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SUMMARY 

A study is made of the steady laminar flow of a compressible viscous 
fluid in a circular pipe when the fluid is accelerated by an axial body 
force . The application of the theory to the magnetofluidmechanics of an 
electrically conducting gas accelerated by electric and magnetic fields 
is discussed . Constant viscosity, thermal conductivity, and electrical 
conductivity are assumed . Fully developed flow velocity and temperature 
profiles are shown, and detailed results of the accelerating flow develop­
ment, including velocity and pressure as functions of distance, are given 
for the case where the axial body force is constant and for the case where 
it is a linear function of velocity . From these results are determined 
the pipe entry length and the pressure difference required . 

INTRODUCTION 

An electrically conducting flUid, such as a high-temperature ionized 
gas, or a "seeded" gas, flowing in a channel or pipe can be accelerated 
by an electric body force which is the result of application of mutually 
perpendicular electric and magnetic fields at right angles to the direction 
of flow . A study of the electromagnetic interaction with a plasma is of 
interest because of the possibility that the velocity of gas flow in a 
wind tunnel or in the exhaust of a rocket or a jet engine can be substan­
tially increased by such an electromagnetically induced force . This 
concept is mentioned, for example, by von Karman (ref. I), and devices 
which utilize it have been investigated and described by Patrick (ref. 2) 
and Ghai (ref. 3) among others . Thrust augmentation by this method may 
be particularly useful in interplanetary flight because the achievable 
specific impulses are likely to be high . 

The theoretical magnetofluidmechanic channel flow has been treated 
by numerous investigators . In particular, viscous incompressible flow 
and accelerating inviscid compressible flow have been studied extensively . 
Resler and Sears (refs . 4 and 5) have discussed and analyzed in some 
detail certain aspects of fully developed viscous incompressible flow 
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and accelerating inviscid compressible flow . The problem of determining 
entry length for the incompressible viscous flow of li~uid metals in 
pipes entering a region of uniform transverse magnetic field has been 
studied by Shercliff (refs. 6) 7) and 8). Shercliff solved an unsteady 
flow problem for a "settling time " or time to reach the steady state 
after a magnetic field is applied . He then converted the settling time 
to an approximate steady- flow entry length by multiplying the settling 
time by the mean velocity of flow in the pipe . He showed by experiments 
that the correct order of magnitude for entry length had been estimated . 
References 6 and 7 dealt with flow between infinite parallel planes and 
flow in rectangular pipes in which only nonconducting walls were consid­
ered . In reference 8 flow in a circular pipe with conducting walls was 
studied . For that case the problem was treated in two stages : In the 
first stage thin boundary layers developed with a core of uniform velocity; 
then ) in the second stage) the core profile was changed by electromagnetic 
forces to its final form) with the boundary-layer thickness remaining 
unchanged . The field of magnetohydrodynamics has recently been reviewed 
by Sears (ref . 9) and by Rossow (ref . 10) . 

The present study treats the steady laminar flow of a viscous fluid 
accelerated by an axial body force in a circular pipe but differs from 
the study by Shercliff (ref. 8) in that the flow is considered to be 
compressible rather than incompressible. The fluid is considered to 
have a uniform velocity profile as it enters the pipe and to accelerate 
until it approaches the "fully developed flow" condition) in which the 
flow is exactly parallel and where there is no further acceleration or 
change in the velocity profile . (For a li~uid flowing in a pipe the fully 
developed laminar flow is the familiar Hagen-Poiseuille pipe flow ) 
discussed in reference 11 . Some effects of compressibility ) variable 
properties) and body forces on fully developed laminar flows in two­
dimensional channels have been studied by Maslen (ref. 12).) It is shown 
that) when fully developed flow of a compressible fluid is defined simply 
as a nonaccelerating parallel flow (which definition applies also to incom­
pressible fully developed flow )) the necessary conditions for such a flow 
to exist are that the axial gradients of density) pressure) and temperature 
be zero and that a body force be supplied to sustain the flow . When these 
conditions are supplied} via proper heat transfer to the wall and} for 
example) electromagnetic body forces ) then the body forces and viscous 
shear forces can become balanced and the flow will approach an asymptotic 
state . 

Solutions for the fully developed flow velocity and temperature 
profiles are found both for the case where the axial body force is 
constant and for the case where it is a linearly decreasing function of 
velocity . The development of the velocity profiles in the accelerating 
portion of the flow is treated approximately . It is shown how these 
solutions can be applied to the study of the magnetogasdynamic pipe -flow 
problem in which the fluid is a conductor of electricity and the body 
force is induced by electric and magnetic fields . 
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SYMBOLS 

radius of pipe 

defined by equation (15) 

Fourier coefficient 

JyHo 

OUoHo2 
in case I (see eq . (9)) 

~ in case II 
Houo 

Fourier coefficient defined by equation (A3) 

constants of integrations 

defined by equation (46 ) 

specific heat at constant pressure 

Fourier coefficient defined by equation (A6) 

electric field 

electric field due to external effects 

electric field due to internal separation of charges 

Joule heating energy (eq. (54)) 

~n 
flUo2 

function of An) defined by equation (AlO) 

axial body force per unit v~ume 

body force vector per unit volume 

a 2 

fluo F 

function of An) defined by equation (All) 

function of xJ used first in equation (40) 

function of An) defined by equation (Al7) 

magnetic field vector 
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Rn 

8 l , 82 , 83 

T 

T 

applied magnetic field in the z direction 

modified Bessel functions of the first kind of orders 
zero and one 

current density 

Bessel functions of the first kind of orders zero and one 

thermal conductivity 

inlet Mach number 

pu 

a No'-pu'-~m= 

index of eigenfunctions 

Reynolds number at pipe inlet, based on radius 

thermodynamic pressure 

a 
~uo p 

~cp 
k' Prandtl number 

velocity vector 

distance normal to pipe axis 

r 
a 

gas constant 

function of rj solution of equation (28) 

defined by equations (Al4), (Al5), and (A20) , respectively 

temperature 
CpT 

u0
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~ a 

velocity in the x direction 

u 
Uo 

difference in dimensionless velocities, defined by 
equation (20) 

1 
dimensionless specific volume} 

p 

radial velocity component 

axial distance from the pi~e inlet 

x 
a 

function of x 

vertical coordinate perpendicular to pipe axis 

horizontal coordinate perpendicular to pipe axis 

constant of integration (eq . (29 ) ) 

constant in equation (A7) 

ratio of specific heats 

defined by equation (27) for case Ij by (51) for case II 

function of r defined by either equation (67) or (82) 

coordinate angle in the y - z plane 

eigenvalue 

fluid viscosity 

function of r) defined by equation (36) 

function of r} defined by equation (A5) 

mass density of fluid 

P 
Po 

electrical conductivity 
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Subscripts and Superscripts 

value at x = 0) r = 0 

value at large x 

case I (Jy = constant) 

case II (Ey = constant) 

value at the wall (r = 1) 

component in the y direction 

dimensionless quantity) except where defined otherwise 

vector 

differentiation with respect to r 

value when velocity has approached to within 1 percent of 
fully developed flow velocity on the center line 

EQUATIONS OF MOTION 

Definition of the Problem 

The steady high- speed compressible flow of a continuum gas in a 
semi - infinite straight circular pipe is considered . The fluid enters 
the pipe with high velocity at x = 0 (see fig. 1) and each fluid element 
is thereafter acted on by an axial body force . The Reynolds number 
pua/~ is assumed to be low enough that viscous forces are important and 
that the flow is laminar. A compressible fluid flowing through a pipe 
mayor may not approach an asymptotic state . If conditions are such that 
the viscous shear) pressure forces) and body forces in the fluid can 
become balanced) then the flow approaches the fully developed condition . 
Only cases in which the flow does approach this condition will be studied 
here . The necessary conditions for fully developed flow to occur (as 
described in the Introduction) will be derived in a later section . 

Hypotheses Used and Their Effects on the Governing Equations 

In order to conveniently study the flow) the following hypotheses 
are made : (1) the rand e components of velocity (fig . 1) are nearly 
zerOj (2) the flow is axially symmetricj (3) only axial body forces act 
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on the fluidj and (4) the viscosity is constant . The e~uations which 
result from application of these hypotheses to the flow conservation 
e~uations must be treated as approximations . 
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The first hypothesis indicates that the flow is approximately 
parallel . Although this is exactly true only for the fully developed 
flow, it is taken as a reasonable assumption for the accelerating portion 
of a high velocity compressible gas flow in a straight pipe. The conti ­
nuity e~uation for the compressible flow of gas is then 

(1) 

It must be noted that this e~uation must be treated as an approximation 
to the actual continuity e~uationj only in the special case of nonaccel ­
erating flow can it exactly describe the true physical flow . For e~uation 
(1) to be exactly true in the accelerating flow, very special conditions 
on the heat transfer through the fluid and to the walls would be re~uired . 

However, as will be seen, the analysis is greatly simplified by use of 
e~uation (1), and indications of the accuracy of the results will be 
shown later . The approximate e~uation (1) shows that pu can be a 
function only of r, not of Xj that is, 

pu ~ m(r ) 

The implication is that each cylindrical lamina of fluid, at a distance r 
from the center of the pipe, moves as in a one -dimensional flow with pu 
constant, the motion in each lamina being affected by the viscous forces 
due to the shear stresses on the adjacent fluid laminae . Near the pipe 
axis the viscous forces are smal l and the velocity of the fluid particles 
is greatly increased by the body forces, whereas near the wall, the higher 
viscous forces have a greater retarding effect . The density must therefore 
be greater near the wall . This is analogous to a compressible boundary 
layer adjacent to a cold wall, in which the density is higher near the 
wall . Jt might be noted that, in compressible boundary-layer solutions, 
one must consider vr because the flow downstream of a point depends on 
what occurred at the point, that is, on the magnitudes of both components 
of velocity . If vr were neglected in a boundary- layer problem where 
the downstream flow is not known but depends on the flow development 
upstream, errors in the solution of the downstream flow would be compounded 
because of inexactness of the solution upstream from a point . However, 
in the present problem, precise knowledge of vr is not necessary to 
prevent such a compounding of errors because the so~ution is forced to 
approach the known exact solution of the e~uations governing the downstream 
fully developed flow, as will be shown later . 
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The momentum equations which govern the motion reduce from the 
compressible Navier - Stokes equations in cylindrical coordinates to the 
following form : 

o (4 ) 

where F is the axial body force per unit volume . If F is constant 
or a known function of any of the other variables, equations (1)) (3)) A 
and (4) comprise a determinate set, and hence the velocity u can be 3 
found . Before proceeding to discussions of F and the solution of the 9 
equations) however, the term containing pu in equation (3) requires 6 
further discussion . The result of the approximate equation (1) is the 
relationship in equation (2), which determines the product pu if it is 
known at any x . One must keep in mind) however) that, in the equations 
for a compressible gas, the density is related to the temperature) pres -
sure, and velocity through the energy equation and the equation of state) 
as well as the continuity equation and the momentum equations . (These 
relations are discussed in a later section . ) If the gas flow is to 
become fully developed) the density will assume a certain profile governed 
by these equations . I t is not to be expected that pu will have exactly 
the same distribution profile at x = 00) where the flow becomes fully 
developed, as it happens to have at x = O. It is therefore evident that 
pu is not strictly a function of r) but may also be a slowly varying 
function of x . These considerations, however, do not invalidate the 
use of equation (2) in finding the velocity and pressure from equations 
(3) and (4) in the regions where ou/ox is not zero for the following 
reasons . The only instance where pu occurs in the momentum equations 
is in the term pu(ou/ox) . This term, therefore) is approximated by 
Pouo (ou/ ox). At x = 0) the acceleration du/OX is large, but the term 
is exact because pu = PoUo ' As x increases from zero) pu remains 
nearly Pouo as ou/ox decreases . As x ap~roaches infinity, the 
actual pu profile approaches poo~) but ou/ox approaches zero and 
the term becomes very small . Thus it is seen that the term pu(ou/ox) is 
important near x = 0 where pu ~ Pouo) but its exact value is not as 
important at larger values of x . 

Body Forces and Electromagnetic Phenomena 

In the application of the solution of equations (2)) (3), and (4) 
to the magnetogasdynamic problem) F is the axial electric body force 
induced by electric and magnetic fields applied perpendicular to the 
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flow direction. If the magnetic permeability of the fluid is assumed to 
be the same as that of empty space , the electric body force per unit 
volume is 

--> --> --> 
F JXH 

--> --> 
where H is the strength of the magnetic field and J, the current 
density, is given by Ohm's law : 

--> (~--> --> 
J = a E + q X H) ( 6) 

Figure 2 indicates schematically the electric and magnetic fields. A 
uniform magnetic field, Ho ' is applied in the z direction. An appropri­
ate distribution of electrical potential is applied to the conducting 
walls of the pipe. The fields are considered to be applied starting at 
the pipe inlet, x = O. The interaction of the electric and magnetic 
fields is governed by Maxwell ' s field equations . The fields are, in 
turn, coupled with the fluid velocity by Ohm's law. It will be assumed 

--> 
that the z component of H does not vary appreciably from the value 
Eo and that the magnitudes of the components induced in the x and y 
directions are small . These assumptions require that the magnetic Reynolds 
number cruoa be low. This has been discussed by Rossow (ref. 10) and by 
Hains and Yoler (ref. 13) among many others . Equations (5) and (6) then 
give for the axial body force 

--> 
The electric field E is due to the internal separation of charges 
(polarization) as well as to the effect of the charged boundaries . It 
may be helpful to look at equation ( 6) in the form 

--> --> I --> --> --> 
q X H = - J - Ee - Ei (8) 

a 
-+ 

where Ee is the electric fiel d due to external effects (charged bound-
aries) and Ei is due to separation of charges . Thus) from equation (8)) 
it is seen that the induced emf, q X H) has two effects; that of driving 
a current through the gas and that of separating charges (from discussion 
by Resler and Sears in ref. 4) . 

The problem at hand will now be considered from two points of view. 
In case I it will be hypothesized that the current density component J y 
is constant (fig. 2(a)). (Note that the purpose of this hypothetical 
case is to give a simple form for the body force, and it will probably 
be difficult to achieve in the circular pipe flow . Resler and Sears in 
reference 4 have shown it to be nearly true for two-dimensional channel 
flow through crossed fields.) Then) for case I) the electric body force) 
from equation (7)) becomes 
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where 0 is also as sumed to be a scalar and t o have a constant finite 
value) or 

where 

G 
Ey u) -- - - = 

Houo Uo 
constant 

and where 

The symbol K is the Hartmann number (ref . 14), whose s~uare is the 
product of the Reynolds number) the magnetic Reynolds number) and the 
magnetic pressure number. In this case Ey, the y component of the 
electric field, varies because u is a variable . Case II (fig . 2(b)) 
will be the situation where the configuration and design of the apparatus 
and the magnitudes of the fields are such that Ey can be assumed to be 
nearly constant . This can conceivably be true for large applied electric 
fields and for appropriate conducting properties and construction of the 
pipe wall . Thus, for case II, it is hypothesized that Ey is constant, 
and the electric body force per unit volume is a variable and has the form 

Fn oH 2 0 ~ u) = ~:~) K2 (BII :0) 
where (10) 

Bn = ~ 
Houo 

The Approximate Dimensionless E~uations of Motion 

E~uations (2) , (3), and (4) will now be studied for both case I and 
case II where the body force has the form given by e~uations (9) and (10), 
respectively . The parameters may be made dimensionless as· follows : 

u ap 
No 

pouoa 
u = p = = ---

Uo Iluo Il 

x P ...2... iii(r) am pua = NopU: x = a Po Il Il 

r a2 F ~ 
oH 2a2 

F = 0 r = = a Iluo Il 

.. 
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Then equations (3) and (4), using equation (2), become 

(11) 

o Op 1 02 11 
- - +---

Or 3 Ox Or 
(12) 

where, for case I, 

(13a) 

and, for case II, 

(13b) 

A consequence of the foregoing hypotheses and assumptions is that 
the energy and momentum equations are not coupled, so they can be treated 
separately, and the momentum equations are linear after substitution of 
the approximation pu( ou/ox) ~ Pouo(ou/ox). 

SOLUTION OF THE EQUATIONS OF MOTION 

Case I (F = K2BI = Constant) 

Fully developed flow .- As x approaches infinity the flow approaches 
the fully developed flow condition and Oil/OX approaches zero. If this 
condition is imposed on equations (11) and (12), and if the dimensionless 
velocity for fully developed flow is denoted as u = ~(r), the resulting 
differential equation for case I is 

1 ( - - I) I 4A r rUoo = - (14) 

where () indicates differentiation with respect to r, and where: 

p = p (x) 
co (16) 

dP::x, __ 
dx constant (17) 

~~~--- - - ----
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E~uation (16) results directly from e~uation (12)) and e~uation (17) 
is easily deduced by observing that all other parts of e~uation (14) are 
functions only of r . The boundary conditions are : 

r = ° 1ioo is finite 

r := l J ~ = ° 
The solution of e~uation (14), with the boundary conditions (18a) and 
l8(b), is 

where A is de£ined by e~uation (15) . 

Development of the flow from a uniform profile. - A new variable U 
may be defined by 

(20) 

where the function ~(r) is the fully developed dimensionless velocity 
profile, and IT(x,r) is the actual dimensionless velocity at a point in 
the pipe between the inlet, x ~ 0, and a high value of x where the flow 
is considered to be fully developed. Substitution of e~uation (20) into 
e~uations (11) and (12)) using (13a)) gives 

dU 
m - ~ 

dx 

dp 1 d~ 
- + --- ~o 
dr 3 dx dr 

(21) 

If e~uation ( 21) is differentiated with respect to r, e~uation (22) is 
differentiated with respect to x, and the resulting e~uations are com­
bined) the result is 

where use has been made of the fact that, from e~uation (14), 
(Uoo" + (l/r)Uoo' ) is a constant . 

In the present problem, the velocity at the pipe inlet is uniform, 
that is) u(O,r) = 1 (0 S r < 1). The density profile at the inlet is 
also considered to be uniform) so that p(O,r) = 1 and ill(r) Z illQ(r) = No, 
a constant) (0 S r < 1) . The boundary conditions on IT are thus; 

... 
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x = 0 y u = 1 , (0 ::: r < 1) 

x = 00 y u = lioo(r) 

r = 0 y u is finite 

r = 1 , -u = 0 

The corresponding conditions on U are, therefore: 

x 0 U == "iloo(r) - 1 , (0 ~ r < 1) 

-x = 00 U = 0 

r = 0 , U is finite 

F = 1 , U = 0 

13 

(24) 

(25a) 

(25b) 

(25c) 

(25d) 

Particular solutions to equation (23) may be assumed to have the 
product form, X(x)R(F) . The complete solution is the linear combination 
of all possible solutions. Substitution of the product XR into equation 
(23) then gives the result 

00 

U(x,r) = I Ane €n~n(r) (26) 
n=l 

where 

and where An2 is the separation constant . (The positive sign on the 
radical has been eliminated by the boundary condition (25b) . ) The func­
tions Rn are the solutions of 

RlI' + (~ RI) + An2R' 0 (28) 

or 

Ri! 1 
+ An2R (29) + = R' ~ r 

where ~ is a constant of integration. 
determined . The boundary conditions on 
with conditions (25c) and (25d) . Thus 

The eigenvalues, An) are to be 
R are obtained from equation (26) 
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()() 

U(x)l) = L Ane €n~n(l) 0 
n=l 

and 

is finite 

Since both these statements must be true for all values of 
true that 

and that 

Rn(O) be finite 

The solution to e~uation (29) is 

Rn = clJo(Anr ) + C2Yo(Anr ) + A:2 

x) it must be 

(30a) 

(30b) 

where J o and Yo are Bessel functions of the first and second kinds of 
order zero) and Cl and c2 are arbitrary constants . 

E~uation (31) involves three constants of integration) but only two 
direct conditions on Rn(r) and its derivatives are available for the 
evaluation of the constants . These conditions) e~uations (30a) and (30b)) 
will be used to evaluate Cl and C2 . The remaining constant ) ~) will then 
be chosen so that other conditions of the problem are satisfied . This can 
be done indirectly by considering all possible values for ~ and deter ­
mining the applicability of the results for each choice . The two classes 
of possible values for ~ that will be considered are : (1) ~ = 0 and 
( 2)~#0 . 

Consider first the possible case ~ = O. Application of conditions 
( 30a) and (30b)) along with the condition ~ = 0) to e~uation (31) gives 
the results : 

and 

E~uation (26) may then be written 

... 
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00 

U(X)Y) = LAne En
x

Jo (7\nT') (34) 
n=l 

where the eigenvalues) An) are the roots of equation (33) . 

Application of boundary condition (25a) to equation (34) leads to 
the result 

00 

s(r) = I AnJo (Anr ) 
n=l 

where 

s(T') = 1:loo(T') - 1 ) (0 ::s T' < 1) (36) 

The functions Jo(Anr) are orthogonal with respect to Y (cf. re f . 15). 
Therefore equation (35) represents the expansion of the function s(T') in 
a series of orthogonal eigenfunctions (see again ref. 15)) and An may 
be determined by the conventional method . Thus 

J1 s(r)Jo(/"nr)r dT 
o An = ~-l----------2-----

J [Jo(!\nr) ] T' dr 
o 

Using equations (19)) (36)) and (37)) one obtains 

Thus the constant Cl has been determined indirectly. It has been absorbed 
in An) which is determined by equations (33) and (38 ) . 

The dimensionless velocity u(x)r) is now complet ely determined) for 
the constant a equal to zero) from equations (19)) (20)) and (34)) along 
with equations (15)) (27)) (33)) and (38 ) . 

One must consider now the possibility that a has a value other than 
zero . It will simply be noted here that it is shown in the appendix that 
the solutions obtained by letting a have any value other than zero are 
not possible. It is therefore established that 

\ 

The pressure may now be found as follows : Integration of equation 
(22) gives 

p = - t ~~ + G(x) (40) 



16 

where G(x) is to be determined . Then, if equation (40) is differentiated 
with respect to x and substituted into equation (21), and use is made 
of equations (14), (15), (26), (27), and (29 ), the following result is 
obtained.: 

G' (3C) ( 41) 

Integration of equation (41) and its substitution, along with equation 
(34), into equation (40) gives an expression which determines the pressure 
at any point to within a constant of integration. I t would seem desirable, 
then, to f ind the constant of integration using the condition that, at 
x = 0 and r = O} p = Po' The following expression would result: 

P - Po ~ I } A"En[l - e EnXJo(l'nr ) ] + x (?;) (42) 
n = l. 

Consider the case where dpoo/dX = 0 (thi s will l ater be shown to be the 
only possible case in fully developed floW) . Equation (42)} with the 
condition x- oo} P- P , then gives 

00 

n=l. 

However } it is found that the above two equations are not convergent. But 
if the local pressure is related to the pressure at x:= 00, for example) 
by adding equations (42) and (43), a result is obtained which converges 
for all x except x = O} because of the presence of the exponential 
term: 

(44) 

The pressure difference, (po - Poo)' can then be found by calculating 
(p - p ) from equation (44) for small values of x and observing the 00 _ 

limit approached as x approaches zero . 
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Case II [F = K2(BII - u)] 

Fully developed flow .- For thi s case} e~uations (ll) } (l2)} and (l3b) 
:result in 

where 

C 

dP'oo __ 
constant dx 

(46) 

With the boundary conditions (l8a) and (l8b) , the solution to the fully 
developed flow e~uation, (45), is 

(48) 

where 10 is the modified Bessel function of the first kind of order zero . 

Development of the flow from a uniform profile . - As in case I, a new 

variable U(x,r) is defined by equation (20) . For this case Uoo(r) is 
given by equation ( 48 ) . Then, by an exactly analogous procedure as before, 
equations (ll) ) (l2) , and (l3b) give the partial differential equation : 

As in case I} the velocity and density profiles at the pipe inlet are 
uniform so that 

u(O,r) l , 

and 

iii(r) a constant , (0 ~ r < l) 

The boundary conditions are then identical to equations (24) and (25). 
The solution to equation ( 49) is found by the same procedure as used in 
case I to be 
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U = L AneEnXRnCr) 

n= 1-

where En is now given by 

En = ~ No [ 

and the functions Rn are the solutions of an equation identical to 
equation ( 29) . The equations in the subsequent development are the same 
as equations ( 30) through (37) . Equation (48) is then used along with 
equations (36) and (37) to obtain 

An == 

1-
I n the development of equation (52), the integral 1 Io(I<:r)Jo(t'nr)r dr, o 

which is similar to the Lammel integrals, was encountered . Its integration 
was handled in a manner following that used by McLachlan in reference 16 
(pp. 94-95) · 

The dimensionless velocity rr(x,r) is thus determined for case II by 
equations (20), (34)} and (48)} along with equations (33)} (46), (51)} and 
(52) . The impossibility of ~ having any value other than zero is shown 
in the appendix . 

Following the same procedure used for case I} the pressure is found 
to be determined by an equation identical to equation (44)} where An 
and En} of course} correspond to case II . 

ENERGY CONSIDERATI ONS 

Equations of State and Energy in Fully Developed Flow 

Fully developed flow is considered to be a parallel flow in which 
the velocity profile does not change with streamwise distance . Maslen} 
in his study of fully developed gas flow in reference l2} states that} 
for a gas, none of the properties must be al lowed to vary with axial 
distance . He obtains the result} then} that the velocity is only in the 

'. 
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x directionj that is) the flow is parallel. However) in the present 
study fully developed flow is defined exclusively in terms of velocity : 
~ ~ "" / -~ = iu where au dx = 0) and where i is the unit vector in the x direc-
tion . The author prefers to use thi s "nonaccelerating parallel flow" 
definition of fully developed f l ow) rather than a statement that nothing 
depends on x) in order to keep the defining statement identical to that 
used for incompressible fully developed flow) in which flow properties 
can vary with x . (Note that incompressible fully developed flow need 
not be defined to be parallel because it will be parallel if dU/dX = 0 
to satisfy conservation of mass .) With this definition the result will be 
obtained that the flow properties cannot vary with x in fully developed 
laminar compressible viscous pipe f l ow . 

In magneto-fluid dynamics the Joule heating term must be included in 
the energy balance on a fluid particle . The energy e~uation to be used 
is derived from a classical macroscopic point of view . The fluid is 
treated as a single - component system) and therefore no consideration of 
electrons) ions) or neutral particles is introduced (ref. 17) . If the 
definition of fully developed f low (~ = iu and dU/dX = 0)) which leads to 
u = Uoo(r ) and vr = 0 is used along with the results of the momentum and 
continuity considerations) p = Poo(x) ( i .e . ) p is at most a function only 
of x) and dp /dx = constant ) then the energy e~uation in fully developed 
laminar compr~ssible viscous pipe flow of a conducting fluid (assuming k) 
~) and c p to be constant ) is 

where u Uoo(r) and where n i s the Joule heating term: 

n J2 
(J 

The e~uation of state is 

I' - 1 
pCpT P pRT 

I' 

Because large temperature differences can exist in the flow in some cases) 
the fluid properties may vary considerably . The properties k)~, c ) 
and (J have been assumed to be constant in order to conveniently stuay the 
flow . The gas constant R is assumed constant, which implies that the 
number of particles per unit mass does not vary . Ohm ' s law) relating the 
electric field to the magnetic field and velocity (assuming H2 = Ho)) is 

• 
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The parameters may be made dimensionless as before, with the 
additional parameters ! 

and 

where 

Pr 

Equations (53) and (55) then reduce to : 

eT _ dP"oo l (CfT l eT e2T) (d~02 
N p ~ - =1loo - + - ._+--+- + - +D 

o 00 ex dx Pr ex2 r er er2 dr 

Two cases have been considered in previous sections where it has been 
hypothesized that only axial body forces exist . The current density J 
is assumed to be only J y , and cr is assumed constant . In the first 
case, J y is considered to be a constant . Thus, for case I , 

constant (60) 

In case II , Ey is hypothesized to be constant . In that case, then 

(6l) 

where BII = Ey/ Houo · Also considered here will be case I II, conventional 

gas pipe f l ow, that is, the case where cr = 0 or K2 = 0, with the result 
here that n = o. 

Temperature and DenSity in Fully Developed Flow 
Corresponding to Case I 

For case I , discussed above, combination of equations (57), (58), and 
(60 ) and use of the fact that (~~) is a function only of r give 
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l _ dPro /' Pro(x) a 1 I I) (- 1 )2 
--- 11ro --:: = ::= Vro + Vro + 11ro + DI 
/' - l dx /' - l Pr No 

(62) 

where DI is a constant and 

There are only two possible ways in which equation (62) can be satisfied . 
It is known from the momentum equations that d~dX is a constant. 
Therefore) the only function of x in the equations is Pro(X:). It is 
therefore concluded that either Pro is a constant or that 

II) + Vro = 0 

If the latter choice is considered) equation (62) becomes 

( - 1 )2 _ ( l ) dPoo '- + n 0 
Uoo \l - 1 dx Uoo I 

It can be seen immediately that this equation is not compatible with the 
momentum equation . Its integration) in fact) yields an impossible result. 

• Therefore this case is not possible) and it must then be true that Pro 
is a constant . The equation of state) (58)) may then be rewritten) with 
:Pro = constant) 

(64) 

to show that T can be a function only of r) not of x) that is) 

T = ~(r) 

Therefore Trow is required to be constant . 

The density and temperature profiles in fully developed flow may now 
be found from equation (62) as follows : 

(66) 

where 
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Using the result for Uoo for case I from the momentum equation : 

- 1 2 ( -2 ) Uoo = 4 K BI 1 - r (68) 

and the fact that 

equation (67) becomes 

Equation (66 ) may then be integrated , using the conditions 

voo(O) is finite ( 71) 

(where eq . ( 72) is found from the equation of state, (64)) to give the 
fully developed flow density distribution : 

1 I - 1 No [ - 1 4 2 (1 - y4 1 K-2Y2)] =- TOOW + -4 Pr K BI 6 + 
I Poo ·1 

Equation (71) may then be combined with equation (64) to give a relation 
for the temperature profile in the fully developed flow : 

Too - ~ 1 4 2 (1 - y 4 1 -Y2) 
Pr = 4 K BI 16 + =-K-2~ (74) 

Another variable of interest, the dimensionless mass-fl ow distribu­
tion , which was discussed earlier a nd which will be of use i n a later 
section , is 
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Temperature and Density in Fully Developed Flow 
Corresponding to Case II 

For case II, equations (57), (58), and (6l) result in 

1 _ dPeo / ~(X:) ~ I II ) (- 1)2 2( - )2 
/' _ 1 Uoo dx = /' - 1 Pr No V Veo + Veo + Uoo + K BII - Uoo 
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From the momentum equations) dPeo/dX is a constant . Therefore the only 
possible function of x: in equation (76) is Poo(x) . It again is con­
cluded that either Peo(X:) is a constant or (l/Pr No) [(l/r)veo l + Veo!I] = O. 
The latter choice implies no radial heat transferj that is) either k = 0 
or T 1 T(r). With this consideration, equation (76) becomes 

But the solution for the fully developed flow velocity found from the 
momentum equation is 

Uoo = 
[ 10 (lIT) ] C 1-

Io(K) 
(48) 

where 

C 
1 dIioo ( 46) BII - --=-K2 dx 

For fini te Hartmann number) equation (77) is contradictory to this solution 
(eq . (48)). However) let us consider for a moment the condition that 
Hartmann number approach infinity. Noting that 

dPeo 
-- = 
dx 



and that Uoo and ~1 approach C and zero) respectivel y ) in (0 $ r < 1) 
as K approaches infinity) it is seen that e~uations (77) and (48) are 
then compatible in the region (0 $ r < 1) if 

so that 

dp crEyHo 
-= 
dx )' 

)' - 1 
1100 = -- Bn 

)' { 
(0 $ r < 1) 

K-7oo 
( 80) 

Because p cannot change in the x direction) e~uation (79) implies also 
that the temperature have a constant positive gradient in the x direc ­
tion . This solution is not valid at the wall) that is) in the boundary 
layer) but it may be used in comparing the results of the present study 
with inviscid solutions in the case of no heat transfer . The flow 
described by e~uations (79) and (80) cannot) of course) be considered to 
be a fully developed viscous flow because i t re~uires that ~ = O. 

For case II) as for case I) therefore) the condition for fully 
developed compressible flow with nonzero viscosity is that Poo be a 
constant and that dpoo/QX = O. It is then also re~uired that T = Too(r) 
and thus that ~ be a constant . For the purpose of finding the density 
and temperature profiles) e~uation (76) may be written 

where 

v II 
00 

1 
+ = Voo l 

r 

and where) from e~uation (48)) 

Uoo = Bn 

After substitution of e~uation (83) and the relation 

~I 

~--- ~-~~~~~~-~~~= 

(81) 

(82) 
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equation (82) becomes 

Equation (81) may then be integrated) using conditions identical to 
equations (7l) and ( 72), to give 

25 

(85) 

Use of equation (64) then gives the temperature profile for fully developed 
flow) case I I : 

- - l 2 
T - T = - Pr"P.-.-. 

00 ClOy:[ 2 ~.11 (86) 

The distribution of ~(r) = Nopoo~ is 

ID"ro(r) 

I [Io(Kf)] -- P~I1 1 - -..,..---;-
I - 1 1o(K) 

Case I II ( 0 = 0) 

It is of interest to investigate the limiting case where the electri ­
cal conductivity approaches zero) that is) the case of conventional 
gasdynamic pipe flow . If it is supposed that such a flow can become 
fully developed) the result from the momentum equations is 

(88) 

where dp /dx is a constant . The energy equation and equation of state) 
(57) and (58)) for this case (where n = 0) reduce to 

1 - d~ I Poo(x) (l 1 II ) (il __ 1 )2 (89) 
)' - 1 Uoo dx = I - l Pr No \j Voo + Voo +-= 
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where Voo = l/~. Because ~(x) is the only possible function of x 
in equation (89), it must be true that either Poo is a constant or 
(l/Pr No) [(l/r) voo ' + Voo" 1 = O. Substitution of the latter consideration 
into equation (89) results in 

which is contradictory to the momentum equation, besides the fact that 
it implies that Uoo' is imaginary if the necessary negative pressure 
gradient is assumed to exist . The only other possibility for fully 
developed flow) then, is Poo = constant. But then dPoo/dx = 0 and 
equation (88) then states that there is no flow. The conclusion is that 
it is not possible to have fully developed laminar flow in a pipe if the 
fluid is compressible unless the fluid particles are acted upon by body 
forces) that is) forces other than the surface forces due to pressure 
and friction . This is perhaps a surprising result because it is known 
that air flowing at low speed in a pipe does) at least very nearly) 
approach fully developed flow. But at low speeds viscous dissipation of 
energy is small and the flow is nearly incompressible . The momentum 
equations can then be satisfied without recourse to the energy equation; 
the pressure gradient is not required to be zero. (In the case where the 
fluid is not exactly incompressible) but small density changes with 
temperature) i .e . , thermal expansion and contraction) are admitted, Maslen 
(ref. 12) has obtained solutions using an equation of state which is 
independent of pressure and using momentum and energy equations which 
involve a constant pressure gradient.) At high speeds) in addition to 
the fact that the density must be allowed to vary, there is greater 
viscous dissipation of energy) which fact lends to acceptance on physical 
grounds of the result found above, that a fully developed flow is not 
attained unless it is supported by a body force . 

MASS-FLOW COMPARISON 

In the section "Equations of Motion" physical arguments were given 
in support of the use of the hypothesis that vr = 0 and the consequent 
use of the function Pouo(au/ax) as an approximation for the term pu(au/ax) 
in the momentum equation . The approximation is, of course) exact at x = 0 
because (pu)x= o = pouo · I t is also true as x approaches infinity because 

au/ox approaches zero . Use of the approximation at values of x near 
zero is justified because, although u changes rapidly from uo) the 
product pu remains nearly at pouo . At large values of x the approxi­
mation is good because au/ox becomes smaller and hence the term pu(au/ax) 
in the differential equation becomes less important . The approximation is 
least accurate at intermediate axial locations) that is) at values of x 
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where the center -line velocity is approximately intermediate between 
U o and Uoo and the product pu is approximately intermediate between 
Pouo and PooUoo. One can obtain) therefore, an indication of the accuracy 
by comparing the mass flow at x = 00 with the mass flow at x = 0) that 
is) by calculating the ratio moo/mo versus r. One can then consider 
the value of m/roo intermediate between moo/roo and l.O to be a good 
indication of the accuracy of the approximation at the x location where 
it is least accurate . For this calculation equations (75) and (87) are 
used to find moo for cases I and II) respectively , and ~ is equal 
to No' 

First it must be required that over- all conservation of mass be 
satisfied. The respective expressions for moo contain the parameters 
Poo and T~ which must have definite values depending upon the state of 
the flow at the pipe entry . Thus the various parameters must be related 
so that they satisfy the equation 

or 

Case I (Jy = Constant) 

For case I) the result of substituting equation (75) into (90) 
requires that the parameters be related by 

where 

[
(l + 03 + 04)(03 -

+! (l + 03 - 04)(03 + 
2 1 
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As will be discussed later} the results of calculations demonstrate the 
fact that 

No K2B 
I 

(96 ) Po - Poo = ,Mo2 - Ii = --
00 3No 

Combination of equations (92) and (96) yields the relation 

3No
2 801 K2Br (97) 

,1402 801 + 3No
2Pr(, - 1)/, 

From equations (91) and (97) a definite relationship between K2 and K2Br 
can be seen for given values of No} [(, - l)/, ]Pr) ,1402 , and Trow/To . 
One may note that, for those cases where 

K2Br « 3No2/,1402 

equation (97) may be approximated by 

and the relationship between K2Br and K2 would then depend only on 
[(, - 1)/,]Pr(,1402 ) = (~/k)(uo2/To) and on Trow/To. This is true, for 

example, if No > 100, K2Br < 1000 and, and 140 are of order unity . 

The calculation can be made as follows : For various given values 
of K2, No, [(I - l)/,]Pr, and ,1402 , a number of arbitrary values of 
02 are specified . Corresponding to each of these values, then, 01 is 
known from equation (91) . The values of K2Br are then found from 
equation (97), and the appropriate values of Trow/To are obtained from 
equation (93) · 

For chosen sets of the input parameters which satisfy equation (90), 
as calculated above, one may then calculate the quantity ~/mo as a 
function of r. Using equation (75), one obtains 

.. 
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+ ~ (1 - y4) + 

Case II (Ey = Constant) 
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For case II) if equation (87) is substituted into equation (90)) the 
re~uired relationship among the parameters is found to be 

= Jl (1 - ~)r dT 
05 

0 6 + l - ~2 
0 

where 

~ 
Io(Kr) 
Io(K) 

(lOO) 

and where 

No ~ ; 1) Pr BII 

05 = 
4-Poe 

(101) 

2Toew 2 Toew/To 
06 = 

IT Bl12 

~ ; 1 Pr) lMo2 
Bn2 (102) 

In this case the results of cal culations} to be discussed later} reveal 
the fact that 

(l03) 

E~uations (101) and (103) may be combined to give an expression for BII: 

(104) 
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For this case the calculation can be accomplished in a manner 
similar to that used in case I. For various given values of K2} No} 
[Pr( i - l)/i]} and iMo2

, a number of arbitrary values of 06 are 
specified . Corresponding values of 55 are found from e<luation (99) 
(by numerical integration, for example), and then BII is obtained from 
e<luation (104) . The appropriate values of Toow/To are obtained from 
e<luation (102) . 

Corresponding t o the sets of input parameters which satisfy e<luation 
(90), as calculated above, moo/~ may then be calculated . For this 
purpose e<luation (87) may b e written! 

:: ~ (~~5) (56 ~ ~ ~ S2) (105 ) 

where S is given by e<luation (100) . 

NUMERICAL EXAMPLES 

The e<luations containing the infinite series solutions for the 
dimensionless veloc i ty u and the dimensionless pressure (p - Poo) at 
all x and r were programmed for evaluation on an IBM type 704 electronic 
data processing machine . Also calculated were the fully developed velocity 
and temperature profiles . The e<luations for both case I and case II were 
programmed . 

A subroutine employing Newton ' s method as the iteration procedure 
was used to evaluate the eigenvalues , An} as the successive roots of 
e<luation (33) · An approximate value was found graphically for the first 
eigenvalue , Al . This approximate value was then used as a trial) or 
starting , value in the iteration procedure to solve for the actual value 
of Al . The trial value for the iteration in the vicinity of each 
succeeding eigenvalue, An, was found by adding the number n to the 
preceding eigenvalue , An- l ' 

The calculations were made for values of the Reynolds number No 
of 1000} 750} 500) and 250, values of K2 of 1000) 500 } 250} 100) 50} 
and 10} values of BI ~ (Ey/Houo ) - (u/uo) = JyHo/ cruoH02 of 1 . 0 and 0 .1 
and values of BII ~/Houo of 100, 10, and 2. An appr opriate range 
of x for each set of input parameters was used so that the asymptotic 
approach of the vel ocity distribution to the fully developed flow profil e 
could be observed and so that the pressures near x = 0 could be 
determined . 
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DISCUSSION OF RESULTS 

Fully Developed Flow 

The fully developed flow velocity, toward which the flow is assumed 
to accelerate starting from the inlet velocity, depends on K2 and BI 
for case I and on K2 and BII for case II. Plotted in figure 3 are the 
velocity profiles referenced to the value of the velocity on the pipe 
axis. As presented in this figure, the profile is independent of all 
parameters for case I. In this case the electromagnetic body force, which 
is balanced by the viscous forces in the fully developed flow, is constant 
over the cross section. The result, a parabolic profile, is the same as 
for the Hagen-Poiseuille incompressible pipe flow in which a constant 
pressure gradient maintains the flow. The velocity profiles depend on 
the Hartmann number K in case II. In this case the body force varies 
over the cross section. It is greater near the wall and thus tends to 
flatten the profile. As K approaches infinity, the body force approaches 
zero everywhere in the fully developed flow except in a boundary layer 
near the wall. Shown in figure 4 are curves of the fully developed flow 
center-line velocity versus K2 for various values of the parameters 
BI and BII' In case I, where Jy is constant and the body force is 
constant and thus has a nonzero value in fully developed flow, the center­
line velocity is directly proportional to K2 as well as BI' (The 
product K2BI is actually proportional to the ratio of the constant 
electric body force to the inlet viscous force on a fluid particle; that 
is, K2BI = F/(~uo/a2).) Thus, for this case, as the magnetic field is 
increased, the maximum velocity is also increased because the body force, 
which maintains a constant value throughout the entire flow, is increased. 
In case II the flow-approaches the fully developed condition as the body 
force approaches a value proportional to K2BII/Io(K) on the center line. 
Thus, for values of K near zero, the body force on the center line 
becomes proportional to K2BII' But as K approaches infinity, the body 
force approaches zero . The fully developed flow center-line velocity is 
given by Uoo/uo = BII[l - l/Io(K)]. Thus, as K nears zero, the fully . 
developed flow velocity approaches zero. But as K approaches infinity, 
Uoo/uo approaches BII (except very near the wall) and therefore becomes 
essentially independent of K. 

The results for case II may be compared with those of Resler and 
Sears in their study of nonviscous one-dimensional magnetogasdynamic flow 
in a constant-area channel with no heat transfer (ref. 5). Resler and 
Sears distinguished essentially three basic types of flow (with respect 
to velocity): (1) choked flow, (2) smooth continuous acceleration (or 
deceleration), and (3) approach to an asymptotic state. When the viscosity 
is not zero, the flow properties (velocity, temperature, etc.) vary over 
the cross section, and the conditions which lead to choking as the velocity 
changes with x would therefore not be present over the entire cross 
section at any axial location. Hence the effects of choking are not 
evident in the present study and choked flow is not considered. Neither 
have the cases for which Resler and Sears found the flow~o accelerate 
indefinitely with distance along the channel been investigated here. 
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Only those cases for which the flow velocity approaches the fully 
developed} or nonaccelerating unidirectional} flow state have been 
considered . The boundary condition was imposed that the flow asymptoti ­
cally approach this state . For inviscid flow with no heat transfer} 
Resler and Sears found the asymptotic flow velocity to have the value 
E/H in some cases} while in others it was limited to [(I - l)/']E/H . 
If the effects of viscosity are small enough) the velocity and temperature 
profiles will be uniform} and hence one -dimensional} except in the bound­
ary layer at the wall . All effects of viscosity and thermal conductivity 
will be confined to the boundary layer} and the flow outside the boundary 
layer will be governed by the inviscid flow equations of Resler and Sears . 
Thus} if Uo < [(I - l)/,]E/H < E/H) as the vel ocity outside the boundary 
layer approaches the value [(I - l)/, ]E/H) the flow will indeed cease to 
accelerate and hence the velocity will become asymptotic to [(I - l)/, ]E/H. 
In the present analysis (case II)} if the viscosity is assumed to approach 
zero} then the Hartmann number becomes infinite and the flow does become 
essentially one -dimensional} except for the boundary layer near the wall 
(see fig . 4)} and both of the asymptotic flow cases indicated by Resler 
and Sears (u ~ E/ H and u ~ [(I - l)/,]E/H) are shown to be possible 
solutions of the fully developed flow equations} under the proper respec ­
tive conditions} in the limit as K approaches infinity ( see eqs . (80) 
and (83)). However) if K is small enough that the velocity profile is 
not extremely flat} then the first - order differential equations of Resler 
and Sears do not apply} and the only possible asymptotic flow velocity 
is that given by equation (83) . The effects of heat conduction will not 
permit the f l ow to become fully developed as the velocity approaches 
1(, - l)/I]Ey/HO} and hence the flow will continue to accelerate until 
the center- line velocity approaches asymptotically the value} 
(Ey/HO)[1 - l/Io(K)] (provided the proper constant wall temperature is 
supplied). As noted} however} the limiting results for inviscid flow 
agree completely with the asymptotic flow cases discussed by Resler and 
Sears . 

The temperature distributions in fully developed flow are shown plot ­
ted in figure 5 . The results} as presented here in dimensionless form and 
in terms of the various parameters as indicated} depend only on Hartmann 
number, K. The temperatures are referenced to the constant wall tempera­
ture . I t is seen that the temperature profiles are governed to a great 
extent by the nature of the distribution of Joule heating . The effects of 
the various parameters on the temperature profiles are very similar to 
their effects on the velocity profiles . In case I the Joule heating is 
everywhere constant. As K approaches zero} the temperature profiles 
approach parabolic shape . As K goes to infinity, the shape becomes pro­
portional to [1 - (r/a)4 ]. Because the Joule heating is nowhere zero in the 
fully developed flow for this case) the temperature continues to increase 
as K increases . The J oule heating in case II varies over the cross 
section} being greater near the wall . As K approaches zero} the tempera­
ture difference (T - Tw) approache s zero. As K approache s infinity} the 
Joule heating approaches zero everywhere except in the boundary layer} and 
thus the temperature profiles approach a uniform profile . 
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Velocity in the Accelerating Portion of the Flow 

The development of the velocity profile from the uniform profile 
at the pipe inlet is illustrated by several examples in figures 6 and 7. 
Figure 6 gives examples corresponding to case I. For all cases here} the 
flow develops, starting with a thin boundary layer near the inlet, to 
the parabolic profile of fully developed flow (although the parabolic 
shape is not evident from the semilog plots of fig . 6) . The effects of 
the various parameters will best be observed by studying the center-line 
velocities} as the radial development is very similar for all cases . It 
will be noted} however} that figures 6(b) and 6(c) are identical because 
these results depend only on No and on the product of K2 and BI in 
case I. Figure 7 illustrates case II. For high values of K, the bound­
ary layer remains thin} but as K decreases} the boundary layer develops 
into a profile approaching a parabolic shape . 

The center-line velocity distribution along the axial coordinate in 
the accelerating portion of the flow is a function of the inlet Reynolds 
number No and the product K2BI for case I; in case II it depends on 
the values of No, K2} and BII ' Figure 8 shows the center-line velocity 
relative to the inlet velocity . I t is noted here that for small values 
of K2]I in case I, the velocity overshoots the fully developed flow 
velocity before approaching it asymptotically. In the accelerating flow} 
as in the fully developed flow, the body force in case I is constant; 
whereas in case JI, it varies with axial distance as well as over the 
cross section. Thus the body force in case II is greater near the inlet 
than near the fully developed flow, where it approaches zero as K 
approaches infinity. Nevertheless, the center-line velocity change in 
the accelerating portion seems to behave nearly the same in case I as 
in case II; that is, the shapes of the curves are nearly the same. It 
is noted, however, that increasing K in case II causes faster acceler ­
ation toward fully developed flow, an effect which is not seen in case 
I because increasing K in case I also increases the fully developed 
flow velocity. In figure 9 the center -line velocity distributions are 
shown relative to the fully developed flow velocity. Figure 9(a) shows 
the effect of varying K2 and BI for case I with No having the value 
1000. As K2BI approaches infinity the axial velocity distribution, in 
the form presented in figure 9(a), approaches a single curve. One will 
note that the curve for K2BI = 1000 cannot be distinguished from that 
for K2BI = 500 . In figure 9(b) can be seen the effect of varying No 
in case I. Higher values of No cause the velocity to approach the 
asymptotic profile more slowly} that is, the fluid proceeds further along 
the pipe before the flow becomes fully developed. The effect of varying 
K2 and BII for case II is given in part (c) . Increasing K2 causes 
the flow to approach the fully developed condition more rapidly. Higher 
values of BII cause the flow to reach the fully developed state more 
slowly because the fluid must accelerate to higher velocity. Part (d) 
shows that the effect of varying No in case II is essentially the same 
as for case I. 



From an expanded plot similar to those used in figure 9 can be read 
t he value s of x*/a j that is ) the values of x/a where the center - line 
flow vel ocity has reached a value within 1 percent of the fully developed 
f l ow vel ocity . I t was found that the best type of plot for this purpose 
was one of l og 11 - (u/Uoo)r=o ' versus (l/No) (x/a ) for case I and 

log 11 - (u / Uoo)r=o ] versus (K2/No)(x/a) for case II . On these plots the 
results were very nearl y straight lines ) except for portions of the curves 
for the lIovershoot ll cases of case I. When the results for x* in case r 
are pl ot ted as i ndicated in part (a ) of figure 10) they fall on a single 
curve for al l values of No in the range 250 to 1000 . It is seen then 
that x*/ a is directly proportional to No and) at high values of the 
product K2BI) it becomes nearly independent of K2Br. As K2Br decreases A 
to low values) near 4 .0) x*/a also decreases . The reason for this is 3 
that the fully developed flow velocity is also directly proportional to 9 
K2BI ) and is equal to (1/4)K2Br on the pipe axis . Thus) as K2Br 6 
decreases } the pipe length required to achieve the fully developed flow 
velocity on the axis decreases because the velocity change is decreased. 
I n fact } when K2BI is very small} the fluid decelerates to fully devel -
oped flow } and) as K2Br approaches zero ) the value of x*/a rises again 
and approaches infinity) because the flow must approach zero velocity 
because of the requirement of zero pressure gradient in the fully developed 
flow. For case I I) pl otting the results in the manner shown in figure 
lO(b) brings them to the same order of magnitude for the values of the 
input parameters used . I t is seen that) for high No) x*/a is nearly 
directly proportional to No . It decreases with increase in K2 because 
the body force is then higher near the inlet) but lower near the fully 
developed flow . I n fact) for this case ) x*/a is nearly inversely 
proport i onal to K2 for fairly high values of K2 . It increases with 
increase in BII (for BlI greater than unity) because the final velocity 
approached is higher . As BI I decreases from unity to zero ) the value 
of x*/a must approach infinity because the fully devel oped flow velocity 
approaches zero and the fluid must then decelerate from the inlet veloci ty 
to zero . These results for both cases I and II support the cQnclusions 
reached in the study of the energy equation in a previous sectionj that 
is) compressible viscous f l ow cannot become fully developed unless it is 
supported by a body force . Thus as K2) BI ) and BII) the significant 
parameters involved in the strength of the body force) approach zero ) 
the pipe l ength required to achieve fully developed flow goes to infinity . 

Values of x*/a in case I are ) in general ) higher than those in 
case II. In case I the f l ow takes longer to become fully developed 
because the body force is applied at a constant rate along the tube } and 
energy is being added to the flow through Joule heating at a constant 
rate . I n case II the flow becomes fully developed more rapidly because 
both the body force and the energy added by J oule heating decrease as 
the velocity increases toward the fully developed flow value . 
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Pressure in the Accelerating Portion of the Flow 

The center-line pressure distribution over the axial distance is 
shown in figure 11. The results are calculated from e~uation (44) using 
r = 0 and the fact that 

p - Poo No 

When the results for case r are plotted in the manner illustrated in 
figure ll(a), they are found to be nearly independent of No for values 
of No in the range 250 to 1000. Results are shown for various values 
of the product K2Br. It is seen that as K2BI increases, the results 
as plotted here approach a single curve, and thus that the pressure 
distribution becomes proportional to X2BI' or to the body force. For 
case II (fig. ll(b)) the results for No in the range 250 to 1000, K2 
in the range 50 to 1000, and Brr in the range 2 to 100 fall on a single 
curve. 

The pressure - difference between the value at the pipe inlet and the 
fully developed flow value can be found by observing the value approached 
as x approaches zero in figure ll. It is noted that on both parts of 
figure ll, all curves approach the value 1/3 on the ordinate and therefore 
that the value of (po-Poo)/Pouo

2 is (1/3)K2BI/No2 for case I and is e~ual 
to (1/3)K2 (BrI - 1)/No2 in case II. Thus the difference between the 
pressure at the inlet and that in the fully developed flow can be calcu­
lated directly. Although the relationships among the various parameters 
are obvious from these formulas, numerical results are presented in 
figure 12 to show the order of magnitude of the pressure difference for 
various values of the parameters. It is seen that the pressure differences 
re~uired are in most cases very small compared to the inlet dynamic pres­
sure. It must be noted that for a given set of input parameters, No, K, 
and Br or BrI, there is a definite pressure difference. Thus) if this 
pressure difference does not exist in the actual flow situation, then 
the indication is that the fully developed flow condition will not be 
attained. 

Results of the Mass-Flow Comparison 

For the purpose of obtaining an indication of the accuracy of using 
POUo(dU/dX) as an approximation for the term PU(dU/dX) in the momentum 
e~uation, the dimensionless mass-flow profile in fully developed flow) 
~) may be compared with the dimensionless inlet mass flow, mo, as 
discussed in a previous section, "Mass-Flow Comparison." Shown in 
figures 13(a) and 13(b), respectively, are examples of the re~uiTed 
relationships among the parameters for case I and case II, which must 



first be calculated (in order that over -all conservation of mass be 
satisfied) . Note that although the examples plotted in figure 13(a) were 
calculated for No = 1000) the results are essentially independent of 
No for the ranges of parameters used if No is greater than a number 
substantial ly less than 100 . The results shown therefore also correspond 
to any combination of values for ,Mo2 and IPr(, - 1)/, ] which have the 
same product as those listed . (See earlier text under lI,Mass- Flow 
Comparison . II) 

Figures 14(a) and 14(b) show examples of ~/mo versus r correspond­
ing to several of the relationships given in figure 13. Some specific 
examples to which the cases plotted in figure 14 correspond are listed in 
tables I and II . For these typical example cases and from the considera- A 
tions outlined under the section "Mass -Flow Comparison)" one can determine 3 
for which sets of conditions the approximation under consideration is most 9 
valid. (Recall that the approximation is most correct for those cases 6 
where m/rna is near unity.) Evidently the validity increases as one 
progresses through cases I through 4 for case I (see table I) and through 
cases 5 through 7 for case II (see table II). 

• CONCLUDING REMARKS 

It has been found that for the occurrence of fully developed laminar 
flow of a compressible viscous fluid in a pipe) an axial body force must 
be applied . That is) the viscous forces must be balanced by f luid body 
forces rather than simply by forces due to a thermodynamic pressure 
difference . It is thus found that) as the effects producing the body 
forces are decreased to zero) t he pipe length re~uired for fully developed 
flow becomes infinite . 

I t is also shown that) for the flow of a compressible viscous fluid 
to become fully developed) the wall temperature must approach a constant 
value, and it is seen that definite values of the pressure difference 
between the value at the inlet and the constant value in fully developed 
flow are re~uired in order that the fully developed flow be smoothly 
obtained . The radial temperature distribution is also seen to approach 
an asymptotic profile . 

In the appl ication of the solutions to the magnetogasdynamic pipe 
flow problem) in which the axial body force is the "electric body force, I t 

the flow results depend on the nature of the electric field and current 
density . Two special cases bave been studied in this report : In case I 
the component of current density perpendicular to the velocity and the 
magnetic field is assumed constant . For this case the velocity profiles 
approach parabolic shape as the flow approaches the fully developed 
condition . The temperature in the fully developed flow is found to 
depend on the Hartmann number. As Hartmann number) K) approaches infinity) 
the temperatures become proportional to the fourth power of K) and as K 
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approaches zero} the radial temperature profile becomes parabolic and 
proportional to the square of K. The pipe length required to achieve 
a velocity within 1 percent of fully developed flow velocity is found to 
approach a value proportional to the inlet Reynolds number for high 
values of the Hartmann number . The pipe lengths are in the order of 
hundreds of radii for a Reynolds number of 1000. The difference between 
the pressure at the inlet and that in the fully developed flow is found 
to be very small in comparison to the inlet dynamic pressure) the ratio 
being proportional to the ratio of the constant electromagnetic body force 
to the inlet viscous . force on a fluid particle and inversely proportional 
to the square of the inlet Reynolds number. In case n the component of 
the electric field perpendicular to the velocity and the magnetic field 
is considered constant throughout the flow field. The velocity profiles 
for this case approach fully developed flow profiles which become flatter 
with increase in Hartmann number . As the viscosity approaches zero 
(Hartmann number approaches infinity)} the results approach those of the 
inviscid constant-area channel flow studied by Resler and Sears. In 
contrast to the t,ro different values of the asymptotic velocity indicated 
by Resler and Sears for inviscid flow} it is shown that only one asymptotic 
flow velocity profile is possible for a given set of conditions when the 
effects of viscosity are significant) which profile corresponds to the 
upper limit indicated by Resler and Sears) modified by the Hartmann number. 
The fully developed flow temperature profiles for case II behave much like 
the velocity profiles. For high values of the Hartmann number) the entry 
pipe length is nearly proportional to the ratio of inlet Reynolds number 
to the square of the Hartmann number . It also increases as the ratio of 
the electric field to the product of the magnetic field and inlet velocity 
increases . The pipe lengths are in the order of 5 radii for Reynolds 
number of 1000 and Hartmann number equal to --/1000. In case II the 
difference between the pressure at the inlet and that in the fully 
developed flow is also found to be small) in general) compared to the 
inlet dynamic pressure . The ratio of the pressure difference to the 
inlet dynamic pressure is proportional to the ratio of electromagnetic 
body force at the pipe inlet to the inlet viscous force on a fluid 
particle and inversely proportional to the square of the inlet Reynolds 
number. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field) Calif . ) Feb. 13) 1961 
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APPENDIX A 

EVALUATIOm OF THE COmSTANT ~ FOR THE FLOW 

DEVELOPMENT FROM A UNIFORM PROFILE 

The solutions to the equations of motion corresponding to the constant 
of integration) ~) in equation (29) having the value zero have been given 
in the text of this report . The possibility of solutions for ~ having 
a value other than zero will be investigated in this appendix. 

If ~ is assumed to have a nonzero value) application of conditions 
(30a) and (30b) to equation (31) gives the result 

(Al) 

where the values of ~ and the eigenvalues An are) as yet) undetermined . 
It will be seen that ~ need not be determined directly) since it auto­
matically falls out of the equations . Equation CAl) may be substituted 
into equation (26) to give 

where 

00 

\' €nX 
= LBne 

n=l 

Application of boundary condition (25a) to equation (A2) then leads to 
the result 

00 

I(r) = L DnJo(Anr ) (A4) 

n=l 

where 

1loo(r) - 1 + I Bn (0 < r < 1) 
n=l 

and where 

(A6) 
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If the functions Jo(AnT) are orthogogal) then equation (A4) 
represents the expansion of the function s(r) in a series of orthogonal 
eigenfunctions. In order for Jo(Anr) to be orthogonal) one of the three 
possible orthogonality conditions must be satisfied (see ref. 15). The 
most general of the three is 

where ~ is a negative constant . It will be noted that the other two 
possible conditions) Jo(An) = 0 and Jl(An ) = 0) are merely special cases 
of equation (A7)) that is) the respective cases where ~ = -00 and ~ = O. 
The case where ~ = 0 must be ruled out because this would impose the 
condition) through equation (A2)) that aU(x)I)/aT = O. This requires 
the restriction that at the wall au/or = ~'(l) at all x) which is 
unreasonable for the case of a uniform velocity profile at the inlet. 
The case ~ = -00 corresponds to a = 0) which case has been discussed 
in the text. 

The choice of various finite negative values of ~ in equation (A7) 
would supposedly result in different physical conditions of the problem. 
For example the difference in pressure at two points in the flow would be 
a function of the choice of ~. Thus a complete set of eigenvalues are 
prescribed as the roots of equation (A7) with a given choice of ~) and 
the appropriate pressure distribution would result. 

The coefficients Dn may then be determined by the conventional 
method: 

(AB) 

For case I) using equations (19)) (A5)) (A6)) and (AB) gives the 
result 

where 

(AlO) 



40 

and 

(All) 

If the sum over values of n from one to infinity is taken of eQuation 
(A9)) there results 

If r = 0 is substituted into eQuations (A4) and (A5)) using eQuation (19 )) 
the following relation is found : 

00 

If the above two relations for ~ Dn are eQuated) the following expression 
results l n=l 

00 

~(~~2 - fg) - 1 
00 

~Bn n=l (Al2) - 1 A 00 

n=l 1 - ~ f 
n=l 

Substitution of eQuation (Al2) into eQuation (A9)) making use of eQuations 
(A7)) (AlO)) and (All)) gives the result 

Bn = 
2A ~ - 2 + 8[32S2 - ~) (Al3) 

An2 + [32 1 + 2[3Sl An2 

where 

00 

Sl =~ [1/ Jo(An) ] 
An2 + [32 

\ (Al4) 

n=l 

and 

00 

S2 =~ [ l/Jo(An) ] (Al5) 
An2(An2 + [3 2) 

n=l 

--------_. - . . _- -
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There are two indications that this solution which has been found 
for ~ i 0 is not possible. First} it is found by computing Sl and S2 
that Sl = -1 /2 ~ and that S2 = (2 - ~ ) /S~2. Therefore the first term 
inside the bracket in equation (Al3) is indeterminate) that i s} both the 
numerator and denominator of that term are identically zero for all ~. 

The second indication is seen by comparing equation (A9) with equation 
(Al3)} using also equation (A6) . The entire right side of equation (Al3) 
has the independent parameter A as a factor. Therefore} in order that 
equation (Al3) be compatible with -equation (A9)} it must be true that 

either (l)n~Bn = 1, or ( 2)[n~lBn - l] must have a factor A. The first 

consideration cannot be true because) from equation (Al3)} Bn has a 
()() 

factor A. Therefore} ~ Bn would also necessarily have a factor A. 
n=l ()() 

This same out the second consideration because if ~ Bn has 
n=l 

a factor cannot have a factor A. It is therefore 

shown for case J that the solutions corresponding to values of ~ unequal 
to zero are not possibl e . 

For case II , equations (4S), (A)), (A6), and (AS) lead to 

(Al6) 

where f = f(An) is given by equation (AlO) and 

h 

Jf the sum over values of n from one to infinity is taken of equation 

a relation for results which may be equated to another 

n=l 
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00 

relation for ~Dn found by substituting r = 0 into equations (A4) and 

~1 

(A5). A resulting expression is 

C [n~,fh - 1 + li1oCKl] 

l - ! f 
n=l 

(Al8 ) 

Substitution of equation (Al8 ) into (Al6)} using (A7)} (AlO)} and (Al7)} 
results in 

~+ 

where 8 1 is given by equation (Al4) and where 

00 K2 + (1/~)An2KI1(K) /Io (K) 

=L S3 
~+~ (A20) 

Jo(An)(An2 + ~2) 

n=l 

Equations (Al6) and (Al9 ) may be compared} with the same object in mind 
a s was considered in case I} to show that they are not compatible} and 
therefore that solutions corresponding to values of ~ unequal to zero 
are not possible for case II. 
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TABLE 1.- EXAMPLES OF CASES PLOTTED I N FIGURE 14(a) FOR CASE I 
(Jy = CONSTANT)) (No = 1000) 

52 K2 lMo2 )' - 1 
K2BI Tw 

)' Pr -
To 

102 103 1 0 .10 0 ·39832 0 .49580Xl0- 1 

1 .25 .15933 .19832xI0- 1 

5 .10 .079664 ·99162Xl0-2 
5 .25 .031865 . 39664xI0-2 

102 10 1 .10 ·39624 .49064xI0- 1 

1 .25 .15850 .19626XlO- 1 

5 .10 .079248 . 98129xI0-2 

5 .25 .031699 . 3925lXI0 -2 
1.0 103 1 .10 28 .288 2 ·5007 

1 .25 11 ·315 1 .0003 
5 .10 5 ·6577 ·50014 
5 .25 2.2631 .20006 

1.0 10 1 .10 21 .046 1 ·3842 
1 .25 8 .4186 ·55369 
5 .10 4 .2093 .27684 
5 .25 1.6837 .11074 

TABLE 11 .- EXAMPLES OF CASES PLOTI'ED I N FIGURE 14(b) FOR CASE II 
(Ey = CONSTANT) 

Case 56 K2 ;No )'Mo2 )' - 1 
BII 

Tw 
)' Pr To 

5 1.0 10 1000 1.0 .10 5 .3889 1 .4520 
1.0 .25 2 .1556 ·58082 

100 1.0 .10 5.3811 1.4478 
1 .0 .25 2.1548 ·58038 

6 1.0 100 1000 1.0 .10 8.2955 3 .4408 
1.0 .25 3 ·3188 1.3768 

100 1.0 .10 8 .1011 3·2814 
1 .0 .25 3·2936 1 ·3560 

7 1.0 1000 1000 1.0 .10 9·4137 4 .4309 
1.0 .25 3 ·7726 1 .7791 

100 1.0 .10 7 .4200 2 .7528 
1.0 .25 3.4657 1·5014 
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Component of 
current density, Jy 

(a) Case I (Jy 

Component of 
electric field, Ey 

Uniform applied 
magnetic field, He 

constant ; Ey to be determined) . 

Uniform applied 
magnetic field, He 

(b) Case II (Ey = constant ; Jy to be determined) • 

Figur e 2 .- Configuration of electr omagnetic f i elds . 
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Figure 3.- Fully developed flow velocity profiles. 
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(b) Case II . 

Figure 4.- Concluded . 
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(b) No = 1000, K2 = 100, BI = 1.0 . 

Figure 6 .- Examples of development of flow from uniform profile ; case I. 
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(c ) Effect of varying K2 and BII for case II with No 1000. 
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(d) Effect of varying No for case II with BII = 100 . 

Figure 9.- Concluded . 
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(a) Case I with No in the range 250 to 1000 . 

Figure 10 .- Pipe length required to achieve velocity within 1 percent of 
fully developed flow velocity . 
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Figure 10 .- Concluded. 
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(a ) Case I . 

Figure 11.- Center- line pressure in accelerat ing flow . 
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(b) Case II. 

Figure 11.- Concluded. 
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Figure 12. - Inlet to fully developed flow pressure difference. 
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(a) Case I (Jy = constant ). 

Figure 13 .- Relationships among parameters to satisfy over-all continuity 
(No = 1000). 



68 

I OF. =====-==2 = 

K 

2.5 

Ta>w 
To No, 

.5 1000, 

100, 

4 8 12 16 20 

(b) Case II (Ey = constant ) . 

Figure 13 .- Concluded. 
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Figure 14 .- Mass flow comparison. 

NASA - Langley Field, Va. A - 396 




