212\/ﬁl = Am < 0
-Amom Yo V/(l - 79 <fy2 - EE%§;§-§> |

Now we must consider the three possible cases that exist under equa-
tion (8). These are shown in sketch (a).

Ly e i G
A>0

\ m<0 3
| A>0 A<O

m>0 m<0

Q a a
Case | Case 2 Case 3

| Sketch (a)

Case 1.~ Since Am 1s greater than zero, the first of equations (10)
is the appropriate one. With m greater than zero, the polynomial under
| the radical within the integral in this equation is nowhere negative
| between the limits of O and 1, so we can proceed with the integration.

This integration can be performed by using 213.00 from Byrd and Friedman

(ref. 4).
2l
> eK(k)
where
2
ofy [igio My
il s :

O
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and K(k) denotes the complete elliptic integral of the first kind.
Solving for A, we get

A= Ei—%é 2[K(x) 12 (11)

Putting equation (11) into equation (9) gives our final expression for
6;
o,

2
-16[K(k
Cr, = —[2( )] (2 i) (12)
mi S + 1 T2qS1
Once again, we solve for the effective angle of attack at which the local
value of Cm, 1s the same as Cmy; obtained from linear theory. Hence,

by equating equations (6) and (12), we obtain

:rfz(l - mx,m‘?') 3
= e i
& / 1om[K(k) 15 3m ¥

Equation (13) tells us how to determine our effective angle of attack so
that the value of Cm@L obtained from linear theory is the local value

of Cp,. In figure 2, mE/mm is plotted as a function of mn®. It is
noted that the value of 0.489 obtained in the first example considered
(where the linear term was neglected) is a limiting value in this case,
and nowhere does the shift differ substantially from this value.

Case 2.- In this case, Am < O, so the second of equations (10) is
applicable. Before we can proceed with this integration, we must deter-
mine under what conditions the polynomlal under the radical within the
integral is non-negative. If it is negative anywhere between the limits
of O and 1, the period of the oscillation is imaginary, corresponding to
instability. This polynomial can be shown to be non-negative between the
given limits, leading to a period that is real and finite, as long as the
following condition holds:

-1 < mip? < 0 (1)

This can be pictured more clearly be referring to sketch (b) .- The condi~-
tion moy® = -1 gives the value of ap =oa; at -Cm

which there is an unstable trim point; condition

(14) states that O <oy < @y. With these thoughts

in mind, we can now integrate equation (10) by Q
using 220,00 from reference L. !

; L@
T = /—_A—;% 2K (k) Sketch (b)




where
o
g2 = k2 = __E%;E___
muy= + 2
K(k) = complete elliptic integral

of the first kind

Solving for A, we get

&351
M0y 2T

A= g2[K(k) ]2

Putting this equation into equation (9) gives the expression for Cmy,

-32[K(k) 17
Cm = 3 [2( )] (l 4 3m2) I

miy + 2 TZqSZ
The expression for aor “s now obtained by equating this expression with
equation (6).

(2 + my®) 1
= L 1
am Ehm[K(k)]z 3m (15)

This case is also plotted in figure 2. It is noted that aE/mm for TGhis
case lies between 0.50 and 0.577.

Case 3.~ In this case, Am > O so equations (lO) assume the same form
as under Case 1; that is,

3212 2 dy
e o o)

Here the condition for the quantity under the radical within the integral
to be positive or zero between the given limits can be written as

FZ4
__mw>o

or

my= < - 2 1
" (16)

\Di=g 1
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Physically, what this means can be explained as follows (see sketch (e)).
If a model were launched at o = a4, it

would continue to fly at that angle of “Cm
attack throughout its trajectory. Simi-

larly, if launched at os, it would

oscillate between a3z and as. The area

under the curve between a4 and as is @m

a measure of the energy added to the sys- Gs

tem while the corresponding area between ' as a
a4 and g 1is a measure of the energy Q3

removed from the system. Since we have Gq

neglected damping, the model would oscil- Sketch (c)

late between limits that make these areas

equal. Now we have insisted that the model oscillate through o = 0
(i.e., between o = o and & = -qy), which cannot occur unless oy 1is
large enough to allow the shaded area above ~Cm = 0 to be equal to that
below -Cpy = O. 'Thus, condition (16) does nothing more than state that
am > 2. With this in mind, we find that the solution to Case Be
identical to that of Case 1; that is,

/ﬂz(l e g

1om[k(x)]? 3

(13)

O =

where

k2 = ____Egﬂfi__
2(mm2 o l)

Tt is noted from figure 2 that for this case, aE/mm varies between 0.408
and 0.489. As in Case 1, throughout most of the range the value obtained
when the linear term is neglected (0.489) is a close approximation.

USE OF LINEAR PLUS CUBIC APPROXIMATION

Assume that at least two firings are made of a given configuration
in a free-flight facility. Assume also that over one cycle of oscillation
the damping is negligible, that the roll rate is small, and that the motion
1s reasg@nably planar (see definition, page 5).

It is then an easy matter to determine ap and to apply linear
theory and determine Cmyy, for each of the runs. If the data points
appear to fall on curves like any of those shown in figure 3, the linear
plus cubic approximation can satisfactorily fit the data. It is obvious
that if the data show an inflection point or are other than continuously
increasing or continuously decreasing, the linear plus cubic approximation
cannot fit very well.
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Two runs are then chosen which have values of an reasonably far
apart. We can then obtain two equations with two unknowns by inserting
the following into equation (9): Replace

o by ap
and define
A
R—E
Then

C.mchl = -R(l - 3mc(,E12)

1l

Crp, -R(1 + 3mog,2)

In matrix form, these equations. become

~CmG"L1 — il 3CLE 12 R

~C 1 2 || mR
Ty 30E,

RSN

Since P is nonsingular, it has a unique inverse, and we can write

][I

We are thus led to the following expressioﬁ for the unknown coefficients:

or

— — N ~— -
9 g2 Ge 1
8 EUE s B B b e
CLEl - CLEZ CI-El - C(.EZ
1 -1
mR i
3(ag,® - ag,”) 3(ag,® - ag,®) L
RO I 3 bt

Tt will be obvious from a plot of Cmgy VS. dm whether the test results
qualify for Case 2 or for Cases 1 and 3 (see fig. 3).

O~ ==
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After choosing the governing case, it then becomes merely a matter
of assuming a value of ag (anything near 0.5 ay 1is sufficiently close),
determining the P=1 matrix using equation (13) or (15), and from this
forming the Q matrix. The quantity m is obviously mR/R.

This new value of m 1s used to obtain a new P~1 matrix and the
iteration process continues. The iteration process converges very rapidly
for each of the three cases. After m and R are obtained, Cp, as a
function of a, is determined from equation (8).

After the iteration process has converged, the solution will of
necessity go through the two data points used. The demonstration of the
adequacy of the linear plus cubic moment assumption is in how well the
curve goes through additional data points obtained from testing the same
configuration. This is checked by constructing the Cmyp, VSe Om curve

from the following equation, using the values of R and m given by the
iteration process:

cmaL = -R(1 + 3mup?)

If this leads to a reasonable fit of the data points, a better fit can be
obtained in the following manner. First a least squares fit is obtained
of Cmyy VS. oy having the same form as equation {9)'s

Cmyy = & + bam®

After solving for a and b, two points are chosen from this least squares
fit to use as inputs for the lteration procedure. The iteration procedure
will then yield a fit of the data points that falls very close to the
least squares fit. This could best be termed a quasi least squares
procedure.

Moment Consisting of a Linear, a Cubic, and a Quintic Term

Next, consider the case where the restoring moment governing our
model can be represented as

M = CpaSl = ~Ao - mAx3 = nAxS (17)
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hence

A

Cmg, = - o5 (1 + 3m2 + 5na*) (18)
£ o) d=Cp o - :
Once again it is noted that =z = O at a = 0", The equation of motion
that will be solved is dov
o, - M= 0

or:
I6 + Ac + mAa® + nAa® = O

Again we follow exactly the procedure set forth in the first example
considered and obtain

do

= 961f
g \/A(6@m? + 3mom” + 2nop” - 6a® - 3m* - 2naf)

or on letting x = <é%>

Jfitr -l e )

(19)

We will define by x; and xo the roots to the quadratic polynomial
that appears in the denominator of our integral.

-(3m + 2noag®) + o/ 9m2 - 48n - 12mnom® ~ 12n2apm*
Unom®

Il

X1

~(3m + 2nogp®) - J9m2 - 48n - lomnop® - 12nZap*
linou,®

X2

These roots may be both real or both complex. Now, equation (19) may be
rewritten in the following manner.

O




2V

17

7= lglék/hl i el
Ao Vo [ x(1 = %) (x = x3)(x = x2)
12T s dx
= | An < O
"AI%4j<; J =1 = $)(x - xo)lx - x2)

The quantity under the radical outside the integral is then always posi-
tive. To obtain a meaningful solution to equations (20}, it is necessary
for the quantity under the other radical to be non-negative between the
given limits. This condition will be discussed when the individusl cases
that exist under equation (17) are comsidered. These cases are shown in
figure L.

P (20)

H
I

J

Case 1: TIinear, cublc, and quintic terms are all stabilizing (A > O,

m>0,n>0).~ The first thing we must determine is under what conditions
the polynomial under the radical within the integral in the first of equa-
tions (20) is non-negative between the limits O and 1.

Assume first that x; and xp are real (i.e., 9m2 ~ L48n - 12mmay?
~ 12nfay* > 0). This can obviously be achieved by making m large and
n small. Under this assumption, it is apparent that x; > xo and that
X2 < 0. To show that x3; < 0, rewrite the expression for x; as follows:

_ = /9w r12mmon? HinZay® + J(9mP+12monP Hinon®) - (18n+2lmog+16n2ag?)

"-I-Dﬂ,mz

X1

Since the expression under the first radical is larger than that under
the second radical and the denominator is positive, x; < 0. Now, since
Xo < X3 < 0, the terms (x - X7) and (x ~ Xp) are necessarily positive
between the given limits and the expression under the radical is > O
between these limits. We thus have the following (see sketch (a))s

+] [xU-x)x=x)(x -x, )]

/\ AT

R

Sketch (4d)
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Next, assume that xj; and Xxp are complex (i.e., 9m® - U8n - 12mnom?
- lEnzam% < 0). This can obviously be achieved by meking n large and
m small.

Now, x7 and Xo can be expressed as follows:

_~a + iD
c

>
|
|

-a-i\/?
S T e

with & >0, b >0, ¢ >0. Then the product (x = x1)(x - x2) has the
following expansion:

2ax a

(X-Xl)(X—X2)=X2+T+'C—2 C_Z.

This term is positive for O < x < 1, and hence the term in the denominator
of our integral is > O between the given limits. We thus have the fol-
lowing (see sketch (e)):

[x(l-x)(x-x,)(x-xz)]

O

Sketch (e)

We can now proceed to solve equations (20) . The two subcases of
Case 1 will be treated separately.

Subcase 1, x3 and xz real: Making use of 256.00 from reference U4,
we can write

r- [22 )

PN @ = S e -2 ~ S
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where
L
2 e
s e XX = Xo
b
W2k sk X2
XXsS = Xo
Solving for A, we get
12T 2
A= ——= g7[K(x)]
s Ml

Putting this equation into equation (18) gives the expression for Cryg,

_ . lee?(k(x) 17 I
e S5 - T (l 7 3m2 it 5I1CL4) TquZ

The expression for ap 1s now obtalned by equating this expression with
equation (6).

{21)

V/—3m + J9m? - 20n(1 ~ u)
aE =
10n

where

36”[K(k) ]

The plus sign in front of the inner radical in equation (21) is chosen in
order for ap to be real.

Subcase 2, x; and xo complex: Applylng 259.00 from reference U4, we

can write
= [ ()

2— l

g —
J xixa(l - X3 - Xo + X1X2)

where

notm*

«/% (1 + myp® + noy®) (6 + 3muy2 + 2ncy*)
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o= L X1 + Xp = 2X3Xp
2
l*-«/X:sz(l - X1 - X2 + X1Xp)
0 et (b + 3mop? + 2nogp*)
=4

qfé(l + M= + noy®) (6 + 3mig> +. 2ncy®)
Solving for A, we get

481

e g2[K(x) 12

A=

Putting this expression into equation (18) gives the expression for Cma’

£
T2q81

(1 + 32 + 5na?)

o SR 15
o, 4

Equating this expression with equation (6) gives the expression for ag.

g4 /—3m +Jom® - 20n(1 ~ )
E 10n

(22)

where

7noum*
12¢2[K(k) 1%

—

It is noted that equation (22) has the same form as equation (21), but it

should be kept in mind that wu, g, and k are expressed differently in the

two subcases.

General discussion concerning additional cases.- A rigorous deriva-
tion of the expression for amp for each of the additional cases that
exist under equation (17) would consume much space and serve little
purpose. The form of this expression for each case can be written as

/—3m + Jom2 - 20n(1 - u)
am =

10n

(23)

The appropriate expressions for u, g, and k vary depending on whether
X1 and Xo are real or complex and also on the case under consideration.
We will define a number of wu, g, and k which will allow us to indicate
in tabular form the appropriate expressions to use.

O =1 &=
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7o * - 12nay* 7enouy *
S s T R g T ST Iy
3e”[K(k) ] 3g°[K(k) ] 12g2[ k(%) ]
> b DN NS D e
Bists 82 l
| x1x2 - xz | | xax2 - X1
> I’l(:I{m‘L
i 5 4
fg (1 + moug? + nop®) (6 + 3mouy® + 2noy”)
= Xo = X3 e o Ko = X3
k1 X1Xo = X2 X1Xo =~ X3
1 3(4 + 3moy® + 2noy*)
Ro= e
LL\/6(l + mou® + nam®) (6 + 3mum® + 2noim*)
TABLE T
Valid
root
Case Description xyand xo u g k (eqg. (23)) a1 ,0s
'Cm Real U g12 ky
A>0
Al m>0 or +
n>0
a Complex us 832 ks
‘Cm A>O 1
m<0 ! Complex us gz° ks + Always
sk /&Limiﬁng only - Sometimes
/ case
a
—m '~ e =ln
-Cm 328 Real w g% ki %1 = 2n
n>0 + Always
2.2 R - Sometimes =
-m + 2Nm3=in
Q ap a Complex us gz° ks g ey o e
-Cm A>0 =
20 Tani 2 Yl e Kigags b B Vm2-kn
3 n<0 ea, Uz gy 1 way at on
only + Sometimes




TABLE I - Concluded

Case Description X3 and xo
“Cm A>0
m<Q
L n<0 Real
only
(o] Q
-Cm A<:O Real
m<O
D) n<O0 or
Qo a " Complex
Real
26 A<O
" m>0
6 n<0 or
g a Complex
Real
7 only

s

uy

uy

Valid
root
& x (eg..(23)) Qo ,0p
= : -m - Jm2-kn
2,2 k; = ay = [——=—
2n
= = 27
i R L 3m 9m=-48n
4n
832 k3
-3m - Jom2-L8
g2° ko Qo = - “onil
4n
ga° ka
g2 ko Both S o T
always en
-3m - J9m2-48n
Ao =
4n

The column headed "valid root" denotes the appropriate sign to be

used in front of the inner radical in equation (23).

_Crn
'Cmai

C[nCIVS.(Z

insist that om < oy and/or am > as.

Sketch (f)

Some cases can have
two valid roots because of the double-
valued nature of Cpy. It is clear
from sketch (f) that there are two
transformations that can be applied
to point A that will place it on the
Cmg, vs. o curve, while only one such
transformation exists for point C.
The point labeled B is evidently the
dividing point between these two
possibilities.

The tabulated values of a5 and
®o 1Indicate the dividing line between
regions where our solution does and
does not exist. Specifically, we must

If these conditions are not satis-

fied, the quantity under the radical within the integral in equations (20)
becomes negative and the solution that has been developed has no meaning.
The physical meaning of these conditions can be realized by noting that

\O ] = b
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we have insisted that the model oscillate through o = 0° and, if the
conditions are not satisfied, this will not be the case. It should be
noted that oy 1is an unstable trim point and that oo 1s located so
that the shaded areas above and below ~Cp = O are equal.

USE OF THE LINEAR PLUS CUBIC PLUS QUINTIC APPROXIMATION

Before this approximation can be applied, at least three firings of
a given configuration must have been made. We then proceed as in the case
of the linear plus cubic approximation (page 13) and obtain three equa-
tions with three unknowns. These equations can be written in matrix form
as follows:

% 7 B o v e
~Cogy 1 3og,® Sag *| [R
I
= == 2 s
CHU'LZ 1 3@'E > 5(LE > mR
"CmC(.La 1 3o 82 i) 34 nR

Once again we determine the inverse of the square matrix, and we can
then write

~ - = -r )

. “E22°’E32 '°’E12°’E32 o.El2a.E22 S

Ly
(Q_Elz - “‘Ezz) (“‘Elz - °"E32) ("'Elz = “'Ezz) (Q_Eaz 1§ Q,Esz) (G'E]_Z - G‘Esz) (°'E22 = Q,Esz)
2 2 : 2 2

e a a.E22 + “’E:,Z 3 ag, 2 + ag -y ag,? + og, ihis

3 ("-Elz o “Egz) (“Elz 2 “Eaz) 3 (“Elz 3 “'Ezz) (“Ezz E °‘E32) 3 (“E;_Z 3 “Esa)(“Ezz 5 “'Esz) Lo
1 -1 1 c

n.R o, mL
5(ag,? - ag,?) (ag,2 - aE,>) 5(ag;2 - apy?) (ag,? - ags?) 5(ag,? - agg?) (ap,2 - agg?) 3
(2k)

From equations (2%), we would like to determine R, m, and n.

From a plot of CmmL vs. ap and reference to figure 4, we can

determine the cases under which our test results may fall. The solutions
are so similar that it need not concern us that we are unable to pinpoint
a-specific case that governs our data. This is especially true if the
problem is programmed for a digital computer. It is fairly easy to set
up a general program that will handle all possible cases.



24

A guess is now made at values of m, n, and R (only a positive or
negative sign need be assigned to R) and an iteration process 1s started.
From m, n, and R, the three

“Cmg CmaVS- a values of ap can be determined
-Cmgq —Cmyg, vS. @m from equation (23) and the infor-
L L mation in table I. When more

than one root of equation (23)
; is valid, the root that gives
O—Data points the largest spread between the
highest and lowest values of ag
should be used. Sketch (g) clar-
ifies this. It is apparent that
the points A, B, and C better
Sketch (g) define the Cmg, vs. & curve than
do the points A, B, and D. Equa-
tions (2&) can then be solved for R, mR, and nR, and hence for m and n.,
These new values of m, n, and R are used to obtain new values of the
aR, and the iteration process continues.

Gm

It has been found that the iteration process converges very rapidly
for all cases that are initially stable (Cases 1 through 4), even with
extremely poor initial guesses of m and n. The same is unfortunately not
true for cases that are initially unstable (Cases 5 through 7). For these
cases the iteration process diverges, even with almost exact guesses of
m and n. This condition can be remedied to some extent as follows: We
will make the assumption that R (i.e., ~Cmy 8t @ = 0°) is a known value
and will then proceed to obtain expressions for m and n. Only two data
points will be used to get these values; the third data point will be used
in a way that is explained presently.

Regarding R as known, our two equations are

T, |
Bls '
" R l> 39,2 SaE*| |m

Moy,
A <C RL2 + l> oE> st in

By determining the inverse of the square matrix that appears sbove , We
can write

i 7 = o =
m *Ez B le + 1
3“E12(°"E12 _ G‘Egz) 3@E22(°"E12 g3 O(‘EZZ) R
n =1 - CmLZ + 1
2
L | DB P(em,® - agy®) S, (o, ® = “EZZZJ g sk

-

\O =1 e
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Now we can make a guess of m and n and go through an iteration process
as before. 1In this case the convergence is rapid if the assumed value
of R 1s anywhere reasonably close to its true value.

This process is repeated for several different assumed values of R.
In each case, after the iteration has converged, we form the following
parameter: ACmyp = Cmyp, (known e

for third data point) - Cma% R which allows
(given by iterated solution). Z&C”VIL solution to fit

Then we can graphically deter- 3 data poinfs
mine a value of R so that the 0
iterated solution will go R
through all three data points,
and with this value of R as
an input, the iteration will e
yield the corresponding values
of m and n (see sketch (h)). Sketch (h)

Regardless of which case is under consideration, once the iteration
process has converged, the solution will of necessity pass through the
three given data points. The adequacy of the 1-3-5 approximation is deter-
mined by seeing how well it fits additional data points obtained from
tests of the same configuration. The CmmL VsS. i curve is constructed
from the following equation using the values of R, m, and n given by
the iteration process:

Cmgy, = -R(1 + 3mg® + Snag®)

Once again, a better fit can be obtained by using the quasi least squares
procedure mentioned on page 15. For this approximation, a least squares
fit of the form

Cony = &+ bam® + coum4

is obtained, and then three points from this fit are used as inputs for
the iteration procedure.
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Moment Consisting of a Linear, a Quadratic, and a Cubic Term

Next consider the case where the restoring moment® governing our
model can be represented as

M = CmaSl = -Ax - hAx® - mAa® (25)
hence
C =i(1+2m+3m2)
T = gS1
For a moment of this type, it is noted that dZCm/d.cx.2 is, nmot; 1in general,
zero at o = 0°. The equation of motion that will be solved is
I - M= 0
or
I5% + Aw + hAa® + mAa® =

Again the procedure set forth in the first example that was considered is
followed, and we obtain

or on letting y = ofoy

T= , 4y Am > 0 W
/(l y3+ 3mom® + Lhom 5 3m:n2+l+l'nm+6>y 3moun® +bmm+6>jl

3map™ 3moy> 3mum?®

" J g ﬁI jw_l)[ Gmf+hm®y2 3mf+hmm+$ me2+mm+ } Ty

3moum>

(26)

2Tt should be realized that the desired moment is an odd function and
that to be strictly correct we should write ofa| for the quadratic term.
This does not make any difference in our derivation and hence will not be
carried through.

ANO RN I =g =
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’ We will define by ¥, ¥, and y5 the roots of the cubic polynomial that
| appear in the denominator of our integral. Since these roots may all be
real or one may be real and two complex, they will be defined as follows:

} ¢ If there is only one real root, this root is defined as V1.
No distinction between y, and ys is necessary. If there are

} three real roots, they are defined such that y, >y, > ya.

I

To obtain expressions for the three roots, it is convenlent to define the
following quantities:

| o
E C-“-%-Fl
I
7 a2
J9 3maiy
J GO=BJ;)+ (2¢® - 9¢® + 27¢ = 9ed + 274)
| ;|
‘ Ho = 5 (3¢ +3d - ¢2)
‘ G ?/-Go + J?iFTZTEEE
} H=?3/—GO-N/GOZ+H03
\

SahE e

=1 f = _GO
L = cos <f / Hbz> s il e et O

D2 ' LRR80R

} Then, if o 5 O, there are one real root and two complex roots
|

yl==G+H-%
(27)
i)’ 2 :
y2’3=-§[—<G+H+'?c‘ ilﬁ(G-H):’
‘ -
| i GOZ + Hbs < 0, there are three real roots
3 i =1 when: p =0
yi=-%+2~/—Hocos<%+1200p> i = 2 when p=2} (28)
1 =3when p=1
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Now by mesking use of 253.00, 255.00, 257.00, 259.00, and 260.00 from
reference 4, we can obtain solutions to equations (26). The possible
cases that exist under the 1-2-3 approximation are the same as under the
1-3-5 approximation (fig. 4), with the exception that d3Cp/da® 1s not
generally zero at o = 0°. The solution for the effective angle of attack
for each of the cases of interest can be written in the following form:

+ JhZ® - s
o TRE Jn 3m3m(l w) o

With the aid of the following definitions, the appropriate expressions
for u, g, k, and @ to be used for a particular case can be presented in
tabular form.

Define

1
g2 = Y1,2,s from equations (27)

J (L=Yomya+75¥s) (F12-V1Y2~Y1T5+Y2Vs)

YL L 3
22 =
(.')’1 - 1) (Yz - YS)
gs® = h ¥1,2,3 from equation (28)
(ya - D(yz2 - y1)
%
842 =
(y2 = D (ya - y1) J
SRR S 2Y1-Y2-Y5Y1¥2=Y1Y5*2YoYs §
B
b J 1oy +yays) (722-¥1¥o-¥1YoY2Vs)
) ¥1,2,s from equations (27)
S dii 2Y1-Y2-Y3-Y1Y2-Y1¥at2y2ys
2
L (I—Y2-Y3+Y2YS)(Y12‘Y1Y2-YLY3+Y2Y3) J
ka2 e (ya - D(y2 - y1) 1
(v1 - D (y= - ¥a)
T (ye = 1 (ys = y2) s Y1,2,3 from equation (28)
(ya - D(ya = vu)
et (v - V(ys - ¥2)
(y2 - D(ys - v1) 4

ANO LN B i
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? cos™1 (J Y12=Y1¥o-¥1¥aty¥a¥as + Y1 ~/ 1“y2'Y3+Y2Y3)
1

Jylz'yl}'z‘Y1Y3+Y2yS =4 Jl"YZ'}'s+Y2Y3
Y1,2,3 from equations (27)

P> = cog~t - JY12=Y1Yo-Y1¥atYa¥a + Y1 J 1-¥o-Yatya¥a
> =
J ¥12-¥1Y2-Y1¥stYa¥s + Vi J 1-Yo~Yat¥aYs

G = ainL St W
g = R b o
yé(Ys - 1)
A
5 Yo e
i 0, = sin™t [—E L Y1,2,3 from equation (28)
9 ¥y = 1)
Sy Yarrsels
Pg = sin B ——
Jyalyy - 1) !
| o
| o Sl 2
% 8¢ [2K(k) - F(p,k)]
|
|
= i
Up = >
882[ F(CP Jk') 1
:rf2mm2
B 2
8g2[ F(CP :k) 1
TABLE IT
Valid
Y1,Y2,Y3 root
Case Description ) u g2 k o (eq. (29)) TR
Nan =0
-C Vo,¥s complex w &% k9
| 4 A>0
| 1 h>0 or -
‘ 3 m>0 g
= V3 <V2<y1 <0 uzs g~ ks Qs
: A6 1,y
/ ¥ <9 + Always
X ALimiting Y2/¥s complex B m B
case
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TABLE II - Concluded

Y1,Y2,Y3
Case Description 1
Vi, <0
Cm| A>0 Y2,¥3 complex
2.2 r’,‘;g { or
o @a, a g et
¥y3 <O
Yot L
e ar Y2,¥s complex
3 328 or
q a Vit oA
V3 <y-<0
Cm A>0
)+ h<0 ¥y > i 1
Qp& ¥a <2 <0
QI Q
-Cm A<O
5 h<0 Va0
m<O Y2sYs3 complex
(22 Q
L hyg - T30
m<0 Y2,¥3 complex
02 Q
“Cm A<O
7 h<O y1>1

m>0
(12 a,‘ (o]

Y2,¥s complex

5N

u1

uy

g2

&2

€1

€3

€3

g1

glz

€1

ky

ko

kg

ke

ki

ky

ko

P

Psz -

P2

Py

Py

Py

Pa

Valid
root

(eq. (29))

g ,02

+ Always
- Sometimes

Always
Sometimes

+

Both
always

Ly

Ly

Q2

S7-1

QL1

A2

-h- JhZ-Im

2m
(2)

—h~ N h2-km

b J 1Pl

~2h- J4H2-18m

3m

—2h- JUr2-18m

3m

N

2m

~2h~ J 4n2-18m

3m

(l)Every‘thing indicated in this
not necessarily complete.
(except y1 >yo >yg > 1

given case can be analyzed by referring to one of the other cases.

(2) “h + 3Jb% = bm +
Ao =

2Jh2 - 3h 12 - Im
m

column is correct, but the indicated location of the roots is
However, all possibilities concerning the roots are covered
which cannot occur) so an additional possibility under any

This table has been set up in the same manner as table I (the 1-3-5
polynomial approximation) and a discussion of the significance of the
various columns will be found immediately following that table.

0
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USE OF THE LINEAR PLUS QUADRATIC PLUS CUBIC APPROXIMATION

The use of this approximation is very similar to use of the 1-3-5
approximation previously discussed, and thus only the pertinent equations
will be presented.

— E: = R R, O, %E, OF,%F, el r‘C 5
~Cimyy
(ag, - og) (e, - agg) (ag, - ag,) (ag, - ag,) (ag, - agg) (g, - ap,) *
~(ag, + agg) o i o '(“El + ag,)
hR| = —Cng
2(ag, - op,)(ag, - ag,) 2(ag, - ag,) (e, - agy)  2(ag, - ag,)(ag, - agg)
il =i :
mR ~Cg,
3(CLE1 - G'EZ) (CGEl - Q'Ea) 3((1.E1 - a’Ez) (CI.EZ - CLES) 3(CLE1 - O'ES) (Q,Ez L Q,ES) La
B [ i ] 1 |

where ap 1is obtained from equation (29).

Once again an iteratlon process is used to obtain values of R, h,
and m. This program has been tried for configurations that were initially
stable (Cases 1-4) and was found to converge rapidly. It has not been
tried for configurations that were initially unstable, but it is assumed
that the iteration process will diverge as it did for the 1-3-5 approxi-
mation. If this is the case, the following equations and the scheme
indicated in sketch (h) should lead to convergence.

¢
h Fa By Ly + 1
2&El(d.El - d’Eg) %'Ez(a‘El - CLEZ) R
2 C
m L - R + 1
3ag, (g, - oF,) 3am,(ag, - og,) R
— - - - pa?

RESULTS AND DISCUSSION

Tests conducted in the Ames Supersonic Free-~Flight Wind Tunnel of &
variety of different models have yielded the following interesting infor-
mation concerning linear theory. It has been experimentally determined
that the application of linear theory to a given model at a given maximum
resultant angle of attack will, even for models governed by nonlinear
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moments, yileld a value of Cmyy, that, with certain qualifications, does

not depend on the type of motion encountered. These qualifications are ¢
that the ratio of ao/wm should be less than 0.3 (there is no sudden
transition when mo/am_= 0.3, but above this value the preceding statement
becomes questionable), and the resulting motion in the o, B plane should
roughly describe an ellipse. When these two conditions are satisfied,

the motion is (arbitrarily) defined as reasonably planar motion, and the
solutions developed in this report (given in addition small roll rate and
damping) will apply. An example of reasonably planar motion is shown in
sketch (i) and examples of nonplanar motion are shown in sketches (J)

and (k).
B B B
b Om A
@ L
i
o/ el i 9
// a a Qo a
Qo Qo Qo
ar—n-<o.3 a—m >0 a—m-<0.3
Sketch (i) Sketch (3) Sketch (k)

A nunmber of shots of a particular blunt-nosed body of revolution
were made in the Ames Supersonic Free-Flight Wind Tunnel. The data points -
obtained from these shots by applying linear theory are shown in figure 5.
The ordinate is the moment-curve slope from linear theory and the abscissa
is the maximum resultant angle of attack. Each data point represents one -
shot of the given configuration and all data points were obtained at a
Mach number of approximately 11. For each of these shots the ratio of
ao/mm was less than 0.2, and for the majority of the shots this ratio was
less than 0.1. It was hence assumed that the condition of reasonably
planar motion was satisfied. Since the roll rate was small and the damp-
ing practically zero over one cycle of oscillation, it was concluded that
all of the foregoing conditions were satisfied, and the results of the
derivations presented in this report could be applied to this collection
of data.

The first thing noted from figure 5 is that the moment~curve slope
obtained from linear theory appears to get smaller with increasing maximum
resultant angle of attack up to about 9° and then increases drastically.
This type of behavior eliminates the 1-3 approximation from consideration, s
since the 1~3 approximation is limited to either a continuously increasing
or a continuously decreasing moment~-curve slope. However, it is apparent
from figure 4 that our data appear to fall under Case 2.1 and that both
the 1-3-5 approximation and the 1-2-3 approximation have a chance of
adequately fitting the data.
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The iteration type of solution that has been described was used to
obtain both a 1-3-5 approximation and a 1-2-3 approximation to the given
data. These approximations are shown in figure 6. The quasi least squares
procedure mentioned on page 25 was used to obtain the fits. It is clear
from figure 6 that the 1-3-5 approximation fits the data vexry, wells, - It
is also evident that it is much superior to the 1-2-3 approximation in
fitting the data (the two fits had least square values of 0.000985 and
0.00509, respectively). It is felt that this latter conclusion will apply
to the majority of configurations encountered since the behavior of most
configurations at low angles of attack is fairly linear.

Figure T presents curves of the moment coefficient plotted against
the true angle of attack corresponding to the two approximations shown in
figure 6. Although it has been concluded from figure 6 that the 1-3-5
approximation is superior to the 1-2-3 approximation, it is interesting
to note that the two curves in figure 7 show the same general trends and
throughout most of the angle-of-attack range agree fairly closely with
each other.

In figure 8, a comparison is made between free-flight data reduced
by using the 1-3-5 approximation and data obtained from tests conducted
in the AEDC B~Minor Wind Tunnel. Curves are shown of the moment coeffi-
cient plotted against angle of attack at Mach numbers of 5 and 11 from
free~flight tests of a given configuration. A corresponding curve at Mach
number 8 obtained from wind-tunnel tests is also shown. If it is assumed
that the variation of the moment coefficient with Mach number at a given
angle of attack is fairly linear, then the wind-tunnel data would be
expected to fall about halfway between the two curves of free-flight data.
This is essentially borne out thrcughout most of the angle-of-attack range.
It should be noted that the configuration tested in the wind tunnel was
very similar, but not identical, to the configuration tested in the free-
flight facility. A small difference in the nose shape between these two
configurations would be expected to modify the moment coefficient. It is
thus felt that the method of reducing the free-~flight data by the 1-3-5
approximation has led to a realistic moment curve.

In figure 9, the moment coefficient as a function of angle of attack
is shown as obtained from a given set of free-flight data by using the
1-3-5 approximation and by using the method of Rasmussen (ref. 2). The
curve showing the 1~3-5 approximation is reproduced from figure 7. The
other curve was obtained as follows: A plot was made of Cmy, VS.

(um® + @o?). For the method of reference 2 to be directly applicable,
this plot should result in a straight line. This was not realized for
the given set of data, but is was possible to draw three straight lines
that came close to passing through all of the data points (the three lines
were determined by least squares fits). The method of reference 2 was
then applied individually to each of the three line segments, and the
three corresponding segments shown in figure 9 were obtained. It is noted
in figure 9 that the two methods yield values of the moment coefficient
that remain fairly close to each other throughout the angle~of-attack
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range. It is felt, however, that the 1-3-5 approximation is the more
applicable of the two methods to the particular set of data considered
because of the nonlinearity of the Cmgy; Vs. fom® + wo2) plot and the
accompanying segmented approximation.

Results obtained by using the 1-3-~5 approximation are next compared
with the corresponding results obtained by using the method of Murphy
(ref. 3)» To apply this method, the restoring moment is assumed to be
linear and the motion in the «, B plane for each run is approximated
by an epicycle with damping (two rotating vectors, the tail of one rest-
ing on the head of the other). An arbitrary nonlinear moment approximation
in odd powers of the resultant angle of attack can then be assumed
(i.e., M= koo + kox® + . . .) and solutions for the ki are obtained
from knowledge of the frequencies and lengths of the rotating vectors
found in the linearized solution. For a given run, the frequencies are
constants and the lengths are approximated by their values at the midpoint
of the trajectory.

Several points about this method should be discussed before
proceeding:

1. The solutions obtained by Murphy are not exact from a mathematical
viewpoint, except for the case of a linear restoring moment. The assump-
tion that an epicycle is the solution to the equation of motion, when the
restoring moment is nonlinear, leads to terms which contain mixed frequen-
cies, and these terms are neglected. The resulting solutions can best be
described as being the first step in an iteration process.

2. When the 1~3 solution obtained by Murphy is applied to the
corresponding case of planar motion, excellent agreement with the exact
solution is obtained in most cases. In fact, Murphy's solution corresponds
to the line ag/am = 0.5 in figure 2, which would lead to reasonable
results except in the regions -1 < miy® < =0.8 and =5 < W < 2. 'TH0
these regions the error builds up very rapidly, reaching 100 percent in
predicting the period of the resulting oscillation (finite versus infinite)
at the points mp® = =1, =2.

3. When the 1-3-5 solution obtained by Murphy is applied to the
corresponding case of planar motion, good agreement with the exact solu-
tion is obtained in many cases. Because of the number of variables
involved, however, it would be very difficult to specify the range of
applicability of this approximation as was possible for the 1-3 case.
Comparisons have indicated that for thils case 1t 1s not uncommon for
Murphy's method to differ from the exact solution by 10 percent in
predicting the period of the oscillation.

In figure 10, the moment coefficient as a function of angle of attack
is shown as obtained from the given set of free-flight data by using the
1-3~5 approximation of the present report and by using the method of Murphy

Vo T P
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(ref. 3). The 1-3 approximation of reference 3 has been used and applied
in segments, each segment being determined by a least squares fit. Once
again fairly good agreement is obtained throughout the angle-of-attack
range.

The same comparison is made in figure 11 as in figure 10 except that
the 1-3~5 approximation of reference 3 and an accompanying least squares
fit have been used. Although relatively more scatter was found in the
experimental data when reduced by the method of reference 3, fairly good
agreement between the two methods is noted in this figure. Percentagewlse,
this comparison indicates about 10 percent difference in the moment coeffi-
cient at the highest angle of attack. This is about the same percentage,
and in the same direction, that Murphy's solution for the period of the :
oscillation differs from the exact solution for the corresponding case
of planar motion governed by a 1-3~5 moment.

It is perhaps desirable at this time to summarize briefly the
advantages and disadvantages of the three methods that have been
considered.

1. Rasmussen's method (ref. 2) has the advantages of not being
restricted to planar (or reasonably planar) motion and of being an exact
solution. It has the disadvantages of being restricted to the 1-3 case
only and of being relatively difficult to apply except in its inexact
form.

2. Murphy's method (ref. 3) has the advantages of not being
restricted to planar (or reasonably planar) motion, of having the widest
range of permissible nonlinear moment approximations, and of being rela-
tively easy to apply. It has the disadvantage of being an approximate
method from a mathematical viewpoint, with its range of applicability not
clearly defined.

3. The method of the present report has the advantages of being an
exact solution, of having a fairly wide range of permissible nonlinear
moment approximations, and of being relatively easy to apply. It has the
disadvantage of being restricted to reasonably planar motion.

CONCLUSIONS

A method has been presented for obtaining the aerodynamic stability
characteristics of bodies of revolution that are governed by nonlinear
restoring moments from data obtained from free-flight tests. Four dif-
ferent approximations have been presented and solved in closed form. The
pertinent conclusions that result from this analysis are as follows:
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1. Although the derivations are based on the existence of planar
motion, with zero roll rate and damping, the solutions have been found
to be applicable when the roll rate and damping are small and when the
motion in the o, B plane can be classed as reasonably planar. Under
these conditions, the method yields realistic values of the moment
coefficient as a function of angle of attack.

2. The various approximations can be programmed for rapid solution
on a digital computer with only a modest amount of input information
necessary.

3« The resulting solutions are, to a certain extend, self-checking,
since only two (or three) data points are used to obtain a given approxi-
mation and additional data points can be used to verify the adequacy of
the approximation.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Jan. 12, 1961
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Figure 1.- Effective angle-of-attack parameter for a single term nonlinear restoring moment.
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Figure 2.- Effective angle-of-attack parameter for a linear plus cubic restoring moment.
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If the moment governing the test configuration as
o function of angle of attack is

-Cm

then the corresponding moment curve slope as a function of angle
of attack and the moment curve slope obtained from linear theory
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Figure 3.~ Cases existing under a linear plus cubic restoring moment assumption.
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If the moment governing the test configuration as a function of angle of attack is
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Figure 4.~ Cases existing under a 1-3-5 and a 1-2-3 restoring moment assumption.
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Figure 5.~ Moment-curve slope from linear theory as a function of the
maximum resultant angle of attack.
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