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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-859

UNSTEADY AERODYNAMIC FORCES ON A SLENDER BODY OF
REVOLUTION IN SUPERSONIC FLOW

By Reuben Bond and Barbara B. Packard

SUMMARY

Linearized slender-body theory is applied to the computation of
aerodynamic forces on an oscillating, or deforming, body in supersonic
flow. The undeformed body 1s a body of revolution and the deformed body
1s represented by movement of a line through the centers of the cross
sections which are assumed to remain circular. The time dependence is
based on sinusoidal motion.

For a body of wvanishing thickness the slender-body theory yields
the apparent mass approximation as it is obtained for incompressible
crossflow around a cylinder.

Both linearized slender-body theory and the apparent mass approxi-
mation are used to calculate the pitching-moment coefficients on a rigid
slender body with a parabolic arc nose cone, and these coefficients are
compared with some experimental results.

INTRODUCTION

The problem of predicting the dynamics of launch vehicles requires
knowledge of the aerodynamic forces on an oscillating and/or a deforming
body in high-speed flight. These forces are needed as an input to both
the dynamic stability problem and as an input into the aero-servo-elastic
problem. Especially important is the part of the ascent where the velocity
is high end the atmospheric density is still great enough to cause signif-
icant aerodynamic reactions. The present analysils is concerned with this
region which is generally the low supersonic part of the flight. This
problem is considered in chapter 12 of reference 1 where references are
given to other work. None of the references consulted have shown the
type of slender-body approximation used here.

The analysis is by the linearized slender-body theory that has been
widely used for steady flow phenomena. Although its reliability is
limited to smooth slender bodies, it is the most accessible gpproach to
the problem that is already complicated by the necessity for considering
time dependence.



The motion of the body is defined as the deviation from a figure
of revolution originally parallel to the line of flight. Both rigid
movement and deformation are represented by lateral translation of the
circular cross sections expressed in terms of the corresponding
translation of a deforming center line.

The analysis is best suited for application to a pointed body. It
can be formally applied to a blunt body but the approximate solution
obtained is not usable near the nose. The type of shock wave formed by
a blunt nose will alter the flow over the body and will affect the
aerodynamic response to lateral motion.

The solution is obtained in a definite integral that has not been
found to be integrable in finite form. Evaluation of the integral has
been accomplished by numerical methods.

When the body radius is assumed to be vanishingly small, the solution
degenerates to the well-known apparent mass approximation (ref. 2) that
1s obtained by regarding any cross section as a section from a two-
dimensional incompressible flow. This approximation has the special
feature that the aerodynamic force on any cross section depends only on
the cross section and downwash, and their derivatives at that section.

NOTATTON
a speed of sound
b center of rotation for rigid body motlon
¢ diameter of base
Cm pitching-moment coefficient, pitchi:isgoment
I moment of inertia of equivalent air mass
k reduced frequency, %%
1 length of body
AL local 1lift
ALR real part of e~iwtar,
ALt imaginary part of e~iwtag,

M Mach number



q angular velocity due to pitching
Aoy free~stream dynamic pressure, %— pV2

(r,6,x) ecylindrical space coordinates

R radius of body

Re real part

5 area of base

[ time

v volume of body

v free~stream velocity

W downwash

W transformed downwash

¥o amplitude of sinusoidal downwash
Z displacement of center line

& angle of attack

B M-l

o) air density

Q velocity potentisl

] transformed velocity potential
v sii 2]

w circular frequency

When «, &, and q are used as subscripts, a dimensionless derivative
is indicated.

_ __9% _ aCm acm
Cng, = aa> - mg " g T [a(o'c'é'/V) ¥ a(q'é/V)]

A dot above a symbol denctes a derivetive with respect to time.



STATEMENT OF THE PROBLEM

The linearized differentlial equation of the velocity potential o
for time dependent supersonic flow is, in cylindrical coordinates,

1 1 2 =
B0 * Ppr + S 0p * 5 P9 - =L Pt - 25 Ppt = O (1)

The coordinates are fixed in space and the undisturbed flow ahead of the
body is of velocity V in the direction of the positive x saxis. The
derivation of this equation and a discussion of 1ts limitations are given
in chapter I of reference 1. The form given here is equation Ay of
table I of that chapter, transformed to cylindrical coordinates. The
axigl distance downstream from the nose is given by x, and r and 6 are
polar coordinates in any plane of constant x (see sketch (a)). The
radius of the cross section is R(x) and the displacement of the line
throuﬁh the centers of the cross sections is Z(x,t) in the direction

& = xn/2.

Then in the linearized approxi~
mation the boundary conditions for
the part of ¢ +that produces 1ift

W A are
= [Prlpr(x) = Wlx,t) sing (2)
[ p->0asr-w (3)
where
Sketch (a) W= Zy + Vi, ()

The displacement of the center line 2Z(x,t) can represent any plane
translation, rotation, or deformation of the body. The variable W(x,t)
can be regarded as a form of downwash function if 6 = ﬁ{Q is directed
downward. The solution satisfying boundary condition (2) in the slender-
body aspproximetion is dependent only on the function RZ{(x)W(x,t) for
any W obtained by equation (4). ,

The local pressure change on the body 1s glven by

Lp = —ploy + Vo]l + 0 . (5)

and the local 1ift per uwnit length is
an
AL=f R &p sin 6 A8 (6)
o

This 1lift AL 1is positive upward when Z and W are defined positive
downward.




Quadratic terms that are sometimes important in Ap do not contri-
bute to AL. Also, the axially symmetric disturbance velocity component
of the flow does not produce lift and need not be considered.

ANALYSIS

The solution of equation (1) with boundary conditions (2) and (3)
is obtained in appendix A. The surface boundary condition is applied
through the usual slender~body approximation yielding a distribution of
sources on the center line. The source strength at any point depends
only on the body radius and motion at that cross section.

The method of solution is based on the use of Laplace transformations
in t and x. The time transforms of ¢ and W are given in equations
(A1) and (A2) of the appendix. The solution is obtained from the time
transforms for the transform of AL in equation (A18) and the Laplace
inversion for AL 41s given in equation (Al9). This is a general result
for any distributions cof body cross section and center=line motion
allowable in the slender-body approximation.

A simplified formulation is obtained if the time dependence is
sinusoidal as defined in equation (AEO). Then a steady sinusoidal
solution for AL 1is obtained by equations (Al7) and (A21). This is the
form used in the subsequent calculations for the results of the slender-
body theory.

A further simplification is obtained by the known apparent mass
approximation that is formed here as a limit form for small body radius
as stated in equation (A22). This approximation is used for comparison
to the results of the more exact slender-body theory.

In the computations only sinusoidal time dependence will be considered,
that is W(x,t) = Wo(x)el®t,

We assume that Wo(x)R3(x) is continuous over the length of the body.
Since, in general, Wo(x)R2(x) cannot be represented by the same expression
over the entire length of the body (e.g., parabolic arc nose and cylindri-
cal body), we divide the body into %k sections such that for each

X5 ngxjﬂ_

Wo (x) BB (x) = W3(x)R;%(x)

Then AL is given by equation (B7) in appendix B which is a deri-
vation of the computation forms. Equation (B7) is sufficiently general



to cover a wide range of bodies and downwashes. However, we note that
unless the first derivative of Wo(x)R2(x) 1is continuous at X=X3, &
singularity occurs at x=x: + Br. This is where the Mach cone originating
at X=X 3, r=0 intersects the surface of the body. Physically, there is
no reason for such singularities. Mathematically, they exist because,
while the problem prescribes boundary conditions on the surface of the
body, the slender-body approximation gives a solution for an infinitely
thin body, that is, the boundary conditions on the axis. Hence, linearizec
slender~body theory as used here breaks down locally for these cases.

The problem can be circumvented by approximating the corners by polynomial
curves in such a manner that (d/ax)W,(x)R?(x) is continuous along the
entire length of the body. This procedure is unnecessary unless some
desired x falls very close to x=x. + Br. Even with the above modifi-
cation we do not know whether reasonable agreement with experiment would
result for bodies with discontinuities. The best results from slender-
body theory are expected for smooth bodies.

The computation forms have been programed for the IBM 704 for cases
where Wj(x)Rjz(x) can be expressed as a polynomial of degree < 9, and
J < 7. Thus the program can be used directly for certain deforming
bodies and is not confined to rigid body motions. The program also
includes a numerical integration of the local 1ift to obtain the
generalized forces defined by

1
Fq_=f Alg(x)ax (N

e}

where gq{(x) is a polynomial in x, and 1 1is the total length of the
body. The machine computing run time varies from four minutes for a
simple case where J=1 and 20 values of x are calculated to 30 minutes
for a more complicated body with J=7 and x calculated for 52 wvalues.

RIGID BODY MOTIONS

Both linearized theory and apparent mass theory were applied in the
calculations of the forces on a simple body in rigid motion. Rigid
body motions were chosen for the comparison because they were the simplest
to compute and because experimental data can be obtained tc check the
thecries much more readily than for flexible models. Rigid body oscilla-
tions should be sufficient to indicate theoretical accuracy. Moreover,

the results are directly usable in the dynamic stability problem of the
rigid missile.

For the case of a body of revolution pivoting about a point b, see
sketch (b), we have

Y»Tj(x)ej‘wt = aoeiwt[iw(x-b) + V] (8)




We divide AL into its real and imaginary

parts:
R = =
1 x

Then the equations of the dimensionless i&ﬁi:::;// b
coefficients qu'and Cm& + Cmq are:

1
Cma=?q;SléoEf Alg(b-x)dx  (10)

Sketch (D)
Cpe + C = ALT(b=x)dx 11
ma, mq qoosczw% f I( X) ( )
where
S area of the base
c diameter of the base

If equation (BT) is used in equations (10) and (ll), the integrations
must be done numerically since ALR and ALT camnot be Integrated analyt-
ically. However, the machine program permits the choice of as many
values of x as desired for AL.

The apparent mass formulas for m and Qm + Cp  may be written:
Mg

2 2 w=T
Cmg, = 55 - F (1-0) + .58 (12)
v volume of the body
I moment of inertia of an equivalent air mass referred to the center
of rotation
Cp. + = =2 (1-b)°  (ref. 3) (13)
ms, T Cmy = 22

Note that Cmg, + Cm, 1s independent of Mach number and frequency.

q



COMPARTISON AND DISCUSSION

The coefficients Cmq’and Cm& + Cmq were calculated for a body with

parsbolic arc nose and fineness ratio 10 (see sketeh (b)). The equations
for the radius are:

R(x) yy = §X6 (30-x) 0 <x <15 in,

]

R(x)ip = 2.5 15 < x < 50 in.

Both the linearized theory and apparent mass formulas were used. Also,
wind-tunnel tests were run on such a body in the Ames 14-Foot Transonic
and Unitary Plan Wind Tunnels. Figures 1 and 2 show the results for
Q@x and Qm& + Cmq plotted against the center of rotation for Mach

numbers 1.1 and 1.2. At Mach number 1.1 and frequency 10 cps (k=57n/72),
both theories agreed well with experiment. The agreement at M=1.2 was
less satisfactory. At low Mach numbers and frequencles there seems to
be little reason for using the slender-body theory solutions instead of
the simpler apparent mass ones, at least in the case of rigid body
motions. Figures 3 and 4 show the effect of increasing Mach number on
the theoretical values of Qma and Cm&’+ Cmq. Both slender-body and

experimental results show increase in coefficients with increasing Mach
number, but the apparent mass results show little change. Therefore, it
appears that for the higher Mach numbers, slender-body theory solutions
are superior to those derived from apparent mass. Figures 5 and 6 show
the ratio of results of the slender-body theory to those for the apparent
mass as Mach number increases. In figure 5 the curves for b/l = 0.k
and 0.6 practically coincided with b/l = 0.5; hence they are not
included. Figures 7 and 8 show the effect in increasing frequencies on
theoretical values of Cmq'and Cm&’+ Cmq; The effect of frequency is

about the same for both theories. The difference in the absolute values
is primarily a Mach number effect. Figures 9 and 10 compare the local
1ift as computed by slender-body theory and apparent mass theory at
M=1l.2 and M=2., A significant increase in the difference in the 1ift
distribution at the higher Mach number is noted.

CONCLUDING REMARKS

For low supersonic Mach number and low frequency oscillation, the
linearized slender-body theory used here has no advantage over the
conventional apparent mass approximation using the mass of displaced air.




For higher Mach numbers the theory shows the local 1lift and, in
general, the integrated 1ift and moment, to be larger than those obtained
by the apparent mass agpproximation. This increase has also been found

experimentally.

For higher frequency of oscillation the theory indicates an increase
over the apparent mass result but this does not appear likely to be large
for frequencies that might be encountered. No experimental results have
been obtained for the effect of frequency.

The slender-body theory is limited to smooth pointed bodies. Rapid
but continuous changes of cross section even with continuous slope cause
uncertainties in the results.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Feb. 28, 1961
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APPENDIX A
SOLUTION OF THE LINFARIZED SLENDER-BCDY EQUATIONS WITH TIME DEPENDENCE

The differentlial equation (1)
2 1 1 2V 1 N
B TPy YT P T 7E P9 " 5E Pt " EE Pt = O (1)

is to be solved for the boundary conditions (2) and (3)

(9r] R(x) = W(x,t)sin 6 (2)

p—=08as8 T = (3)

The use of laplace transforms provides a convenient method of
solution. Time transforms of ¢ and W are tsken in the form

o0
Q= f e~Styp 4t (A1)
o]
- [+
W =f e-sty at, Re(s) > 0 (A2)
o}

The remaining variables are unaffected by this traﬁsformation and equation
(1) becomes

2 1= 1 - 2V = g2 . _
B0y + Py IOl tE O g W gm0 (a3)
The boundary conditions (2) and (3) become
& = W Al
[®r1r=R(x) W sin 6 (Ak)
P> 0as T - (A5)

The transformations take this form when ¢ and W wvanish for + < o.

The only solution of equation (1) compatible with boundary conditions
(2) is of the form

o(x,r,0,t) = ¥(x,r,t)sin 0 (26)



and after transformation (Al)
5(x,r,0) = ¥(x,r)sin 6 (A7)

The differential equation and boundary conditions now become

B + Vo 2V - F-EEF -5 T =0 (48)

and
[\Trr]r;R(x) = ﬁ'(x) (A9)
V—>088r>0 (A10)

Separation of variables in equation (A8) yields a solution in the
form

™K. (o) (A11)

where KX; 18 the first order modified Bessel function of the second
kind and

2.2 . 2VsA 82
":\/;37‘ TeE T eE
with

Re(o) > O for Re(A) > 0 and Re(s) > ©

The selection of the K; solution of the modified Bessel equation is
necessary to satisfy boundary condition (A10).

The solution of equation (A9) 1s sought as an integral of solutions
in the form of an inverse Laplace transform

¢+l
Foer) = 2 ij MK (o) 2NN, e >0 (A12)

At this point the slender-body aspproximation is introduced by replacing
K1 by its approximate value for small r

Ky (or) === (A13)



iz

and, to this approximation

¢+
- 1 e 1
V(x,r) = 55 M= £(2)an
-1

Differentiating and substituting in equation (A9)

e+l
W(x) = 1 f Nx 1 £(A)
C~-

ZEEN SR (x)

or, rearranging

C“l‘ioo 7\.}{
e e e e L

and by the lLaplace Inversion formula

_f_(&&. = ”fo e B2 () W(x )

Putting this in equation (Al2)

_ 1 ctico o0 , _

om) = - N (gr) g dn f e NE B2 (et Yt YAt (ALH)
L .

Cwlco O

This is a repeated Integral that does not permit reversal of the
order of integration. It can be put in a form that does permit the
reversal by expression as a derivative.

ct+loo o , e
Toor) = & L f MNK_(gr) an f e N B2 (5" ) e
or 2l _s 5

o0 1o
= g;v[ R2(x")W(x")dx’ [-é%idl.% eMkar)Ko(Gr)d}\] (815)

oo

The integral in the brackets in equation (Al5) can be reduced to a
standard form by the substitution

Vs
CehTeEE
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and it becomes

- = (x-x") e+l
pe? 1 [ [z (=)
e 'é”;t""i‘” . e KO BI’ g 23. d'g
Ci~lca
with
cy > —_

B=a

The integral is obtainable from (47), page 284, reference 4, and is
reducible to elementary form by noting that

Iy, (%) = /% cosh x

Then, observing the reduced limit on the x' integration in (Alf))

el r e
cosh [ﬁj(x—x‘) ~B5r :j

J (x-x')2-2r2

R2(x")W(x')ax"

_ 6 X."‘BI' €
W(X,I‘) = 5‘;\[\
o]

(A16)
From equations (2) and (5)
a1
AL = -pf Rlpy + Voylsin 6 de
o)
and from equations (6) and (A6)
2
AL = -pf RNJ’t + V\[fx]sinze as
)

Then the time transform of AL is

AL = ~npR[ ¥ + Vi, ] (A18)



1k

For the general case, with Z = constant and therefore W = O for
t <0, the transform W 1s obtained by equation (A2) and then ¥ 1is
formed by the integration in equation (A16). Then after substitution
in equation (Al8) an inverse laplace transformation ylelds

C+lco ot =

A-L:_.l_f ST s

5T 5 e >0 (A19)

c-1co

For a sinusoldal motion of the form described by

1wt

!

Z(x,t) = Z,(x)e

(420)

1]

W(x,t) = Wo(x)elwt
it 1is possible to obtain s steady oscillatory solution. In this case

) = 2

end using equation (A1l6) in the Laplace inversion

and reversing the order of integration

M
x-BT B (x )Wo(x') e+l s[t - (x-x')] — a
v = 'SB;L\ — 2 ax’ é':,L?i'f e pa cosh {E.és-a- /(x-x ) -B2r2:] ?s:.f%g

J {x-x' )2_[321'2 o2 I

For t > x/V-a the oscillation of V¥ is steady and the inner integral
is given by the residue at s=lw and

1wM
oy

x-pr © & cos [E—g; J(x-x' )2—321*2}

j(x-x' YZ_p=r2

iwt _?_
ar 5

¥ =e RP(x" )W (x')ax!

(A21)

From this result AL is formed by substitution in equation (A17).
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The above results were obtained by the usuasl slender-body approxima-
tion. The same approximation can be used to obtain a simplified result
from equation (AlL). If the approximation (A13) is introduced, equation

(A14) becomes

1}

- 101 C+ioo g 0 Ax
—_ -Ax! p2 (<1 1
Vo= - 231:iL/\ e dA e RP(x" )W(x')dx

c=le

Il

- & R2(x)W(x) for x>0
T

from the Laplace transformation and its immediate inversion. A tiﬁe
inversion of ¥ and W yields

Vo= - % R2(x)W(x,t)

AL = 7 <§a€ +V §—x> [Rz(x)w(x,t)] (A22)

This 1s the usual time dependent generalization of the apparent mass
concept as used by Munk (ref. 2). It should be noted that AL of
equation (A22) depends on R and W and thelr derivatives at the point
x at time t and is not affected by the shape of the remainder of the
body or by any events at earlier time.
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APPENDIX B
DERTIVATION OF COMPUTATION FORMS FOR LINEARTZED SLENDER-BODY THEORY

From equations (Al7) and (A21) we have

AL = mpR[Yy + Vi, ] (A17)
iwM (x.-x')
)
x-Br © p7a eos [—%—- (x»x‘)a-B2r‘2]
iwt O B=a >
¥ = —_— R (X')W (X')@X’
or o

\/(x ©1)2_p22
(A21)

where V¥ and ¥, are evaluated at r=R(x).

Dividing the body into k sections by planes perpendicular to the

axis so that for each xj <x < xj+:1.

Wolx)R2(x) = W3 (x) Ry (x)

we have

3

- lwt 'a%if J“ (x‘x’)m [ : m] Wi (x' )RyZ(x" ) ax!

o o e P2

n

X5 0

XJs1 = x-fr
(B1)
To carry the differentiation under the integral sign, we make the

substitution:

(x-x') = Br sec 6 (B2)

Applying (BE) and carrying out the indicated differentiation gives:

o

/
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iwM
- 12_& (x-x;)

J
v - eiwt _Z (x—xJ)e B
r

J=o ,(X—XJ)Z-BZI‘E

cos [B—%./ (x-xJ)z-Bzxz} WJ(xJ)RJ‘g(xJ)

1wM
J-a - é?a' (x-xJ“)
+Z (x-xgra)e cos [B:_ /(x-x‘jﬂ_)z-ﬁzrz] Wylxs) Ry%(xg40)
A e .
=0

g emecos (F)
- == Br sec 8 1uM 2
-Z rf e Pa {-——- sec®6 cos (ﬁ% Br tan 6 ) W,(x-Br sec 8)R, (x-Br sec 9)
Ba a J J

= Br
J=o arc cos (x-x‘jﬂ.)

+ Bia- sec 6 tan 6 sin <B%1. Br tan 6 wJ(x'Br sec 9)RJ2(x-ﬁr sec 8)
+ B sec20 cos (—— Br tan 6 2 W, (x-Br sec 6)R42(x-Br sec 8) as (B3)
™ ox J J

If we assume that the Wj(x)Rj(x) are continuous at the xj, that is,

2
WJ(XJ+1)RJ (xj+l) = Wj+1(xj+1)Rj+12(Xj+1) (BY)

and that R(O) = O, the constant term vanishes.

arc cos <;&

J -x) - LluM Br sec 6
z
v = _eiwtz f e B<a
=0 arc cos < Br )
x-xJ.,_

+ -s—"a tan 6 sin —:_a Br tan 9) WJ(x—Br sec 6)R32(x-ﬁr sec 8)

[i——? sec 6 cos % Br tan 9> Wd(x-ﬁr sec G)Rda(x-Br sec 6)

+ B sec 6 cos (ﬁ—g_ Br tan 6 Bi Wd(x-ﬁr sec 9)R‘12(x-ﬁr sec 8):] sec 6 a9 (35)
a X

From equation (A17)

AL = -7pR[¥t + Vi ] (A17)

Vg = 1wl (B6)



18

The calculation of V. is straightforward. If we apply (B4) to
the result and change the ?ntegration variable by the substitution

£ = Br tan ©

Then, letting r = R(x), we obtain the form

o LuMx
p2g, “
1wt e 2Vx {w a
AL = e ——— { 2,822 | W0 N
. me o ) om0 e |

1wM
< % (X_XJ}V(x—x ) 7 r
+Z J cos [—&g‘; f(x-x\])z_aerz-{&_‘i_; L“a(x')Rf("')‘“3-1(X’3R3-12(x')]

J=1 ’(x"xj)z—ﬁal"z

:(‘:o:3

i YOox %% L L (papan)
+ e
o ,(X"Xjﬂ_) 2_g2,.2

2 2
- 2’_2_3‘..5 cos .ﬁzg_ 4 _T_iﬁ_g.__ sin .%) Wylx- fe2a22) R 2(x. fg2+§2r2)
B“n £%a pafiiepe 2 B J

(1w w E] o
+ {Eg (M2432) cos ;2% + ;;—-g—:ﬁ;; sin 5‘32;} v Wj(x— J §2+ﬁ2r21332fx- JEpRr®)

+V cos E% ai—z WJ(x- fgziﬁ?-f"l)R‘jz(x- J E%+87r2) } dg (B‘?)

For [(4/dx)Ro(x) 1o, < * (i.e., sharp-nosed bodies), the first term

vanishes. If the slopes are continuous at the x. as well as the down-
wash and its first =x derivative, all the constaftt terms are zero.
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APPENDIX C

DERTVATION OF Cma' AND Cm&‘ + Cmq FROM APPARENT MASS THEORY

From equation (A8) we have

AL = 1p —-a—+V o

S < W(x,t) R%(x) (c1)

In the case of sinusoidal time dependent motion,

Wix,t) = WO(X) 1wt (c2)
For rigid body motions
W(x,t} = (zt + sz) (c3)
where z = ag(x-b) eI’ angd b is the center of rotation. Substituting
in (C1)
AL = mpu &+ v ) [10(eb) T]RR () et (ck)
_pq,at+ S [iw(x~b)+ X)e

AL = ﬁpeiwtoao{-w‘?(x-b)Rz(x) +v LR(x) + 1wy [é(- (x-b)R2(x) + R%a] }

(cs)
ALy = a 7P [-wg(x-b)R:a(x) + V" 'é%{ Rz(x)] (Cc5a)
ALy = mouorg [% () B (x) + Rg(x)] (c5b)

Substituting (C5a) into equation (10) and (C5b) into equation (11)

1
g = 2 [ 25 om0 + (o) R2(x) x| (c6)
e}
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The first term equals (w2/qOS§)I where I is the moment of
inertia of an equivalent alr mass with respect to the center of rotation.
Integrating the second term by parts glves

1
-g—g (b-1)R2(1) +-§-§-£ R2(x) dx

which equals [-2(1-b)/Zl+[2v/Sz] where v is the volume of the body
Therefore

2V 2 w
Cp = =— = = (1=b) + I C
ne =55 " 3 (1-Db) 5 (c7)

Q

The solution represented by (C7) was not found in any of the
available references.

1
Cong, + cmq = 'é%{té' {(b-x) % (x-b)R®(x) + (b..x)Ra(x)]dx (c8)

Integrating the first term by parts and combining glves

A
-2 %) 2L [ ¢ o0l i (02)
Therefore

2
Cmg, + Cmy = =2(1-b) (c10)

q a2

(Equation (C10) is derived by Tobak, et al., in ref. 3. This derivation
is included here for completeness.)
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Figure 1.~ Experimental and theoretical Cp —for o = 0°, kx = 5%/72

for slender body with parabolic arc nose cone.
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Figure 2.~ Experimental and theoretical Cmcx.+ C

with parabolic arc nose cone for a = 0°, k = 5xn/72.

for slender body
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Figure 3.~ Effect of increasing Mach number on Cmoc'
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Figure 7.~ Effect of increasing frequency on Cma.'
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Figure 9.~ Comparison of real part of local 1ift for M= 1.2 and M= 2.0.
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