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SUMMARY

Methods based on oblique=- and normal-shock relationships and the
continuity of mass flow through suitably chosen volume elements between
the shock and body were developed to predict shock envelopes about two
types of vehicles being consildered for atmosphere entry. One type 1s a
high-drag capsule shape. The other type is essentially a slender tri-
angular wing capable of providing high 1ift or high drag, depending on the
angle of attack. DPredlcted and measured shock envelopes were compared for
a Mach number range of 3 to 15 for vehicles at high angles of attack; good
agreement was found. Most of the available experimental dabta were in a
speed and temperature range in which no important real-gas effects
occurred. Thn el o WRARe Y T

LS

INTRODUCTION

During atmosphere entry, a vehlcle is exposed to aerodynamic forces
and heating rates which are related to the strength and disposition of
the shock envelope about the vehicle. Present methods (e.g., refs. 1
through 4) for defining detached shock envelopes are generally limited to
simple shapes at zero or low angles of attack. Little information is
available on predicting shock envelopes in the case of vehicles at high
angles of attack.

The purpose of this paper is to present methods for defining shock
envelopes for the case of high angle of attack and to present a comparison
of predicted results of the analysis with experimental results. Two types
of wvehicles, shown in figure 1, are considered. The vehicle on the left
is a high-drag capsule shape, capasble of providing low lift-drag ratlos
over a limited angle-of-attack range. The vehicle on the right is essen-
tlally & slender wing capable of providing low drag and high lift-drag
ratios, and high drag and low lift-drag ratios, depending upon the angle
of attack. These two types of vehicles will hereinafter be called capsule
and conical types, respectively.




METHODS

This section of the report will describe the general principles,
relationships, and assumptlons used in developing equations for predict-
ing shock envelopes about capsule and conical types of vehicles; will
present the derived equations; and will present the procedures and charts
for applying the equations. Appendix A describes the symbols used. The
detailed derivations of the equations are given in appendix B.

Common to the analyses for both types of vehicles was the application
of (1) the continuity of mass flow between the shock wave and the vehicle
surface, (2) oblique- and normal-shock relationships, and (3) the unigue
correlation of stagnation-point velocity gradient with Mach number for
different bodies which was pointed out in reference 1. The analysis
follows that of Moeckel in the utilization of items (1) and (2). The
analysis differs in that the sonic line is not involved except in its
terminal position on the body and in that the shock is assumed circular
in shape rather than hyperbolic. The circular shock is adopted in the
interest of generality since it is a simple compromise between the
"hyperbolic~like"™ shock about cylinders or spheres and the "elliptic-like"
shocks about long plates or discs. Moreover the shock dimension is then
characterized by a single value R thus simplifying the analysils.
Application of item (3) gives a means of determining the value for R as
will be shown. The gas properties requilred iIn these applications were
taken to be those of perfect gases or real gases in equilibrium. The
analyses for the two types of vehicles differ as to detail and thus are
described separately in the following two sectiomns.

Capsule~Type Vehicles

Figure 2 illustrates the mass-flow components that are taken into
account in the analysis of capsule-type vehicles. It 1s assumed that
the shock wave is composed of circular-arc elements whose radii and loca-
tion with respect to the body are to be determined. The sonic-point
locations on the body are based on experimental and theoretical results
(e.g., ref. 2) which indicate that for spheres, sonic points exist at
surface elements inclined at about 45° to the stagnation streamline. In
cases for which the spherlcal segment ends before the surface inclination
attains h5o, the sonic point exists at the edges of the body.

The foregoing considerations and the application of mass-flow
continuity resulted in the following equations:
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Equation (1) relates the ratio of the sonic-point shock standoff distance
to shock radius, A/R, to the shock angular position 6 opposite the sonic
point, the density ratio across the shock at that position, pe/po, and the
ratio of the mass flow per unit area at the sonic point, p,V,, to entering
mass flow per unit area pyV,. Equation (2) is a geometric identity
relating the sonic standoff distance to the standoff distance at the stag-
nation point, the body radius, r, and angular position of the sonic point,
¢, and the shock radius and angular position, 6, opposite the sonic point.
This equation is strictly applicable only to the axially symmetric case.
In the general case, involving angle of attack, the stagnation streamline
is curved and the expression relating A and Ay is more complex than
equation (2). For many cases, however, the curvature is small so that
length Ag 1is substantially the same as its horizontal projection. The
approximation is made, therefore, that equation (2) is applicable to the
general case.

The foregoing equations based on continuity and geometric relation-~
ships are not sufficient for a solution of shock-wave shape and location,
because of the existence of three unknowns, A, R, and 6, and only two
equations. The remaining quanti+ies are either known (r, @), calculable
independently of the unknowns (pyV,/poVo)s Or calculable as functions of
the unknowns (Ao, py / py): An independent equation giving additional
relationships among the shock parameters 1s therefore needed. The third
equation was derived on the basis of the previously mentioned velocity
gradient correlation. The equation that follows defines a function which
correlates the standoff distance at the stagnation point, the body stagna~
tion point and shock radii, and the density ratio for various axisymmetric

shapes:
f—2——[l-<l r‘> %:—I—l>%9} (3)

The values of the correlation function f as a function of density
ratio are shown in figure 3. The recommended values indicated were
obtained from the derived correlation formula by using theoretical stag-
nation point standoff distances and shock radii given in reference 2 for
spheres.




To define the shock radius and shock location, the three equations
are solved simultaneously. For a solution it is necessary to relate
;@/pb with pl/po and 6 1in equation (1). This relationship depends on
the nature of the gas involved. For a perfect gas, pe/pO can be expressed
as a function of 6 and pl/p . The latter ratio and the other flow
parameters, p*y¥/povo and ps7po, can be calculated from perfect-gas
relations. In the case of a real gas, charts or tables of the thermody-
namic properties and normal-shock properties are required (refs. 5 and 6,
respectively, in the case of air).

As a convenience in obtalning solutions of shock envelopes for the
case of real air, the charts of figure L were prepared. These charts
present values of A/R and 6 as functions of the normal-shock density
ratio, pl/po, and ¢@. The application of these charts in determining
the shock envelope is as follows: Consider the case of a vehicle at angle
of attack, as shown in figure 2. We will confine our attention to the
trace of the shock envelope on the vehicle's vertical plane of symmetry.
These segments have radii R; and Ry which coincide tangentilally at the
origin of the coordinate system X-Y. To locate the body with respect to
these shock segments., the coordinates of the two sonic points (1) and (2)
as well as the shock radil must be found. These values are given by the

following equations: .
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The values of 6 and A/R are located from the charts of figure 4 at the
appropriate values of shock density ratio pl/po and sonic-point incli-
nation . The values (Xz - X,) and [Yo| + |Yi] are the known distances
between the sonic-point coordinates (1) and (2). An example calculation
is given in appendix B.




In preparing the charts presented in figure 4, the following three
approximations were made: (l) for a value of pl/pO greater than 5, the
value of pe/pO was assumed to be equal to py/p,; (2) the value of
p*V*/pOVO was always assumed to be equal to that given by the perfect=~
gas relations with 7 = 1.4 (eq. (B1l)); and (3) the value of pg/p, Wwas
always assumed to be that given by the perfect-gas relations with 7y = 1.k
(eq. (B7)). The possible errors introduced by these approximations were
assessed in the following manner.

Real-gas effects on ps/po and p*V*/pOVO were assessed by comparing
the ideal-gas values (see eqs. (B1l) and (BT7)) with the values for equi-
librium flow as calculated with the aid of the charts of reference 6 at
various levels of density ratio, pressure, and enthalpy. It was found
that no large differences existed between the values representing ideal
and real gases. ©Small differences can be expected because of the weak
dependence of p*V*/poVo and po/pS on the specific heat ratio y. In
view of the foregoing, significant errors in the calculated shock dimen-
sions then can arise only through the effects of large departures of the
actual ratio p@/po from idealized conditions. To assess such errors,
this effect of a real gas on the shock parameters 6, A, and A, was
evaluated. Values of these parameters for a sphere in air in equilibrium
flow at a velocity and absolute density at which a large variation in
pe/po occurs were compared with values obtained in a hypothetical gas
having the same normal shock density ratio but with pe/po independent
of 6. The calculated differences in A, were negligible, but a small
effect on shock radius resulted in a difference of about 15 percent in
A" between air in equilibrium and the hypothetical gas.

Conical-~Type Vehicles

Flgure 5 illustrates the mass-flow components that are taken into
account for wvehicles of conical type. Free-stream mass-flow components
exist both in a crossflow direction (pOVosin a') and in a tangential
direction (pgVocos a') as indicated. The shock-wave trace in the cross-
flow plane is taken as an arc of a circle. Sonic locations on the body
are assumed to exist at points where the body surface inclination with
the crossflow plane is h5°, for all finite ratios of a/b, and at the edge
for the case of a flat plate (a/b = 0). For an infinitely slender ellip-
tic cone, the determination of the shock envelope is essentially a two-
dimensional (crossflow) problem. The shock dimensions in such a case are
determined by the following equations which are analogous to equations

(1) to (3).
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In cases where the cone 1s not infinitely slender, the tangential
flow component must also be taken into account. Experimental evidence
obtained for the present study indicates that the shock envelope is con-
ical up to high angles of attack. With the shape of the shock thus
defined, it is possible to derive expressions on the basis of flow conti-
nuity and the geometric properties of the body to determine the shock
standoff angle B as well as the shock radius R indicated in figure 5.
The details of this derivation are developed in appendix B and give the

following:
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Values of f wused were the same as those for the capsule. The basis for
this 1s explained in appendix B. Values for 6 and A/R are given in the
charts of figure 6 as a function of density ratio pl/po for various




parameters a/b. The same assumptlons were made in regard to gas proper-
ties as in the charts of figure 4. TIn the application of 6 and A/R in
equation (8), however, the density ratio is pl'/po, that of an oblique
shock at angle a'. Since a' 1s a function of B, the angle in question,
iterative calculations beginning with an initial assumption for the wvalue
of B are required. However, trial computations quickly converge to the
solution. The valldity of the solution is restricted at high angles of
attack to the angle range wherein the sum of the thickness angle g5, the
shock angle B, and the angle of attack o is less than approximately
90°. When the sum of these angles is greater than 90°, the tangential
flow component is reversed and the flow can no longer be conical. The
validity is restricted at low angles of attack; if Mgsin a! 1is less
than about 2, the components of mass flow are not gilven accurately in the
present simplified treatment.

COMPARTSONS OF ANALYTTCAL, AND EXPERIMENTAL RESULTS

This section of the report will filrst establish the validity of the
results of the present method in determining shock standoff distance for
simple symmetrical shapes at zero angle of attack by comparison with the
results of the more accurate methods of Van Dyke and Belotserkovski and
with those of experiment. Next, the results of the methed in determining
shock shapes of capsule~ and conical-type vehicles at angles of attack
will be compared with experimental measurements.

Figures 7 and 8 show a comparison of analytical results for symmet-
rical shapes at zero angle of attack with available experimental results.
Agreement between the results of the present analysis with those of Van
Dyke and Belotserkovskl and with experimental values is satisfactory.

Figure 9 gives examples of experimental and estimated shock envelope
traces about capsule-type vehicles for several angles of attack and Mach
numbers. Only one example 1s presented wherein appreciable real-gas
effects were involved. This is the capsule at Mach number 14.9 which was
tested at a simulated altitude of 30,000 feet at a velocity of 10,180
feet per second. Generally, the experimental and estimated shock envelopes
are in good agreement.

In figure 10 calculated and experimental results for the shock angle
of a family of elliptic cones are shown as a function of angle of attack.
The cones have thickness-to-span ratios of 0 (a flat plate), 1/3, and 1
(a circular cone). The results are for a Mach number of 4. The limiting
lines shown indicate the angle-of -attack range for which the analysis 1s
applicable. Agreement between predicted and experimental results is good.




In figure 11 predicted and experimental shock standoff angles are
compared for blunted as well as sharp-nosed conlcal shapes. The nose of
a blunted conical shape is treated as a capsule-~type vehilcle and the
shock angle for the conical part of the shock envelope is faired to the
capsule solution at the point of equal slope. The data of figure 11 are
for angles of attack from 20° to T0° and for Mach numbers from 3 to 10.
Good agreement between experimental and theoretical results is noted.

CONCLUDING REMARKS

Simple methods were developed for predicting shock envelopes about
two types of atmosphere entry vehicles at angle of attack. Predicted
shock envelope shapes for capsule~type vehicles were compared with exper-
imental values for air flows within the Mach number range 3 to 1%.9 and
the angle-of -attack range up to 33°. Predicted shock standoff angles for
conical vehicles were compared with experimental values for ailr flows
wighin the Mach number range 3 to 10 and the angle~of-attack range 20° to
70,

The methods are applicable to perfect-gas flows and to equilibrium
flows of real gases. Charts were developed specifically for predicting
shock envelopes.

Satisfactory agreement between predicted and experimental shock
envelopes was found for the range of flow conditions covered by the com-
parisons. Except for one case, only perfect-air conditions were covered,
thus essentially limiting the evaluation of the methods of prediction to
the perfect-air case. For the evaluation of the methods for high-enthalpy,
equilibrium flow of real gases, further experimental research is needed.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Mar. 6, 1961




APPENDTX A
NOTATION
a vertical axis of elliptic cone, ft
b horizontal axis of elliptic cone, £t
bt spanwise distance to sonlec point on elliptic cone, £t
£ shock correlation function
M Mach number
m mess -flow component
R shock radlus, ft
T stagnation point body radius, £t
v stream velocity, ft/sec
X,Y,Z Cartesian coordinates
A shock standoff distance from sonic point on body, ft
AN shock standoff dlstance from stagnation point on body, £t
o angle of attack, deg
ot conical shock angle with respect t¢ free-stream direction

in vertical plane of symmetry, deg

B angle between conical shock and bedy in vertical plane of symmetry,
deg

5] flow deflection angle through obligue shock, deg

€ half-angle subtended by capsule forebody arc, deg

&y cone semiapex angle in plane of horizontal axis, deg

€y cone semlapex angle in plane of vertiecal axis, deg

e inclination of shock element opposite sonic point on body with

respect to free stream or to crossflow stream (see fig. 2), deg
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7 specific~-heat ratio

o density, 1b/ft3

0y density behind normal shock, 1b/ft3

Pyt density behind shock inclined at angle o', 1b/ft3

Q inclination of body surface at sonic point with respect to plane

normal to free-stream direction, deg

Subscripts
o] free-stream conditions
s stagnation point on body
e point behind shock element at 6 degrees

* sonic point on body
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APPENDIX B
DERTVATION OF EQUATIONS

The following sections give the details of the derivation of the
equations defining the shock envelopes for capsule- and conical-~type
vehicles. Numerical examples are also presented.

CAPSULE-TYPE VEHICLES

Flow. Continuity Equations

Mass~flow continulty is satisfied for an elemental volume between the
shock and the body as shown in figure 12. The flow is three-dimensional
and assumed to proceed radially from the stagnation streamline. Mass
flow passes out from the volume through a strip of unit width and length
A. The arithmetic mean of the vertlcal components of mass flow at the
sonic point on the body and at the shock-wave position, 8, opposite the
sonic point is utilized. The component at the sonic point is equal to
the product of cosine ¢ and the mass flow passing through a normal shock
and expanding isentropically to sonic value. This product, expressed as
a mass flow per unit area and normalized with respect to the free-stream

value p,V,, 1s 1
7=-1
\) P
cos @ S 2 cos @ (B1)
oVo

The component of mass flow per unit area at the shock normalized with
respect to the free-stream value is given by oblique-shock relationships
as

1 (Po .
5 <;b - > sin 26 (B2)

The mass flow passing out of the volume element is then

A poVo P
5 [ 5 (ég - sin 20 + p,V cos @ (B3)
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Similarly, the product of entering unit-area mass flow PV, and the
projected Mwedge" strip area (1/2)R sin 6 gives

PoVo
2

R sin 6 (BY4)

Expressions (B3) and (BY4) are equated and rearranged to give equation (1).

é - sin @ ( l)
= == - sin 260 + —=cos ¢
2 \Po oVo

Geometric Relationships

A necessary step in subsequent shock solutions is to relate the shock
standoff distance, A, at the sonlc vpoint to the standoff distance, Ay, at
the stagnation point. ©Since the capsule forebody and the shock elements
are circular, these standoff distances are related as follows:

A=A +1r(l ~cos ) = R(1 ~ cos 9) (B5)

The above equation normalized with respect to shock radius R gives
equation (2).

A
:—o..+
R

1>

(1L -~ cos @) = (1 - cos 8) (2)

wR

Velocity Gradient Correlation

It has been shown in reference 1 that the stagnation-point velocity

Ao _dv/ds
gradient in the dimensionless form 2o _dv/ds is a function of Mach

VO (l + Ao/r)
number (or normal-shock density ratio) and correlates data involving a
wide variety of axisymmetric shapes. In the following derivation the
above stagnation-point velocity gradient will be equated to a more conven-
ient correlation function in which the velocity terms are eliminated and
in which only shock standoff distance, body radius, and shock radius terms
appear . ‘

Continuity of mass flow is considered for a small conical volume
element centered on the stagnation streamline as shown in figure 13. The
line O-1 represents an element of the volume extending from the shock to
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the body. The flow 1s deflected (5 + d9) with respect to 0-1 at point O
on the shock. Oblique shock relationships for small 6 gilve

5 = (p;/py - 1)@86. Geometrical considerations give (Ao + r)d® = R d6, so
+
that © + d9 = [<-S—L - ]_> Ao + T R = l]d(P. The unit-area mass flow at 0
o

p A
normal to O-l is then povo[<-b—]-'- - > —9%-—1‘- + l]dcp. The unit-area mass
°

flow at 1 is [d(pV)/ds]r d9, a value to be determined. The arithmetic
mean of the mass flow leaving the conical surface of length Ay 1s equated
to that entering the projected surface of radius (r + Ag)A®. The resulting
equation 1is

‘320 2n(r + £0)ap( puVo )K - > <-A-°—Ri-3> + :L]dcp + 2rr d@[é-(%ﬂ}r dCP}

= pVor(r + ISRt

The stagnation-point mass-flow gradient d(gV) / ds gilven by the above

identity is
apr) _ Vo (1 + é9> [1 - <1 + =2 (—— - 1) } (B6)
ds Ag r

At the stagnation point V =0, p = pg, dp/ds = 0, s0 a(pv) = PedV.
Equation (B6) is rearranged to give

EOdsAO>_ [ <1+%9> %-Q%} (B7)

where
1

Po < z-lpc;>
Pg

It is convenient, for reasons to be discussed later, to apply the factor
2 to equation (B7), thus

dV

Vo< Ao> [ ( O> %'Oéﬁg}
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or, letting f replace the left-hand term,

pee i (18 (2o0)] (3)

Numerical Example

The charts of figure 4 are now applied to an example calculation of
the shock trace about the lenticular foreboedy shown in figure 2. The fore-
body arc subtends a half-angle € of 30°. The fllght condition is
M= 6.3, pl/pO = 5.33, at angle of attack of 16° At this angle the upper
sonic point (1) is at the corner and is 1nclined @1 (30° - 16°) = 14°.
The lower sonic point (2) is on the body where = 459, The relative
locations of the sonic points are (X, - X,) = h.30 and |Y.] + |Ys| = 15.60.
The values A/R; = 0.106, 0, = 16.5°, A/Rs = 0.175, and 65 = 31.4° are
found in figure 5. Equations (4) are numerically evaluated as follows:

15.60 - 4.30 <§ 9.021

X, = 175 + 0.147 - 2.3
< 0.28k 1> . ( 0.521 >
0.106 + 0.04 0.175 + 0.1k47,
2.43 x 0.284
Y, = =Lh.71
Y 0.106 + 0.0k1 T
Yo, = 15.60 -~ k.71 = 10.89

R, = 21X . 16,56

R = l9;§2.= 20.9
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CONICAL VEHICLES

Flow Continuity and Geometric Considerations

Detailed derivations of equations defining the shock envelope about
conical vehicles are developed with the aid of figure 1%. In this figure
are shown three views of a section of an elliptic cone at angle of attack
. The flow is assumed to be conical. The shock element in the vertical
plane of symmetry inclined at angle o' is taken to be along the
X axis. A volume element of length dx between the shock and the body
surface is bounded by the vertical plane of symmetry poo'p' and the
surface contalning sonic line nn' and its projection onto the shock
surface, mm'. Continuity of mass flow 1s satisfied for this volume ele-
ment.

To write the continuity equation it is necessary to evaluate projected
areas of the varilous surfaces of the volume element. Area mnop is
similar to area m'n'o'p' since the shock envelope and body surface are
conical with respect to a common origin. Thus

Smnop _ Spinto!p!
1% (1 + ax)?

Aor g (B8)

2dx
Sm!nrolpt = SIIJIlOP <l + —7,—>
where

?
Smmop = Eg'(EAo + A)

It should be noted that the control surface intercepting the tangential
mass -flow component is not normasl to the axis of the body. Therefore,

in the plane of the control surface, the ellipticity of the associated
body section is different from the true cross-sectional value. The
relative distortion in ellipticity is of the order cos(ez - B). Since
€y, and B are usually small and in any event tend to cancel, the error
resulting from section distortion is neglected. The distance from the
sonic point (where surface slope of 45° is assumed) to the vertical plane
of symmetry is

Rsin 6 =Db? = (B9)
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The relationship between sonic-point (A) and center line (Ag) shock
standoff distance in terms of semispan b 1is then

Ll ~cos 6 [_ - ,l + ] A
A
o sino 2] b 20 g (BlO)

Equations (B8) to (B10) and the terms indicated on figure 1k, are used
to project the following areas on the Y-Z plane,

=b$1é+2Nb}

o'l >

Smnop =
a
3 1 + <-.6->
R(1 - cos 6)b'dx Db3(sin 6)dx
sarmot = & ) (
31
O
Ab
Sm'n'nm = dx

on the X-Y plane,

Snmtpfp = bYdX =

and on the X-Z plane,

Smnntm' =4 dx

Next, the values of the mass-flow components per unit area (V)
normal to each area are required. All velocities in the X direction
are taken as Vgcos a', being substantially tangent to the shock. The
density within the control volume varies from a maximum of ps‘ > py!
at line o0o' to a minimum of p* < p;' at the sonic line nn'. The
density distribution is approximately accounted for by assuming p' as
the mean density of the flow through the surfaces mnop and m'n'o'p', and
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p* as the mean density through the surface m'n'mm. The sonic value

p* = plf{ﬁ/('f +1) - (7 - L)(eo/py '}}l/(7 1) 5 used. The unit-area mass
flow (m) in the Y direction through mmm'm' is pyVo[sin 6/(A/R)].
Values for & and A/R are determined from figure T with p,%, 1in place
of 01/0y. Summation of all unit mass-flow products with their associated
areas 1s then made to satlsfy the continuity of flow. Omitting the
detailed algebraic steps involved yields the following equation:

+ t
1 aney sin 6 iRy

+ =
ten ot T+ (a/b)2 3 Po
/ sin 6 tan &y <? _ e oy
* + tan at ‘ p]_ po

Equation (B1l) along with the following geometric relationships
permits calculation of the shock angle B as a function of angle of

(B11)

dlb

attack o.
B = tan~t [(é-kl\l)tan e} (8)
b ¥
2
1l - cos @ a fa a
sin 8 +b b l+<§>
N =
2
l+<%->
and

al =B +a + g
Velocity Gradient Correlation

Equation (7) ig derived on the basis of two-dimensional flow through
a differential volume element i1n the vicinity of the stagnation streamline
in a manner similar to that in the case of axisymmetric flow. Values for
f given by equation (7), plotted in figure 3, were obtained by using
the theoretical stagnation-point standoff distance and shock radii given
in reference 3 for circular cylinders. Under conditions of the same
ratio for AO/VO the stagnation-point velocity gradient for axisymmetric
flow can be shown to be one-half the value for two-dimensional flow due
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to radial "relief.™ Accordingly, the factor 2 applied to the axisymmetric
velocity gradient places 1t in correlation with two-dimensional gradients,
thus relating both two- and three-dimensional shock distance parameters

to the same function £ of density ratio.

The derivation of two-dimensional stagnation-polunt velocity gradients
proceeds as follows: The line 0~1 in figure 13 in two-dimensional flow
represents the side surfaceg of a wedge of unit depth. The mass flows
per unit area at O and at 1 remaln the same as in the axisymmetric case.
They are, respectively,

Ay +
(g - ) (25) » 2

a(pv)
ek B sl 24 d
ds rae

and

The product of the entering mass-flow per unit area with the area of
surface 0-0 is pOVOE(r + Ap)d®. This is equated to the product of the
mean unit mass flow leaving surface O~1 with the total area 2Ag.

1 P1 Ao + T a(ov) -
2ho 5 povo[(po - 1)( = ) + 1] + T A9 = pVoR(r + Ag)ae

The stagnation-point mass-flow gradilent d4( pV)/ds is given by reducing
the above identilty to

L QORGOIEDE
T A 2+r 1+r o 1 = (B12)

At the stagnation point V =0, p = pg, dp/ds = 0, so a(gV) = p.dv.
Equation (Bl2) is arranged in the form

av Ao
Ao I _ Po 2+ = Py Ao
AN A )
vo<1+§9> Sl + =
r r
or
o |2 +5 /P A
f o= 2 L ..i..l)_.?. (7)
ps Ao po R
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It is to be remembered that r 1s the stagnation-point body radius;

therefore, the application of equation (7) for elliptic bodies requires
b2/a in place of r.

Numerical Example

The shock angle B is calculated for an elliptic cone with ey = 150,
€, = 59, and a/b = 1/3 at angle of attack a = 45° at flight Mach number 6.
An initial assumption that B = 50 is made; thus a trial value for
a? = 5° + 45° + 59 (see egs. (8)). The crossflow Mach number is
6 sin 55° = 4.91 at which p,'/p, = 4.97. Corresponding to this density
ratio with a/b = 1/3, the charts of figure 6 give A/R = 0.234 and
6 = 13.6°. Equations (8) are then numerically evaluated as follows:

2
1-0.972 1|1 _ / 1
o237 t3|3 +<3>

N = = -0-117
2
1+ <§>
1. ;).Leéi 0.237 - 131 (4,97)(-0.117)]
_A__: ’ 6 l+(l/3) —-=O50)-l-
2 .

2
1) /0.237\ , 0.268 -
Jl * <3> <o.234 T oy (2 - 0.693)4.97
B = tan~[(0.484 - 0.117)0.268] = 5.9°

The calculated value for B is sufficlently close to the assumed value
that an iterated calculation is unnecessary.

The above example utilized the result for pl'/pO as given by oblique
shock relationships for air with 7 = 1.k. At higher velocities and at
altitudes where large departures from ideal gas properties occur recourse
must be taken to shock density versus velocity and altitude plots such as
are given in reference 5. An initial value for pl'/pb is determined
from such plots as that corresponding to the velocity Vpsin a¥ at the
altitude in question. Generally, one iteration is sufficient to fix o?
and thus pl’/po.
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Figure 1.- Types of vehicles considered.
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Figure 2.- Mass flow components for capsule-type vehicles.
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Figure 4.~ Charts of A/R and 6 for capsule-type vehicles.
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Control volume

PV, sin a'

Figure 5.- Mass flow components for conical vehicles.
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Figure 6.~ Charts of A/R and 6 for conical~type vehicles.
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Shape Experiment Theory
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Figure 7T.- Shock standoff distance for two~dimensional obstacles at zero angle of attack; air.
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Figure 8.~ Shock standoff distance for three-dimensional obstacles at zero angle of attack; air.
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Experimental : a=35" M:=63 a=16°, M=6.3
Xperimenta / (altitude =30,000 ft,
Predicted velocity=10,180 ft/sec)
a=19° M=14.9
a=0"M=33

N e

a:=28°M:=35

Figure 9.~ Shock traces for capsule-type vehicles; air.
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Figure 11.~ Shock angles for conical vehicles at angle of attack; air.
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Figure 12.- Flow=-continuity considerations for capsule-type vehicles.
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Figure 13.- Flow continuity near stagnation streamline.
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Figure 1k4.- Flow-continuity considerations for elliptic cone.
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