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PREDICTED SHOCK ENVELOPES ABOUT TWO TYPES 

OF VEHICLES AT LARGE ANGLES OF ATTACK 

By George E. Kaattari 

SUMMARY 

Methods based on oblique- and normal-shock relationships and the 
continuity of mass flow through suitably chosen volume elements between 
the shock and body were developed to predict shock envelopes about two 
types of vehicles being considered for atmosphere entry. One type is a 
high-drag capsule shape. The other type is essentially a slender tri
angular wing capable of providing high lift or high drag, depending on the 
angle of attack. Predicted and measured shock envelopes were compared for 
a Mach number range of 3 to 15 for vehicles at high angles of attack; good 
agreement was found. Most of the available experimental data were in a 
£~eedand t~m~~r.ature range in which no imFortant real-gas effects occurred. . "-- ... -_ .. __ . -- -
------'~-

INTRODUCTION 

During atmosphere entry, a vehicle is exposed to aerodynamic forces 
and heating rates which are related to the strength and disposition of 
the shock envelope about the vehicle. Present methods (e.g., refs. 1 
through 4) for defining detached shock envelopes are generally limited to 
simple shapes at zero or low angles of attack. Little information is 
available on predicting shock envelopes in the case of vehicles at high 
angles of attack. 

The purpose of this paper is to present methods for defining shock 
envelopes for the case of high angle of attack and to present a comparison 
of predicted results of the analysis with experimental results. Two types 
of vehicles, shown in figure 1, are considered. The vehicle on the left 
is a high-drag capsule shape, capable of providing low lift-drag ratios 
over a limited angle-of-attack range. The vehicle on the right is essen
tially a slender wing capable of providing low drag and high lift-drag 
ratios, and high drag and low lift-drag ratios, depending upon the angle 
of attack. These two types of vehicles will hereinafter be called capsule 
and conical types, respectively. 
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METHODS 

This section of the report will describe the general principles, 
relationships, and assumptions used in developing equations for predict
ing shock envelopes about capsule and conical types of vehicles; will 
present the derived e~uations; and will present the procedures and charts 
for applying the e~uations. Appendix A describes the symbols used. The 
detailed derivations of the e~uations are given in appendix B. 

Common to the analyses for both types of vehicles was the application 
of (1) the continuity of mass flow between the shock wave and the vehicle 
surface, (2) obli~ue- and normal-shock relationships, and (3) the unique 
correlation of stagnation-point velocity gradient with Mach number for 
different bodies which was pointed out in reference 1. The analysis 
follows that of Moeckel in the utilization of items (1) and (2). The 
analysis differs in that the sonic line is not involved except in its 
terminal position on the body and in that the shock is assumed circular 
in shape rather than hyperbolic. The circular shock is adopted in the 
interest of generality since it is a simple compromise between the 
"hyperbolic -like IT shock about cylinders or spheres and the Ilelliptic -like" 
shocks about long plates or discs. Moreover the shock dimension is then 
characterized by a single value R thus simplifying the analysis. 
Application of item (3) gives a means of determining the value for R as 
will be shown. The gas properties required in these applications were 
taken to be those of perfect gases or real gases in e~uilibrium. The 
analyses for the two types of vehicles differ as to detail and thus are 
described separately in the following two sections. 

Capsule-TYPe Vehicles 

Figure 2 illustrates the mass-flow components that are taken into 
account in the analysis of capsule-type vehicles. It is assumed that 
the shock wave is composed of circular-arc elements whose radii and loca
tion with respect to the body are to be determined. The sonic-point 
locations on the body are based on experimental and theoretical results 
(e.g., ref. 2) which indicate that for spheres, sonic points exist at 
surface elements inclined at about 450 to the stagnation streamline. In 
cases for which the spherical segment ends before the surface inclination 
attains 450 , the sonic point exists at the edges of the body. 

The foregoing considerations and the application of mass-flow 
continuity resulted in the following equations: 
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6 - = R 
sin e (1) 

f! = L\o + £. (1 _ cos cp) - (1 - cos e) 
R R R 

(2) 

Equation (1) relates the ratio of the sonic-point shock standoff distance 
to shock radius, 6/R, to the shock angular position e opposite the sonic 
point, the density ratio across the shock at that position, Pel PO' and the 
ratio of the mass flow per unit area at the sonic point, p*V*, to entering 
mass flow per unit area PoVo' Equation (2) is a geometric identity 
relating the sonic standoff distance to the standoff distance at the stag
nation point, the body radius, r, and angular position of the sonic point, 
cp, and the shock radius and angular position, B, opposite the sonic point. 
This equation is strictly applicable only to the axially symmetric case. 
In the general case, involving angle of attack, the stagnation streamline 
is curved and the expression relating L\ and ~o is more complex than 
equation (2). For many cases, however, the curvature is small so that 

• length 60 is substantially the same as its horizontal projection. The 
approximation is made, therefore, that equation (2) is applicable to the 
general case. 

The foregoing equations based on continuity and geometric relation
ships are not sufficient for a solution of shock-wave shape and location, 
because of the existence of three unknowns, L\, R, and B, and only two 
equations. The remaining quanti+ies are either known (r, cp), calculable 
independently of the unknowns (P* V J Po Vo ), or calculable as funct ions of 
the unknowns (60' Pel po). .An independent equation giving additional 
relationships among the shock parameters is therefore needed. The third 
equation was derived on the basis of the previously mentioned velocity 
gradient correlation. The equation that follows defines a function which 
correlates the standoff distance at the stagnation point, the body stagna
tion point and shock radii, and the density ratio for various axisymmetric 
shapes: 

f = 2 ~: [1 -G + ~~ (~~ - 1) ;] 
The values of the correlation function f as a function of density 

ratio are shown in figure 3. The recommended values indicated were 
obtained from the derived correlation formula by using theoretical stag
nation point standoff distances and shock radii given in reference 2 for 
spheres. 
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To define the shock radius and shock location, the three equations 
are solved simultaneously. For a solution it is necessary to relate 
Pel Po with Pl/ Po and 8 in equation (1). This relationship depends on 
the nature of the gas involved. For a perfect gas, Pe/po can be expressed 
as a function of 8 and Pl/P., The latter ratio and the other flow 
parameters, P*~/ PoVo and psi Po' can be calculated from perfect-gas 
relations. In the case of a real gas, charts or tables of the thermody
namic properties and normal-shock properties are required (refs. 5 and 6, 
respectively, in the case of air). 

As a convenience in obtaining solutions of shock envelopes for the 
case of real air, the charts of figure 4 were prepared. These charts 
present values of ~/R and 8 as functions of the normal-shock density 
ratio, Pl/Po ' and ~. The application of these charts in determining 
the shock envelope is as follows: Consider the case of a vehicle at angle 
of attack, as shown in figure 2. We will confine our attention to the 
trace of the shock envelope on the vehicle's vertical plane of symmetry. 
These segments have radii Rl and R2 which coincide tangentially at the 
origin of the coordinate system X-Yo To locate the body with respect to 
these shock segments, the coordinates of the two sonic points (1) and (2) 
as well as the shock radii must be found. These values are given by the 
following equations: 

cos 

cos 

(4) 

= 
(Vl + (1 - cos 

Y2 IY2 1 + IYll - Yl 

Rl = 
Yl 

sin e l 

R2 
Y2 

sin 82 

The values of e and ~/R are located from the charts of figure 4 at the 
appropriate values of shock density ratio Pl/PO and sonic-point incli
nation ~. The values (X2 - Xl) and IY2 1 + Iyll are the known distances 
between the sonic-point coordinates (1) and (2). An example calculation 
is given in appendix B. 
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In preparing the charts presented in figure 4, the following three 
approximations were made: (1) for a value of P~Po greater than 5, the 
value of Pe/po was assumed to be equal to Pl/PO; (2) the value of 
P*V*/poVo was always assumed to be equal to that given by the perfect
gas relations with t = 1.4 (eq. (Bl)); and (3) the value of Ps/po was 
always assumed to be that given by the perfect-gas relations with t = 1.4 
(eq. (B7)). The possible errors introduced by these approximations were 
assessed in the following manner. 

Real-gas effects on ps/po and p*V*/PoVo were assessed by comparing 
the ideal-gas values (see eqs. (Bl) and (B7)) with the values for equi
librium flow as calculated with the aid of the charts of reference 6 at 
various levels of density ratio, pressure, and enthalpy. It was found 
that no large differences existed between the values representing ideal 
and real gases. Small differences can be expected because of the weak 
dependence of P*V*/~Vo and Po/Ps on the specific heat ratio t. In 
view of the foregoing, significant errors in the calculated shock dimen
sions then can arise only through the effects of large departures of the 
actual ratio Pe/po from idealized conditions. To assess such errors, 
this effect of a real gas on the shock parameters e, 6, and 6 0 was 
evaluated. Values of these parameters for a sphere in air in equilibrium 
flow at a velocity and absolute density at which a large variation in 
Pe/po occurs were compared with values obtained in a hypothetical gas 
having the same normal shock density ratio but with Pe/po independent 
of e. The calculated differences in 6 0 were negligible, but a small 
effect on shock radius resulted in a difference of about 15 percent in 
6.' between air in equilibrium and the hypothetical gas. 

Conical-Type Vehicles 

Figure 5 illustrates the mass-flow components that are taken into 
account for vehicles of conical type. Free-stream mass-flow components 
exist both in a crossflow direction (poVosin ~f) and in a tangential 
direction (PoVocos ~r) as indicated. The shock-wave trace in the cross
flow plane is taken as an arc of a circle. Sonic locations on the body 
are assumed to exist at points where the body surface inclination with 
the crossflow plane is 450

, for all finite ratios of alb, and at the edge 
for the case of a flat plate (a/b = 0). For an infinitely slender ellip
tic cone, the determination of the shock envelope is essentially a two
dimensional (crossflow) problem. The shock dimensions in such a case are 
determined by the following equations which are analogous to equations 
(1) to (3). 

2 sin e 
- = 
R 1) sin 28 

pV 
+ -L.lt. cos Cjl 

PoVo 
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- cos e) (6) 

f = Po [2 + (.6..o/r) _ (P1 - 1) ~J 
Ps 1 + (.6..o/r) Po R 

In cases where the cone is not infinitely slender, the tangential 
flow component must also be taken into account. Experimental evidence 
obtained for the present study indicates that the shock envelope is con
ical up to high angles of attack. With the shape of the shock thus 
defined, it is possible to derive expressions on the basis of flow conti
nuity and the geometric properties of the body to determine the shock 
standoff angle ~ as well as the shock radius R indicated in figure 5. 
The details of this derivation are developed in appendix B and give the 
following: 

and (8) 

R = b sin e 
Jl + (a/b)2 

where 

b 

1
1 - cos e 

sin e 
N = 

and 

a,' = ~ + a, + €z 

Values of f used were the same as those for the capsule. The basis for 
this is explained in appendix B. Values for e and ~/R are given in the 
charts of figure 6 as a function of density ratio P1 /po for various 
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parameters a/b. The same assumptions were made in regard to gas proper
ties as in the charts of figure 4. In the application of e and 6/R in 
eCluation (8), however, the density ratio is p~t/po' that of an obliClue 
shock at angle 0,'. Since a. t is a function of [3, the angle in Cluestion, 
iterative calculations beginning with an initial assumption for the value 
of [3 are reCluired. However, trial computations Cluickly converge to the 
solution. The validity of the solution is restricted at high angles of 
attack to the angle range wherein the sum of the thickness angle EZ' the 
shock angle [3, and the angle of attack a. is less than approximately 
900 • When the sum of these angles is greater than 900 , the tangential 
flow component is reversed and the flow can no longer be conical. The 
validity is restricted at low angles of attack; if Masin 0,1 is less 
than about 2, the components of mass flow are not given accurately in the 
present simplified treatment. 

COMPARISONS OF ANALYTICAL AND EXPERIMENTAL RESULTS 

This section of the report will first establish the validity of the 
results of the present method in determining shock standoff distance for 
simple symmetrical shapes at zero angle of attack by comparison with the 
results of the more accurate methods of Van Dyke and Belotserkovski and 
with those of experiment. Next, the results of the method in determining 
shock shapes of capsule- and conical-type vehicles at angles of attack 
will be compared with experimental measurements. 

Figures 7 and 8 show a comparison of analytical results for symmet
rical shapes at zero angle of attack with available experimental results. 
Agreement between the results of the present analysis with those of Van 
Dyke and Belotserkovski and with experimental values is satisfactory. 

Figure 9 gives examples of experimental and estimated shock envelope 
traces about capsule-type vehicles for several angles of attack and Mach 
numbers. Only one example is presented wherein appreciable real-gas 
effects were involved. This is the capsule at Mach number 14.9 which was 
tested at a simulated altitude of 30,000 feet at a velocity of 10,180 
feet per second. Generally, the experimental and estimated shock envelopes 
are in good agreement. 

In figure 10 calculated and experimental results for the shock angle 
of a family of elliptic cones are shown as a function of angle of attack. 
The cones have thickness-to-span ratios of 0 (a flat plate), 1/3, and 1 
(a circular cone). The results are for a Mach number of 4. The limiting 
lines shown indicate the angle-of-attack range for which the analysis is 
applicable. Agreement between predicted and experimental results is good. 
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In figure 11 predicted and experimental shock standoff angles are 
compared for blunted as well as sharp-nosed conical shapes. The nose of 
a blunted conical shape is treated as a capsule-type vehicle and the 
shock angle for the conical part of the shock envelope is faired to the 
capsule solution at the point of equal slope. The data of figure 11 are 
for angles of attack from 200 to 700 and for Mach numbers from 3 to 10. 
Good agreement between experimental and theoretical results is noted. 

CONCLUDING REMARKS 

Simple methods were developed for predicting shock envelopes about 
two types of atmosphere entry vehicles at angle of attack. Predicted 
shock envelope shapes for capsule-type vehicles were compared with exper
imental values for air flows within the Mach number range 3 to 14.9 and 
the angle-of-attack range up to 330 • Predicted shock standoff angles for 
conical vehicles were compared with experimental values for air flows 
within the Mach number range 3 to 10 and the angle-of-attack range 200 to 
700

• 

The methods are applicable to perfect-gas flows and to equilibrium 
flows of real gases. Charts were developed specifically for predicting 
shock envelopes. 

Satisfactory agreement between predicted and experimental shock 
envelopes was found for the range of flow conditions covered by the com
parisons. Except for one case, only perfect-air conditions were covered, 
thus essentially limiting the evaluation of the methods of prediction to 
the perfect-air case. For the evaluation of the methods for high-enthalpy, 
equilibrium flow of real gases, further experimental research is needed. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., Mar. 6, 1961 
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APPENDIX A 

NOTATION 

a vertical axis of elliptic cone, ft 

b horizontal axis of elliptic cone, ft 

b t spanwise distance to sonic point on elliptic cone, ft 

f shock correlation function 

M Mach number 

m mass -flow component 

R shock radius, ft 

r stagnation point body radius, ft 

V stream velocity, ft/sec 

X,Y,Z Cartesian coordinates 

6 shock standoff distance from sonic point on body, ft 

~o shock standoff distance from stagnation point on body, ft 

a angle of attack, deg 

at conical shock angle with respect to free-stream direction 
in vert ical plane of symmetry, deg 

angle between conical shock and body in vertical plane of symmetry, 
deg 

5 flow deflection angle through oblique shock, deg 

€ half-angle subtended by capsule forebody arc, deg 

€y cone semiapex angle in plane of horizontal axis, deg 

€z cone semiapex angle in plane of vertical axis, deg 

e inclination of shock element opposite sonic point on body with 
respect to free stream or to crossflow stream (see . 2), deg 
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I specific-heat ratio 

P density, lb/ft3 

Pl density behind normal shock, lb/ft3 

PlY density behind shock inclined at angle ~I, lb/ft3 

~ inclination of body surface at sonic point with respect to plane 
normal to free-stream direction, deg 

Subscripts 

o free-stream conditions 

s stagnation point on body 

e point behind shock element at e degrees 

* sonic point on body 



APPENDIX B 

DERIVATION OF EQUATIONS 

The following sections give the details of the derivation of the 
equations defining the shock envelopes for capsule- and conical-type 
vehicles. Numerical examples are also presented. 

CAPSULE-TYPE VEBlCLES 

Flow. Continuity Equations 

11 

Mass-flow continuity is satisfied for an elemental volume between the 
shock and the body as shown in figure 12. The flow is three-dimensional 
and assumed to proceed radially from the stagnation streamline. Mass 
flow passes out from the volume through a strip of unit width and length 
~. The arithmetic mean of the vertical components of mass flow at the 
sonic point on the body and at the shock-wave position, e, opposite the 
sonic point is utilized. The component at the sonic point is equal to 
the product of cosine ~ and the mass flow passing through a normal shock 
and expanding isentropically to sonic value. This product, expressed as 
a mass flow per unit area and normalized with respect to the free-stream 

value PoVo~: ~ I. 2 f1 (Ell 

~COq = ./Po"L(l + ~0 + r (1 ~ coq 

The component of mass flow per unit area at the shock normalized with 
respect to the free-stream value is given by oblique-shock relationships 
as 

1 (Pe ) - - - 1 sin 2e 
2 Po 

(B2) 

The mass flow passing out of the volume element is then 

~ [Po V 0 (~ _ 1) sin 2e + P V cos ~J 
2 2 Po ** 
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Similarly, the product of entering unit-area mass flow PoVo and the 
projected trwedge tr strip area (1/2)R sin B gives 

PoVo _R sin B (B4) 
2 

Expressions (B3) and (B4) are equated and rearranged to give equation (1). 

~= 
R h(PB _ 

2 Po 

sin B 
pV 

+ -lL..!. cos cp 
PoVo 

Geometric Relationships 

( 1) 

A necessary step in subsequent shock solutions is to relate the shock 
standoff distance, A, at the sonic ~oint to the standoff distance, Ao, at 
the stagnation point. Since the capsule forebody and the shock elements 
are circular, these standoff distances are related as follows: 

6 = 60 + r(l - cos cp) - R(l - cos B) 

The above equation normalized with respect to shock radius R gives 
equation (2). 

~ = 6 0 + E. (1 - cos cp) - (1 - cos B) 
R R 'R 

Velocity Gradient Correlation 

(B5) 

(2) 

It has been shown in reference 1 that the stagnation-point velocity 

gradient in the dimensionless form Ao dV/ds is a function of Mach 
Vo (1 + 6 0 /r) 

number (or normal-shock density ratio) and correlates data involving a 
wide variety of axisymmetric shapes. In the following derivation the 
above stagnation-point velocity gradient will be equated to a more conven
ient correlation function in which the velocity terms are eliminated and 
in which only shock standoff distance, body radius, and shock radius terms 
appear. 

Continuity of mass flow is considered for a small conical volume 
element centered on the stagnation streamline as shown in figure 13. The 
line 0-1 represents an element of the volume extending from the shock to 
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the body. The flow is deflected (0 + d~) with respect to 0-1 at point 0 
on the shock. Oblique shock relationships for small B give 
o = (p~/po - l)dB. Geometrical considerations give (~o + r)d~ = R dB, so 

that 0 + d~ = [. (~~ - 1) ~o ; r + 1 Jd~. The unit-area mass flow at 0 

normal to 0-1 is then PoVo[(~ - 1) ~o; r + lJd~. The unit-area mass 

flow at 1 is [d(pV)/ds]r d~, a value to be determined. The arithmetic 
mean of the mass flow leaving the conical surface of length ~o is equated 
to that entering the projected surface of radius (r + ~)d~. The resulting 
equation is 

~20{2n(r + ~o)d~(PoVo{(~~ - 1) (AoR+ r) + lJd~ + 2nr d~[di~V)Jr d~} 
= poVon(r + ~)2d~ 

The stagnation-point mass-flow gradient d(pV)/ds given by the above 
identity is 

d(pV) = PoVo (1 + Ao\ [1 _ (1 + ~\ (P~ _ 1) Aol (B6) 
ds ~o r') r ') Po R J 

At the stagnation point V = 0, P = Ps ' dpjds = 0, so d(pV) = psdV. 
Equation (B6) is rearranged to give 

where 

dV 
~ dS Po [ ( ~o\ (P1 ) ~ 1 
( 

~~ = p; 1 - 1 + -;-) Po - 1 "RJ 
Vo 1 +

r 

It is convenient, for reasons to be discussed later, to apply the factor 
2 to equation (B7), thus 

2Ao dV as- Po [ ( 6 0\ (P~ ) Aol 
--("""---60""0~ = 2 Ps 1 - 1 + 7) Po - 1 RJ 
Vo 1 +

r 



or, letting f replace the left-hand term, 

Po [ ( D..o'\ (Pl ) D..0J f = 2 P
s 

1 - 1 + 7) Po - 1 R 

Numerical Example 

The charts of figure 4 are now applied to an example calculation of 
the shock trace about the lenticular forebody shown in figure 2. The fore
body arc subtends a half-angle € of 30°. The flight condition is 
M = 6.3, Pl/PO = 5·33, at angle of attack of 16°. At this angle the upper 
sonic point (1) is at the corner and is inclined ~l = (30° - 16°) = 14°. 
The lower sonic point (2) is on the body where ~2 = 45°. The relative 
locations of the sonic points are (X2 - Xl) = 4.30 and IYll + IY2 1 = 15.60. 
The values D../R l = 0.106, 8 l = 16.5°, D../R2 = 0.175, and 8 2 = 31.40 are 
found in figure 5. Equations (4) are numerically evaluated as follows: 

15.60 - 4.30 ( 0·521 '\ 
Xl = _0.175 + 0.147L = 2.43 

( 
0.284 '\ + ( 0.521 ) 

0.106 + 0.041) 0.175 + 0.147. 

Yl 
= 2.43 X 0.284 = 4.71 

0.106 + 0.041 

Y2 = 15.60 - 4.71 = 10.89 

Rl 
= 4.71 = 16·56 0.284 

R2 
= 10.82 = 20·9 0·521 
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CONICAL VEHICLES 

Flow Continuity and Geometric Considerations 

Detailed derivations of equations defining the shock envelope about 
conical vehicles are developed with the aid of figure 14. In this figure 
are shown three views of a section of an elliptic cone at angle of attack 
~. The flow is assumed to be conical. The shock element in the vertical 
plane of symmetry inclined at angle a' is taken to be along the 
X axis. A volume element of length dx between the shock and the body 
surface is bounded by the vertical plane of symmetry pootpt and the 
surface containing sonic line nn' and its projection onto the shock 
surface, rom'. Continuity of mass flow is satisfied for this volume ele
ment. 

To write the continuity equation it is necessary to evaluate projected 
areas of the various surfaces of the volume element. Area mnop is 
similar to area m'ntotpl since the shock envelope and body surface are 
conical with respect to a common origin. Thus 

Smnop _ Smfn t olpl 

"L2 - ("L + dx)2 

or (B8 ) 

( 
2dx\ 

Smln t olpl = Smnop 1 + -"L--j 

where 

b' 
Smnop = 3 (~o +~) 

It should be noted that the control surface intercepting the tangential 
mass-flow component is not normal to the axis of the body~ Therefore, 
in the plane of the control surface, the ellipticity of the associated 
body section is different from the true cross-sectional value. The 
relative distortion in ellipticity is of the order cos(€z - ~). Since 
Ez and ~ are usually small and in a:rrY event tend to cancel, the error 
resulting from section distortion is neglected. The distance from the 
sonic point (Where surface slope of 450 is assumed) to the vertical plane 
of symmetry is 

R sin e = b f = 

Jl + (~)2 
b (B9) 
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The relationship between sonic-point (~) and center line (~o) shock 
standoff distance in terms of semispan b is then 

~ ~o 
- = b b 

1 - cos 
sin e ~o 

-- N 
b 

(B10) 

EQuations (BS) to (B10) and the terms indicated on figure 14, are used 
to project the following areas on the Y-Z plane, 

Smnop 

Sm'mpp' 
= R(l - cos e)b'dx b2(sin e)ax 

31 6[1 + ~~2} 

Sm'n'nm = 
& dx 

jl + (~)\ 
on the X-Y plane, 

and on the X-Z plane, 

Smnntm' = ~ ax 

Next, the values of the mass-flow components per unit area (pv) 
normal to each area are reQuired. All velocities in the X direction 
are taken as Vocos a,' , being substantially tangent to the shock. The 
density within the control volume varies from a maximum of Pst> Pl' 
at line 00' to a minimum of P* < Pl t at the sonic line nn t. The 
density distribution is approximately accounted for by assuming pI as 
the mean density of the flow through the surfaces mnop and m'nto'pt, and 
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p* as the mean density through the surface mlnlron. The sonic value 

p* p~'[2/(r + 1) - (r - l)(po/P~f )]~/(r-~) is used. The unit-area mass 
flow (m) in the Y direction through mnn'm t is poVo[sin e/(~/R)]. 
Values for e and ~/R are determined from figure 7 with P~'lPo in place 
of P1/PQ' Summation of all unit mas~-flow products with their associated 
areas is then made to satisfy the continuity of flow. Omitting the 
detailed algeoraic steps involved yields the following equation: 

1 + tan ~ r sine 

b 

.6. tan ex, L6 Jl + (a b)2 
- = jl + ('0.\ '(sin 8\ + tan <y (2 

(Ell) 

\'bJ \. t.¥R J tan a,t . 

Equation (Ell) along with the following geometric relationships 
permits calculation of the shock angle ~ as a function of angle of 
attack ex,. 

N = 

and 

~ = tan-~ [(~ + N) tan E:yJ 

{l ~~o~ e +~~ - J:®1l 
J +~~' 

0,1 = ~ + ex, + E:z 

Velocity Gradient Correlation 

(8 ) 

Equation (7) is derived on the basis of two-dimensional flow through 
a differential volume element in the vicinity of the stagnation streamline 
in a manner similar to that in the case of axisymmetric flow. Values for 
f given by equation (7), plotted in figure 3, were obtained by using 
the theoretical stagnation-point standoff distance and shock radii given 
in reference 3 for circular cylinders. Under conditions of the same 
ratio for ~ofvo the stagnation-point velocity gradient for axisymmetric 
flow can be shown to be one -half the value for two -dimens ional flow due 
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to radial Hrelief. n Accordingly, the factor 2 applied to the axisymmetric 
velocity gradient places it in correlation with two-dimensional gradients, 
thus relating both two- and three-dimensional shock distance parameters 
to the same function f of density ratio. 

The derivation of two-dimensional stagnation-point velocity gradients 
proceeds as follows: The line 0-1 in figure 13 in two-dimensional flow 
represents the side surfaces of a wedge of unit depth. The mass flows 
per unit area at ° and at 1 remain the same as in the axisymmetric case. 
They are, respectively, 

and 

de pV) r dq> 
ds 

The product of the entering mass-flow per unit area with the area of 
surface 0-0 is poVo2(r + Ao)dq>. This is e~uated to the product of the 
mean unit mass flow leaving surface 0-1 with the total area ~o' 

The stagnation-point mass-flow gradient d(pV)/ds is given by reducing 
the above identity to 

d( pV) = PoVo [(2 + ~ '\ _ (1 + Ao'\ (P1 _ 1) AO] 
ds Ao r") r ') Po R 

At the stagnation point V = 0, p = PS' dp/ds = 0, so d(pV) 
E~uation (B12) is arranged in the form 

or 

A dV 
o ds 

Po 
f = Ps 

1)~ 

(~~ -1) ~j 

(B12) 
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It is to be remembered that r is the stagnation-point body radius; 
therefore, the application of equation (7) for elliptic bodies requires 
b 2 /a in place of r. 

Numerical Example 

The shock angle ~ is calculated for an elliptic cone with €y = 150
, 

€z = 50, and alb = 1/3 at angle of attack a = 450 at flight Mach number 6. 
An initial assumption that ~ = 50 is made; thus a trial value for 
at = 50 + 450 + 50 (see eqs. (8)). The crossflow Mach number is 
6 sin 550 = 4.91 at which P1 t / PO = 4.97. Corresponding to this density 
ratio with alb = 1/3, the charts of figure 6 give 6/R = 0.234 and 
e = 13.60 . Equations (8) are then numerically evaluated as follows: 

{l 0.g3~72 + ~[~ - J:®Jj 
N = -------------= -0.117 

J +(J) 

b 

1 + 0.268 [ 0.237 _ ~ (4.97)( -0.117~ 
1.427 6 Jl + (1/3)2 3 'J = 

jl + (1::.\2(0.237\ + 0.268 (2 _ 0.693)4.97 
\3) \0.234; 1.427 

0.504 !::. - -

~ = tan-1[(0.484 - 0.117)0.268] = 5.90 

The calculated value for ~ is sufficiently close to the assumed value 
that an iterated calculation is unnecessary. 

The above example utilized the result for P1 t / PO as given by oblique 
shock relationships for air with '1 = 1.4. At higher velocities and at 
altitudes where large departures from ideal gas properties occur recourse 
must be taken to shock density versus velocity and altitude plots such as 
are given in reference 5. An initial value for P1'/Po is determined 
from such plots as that corresponding to the velocity Vosin a f at the 
altitude in question. Generally, one iteration is sufficient to fix a f 

and thus Pl. t / Po • 



20 

r 
'1. 

2. 

3· 

4~ 

5· 

6. 

REFERENCES 

Traugott, Stephen C.: An Approximate Solution of the Direct Supersonic 
Blunt -Body Problem for Arbitrary Axisymmetric Shapes. Jour. Aero. 
Sci., vol. 27, no. 5, May 1960, pp. 361-370. 

Van Dyke, Milton D., and Gordon, Relen D.: Supersonic Flow Past a 
Family of Blunt Axisymmetric Bodies. NASA Rep. R-l, 1959. 

Belotserkovsky, O. M.t Flow Past a Symmetrical Profile With a Detached 
Shock Wave. Jour. Appl. Math. and Mech., vol. 22, no. 2, March 1958, 
pp. 279-296. 

Briggs, Benjamin R.: The Numerical Calculation of Flow Past Conical 
Bodies Supporting Elliptic Conical Shock Waves at Finite Angles of 
Incidence. NASA TN D-340, 1960. 

Moeckel, W. E., and Weston, Kenneth C.: Composition and Thermodynamic 
Properties of Air in Chemical Equilibrium. NACA TN 4265, 1958. 

Hochstim, Molf R.: Gas Properties Behind Shocks at Hypersonic 
Velocities. I. Normal Shocks in Air. Convair Rep. No. ZPh(GP)-002, 
Jan. 30, 1957. 



Capsule type 

Low lift 

High drag 

Conical type 

- -- ~ =======---- - -------=::.---------

High lift 
High drag 
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y 

<PI = E - a > 0 

<P2 = E + a ~ 45 

Figure 2.- Mass flow components for capsule-type vehicles. 
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Control volume 

Figure 5.- Mass flow components for conical vehicles. 



26 

e,deg 

.6 ... ~. ~' ••••. 

=:e;; '. i' ....: .• '~:" .... . . • :' ' .. 
'.ii.:. • ••• • ~y': •.••• " ••• ""':1" •••• :::;, '" 'T'. ,,' ., .. 

. 5 ............ ,.... "':r .......... 1. •· •• :i ••• iii',1 .'.li",ill'I" ,'T,' ............ ; ,.' .•• .... .~ .... . ,·L.. ii • • ',.ii ... Iii: " ·."iii 
... ·:::: ••• · •• · ...••• \. ..... ·•· .... i=· ... :c= ... ·c ........ ••••.. •. ';;, ·,c •• 

4'=::' ••••• 'r\ •••• :i •• :.. :........ •••. 
. !;~ ::'.;' I' .... . .• , , ..•.. " ..... :' .:: c,:::'; 

i~~-~~;~ f~~~ ~:: ;::: :'\lI ~~i ~!~~ ;:- j::: ...... : ~~~~ :i: !:!: :!!: :=:: ~~~! it::!:::::::::: :~;~ ::!~.:. q. + 

Normal shock density ratio, P.iP,. 

Figure 6.- Charts of 6/R and e for conical-type vehicles. 



-' .. \ .... f."~'?tf~~~~~r~ .. "- "".-

2.0 

~o 1.0 
b 

o 

Shape Experiment Theory 
Long flat plate 0 present 

Cylinder 0 present 

- - - - Ref. 3 

Long flat plate 

2 4 6 8 10 
Mach number 

~r 
il.~~ 

b = semiwidth of plate 
or radius of cylinder 

o 

12 14 16 18 

Figure 7.- Shock standoff distance for two-dimensional obstacles at zero angle of attack; air. 

[\) 
---.l 



[\) 
CP 1.2. 

Shape Experiment Theory 

Circular disc 0 present 

0 
present 0 

- Ref. 2 

Sphere 

I.Ot-

d" s of disc b = ra IU 

0 

.8~ 
or sphere 

.61 ~ .r- Circular disc flo 
b 

.4 

Sphere 

.2 
--0 ------------~O~--________________________ _ 

o 2 4 6 8 10 12 14 16 18 
Mach number 

Figure 8.- Shock standoff distance for three-dimensional obstacles at zero angle of attack; air. 



Experimental / 

Predicted 

a = 35°, M = 6.3 
(altitude =30,000 ft I 
velocity =10,180 ft Isec) 

Figure 9.- Shock traces for capsule-type vehicles; air. 

29 



20 

16 

12 
C' I Q) 

"'C 

Ql. 8 
I 

4 

o 

/3 

-... ---"""'"-
0 

0 

b 

"",r 
"// 

'/ 

,,4 
,,;' .". I ~ 

Mo = 3.9 

o ~ - _0-:2-" I 

_ -:::.::... __ -0- - 0- - 0- - 8----"LI __ ~ __ "7 -- / 01 -_::--_ • b-
O 

-- o 

Exp. Theo. 

o ---

alb = 1/3 o 
o o o o 0 

alb = 0 

---- limits of theory 

10 20 30 40 50 60 70 80 90 

Angle of attack, a, deg 

Figure 10.- Shock angles for a family of elliptic cones; air. 

l.JJ 
o 



20 

16 

o -c: 
Q) 

E 
Q) 8 
0. 
)( 

LLI 

4 

o 4 8 12 

Predicted f3, deg 

Data range 
3 < Mo < 10 
8°< Ey < 31° 

o < alb < I 

20°< a < 70° 

16 

31 

20 

Figure 11.- Shock angles for conical -vehicles at angle of attack; air. 



32 

A4------ttr.- R 

Figure 12.- Flow-continuity considerations for capsule-type vehicles. 
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Figure 13·- Flow continuity near stagnation streamline. 
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