The two primary goals for this report were the design, construction and modeling of parallel disk arrays for scientific visualization and animation, and a study of the IO requirements of highly parallel applications. In addition, further work in parallel display systems required to project and animate the very high-resolution frames resulting from our supercomputing simulations in ocean circulation and compressible gas dynamics.
Overview
The two primary goals for this research were the design, construction and modeling of parallel disk arrays for scientific visualization and animation, and a study of the IO requirements of highly parallel applications. In addition, we pursued further work in parallel display systems required to project and animate the very high-resolution frames resulting from our supercomputing simulations in ocean circulation and compressible gas dynamics.

Results and Transitions
With major additional support from the Army Research Office, NSF, and our corporate sponsors we constructed, modeled and measured several large parallel disk arrays. These arrays consisted of Ciprico 6700 RAID-3 devices (8 data + 1 parity drive) combined together in a variety of configurations, from a group of 8 RAID-3 from which we achieved nearly 100 MBytes/second transfer speed to a 31 array system that achieved a record 500 MBytes/second. These large bandwidths are necessary to support the high-resolution frame rates we require for the 2400x3200 pixel Powerwall parallel display system.

In addition to constructing these disk systems and measuring their performance, we developed performance models that capture many of the performance-limiting effects, such as start-up delays on RAID devices, fragmentation, and virtual memory page management overhead for very large transfers. We developed new techniques for instrumenting the kernel for taking filesystem performance data.

Other projects including performance measurements and experiments with D2 Helical Scan tapes from Ampex Corporation. We verified tape performance exceeding 15 MBytes/second for large transfers using the Ampex DST 310 tape device. In addition, Thomas Ruwart collaborated with storage vendor MTI on the construction of a 1-Terabyte filesystem using a collection of MTI RAID arrays.

Using the high speed disk subsystems to supply the bandwidth, we constructed a 4 panel PowerWall display system in our NSF-support Laboratory for Computational Science and Engineering following our successful (and partially NASA-sponsored) prototype at the Supercomputing '94 conference. A critical component of this system is the software that allows parallel rendering across the separate but seamlessly connected panels. Russell Catellan was partially supported by NASA to construct this software, which includes a version of XRaz used for scientific animation and also a modified version of VIZ, a 3D volume renderer developed in Norway. The PowerWall has inspired a host of imitations throughout the HPC community, including NASA Goddard. It is useful for a variety of high-resolution display applications, including our primary mission of visualizing and analyzing datasets generated by our simulation software on supercomputers.
Finally, we developed a package for performing parallel IO on the Cray T3D machine that is used by our regular grid applications such as the Miami Isopycnic Coordinate Ocean Model. This software is portable to other platforms, including the SGI Challenge class machines.

NASA support has helped produce two MS students and approximately 8 technical papers, as well as a variety of software and other research products, such as movies used by other researchers.

Graduate Theses Supported

<table>
<thead>
<tr>
<th>Student’s Name</th>
<th>Date</th>
<th>Degree</th>
<th>Thesis Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steve Soltis</td>
<td>June 1995</td>
<td>Masters</td>
<td>Instrumenting a UNIX Kernel for Event Tracing</td>
</tr>
<tr>
<td>Derek Lee</td>
<td>Feb 1995</td>
<td>Masters</td>
<td>Scientific Animation</td>
</tr>
<tr>
<td>Jeff Stromberg</td>
<td>pending</td>
<td>Masters</td>
<td>Performance Effects of File Fragmentation</td>
</tr>
</tbody>
</table>

Research Products

1. **Digital Movies**: MPEG movies from the calculation described in journal reference [11] are available on the WWW at URL address: “http://www-mount.ee.umn.edu/~dereklee/micom_movies/micom_movies.html”. These movies were recently reference by Semtner in his article on computer simulations of ocean circulation which appeared in the September issue of *Science*. As of November 16th, there have been 1557 accesses to this Web page. Actual data from our runs is also available at the Web site.

2. **The PowerWall Project**: in collaboration with Paul Woodward’s team and several computer vendors, including Silicon Graphics Inc., Ciprico Inc., and IBM, my group helped to construct and demonstrate a high-resolution display system for datasets resulting from supercomputer simulations, medical imaging, and others. My group helped in the control software, data preparation and processing, and the actual physical construction. This system was demonstrated at the *Supercomputing ’94* conference and was described in conference publication [21]. A PowerWall, funded through an NSF CISE grant and with partial support from NASA and additional equipment grants from SGI and others, is now in operation in IT’s Laboratory for Computational Science and Engineering. See our Web page on the PowerWall at URL "http://www-mount.ee.umn.edu/~okeefe".

Software Developed

1. **PowerWall Control Software**. NASA support helped further the development of the control software for our parallel display system known as the PowerWall. This scalable display allows high-resolution supercomputer simulations to be shown in their totality to both small and large audiences. The disk array systems constructed partly with NASA support provided the more than 300 MegaBytes per second data throughput required by the PowerWall. First constructed at Supercomputing ’94, we have constructed a PowerWall with NSF support in our own laboratory.

Papers Published

Technical Reports
Current LCSE Equipment Configuration

Laboratory for Computational Science and Engineering
University of Minnesota

3200x2400 Pixel Display
8 feet wide, 6 feet high
consisting of
4 -1600x1200 Electrohome rear-projection monitors
(NSF CISE)

ONYX
4 MIPS R10000 Processors
2 Infinite Reality™
Graphics Engines
256 MB Texture Memory
9 Fast/Wide SCSI2 Channels
4 Fibre Channel ports
OC3 ATM Network

Onyx (sgi)
8 MIPS R10000
Processors
1 GB Memory
Fast/Wide SCSI2
1 Infinite Reality™
Graphics Engine
1 Hippi Channel
Fibre Channel

Power Challenge
(ARL)
12 - 75MHz MIPS
R8000 Processors
2 GB Memory
12 Fast/Wide SCSI2
1 Hippi Channel
Fibre Channel

DEC
OC3 ATM
GigaSwitch

ISDN to local HS
OC3 ATM Connection to
U of MN Telecom
OC3 ATM Connection to
Computer Science

NPI/MTI 9500
63GB Disk array
(MTI)

Ampex DST 410
1.2 TeraByte
Tape Library
(AMPEX)

24 Seagate Baracuda 9
Fibre Channel Disks
216 GB total space
(CISE)

36 Seagate Baracuda 9 Fibre Channel Disks
313 GB total space
(Seagate Advanced Storage Project)

Current LCSE Equipment Configuration including the PowerWall