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SUMMARY

The impact motion of the inflated sphere landing vehicle with a
payload centrally supported from the spherical skin by numerous cords has
been determined on the assumption of uniform isentropic gas compression
during impact. The landing capabilities are determined for a system
containing suspension cords of constant cross section.

The effects of deviations in impact velocity and initial gas
temperature from the design conditions are studied. Also discussed are
the effects of errors in the time at which the skin is ruptured. These
studies indicate how the design parameters should be chosen to insure
religbility of the landing system.

Calculations have been made and results are presented for a sphere
inflated with hydrogen, landing on the moon in the absence of an
atmosphere. The results are presented for one value of the skin-strength
parameter.

INTRODUCTION

Various devices and techniques are being considered as solutions to
the problem of alleviating or minimizing the acceleration of a payload
during impact with the surface of the moon or the planets. Among the
simpler methods (in concept) which have been proposed is the gas-inflated
impact bag. A possible configuration, the inflated sphere landing vehicle,
was described and its motion and performance were analyzed in references
gl tands 2

The inflated sphere landing vehicle has a strong and flexible, but
relatively nonstretchable skin. The inflating gas is light, but has high
energy-absorbing properties. The best such gases are hydrogen and helium.




The payload package to be landed is suspended in the center of the sphere
by numerous cords attached to the skin. Because of the nonstretchable
skin and the internal gas pressure, the vehicle maintains a truncated
spherical shape during the impact as the part of the skin in contact with
the impact surface is collapsed, folded, and held on the surface by the
gas pressure. The payload comes to rest on the surface when the kinetic
energy of the system has been gbsorbed by the gas in ‘the vehiele. The
skin may be ruptured at the instant of zero velocity to prevent rebound.

The results obtained from the analysis of reference 1 showed.that the
maximum impact velocity was limited by the skin strength to values less
than about 1000 feet per second. The vehicle could, however, be advanta-
geously used in the terminal phase of a landing maneuver because it ‘
functions without the need for maneuverability, guidance, control, attitude
stabilization, or complex landing gear.

In the analysis of reference 1 the approximation was made that the '
pressure throughout the inflating gas was uniform at a given time. It was
shown that the condition under which this is a good approximation is that
the square of the ratio of the impact velocity to the speed of sound in

the gas be small compared to unity. Fortuitously, the limitation on impact
velocity due to skin strength of practical materials automatically satis-—
fies this condition 1f inflating gases with high speeds of sound, such as
helium or hydrogen, are used.

The preliminary analysis of reference 1 has left some questions
unanswered. In reference 1 the mass of the suspension cords was assumed
either to be negligible or to be taken into account approximately by being
included in the mass of the package at the center. The present report is
a design study of the inflated sphere landing vehicle in which definite
consideration is given to the mass of cords required. The required mass of
cords depends, of course, on their mass density and strength; and this mass
is found to be of very significant magnitude for constant-area cords
constructed of practical materials.® There is also the question of how
eritical will be the effects of deviations from the design impaet veloecity:
and design initial gas temperature, and the effects of errors im the time
at which the skin is ruptured. A knowledge of these effects would aid in
the seleection of the design parameters. A principgl function of this
report, therefore, is to' consider these effeets and present. the results.
The results of the analysis show essentially the behavior of the vehicle
when deviations from design conditions occur at impact; hence indications
are gilven-as to how the design parameters should be chosen for reliability-.
The actual tolerances in the deviations.from design conditions are, in fact,
found .

lFurther investigation has shown that if the suspension cords were
tapered so that a constant stress were present over the length of one
cord at a given time, the payload mass which could be landed, for some
design conditions, would be significantly higher than for the case of
constant-area cords. (See appendix.)
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SYMBOLS

acceleration of the sphere center

<%§§> a, dimensionless acceleration

cross—sectional area of one suspension cord

specific heat at constant volume

effective longitudinal modulus of elasticity of each cord.
é%y distribution of force in the cords

resultant vertical force due to the gas pressure
gravitational acceleration on the earth

drop altitude above the moon surface

total mass of the landing system, including payload

mass of a particular part of the system, depending on the
subscript

maximum acceleration in earth g's
total number of suspension cords
pressure of the inflating gas

pressure of the atmosphere outside the vehicle
Pg
Py

radius of the sphere
gas constant

time measured from first instant of impact

()

temperature of the inflating gas

dy

velocity of the sphere center, I

u
| ug |
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€u

distance from the impact surface to the sphere center

Vi

—

1

arc cos(-¥)(see fig. 1)

given by equations (28) and (36)
given by equations (41) through (43)
ratio of specific heats

vertical distance the package deflects as a result of the elastic
extension of all cords

fractional error in initial temperature

fractional error in the initial impact velocity

fractional error in the initial energy ratio ‘

critical value of € the value for which Fp, = O
radial coordinate (see fig. 1)
angle indicated in figure 1

defined by equation (20); may vary from 1/3 to 1/2
Cle

initial energy ratio, I
.]_". mug
2

mass density

stress

tensile force at n =r in each cord at angle 6

total vertical force on the skin from the cords

Subscripts

value at 6 = 0
condition at first instant of impact

condition at maximum compression, when the velocity is zero

|




A value of a parameter in the actual case

c) suspension cords

D design value of a parameter

£ condition at final impact; that is either at y = 0 or at end

of rebound

g inflating gas

i payload package

r condition at the time skin is ruptured
S skin

v portion in motion with velocity u

ANALYSTS

Properties of the Sphere During Impact

As in the analysis in reference 1, it is assumed that the skin material
is flexible, but nonstretchable, and thus that the part of the sphere skin
not in contact with the impact surface retains its spherical shape, because
it is supported by the internal gas pressure (see fig. 1). Then each
particle of that part of the skin moves with wvelocity wu, which is also
the veloeity of the center of the sphere. If it ds also assumed that. the
suspension cords are flexible but nonstretchable, then the suspended pay-
load package remains coincident with the sphere center and moves with
velocity u, and the parts of the cords not in contact with the stationary
part of the skin which is held on the surface may also be assumed to be
moving with velocity wu. Thus, all particles of the system which have
struck the impact surface are assumed to have velocity zero, and all others,
except for gas particles, are assumed to have velocity wu. At the first
instant of dimpact, t = ty, all particles of the system have velocity uj-

At the instant of maximum compression, t = t5, all particles have velocity
zero. Also at t = tp, if the sphere has compressed nearly to a hemisphere,
the payload has just reached the surface at the instant its velocity is
zero, and the maximum permissible amount of energy has been absorbed by

the inflating gas.




Equation of Motion

The total mass of the system, m, is considered to consist of four \
parts: ‘

m=np +mng + e + mg (1)

where is the mass of the payload package suspended in the center, Mg
is the mass of the skin, m; is the mass of the cords, and ny 1s the
mass of the inflating gas. One may follow a procedure similar to that ‘
used in reference 1 and define that portion of the mass which remains in
motion, my, by

Iy = Mgy + Moy + Iy (2) ‘

where mgy and mey are, respectively, the parts of the mass of skin and ‘
mass of cords which are in motion with velocity u. J

Tt was shown in reference 1 that, if the gravitational force and
flexural stresses at the impact surface are neglected and if the uniform
gas approximation is used for the internal gas pressure, application of
Newton's second law of motion to the mass m, leads to the differential
equation of motion: ‘

=2 Iy N o e
i% % dé; A - 1)¢ £% e §2)K;§ZT§§7:T§§> C: PaJ 374
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where P, 1is the outside aerodynamic pressure (taken to be essentially
constant at the value of the local atmospheric pressure), ¢ is the initial
energy ratio defined as in reference 1 by

g mgchl (h)
— (1/2)mu;2

and y = ry 1is the distance from the impact surface to the sphere center.
Equation (3) applies to the present analysis if the relation for my
given by equation (2) replaces that used in reference 1.

The differential equation, (3), can be solved if m,/m is written as
a function of ¥y. As shown in reference 1, mg, is given by

Mgy = %’mS(l +75) (5) ‘

The portion of the mass of cords which has not struck the surface, m.,

may be found as follows: let 1n be the radial coordinate and 6 Dbe the
cone angle as indicated in figure 1. The mass density and cross-sectional
ares of one cord are pe and A, respeetively; both are constants. The ‘

|




messrof anellement of length of: one eerd, dm, is:thens paledn If Ehe
total number of suspension-cords is Np, then the number of cords in the
angle d6 is

1
dNe = 3 Nqsin 6 de (6)

Equation (6) is, of course, approximate if N, is finite. Therefore
Bhedmassrin s radial, element., dn, end an element! off 10 Hd8 . 9s

a1
dmc = _2' NcpcAcSin 6 dé dT] (7)
but the total mass of the cords, if A, is constant, is
me = Nepcher (8)

Equation (7) may thus be written

dm, = pud sin 6 d6 dn (9)
er
Thep -ane i 8
8=a n7=r 6=x nn=-y/cos 6
By =\/n dm, +U/\ J[‘ dame (10)
=0 Y n=o 6=a ¥ n=o
where

a = arc cos(-¥) (11)

Substitution of equation (9) into (10) and use of the result, along with
equation (5),‘in equation (2) give the following relation for mv/m as
a function of Y

5 < T
e l+y>+_m3 1+3 ylHY> (12)
m m m 2 m 2

For specified values for the masses of components of the system, the
differential equation, (3), may now be integrated to obtain u as a
function of Y. Simultaneously, the equation

dt/dy = 1/3 (13)

may be integrated to obtain ¥ as a function of T, e dnitiel
conditions for equations (3) and (13) are:

om0 e il (14)



The value of ¢ to be used in equation (3) may either be specified
or be found, for a desired value of Fo (the value of ¥ when U= 0 and
T = 5, the instant of maximum compression of the gas), by the procedure
discussed in reference 1. Thus the motion of the sphere during impact
is determined if mp/m, me/m, mg/m, and either ¢ (defined by eq. (X)) or
V> are specified.

Performance Requirements and Capabilities

In addition to determining the motion, that is, acceleration, velocity,

and location histories of the sphere center, equation (3) can also be used
in conjunction with certain other relationships among the various param-—
eters to determine the performance requirements and capabilities of the
landing system. The performance includes mass of skin required, mass of
gas required, mass of suspension cords required, mass of payload package
allowed, and the required radius of the sphere. It was seen in reference
1 that these characteristics depend on initial gas temperature, gas
constant and ratio of specific heats in the gas, a stress to mass ratio
in the skin, impact velocity, final volume ratio, and outside atmospheric
pressure. The radius required was also seen to be inversely proportional
to the allowable maximum acceleration of the payload. Because the mass
of suspension cords is included in the present analysis, the performance
characteristics will also be a function of the strength to mass ratio of
the cords.

The procedure to be used in evaluating the performance is as follows:
Specify values for the parameters ogi/ps, Oc2/Pes 75 R, T1, Das Yo, and
/m. Then develop four equations for determining the proper values of
mc/m, ms/m, mg/m, and nr' in relstion to '€ach other and to the ‘speeificd
parameters. Integrate the differential equation, (3), to determine &,

from which can be found the corresponding impact velocity wuj.

One of the four required relationships is the same as equation (33)
of reference 1, an expression relating the mass of skin to the mass of gas

Us _ 3RT1(1-Da) g (15)
m 2(051/05) m

where og1 1s the stress in the skin before impact. Another relation,
from equation (1), is

Mg ) s e (16)

The mass of suspension cords required can be found in terms of the
maximum stress in the top cord (which can be chosen to be less than the
ultimate strength of the cord material).




The cords can support only radial tensile forces. Let the distribution
of force in the cords be given by

P = Qof (17)

where @,, the force in the vertical cord (9 = 0), is a funection of .F and
PAsich o Funetion of ¥ and @4 The vertical*feorce Eromithe" cords lonithe
skin in the angle .dO is

ad

® cos 6 dNg

il
5 Ne@of cos 6 sin 6 46 (18)

where use has been made of equations (6) and (17). Only the cords from
6 =0 to 6 = ﬁ/2 are in tension during the impact. Therefore, the total
vertical force transmitted by the cords to the skin is

O=1/2
® =f aoe = —é— No@oit (19)
=0

where

/2
M =‘jﬁ f sin 6 cos 6 d6 (20)
o

The total vertical force exerted by the gas pressure in decelerating
my 1is, from equation (8) in. reference i,

E

b = my(du/dt) (21)

Because it is assumed that all parts of my, that is, Mgy, ey, and I
have the same velocity, u, the rate of change of momentum to mgy 1s
msv(du/dt). The remainder of Ep is transmitted to the mass (mp + Movy) -
Therefore, the rate of change of momentum transmitted to (mp + mcv) is
(mp + mcvj(du/dt) and is equal to the force transmitted through the cords:

¢ = (mp + mev)(au/dt) (22)

Thus, from equations (17), (19), and (22), the force at 7 =r 1in one
cord “abiangle: 6 is

2 du
(p:m(l@ +mcv)a¥f (23)

The maximum force at a given time during the impact, as will be seen, is
in the vertical cord at 6 = 0, n =r, and the maximum occurs at the
instant of maximum compression (t = t5). (When y- = O, the maximum
occurs a very short time before +to but is always nearly identical to the
velue at t = ts.) Therefore,
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2 du -
= — + — 2L
! — Noro (mp mCVZ)(;t;L (24)
The maximum acceleration is
(du/dt)> = nge (25)

that is, n 1is the number of earth g's maximum acceleration. The left
side of equation (24) may be written as

cp_max = 0‘CZAC (26)

where Oco is the maximum stress in the vertical cord. Substitution of
equations (25) and (26) along with equation (8) into equation (24) then
gives

me e [Mz(ccz/pc) ol sz_l (27)

where, from equations (9) and (10),
_ Deve
G
Equation (27) supplies the third of the four required equations relating
the various parameters.

1 (| Bl
=5 (1 +52 - T2ln ¥») (28)

It is now seen that the required mc/m depends on the strength to
mass ratio of the cords, Gcg/pc- It also depends on the value of po,
given by equation (20) when f = f(¥o, 6). It is noted that exact knowl-
edeeroff ™ f - pheRdiisbributionsof Poree in:thevcords . ismot of eritical
importance in this study because only -, the integral of the produect of
f times a function of 6 over 6 from zero to w/2 at ¥ = Vo, is
involved in the final results. The final results can be given in terms
of [uo(0ea/pe)]. Then o can be estimated, and the effect of the choice
of uo can be considered to be equivalent to a change in the allowable
value of 0go/pe- Limits to the variation of f(yz, 6), and thus to the
choice of s, can be shown. JIn those cases for which the tensile stress
at all points in the upper hemisphere remsins.grester than zero, :the
shape of the skin will necessarily remain exactly spherical, regardless
of the forces acting normal to the skin, because of the assumption of high
modulus of elasticity in the skin. The skin above a horizontal diameter
will then sct as a rigid shell as long as o0g > 0 at all points in the
upper hemisphere. Then, if the mass of one cord is negligible in compar-
ison to mp and if (6p/r) <<HlL=s @ i giwen by

AL = 8pcos 6 = GL/AGE , (0 <6< n/2) (29)

(where AL is the small change in length of each cord whose original
length is L = r, the sphere radius), as! longhgesfash > 0. at all peintesin
{0 @< w/2) . Thus 1F g5 >0
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f=0¢/g, =cos 6, (0 £6 < n/2) (30)

and, from equation (20), if o5 > 0 at all points in 0 < 6 < x/2,
uw=1/3 (31)

For all cases the skin stress is everywhere greater than zero in the
upper hemisphere at least for a time at the beginning of the impact. In
some cases this condition will exist until t = t5, and thus ps, will
have the value 1/3. For other cases, because the maximum force per unit
area on the skin is at 6 = O (eq. (30)), the skin stress at 6 = 0 may
be reduced to zero at some time during the impact (as the acceleration
increases, and thus as the forces in the cords increase). After that
time, the cosine cord-force distribution given by equation (30) is no
longer valid because the upper hemisphere can no longer be considered
entirely a rigid shell. If f were redquired to maintain the cosine dis-
tribution as the acceleration increased further, (og)g Wwould tend to
become negative and thus a small part of the skin at 6 = 0 would tend to
collapse beeguse it is flexible. However, if This happened, the force in
the vertical cord would tend toward zero while the cords at higher 6
carried the increased load. But, if the force in any of the cords became
reduced because of skin collapse, the cause of the reduction in the skin
stress would be removed. Therefore the skin should tend not to collapse,
and the cord force distribution would simply accommodate accordingly;
that is, f  becomes nearly constant in the region of zero skin stress.

e e seen that, for those cases in which mp/m and mc/m are sufficiently
large, large cord forces are present during the impact, and a region of
zero stress may occur; hence the function f Dbecomes implicitly involved
with the stresses in the sphere skin. A detailed analysis of the skin
stress distribution would be required to determine f(¥-, 6), and thus

us, exactly.

As noted above, for purposes of obtaining results in the present study,
16" 1s suffielent to 'determine limits to the estimated waluestof | lis.. /It
is therefore noted that, after (og), becomes zero, the cord force dis-
tribution accommodates so that the cord force is nearly constant in the
region of'zero skin stress. The limiting case is therefore a constant
veldinet ol S Giover 0 ;. ‘that is5 £ =1 for which = 1/2. Thus ‘(i will
be as low as 1/3 in some “cases, but, for ‘those cases! where mp/m.and mc/m
are high, it may be nearly 1/2, and the effect: of fvarying ' #i-it ieWsmpil v
a change in the value of the allowable ch/pc.

The final expression of the four required (as discussed above) may be
obtained from equation (3) by noting that the maximum acceleration is
given by

awax =85 = (v/u35)nge (32) |

and by making use also of equation (4) and the equation of state of the ‘
gas. at b =ty ‘

pl@- vrr3> = mgRTy = mg(y - 1)cyTy ) |

bl b S sl
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The result, which can be used as the fourth required equation relating
the parameters, is

SRT; % o _2[< L >7 _}
= — — (1 - - L
ol l*ge m—— ( ¥2") 2+ 35 o 7@3 By (34)

where, from equations (12) and (28):

m m I Ar
—E%=%+m—s(2—y2>+82%9 (35)

Equation (34) may now be combined with equations (15), (16), and (27)
to obtain independent explicit relations for ms/m, mg/m, Me/m, and nr
in terms of mp/m and the various other parameters involved. For con-—
venience in the ensuing manipulations, the following parameters are
defined:

By = Hz(ccg/pc)/gge (36&)

B> given by equation (28)

Bz = (3/2)RTy (36Db)
Bs = 0s1/ps (36¢c)
e
= - 364d)
L et (
Be = % (1 +72) (36e)

Substitution of equations (16) and (35) into (34) gives

. BaBs(l ~ mp - Mg - Me) (37)

nr = o= ==
M + Pellg + Bole
where m indicates m( )/m. Equations (15) and (16) can be combined
to elimina%e mg/m. and to obtain

e Ba(l - Ba)(1 - Tp - Te) (38)

B4 B 63(1 = 5a)

| Substitution of equation (38) into (37) then gives an expression for the
’ product nr in which the only mass ratios involved are ﬁ% and T.:
|
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= BaB4Bs(l - Tp — Tc)
[Bs + Ba(l - fa)](ﬁ§ + Bole) + BaBs(l - Pa)(l - My - Tc)

jaRe

(39)

Equation (39) may then be substituted back into equation (27), from which
a quadratic expression for M, is obtained.  The result is

&ﬁi/ Bifﬁ_s (ko)
T e 2B7 Br
where
Br = B1Bo[Bse + Bs(l = ﬁé)] = BlBsBe(l 5 5&) + B2B3B4Bs (hl)
Bs = B1[Bs + Bs(1l - ﬁé)]ﬁp + B1BaBe(l - Byl (1 - Tip)
- BoBsBaBs(l - My) + BgBaBsiiy (8=)
Bo = BsBaBsTip(l - Tip) (43)

The positive sign on the square root must be used to give positive values
of mc/m. As Eﬁ approaches zero, M. approaches a positive finite
value. Thus, if there are cords in the vehicle and if M, = O, the plus
sign must be used, and a certain mass of cords is required. However, if
there are no cords in the vehicle, m, = O and the minus sign may be used
to give M. = O (since PBg is negative).

A /m is given, the corresponding required mc/m can be found
directly from equation (40). Then the required value of mg/m is found
from equation (38), and the required mg/m, from equation (16). Finally,
the product nr is found from equation (37). Each of these results,
however, corresponds to a certain impact velocity, ui. The impact
velocity can only be found by integrating the differential equation, i
and using the procedure outlined in reference 1 to obtain the correct
value of ¢ corresponding to the desired Vo> and the other input condi-
tions. The correct value of u; is then found from equation (4), which
can be rearranged in the form

thﬁg
S e 1k
* 3(y - 1)¢ (9

The drop altitude above the moon surface corresponding to a given impact




1k

veloel ty s
hm = u12/2gm = ulz/(lO.91+ ft/secz) (11-5)

where gp 1s the gravitational acceleration on the moon. For convenience
this correspondence is shown in figure 2.

Effects of Deviations in Gas Temperature and Impact
Velocity From Design Conditions

In the design of the inflated sphere landing vehicle a certain initial
gas temperature, T,, and a certain impact velocity, uy, would be assumed.
The appropriate design mass ratios and sphere radius would then be calcu—
lated from the equations in the preceding section. In the actual landing,
however, the gas temperature and impact velocity may differ slightly from
the design conditions. The effects of these deviations may be inconse-
quential or very critical, depending on whether a certain condition was
overestimated or underestimated. The choice of the design parameters will
thus be influenced by the effects of deviations from design conditions.

For example, suppose the landing vehicle is designed for a glven v aly
and T; so that it compresses to a hemisphere, that is, Yop = 0. Then, if
the actual impact velocity is slightly higher than the design -uy, the
payload will strike the surface with some residual velocity because it has
not been completely decelerated to zero velocity at Fo = O. However, if
the actual velocity is slightly less than the design wuj, then the maximum
compression will occur at Yy, slightly greater than zero; that is, the
payload package will come to rest a short distance above the surface, then
drop to the surface when the skin is ruptured. The effect of the error
in wu; 1in this case would be much more tolerable than in the former case.
The design 7¥- should therefore be chosen so that there is a high proba-
bility that the latter case will occur rather than the former.

Errors in the initial gas temperature will have similar effects. A
negative error (value below design) in Ty will cause Yop to be less
than 7op, Or the payload will strike the surface with some residual
velocity, whereas a positive error in T; will have the effect of decel-
erating the payload to zero velocity at §EA> greater than ?éD because
of the higher gas pressure. In the case of positive error in T4y, the
effect may not necessarily be inconsequential because the final accelera—
tion will be higher than the design value.

It is the purpose here to estimate the magnitudes of the effects of
deviations from design conditions and hence to show how the design
parameters should be chosen for reliability.

The landing vehicle is designed for the conditions Tip and Uip, as
well as the desired Yops Bp, and other parameters involved. The
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corresponding design values of ms/m, mg/m, mc/m, mp/m, T arlER e re
found by application of the theory in the previous section so that u=0
when ¥ = J,p, vhere U = u/|wp|- In the actual case, in order for the
initial condition, equation (14), to apply in the integration of equation
(3), @ must be considered to be u/|ulA|, but this difference does not
affect the integrated results of equation (3). The only parameter in
equation (3) which can differ from the design condition is the initial
energy ratio, &; that is, gA may not be equal to £ and hence §EA

will not equal Fop- An ‘error in: &, may occur ‘because of an error in
a5 Uy, ersboths

Denote a fractional error in £ by eg; that Sis,

£y = (1 + e)ep (16)
Also denote errors in T; and u; by € and €, respectively. Thus
it L i (¥7)
upp = (1 + edup (48)
Therefore, since
£ = 2(mg/m)cy(T1/us®) (49)

the result from equations (46), (47), (48) and (49) is

l l 4= €T (50)
+ = —————
- TR

For no error in velocity, then, the error in & due to an error in
temperature is simply

(€§)€u=o = € (51)

and for the case of no error in temperature, the error in ¢ due to an
error in velocity is

~ey(2 + €y)

e B (52)
€7 ep=0 (lase )R
In the cases where ¢ 1is small,
G S PePaten (53)

(€§)€T=O
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For the cases where ¢ is positive (e.g., €p > O and €, = 0, or €; < O
and ep = 0) the actual®value of Y= 1is greater than the design value,
Lhat: 18, for €g =0,

Yop > Yop (5k)

For the cases in which € is negative (e.g., ep <0 and ey = 0, or

€y > 0 and Eq = 0) either the payload strikes the surface with final
residual velocity wuf or the payload does not reach the surface, but the
actual value of Yy, is less than the design value; that is, for eg <0
either

u = Up when y =0 (55a.)
(@)1
0 = ¥pa < ¥pp (55b)

The effects of deviations from the design conditions for a given case
(given Typs §ED’ mp/m, and other input parameters and the calculated
values of tp, wip, ms/m, mg/m, and mc/m) are thus found by integrating
equation (3) again, using the same values for the mass ratios, but using
€y 1in place of Ep. The results of the integration (¥ vs. T, U, and t)
Ehow either the value Ef ?éA when U = O (and the corresponding value of
EQA) or the value of TUp when ¥ = 0. It should be noted that
Up = uf/[ulAl and therefore that

Up = (l + eu)|ulD|1_1'f (56)
The ratio of actual maximum acceleration to design maximum acceleration,
for those cases in which the payload does not strike the surface, can be
found as follows: ;

From equation (25),

(u1®/r)s2 = nge (1)
herefore

EéD = genDr/ulrf (58)

: EEA = genAr/ulA‘?' (59)
and thus,

nA/nD = (EéA/EéD)(l + ey)? (60)




AT
Effect of Error In the Time at Which Skin Is Ruptured

It is desired to have the skin rupture at time +tp, when the actual
velocity is zero. It is assumed that some method is used to rupture the
skin instantaneously around a great circle of the sphere. Each half of
the sphere skin will remain attached by half the suspension cords to the
payload. The gas will escape simultaneously in all directions outward
from the center in the plane of the rupture. The vehiecle will tend,
therefore, not to be propelled by the escaping gas.

Let t,. denote the actual time of skin rupture, which may not be the
same as the most desirable time of skin rupture, top. If At 1is the
tame ferrer, sthen

tp = ton + A (61)

where At may be positive or negative and where, it must be noted,

g it A€=[( - ]A’{ (62)

IulA' 1 + €u)lulD|

to satisfy condition (14) on equations (3) and (13).

If the error At is negative, the inflating gas will be released
from the vehicle before the payload has been decelerated to zero velocity.
The decelerating pressure force will therefore be eliminated, and, if
this occurs instantaneously, the payload package will strike the surface
with the velocity it had at the time of skin rupture; that is, up = ur.
The velocity u, can be found directly from the integrated results of
¥ versus &, U, and T, provided the velocity wuj;, 1s used in the conversion
from dimensionless to dimensional parameters.

If the error At is positive, the sphere will reach its maximum
compression and begin to rebound before the skin is ruptured. The magni-
tude of the velocity will be essentially the same at t,. = toy + At as
at time  top -~ At, but the motion is in the opposite direction. This
velocity, up, however, is not the same as the final impact velocity of the
payload after it falls back to the surface. The reason for this is that,
at t = t,., nearly half of the mass of the skin and cords is at rest;
therefore, some of the rebound momentum is taken up in putting this
stationary material back into motion. The velocity of the payload at
final impact, ug, is therefore nearly the same (in magnitude) as the
velocity after the entire system has just left the surface. It is assumed
here, of course, that u, 1s great enough that the sphere rebounds com-
pletely and with a final velocity great enough that the increment in
velocity on the final impact due to the difference in height (equal to the
sphere radius) is negligible. Equating the momentum at t = t to the
momentum at the instant the entire mass has left the surface during the
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rebound, assuming the gas is moving at the same velocity as the rest of ‘
the system prior to tr and is dispersed simultaneously in all directions
8t =Rtaoncsiinds

(myp + mg)ur = (mp + mg + m,) (-up)
Thus

U.f = —U.lA

El{A) [(mpjz?rimzm:/li?gimzmc/m)] ik

where mvr/m is the wvalue of mv/m given by equation (12) when Y has
the value corresponding to T = Tr. Of course, tr is given by

Ty = [M14] <t2A s At> (64)

r
where At is positive in this case.

DISCUSSION OF RESULTS

Performance Requirements and Capabilities

In the analysis of the performance of the inflated sphere landing
vehicle, the mass of the suspension cords has been considered. The results
are shown in figures 3 through 7. The design parameters, including the
distribution of the component masses of the system and the radius reguireds
are shown plotted versus impact velocity (the corresponding drop altitude
above the moon is shown by fig. 2). The results are given for the case
of no outside atmospheric pressure and for hydrogen as the inflating gas
with 7 = 1.41 and R = 766.5 ft-1b/1byCR. The skin strength parameter
for all results shown is o0g1/ps = 108 ft2/sec2, a reasonably attainable
value, as is discussed in reference 1. Several values of Yop and
various combinations of the values of initial gas temperature of 200° and
500° R and the values of the product of po and the strength-mass ratio
of the cords of 1.2x10% and 1.6x10% ft2/sec® are employed. These values
were computed assuming ps = 0.4 and using for (Obz/pc) typical values
of yield strength to mass density ratio of either nylon cords or steel
wires: 3X108 ft2/sec® and Ux10® ft2/sec®. Therefore, if actually
Ho = 1/2, then the results computed for [us(des/pe)] = 1.6x108 £t2/sec2
would correspond to oOgz/pe = 3.2X108 f£t2/sec?, or if uo actually is
1/3, then the results computed for [ue(oea/pe)] = 1.6x108 ft2/sec2
would correspond to ch/pc = 4.8x108 ft2/sec2. The value of p may
remain at 1/3 during the impact in some cases, whereas in others it may
vary to a number between 1/3 and 1/2. In those cases where mp/m and
mc/m arelarge, s may be nearly 1/2. It should be noted that,in the
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calculations for figures 3 through 7, there has been no consideration of
mass of any devices for attaching the cords to the sphere skin. It is
presumed that a method of attachment could be developed which would not
require a significant extra mass at the cord ends, but which would never-
theless minimize stress concentrations in the sphere skin at points of
attachment by distributing the force from a cord over a circle or an area
rather than applying it at a single point.

The performance results given by figures 3 to 7 can be used as follows:
For a given desired impact velocity, the ratio of the mass of the payload
package to the total mass of the system is found from figure 3. (Note
that these results depend strongly on the impact velocity. Their depend-
ence on the allowable strength-mass ratio of the cords is also significant,
just as it was found in reference 1 that the results depend strongly on
the skin strength parameter, dsl/ps.) The required mass of skin, mass of
suspension cords, mass of gas, and value of the product nr are found from
figures 4 through 7. For a given allowable acceleration, then, the radius
required is known. For the desired total mass, m, the required skin
thickness may be calculated from

mg = Lbar2pgd

using the value of mg/m from figure 4. The quantity NepcAc can then
be found from equation (8) using the value of my/m obtained from

figure 5. Therefore, if a given cross-sectional area for the cords and

the cord material are chosen, the number of cords required is determined.
(As a check to insure that the volume of cords is not a significant per-
centage of the sphere volume so as to affect the results, one can calculate

the ratio
me/fpc _3( m ><&>
(4/3) 13 4w Nperd3/ NI

For practical cases, this ratio is very small. In a numerical example
given later in the discussion, if the total mass is less than 1300 pounds
and if steel wires are used as the cords, this ratio is less than 1073,)
Finally, the ratio of mass of gas to total mass is found from figure 6.
The internal gas pressure may then be determined by the equation of

state, (33).

Figure 8 has been plotted to illustrate the comparison with respect
to temperature for the ratio of the payload package mass to the total
mass of the system. It is seen that mp/m varies little with varying
initial temperature of the inflating gas.

In figure 9 is given a comparison of the present results with those
of reference 1. It is seen that the results for mp/m dilffer S ol P
cantly, because the required mass of cords has been considered separately
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from the payload mass in the present report, but that they very nearly
agreeififit the walue of mp/m in reference 1 is assumed to include both
payload and required cord mass. (The reason that (mp + me)/m # (mp/m)rer. 1
is that the center of mass of mey does not remain coincident with

that of mp.) Note that at the higher velocities the mass of cords

required in the present analysis would exceed the value of , given by

the analysis of reference 1. Also note that the mass of cords required:

(for constant-area cords) does not approach zero as mp/m approaches

zero. (See also fig. 5.)

Effects of Deviations in Impact Velocity
and Initial Temperature

As indicated in the Analysis, €¢ 1s a convenient parameter for
relating the deviations in initial temperature and impact velocity to the
resulting effects of such deviations. The effects are therefore shown
in subsequent figures only as effects corresponding to deviations in E.
For convenience, figure 10 shows a graphic representation of the relation-
ship between the deviation in £ and the corresponding deviations in uy
and T; plotted directly from equation (50). It can be observed from
these curves that the largest errors in £ occur for positive errors in
T; and negative errors in wuy. However, this condition gives a positive
error in £, and, as mentioned in the Analysis, this is not the critical
case.

The effects of deviations in wuj; and Ty, through the relationship of
€y and eq, with €¢ given in figure 10, are presented in figures 11, 12,
and 13. In those cases where € is negative and where the payload has
not been decelerated to zero veldcity at ¥ = 0, the residual velocity,
Up, is given by figure Il.  The values of ujp correspond with the design
parameters given by figures 3 through 7. Curves are shown for various
values of €p and various Yop. The results are left in terms of €y
so that only et need be specified. In part (a) of figure 11 the results
are for Tip = 500° R, vhereas those of part (b) are for Typ = 200° R.
One may note that the results shown are very nearly identical for this
temperature range except for the upper end of the curve for e = -0.40 and
§ED = 0. It is seen that, when negative deviations in ¢ occur, the pay-
load may strike the surface with a high velocity if the design value of
Y= 1is too low. :As ?éD is increased, this is much less likely to occur.
In faet, for ¥, = 0.2, the payload does not strike the surface even for
gtic -0.40 under the design conditions indicated in figures 11(a) and 11(Db).

In the cases where the payload does not strike the surface before the
vehicle rebounds, the velocity will be zero at 7 = iéA and the maximum
acceleration will be n, earth g's. This occurs whenever €¢ is positive
and in some cases when €¢ is negative. Curves of ?éA versus ~-ujyp
aLe ‘given dn. figure 12,
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A result of greater interest than the value of Y¥,, for these cases
is the ratio of actual to design maximum acceleration, shown in figure 13.
Each ipeintiin sfisure: l3Mcorresponds. to g, pointiintfisure 125 Skt dsimoted
that, for many cases, the actual maximum acceleration exceeds the design
value. However, nA/nD e in general, not much greater than unity. This
ratio tends ;fowbe near or less than unity especlally at the higher weloeci-
ties, whichiare of grester .practiecal interest. The higher values of
(np/np)/(1 + ey)® occur for positive values of €¢ and for low design
impact velocities. It is seen from figure 10 that large positive wvalues
o e occur only for negative values of €3. Thus the actual value of
nA/nD will be less than (nA/nD)/(l + eu)2 plotted on figure 13 when €¢
has a large positive value. Figures 13(a) through 13(d) show that nA/nD
is slightly greater for higher Yop when €¢ is positive, but that
nA/nD i Jower for- higher - Jop . when: e is' negative .  The resultsifor
nA/nD are useful not only in determining the actual maximum acceleration
of the payload but also in finding the actual maximum stress in the cords.
For this purpose, it can be shown from equations (24), (25), and (26) that

Teon B {(mp/mc) - BEAJ

5 (65)
(mp/mc) + Bop

= e—

Copp. 1 Ay

where Bp, is the function of ¥, given by equation (28) and Bop
is the same function of Fop,

fnedicri tieal deviation dn:-‘ty eg*, may be defined as the fractional

error, for a given design case, which causes the sphere to just compress
to a hemisphere; that is, the deviation in € has a value such that

§EA =0@:at I §éD = 0, then, of course, e * = 0. Plotted in figure 1k are
" the values of —ce¥ corresponding to design impact wveloeity. It will
again be noted that all cases considered here are calculated for a vehicle
designed according to figures 3 through 7. It is seen that if the vehicle
is designed with ?éD only slightly greater than zero the critical value
of eg 1is fairly large. For example, a vehicle designed for ?éD =H0eLOY
an impact velocity of 500 ft/sec, and the other conditions as indicated
in figure 14(a), can experience a negative deviation in ¢ as large as
25 percent and not have the payload strike the surface. If, instead,
§ED 1s00R20 chen bhetnegative deviation in. £ eanibe as large as 45
percent. It may be noted that these results depend very little on Tqp
in the range shown here.

As an example of the use of the above results, suppose a moon-landing
vehicle is designed for an impact velocity of 500 ft/sec (which corresponds
to a drop from an altitude of 23,000 ft above the moon's surface), an
initial hydrogen gas temperature of 500° R, an allowable skin strength
parameter cslﬁg = 10° ftg/secz, allowable strength-mass ratio of the
cords of 4x108 ft2/sec® (assuming ps = 0.4), and Yop = 0.10. Suppose
also that the maximum acceleration allowed is 2000 earth g's. From the (a)
parts of figures 3 through 7, the results are: mp/m = 0., mg/m = 0.258,
mc/m = 0.287, mg/m = 0.014, and nr = 11,200 feet. The radius required is
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therefore 5.6 feet. Because the vehicle is designed for §éD = 0.10,
there can be some error in & and the payload will still not strike the
surface (if the size of the payload itself is not considered). The
critical error, from figure 14(a), is et* = -0.25. This might correspond,
for example, from figure 10(b), to &y = 0.20 and ep = 0.08; that is, the
actual impact velocity can be 20 percent higher than design, or 600 ft/sec,
if the temperature is 8 percent higher than design, or 540° R, before

the payload will strike the surface with any residual final velocity-.
Suppose , however , that the deviation in ¢ exceeds the critical value
(negatively). For example, suppose that the initial gas temperature is

13 percent lower than the design temperature, or only 435° R, and that the
impact velocity is 20 percent high; then €, = -0.40. One can see then,
from figure 11(a), that -up/(1 + €,) = 222°ft/sec and therefore that the
payload will strike the surface with a final velocity of 266 ft/sec.
Consider now the opposite case in which the deviation in ¢ from the
design condition is less than the critical value. Take, for example,

€ = -0.10. This deviation in ¢ would occur if there were no error in
impact velocity, but a =10 percent deviation in temperature, that is,

T1p = 450° R. It is found from figures 12(b) and 13(b) that the payload
then reaches zero velocity at §éA = 0.064 and that the maximum
acceleration, in earth g's, is n, = 0.992(2000) = 1980.

Considering the above results, one can now evolve a "design philosophy"
for the inflated sphere landing vehicle; that is, one can determine how
the design parameters should be chosen for religbility. From figure 3 it
is seen that the payload is somewhat ggcreased when §éD is increased
above zero. For small increases in Yy,p, the decrease In payload is small.
Figures T7(a) through (d) show that the radius required is not significantly
affected by increasing Y,p. Figures 14(a) through (d) then show that the
critical (allowable) deviation in & is greatly increased (in magnitude)
by increasing §éD sldghtly. 1If the eriticaldevigtion in & 15 only
slightly exceeded negatively, figure 11 shows that the final impact
velocity of the payload is very high, and therefore critical. Figure 13
shows that the consequences of negative deviations in ¢ less in magnitude

than the critical value and of positive deviations in ¢ are insignificant.

It is now apparent that a value of §éD should be used which is as
high as possible but which allows a sufficient payload-landing capability.
The actual ¥pp wused will, of course, be dictated to some extent by the
expected deviations from design conditions. It should be noted that the
choice of design 7y» should also take into account allowances for the
size of the payload, for slight elastic elongation of the suspension cords,
and for the probable unevenness of the impact surface.
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Effect of Error In the Time at Which Skin Is Ruptured

Shown in figure 15 is the final impact velocity versus ~-ujp, to
which correspond the design parameters given in figures 3 through 5" tom
various errors in the time of skin rupture. DNote that results are given
only for €, = O and would be different if € deviated from the design
value. Thede results may, however, be used when there is a deviation
from the design impact velocity, provided

ET = €u(2 i €u) 5 (eg = O)

The reader will note that the results are given for dimensionless time
errors. One will recall from the analysis that, when At is negative,
Wp 1is just the value of W when 1t = tp = to, + At, but that when At
is positive, Ur must be calculated from equation (63). The results for
negative At are indicated by solid lines and those for positive At,

by dashed lines. Evidently negative errors in the time of skin rupture
(i.e., early rupture) cause the payload to experience a higher final
impact velocity than do positive errors. As an example of the results,
consider the case discussed above in which ujp = -500 ft/sec, Yop = 0.10
and Ty = 500° R, but in which there is no deviation from the design
temperature or velocity. The radius for that case is 5.6 feet.  Therefore

AT L D00 THfgee o At
BEGEET 0.0112 sec

It can thus be found directly from figure 15(b) that the final impact
velocity of the payload for this particular case would have the values

in the following list for the given examples of time errors.

G -
t seé ft/géc
Eoeis -0.00168 107
=10 00112 72
- 05 - .000560 36
gk g i - JDOOELR .5
0 0 0
ol .000112 6
.05 .000560 29.5
.10 .00112 58
15 .00168 86.5

Tt is seen that the time error must be very small if the final impact
velocity is to be small. One may note, however, that At in these results
is proportional to the sphere radius, so that if a larger radius is used
(and, consequently, a lower maximum acceleration) the values of At in

the above list will be larger.
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Demonstrated by the results of figure 15 is the fact that, if the
sphere skin is to be ruptured to prevent rebound, it is essential to
develop a method for rupturing the skin at the precise moment the velocity
is zero with respect to the impact surface.

CONCLUDING REMARKS

The performance of the inflated sphere landing vehicle, wherein a
payload to be landed is centrally suspended by numerous cords, has been
evaluated with regard to allowable mass of payload package, mass of skin
required, mass of suspension cords required, mass of gas required, and
radius of sphere required. The analysis suggests that the inflated
sphere landing technique is a feasible method to use, for example, in' the
terminal phase of a moon landing which is initiated at an altitude as
great as 25,000 to 50,000 feet from the surface.

From the results of the analysis in this report, in which the required
mass of suspension cords has been approximately calculated, it has become
evident that the fraction of the total mass of the system taken up by the
mass of cords is, in general, of significant magnitude. It is seen upon
comparing the results with those in a previous study, in which the mass
of cords was assumed to be negligible, that the payload mass given in that
study closely agrees with the sum of payload and required cord mass as
given in the present study. The résults of the present report allow
determination, however, of the actual portion of the mass available for
payload.

It is indicated that the skin-strength parameter and the strength~
mass ratio of the suspension-cord material are important in determining
the performance requirements and capabilities of the system, that is, the
performance results depend critically on the allowable values of these
parameters. Therefore, although the landing vehicle is shown to be
feasible with the use of presently available materials, large gains in
performance are to be expected as stronger, light-weight, filament-type
materials for use in construction of flexible fabrics and cords become
available.

The effects of deviations from design initial temperature and impact
velocity have been studied. The conditions have been found for whieh, if
the vehicle is designed to compress to a volume somewhat greater than a
hemisphere, a successful landing can be accomplished even if the design
impact velocity is exceeded and/or the design initial temperature is not
achieved. Critical deviations are found which, if exceeded, will result
in the payload striking the surface with high velocity.
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16 has been found that, if the isphere skin is toibe ruptured o
prevent rebound, the effects of errors in the time at which the skin is
rupbured may be-very critical unless these time. errors are exceedingly
smally, sinsthe order-of ‘0.1 milliseeond for al0-foot diameter sphere.

Ames Research Center
National Aeronautics and Space Administration
Moffett. Field, Calif., Nov. 22, 1960
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APPENDIX

INFIATED SPHERE LANDING VEHICLE WITH

TAPERED PAYIOAD SUSPENSION CORDS

In the Analysis, the payload suspension cords were assumed to be of
constant cross-sectional area. Because the cords themselves have mass,
then, the stress is not constant over the length of one cord at a given
instant during the impact acceleration. The maximum allowable stress then
occurs at only the top end of the vertical cord, and the stress in the
remainder of the vertical cord is less than the maximum allowable at the
instant of maximum acceleration. Hence the entire mass of cords is not
being used to maximum advantage. The optimum use of the mass of cords
can be realized if the stress in the entire length of the cords reaches
the maximum allowable value during the impact. If this condition is
imposed, the cords will be tapered, and the appropriate cord cross-
sectional area distribution can be calculated. While possibly not as
practical nor as easily fabricated as the system using constant-area cords,
the system with tapered cords is studied in this appendix to show the
advantages in payload-landing capability.

In addition to the symbols used in the text of the report, the
following are applicable to the analysis in this appendix:

As' local area of suspension cord cross section

A* value of A.' at 7 =0

b parameter defined by equation (A13)

* 9'/0o' , distribution of force in the cords

Bs! given by equation (A20)

oM tensile force in one cord (function of 6, 1, and y (or t))

o' total vertical force in the cords at a radial distance 17 in
0<6 < x/2

The conditions and assumptions used in the text for the case of
constant-area cords will be retained and equations will be developed for
the case of cords of cross-sectional area which varies so that the stress
in the entire vertical cord has a constant value at the instant of maximum
acceleration. Equations (1) through (5), (13), and (14) in the text
determine the motion during impact for specified values of mp/m, ms/m,
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mc/mv and &, provided an expression for mcv/mc is known. (The procedure
discussed in ref. 1 for finding the required value of £ to realize g
specified ¥F. may also be used.)

Calculation of the Cord Cross-Sectional Area and
Effects of the Cord Mass and Cord Forces

For the purpose of determining an expression for m,.y, in place of
equation (7) one must now write for the cord mass in a radial element,
dn, and an element of 6, dé

dm, = % NepchAe'sin 6 d6 dn (A1)

vhere A.' = A,'(n). The total mass of cords is
£
me = Ncocf Ac'dn (42)
o

An expression for the portion of the mass of cords in motion, m.,, 1s then
determined by combining equations (A1) and (A2) and substituting the
result for dm, into equation (10). The expression is found, at this
point, only in terms of the area distribution of the cord cross section:

7 —y/cos C]
u/‘ JF A.'dn sin 6 46
et P AL e L
2

fle T
zk/p Aptdn
o

The development which follows will lead to a determination of
Ac'(n). 1In this analysis the function @' will be defined as the tensile
force at the radial distance 17 1in the cord at angle 6. (Note the
difference between @' and the function ¢ wused in the text for cords of
constant cross section.) Then the distribution of force in the cords,
£, s defined by

(A3)

ot = o' (y, 6, n) = o'y, Nf(y, 6) (Ak)

The total vertical force in the cords at a radial distance n over 6
from zero to w/2 is found by substituting equations (6) and (A4) into
the following expression:

6=n/2
o' (1) =\/; @'cos 6 AN, (45)

=0

Thus

gt = % NCCPO'(}", T])IJ (A6)
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where p is defined by equation (20). The force ®'(n) is being used to

decelerate the mass of payload, the moving mass of cords below the
horizontal diameter, and the mass of cords above a horizontal diameter
within a radial distance m from the center. Therefore the mass being
decelerated by o'(n) is

m) |1 L
5 <%cv Sl o Ncpc\jp Ag'dn
o

Because all parts of the moving portion of the system have the same
velocity and acceleration, ¥ may be written

me n
“% (%p Elllay, — 35 % NcPcL/n Ac'dj> (A7)
o
From equations (A6) and (AT)

1
o Ncu < ><mp o+ By %c— NchL/; Ac'dﬂ> L

Because the cord cross—sectional area is made to vary so that the stress
in a cord 1s constant throughout the length of the cord at a given time,
one may write

@' = ey, 6)Ac*(n) (29)

The maximum stress occurs in the vertical cord (6 = 0) at the instant
of maximm acceleration (du/dt = nge) and is denoted by gez. From
equation (A8), then,

A me 1 L
(C c2 2>A (n) = nge<mp + Moys — ? & 5 Neope f Ac'd.'r]> (AlO)
(0]

where meys 1is the value of m.y given by equation (A3) when y =
The solution of the integral equation, (A10), is

Act(n) = A*ePT (A11)
where

f-= N (a12)
and e

e 55%3227537 (£13)

and where A*, the value of Ac! at 1 = 0, is found from equation (AlO)
to be
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“Fagb Tows AL J
A* = + - = Ak
Noper [mp mc< e 2> ( )

Equation (All) shows that the cord cross-sectional area distribution
should be exponential with radial distance in order to have constant
stress In a cord. The quantity mcvg/mc in equation (Al4) is determined
by the condition y = y» when the relationship for mcv/mc is known.
Substitution of equation (All) into equation (A3) gives the required
relationship:

r-1t¥,1LD-2rT) fa
mc 2 2 eb o l
where
T -
(%) =f e~bF/cos 6 gin g ag (A16)
o
The transformation
cos 6 == (ALT)
W
then leads to
L (o)W,
T = _ka e dw (Al8)
o
which has the solution 33
0 (b= o g™
I(?) = by - 7eb - by logey - b?Z[—TI;— (Al9)

n=1

The quantity mcv/mc as a function of 7§ is now completely determined,
by equations (A15) and (Al9), in terms of the parameter b. Thus, by use
of equations 52), (5), and (A15), the quantity m,/m 1is completely
determined for use in equation (3) when my/m, mg/m, me/m, and b are
specified. The cord cross-—sectional area distribution 1s given by equa-
tion (All) where A* 1is given by equation (AllL) and where mevs/me

may now be found from equation (Al5) to be

Bt Howm 1l+¥ 1 [I(?z) sk +72] (A20)
e 2 2 ol i |

The parameter b in the above development involves uz. As
discussed on page 10 of this report, the final results can be given in
terms of [UQ(Ubg/pc)] and po can be estimated. Also as discussed, as
long as the skin tensile stress remains greater than zero at all points
in the upper hemisphere, the skin above a horizontal diameter can be
assumed to act as a rigid shell. Then the total elongation of each cord
in 0<6< wn/2 due to a small vertical deflection Sp of the payload
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package is

T

3 o'

8pcose-—f 2_an <cs>o oy oses§> (a21)
(6] C

Because o, 1s invariant with 7, substitution of equation (A9) into
(A21) gives the result

OpT
8pc08 6 = -%— ] <}s Bl L g < g% g) (A22)

and further use of equation (A9) with (A22) gives
Ed
o = Ac'<—?3>cos 2] (A23)

from which equation (A4) gives
f = cos 6 , o ol 0<6< n/2) (A2k)
Then, from equation (20), if og >0 at all 9 in 0<6 < 7/2,

b= —é- (A25)

As explained on page 11, for those cases in which (US)O is reduced
to zero at some time during the impact, the value of po will lie
between 1/3 and 1/2.

Landing Performance

In order to calculate the design payload-landing performance, the
required relationships among the masses of the various components of the
system and the sphere radius are found by a procedure similar to that
used in the text for constant-area cords. Two of the required relation-
ships are supplied by equations (16) and (38) in the text. A third
expression is found by substituting equation (All) into (A2) to obtain

*
L NCDEPA (eb L8 (A26)

which may be combined with equation (AlL4) to yield

T = adte s e
T % (el s D)l ~ e h)
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where ﬁ( ) indicates m( )/m. A fourth relationship, obtained from
equation (34), may be written as

w2 Biﬁsmg ¥
oy + Pells + Bz 'me

(A28)

The four equations, (16), (38), (A27), and (A28), may be used to find

the four quantities mg, Me, Mg » and nr in terms of ﬁ? and the various
other input parameters involved. The product nr is implicitly involved
in these equations since, from equation (Al3),

b L LBD (429)
2By

The explicit relationships can therefore be most easily found by a simple
"trial and error" or iteration procedure. For a given value of m
and glven values of the various input parameters involved, an arbitrary
value ‘for the product nr can be used for the first trial in the itera-
tion. The corresponding T, can then be calculated from equation (A27),
and mg and MWy can be calculated from equations (38) and (16), respec-
tively. Then, when the correct value of nr has been tried, equation
(A28) will be satisfied, and the corresponding correct values of Tme, Mg
and T, will be found. The design quantities (i.e., the mass ratios and
the sphere radius) then correspond to a certain impact velocity uy, which
can be found only by integrating the differential equation of motion, (3),
to obtain the required ¢ (by the procedure outlined in ref. 1) and by
making use of equation (L&). :

The equations in this analysis were programmed for solution on an
IBM type TO4 electronic data-processing machine. The differential
equations involved were integrated by the Adams-Moulton predictor-corrector
method. A comparison of the payload-landing capability of a sphere with
exponentially tapered payload-suspension cords with that of a sphere
employing constant-area cords is shown in figure 16. The results are
shown only for ys = 0, 0g1/ps = 108 ft2/sec®, and Ty = 500° R, and
correspond to values of [ps(oez/pc)] as indicated. It is seen that the
use of the exponentially tapered cords affords a somewhat greater
payload-landing capability at a gilven impact velocity. The principal
advantage is realized when low values of mp/m are used, in which cases
the impact velocity allowed is significantly higher. ' Specifically, for
s (0es/pe) = 1.6x108 £t2/sec® (which corresponds to gep/pe = x10°
ft2/sec® if up = 0.4). a sphere with mp/m of one-fifth can land at 11
percent higher veloclty, and if m?/m. is l/lO, the increase in impact
veleoelty afforded.is 17 percent.
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