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SUMMARY

Surface pressures, impact and static pressure distributions in the
flow field over the plate, and local heating rates were measured on a
flat plate with various leading-edge diameters. The tests were conducted
at a Mach number of 4.7 and a free-stream Reynolds number of 3.8XlO6 per

Foot,

It was found that the shape of the shock wave indicated the existence
of an outward deflection of the flow over the plate., The flow deflection
caused an outward deflection of the shock-wave asymptote of approximately
39; this angle is much larger than the shock-wave angle calculated
including boundary-layer growth. The Mach number distributions in the
shear layer evaluated from pitot and static pressure surveys agreed with
predictions based on shock-wave shape. The predicted turbulent heat-
transfer coefficients for the blunted flat plates agreed with the meas-
ured heat-transfer coefficients. A comparison between the measured heat-
transfer coefficients for the blunted flat plates and the calculated
coefficients for a sharp leading-edged plate indicated that the coeffi-
cients were highest near the leading edge of the most blunted plate. The
measured heat-transfer coefficients dropped to approximately 80 percent
of the sharp-plate values at a considerable distance from the leading
edge for all of the blunted flat plates.

INTRODUCTION

Use of blunted aerodynamic shapes is a well recognized technique
for reducing aerodynamic heating at hypersonic speeds. The flow field
and surface pressure phenomena associated with blunted shapes differ con-
siderably from the flow field associated with sharp, slender bodies at
Mach numbers above about 5. The flow over a flat plate with a blunted



leading edge has been considered in a number of theoretical and
experimental studies. One of the earliest considerations of the problem
was in reference 1 where it was observed that at M, = 6.9, the pressure
on the forward wedge surface of an airfoil was not constant as classical
inviscid flow theory would predict. It was suggested that the growth of
the boundary layer on the surface created, in effect, a curved surface
which caused the observed pressure distribution.

Following this initial work a number of analytical papers were pub-
lished which attempted to calculate the flow field caused by this viscous-
inviscid interaction. They can be divided into two classes:

1. Those which applied the boundary-layer equations to the whole
region between the plate and the shock wave (e.g., refs. 2-5).

2. Those which divided the region between the shock wave and the
plate into a boundary layer and an inviscid region (e.g” wetsh
6-10).

Experimental studies of hypersonic flow of helium over blunted flat
plates indicated that the pressures on the surface were considerably
higher than those predicted by the viscous-inviscid flow interactions.

It was found for example in reference 11 that the leading-edge thickness
had an important influence on surface pressures. Blast-wave theory has
been used to predict the effect of leading-edge bluntness on surface pres-
sures but has been able to account for leading-edge blunting effects

only when viscous effects are small as noted in references 12, 13, and 1k,
In reference 15 pressure distributions on flat plates with various leading-
edge configurations were correlated by assuming a linear combination of
the boundary-layer parameter given in reference 7 and the blast-wave
parameter given in reference 1Lk, The investigations of references 12
through 15 were mainly concerned with the measurement and correlation of
surface pressures and shock-wave shapes.

The purpose of this investigation is to study the entire flow field
over blunted flat plates. It is hoped that the results of this study
will serve as a basis for the development of methods for predicting heat-
transfer rates downstream from the blunt leading edge for both laminar
and turbulent boundary layers. Surface pressures, impact and static pres-
sure distributions in the flow field over the plate surface, and local
heating rates were measured on a flat plate having various leading-edge
diameters.
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SYMBOLS

cross-sectional area of a stream tube entering shock wave
(see fig. 3(b))

cross-sectional area of stream tube behind shock wave
(see fig 3(b))

isentropic area contraction ratio from Mach number M to Mach
number 1.0

®h (3.

[Oﬁég5 %Y + 0.166(7 - 1)}7
e 0

drag coefficient of cylinder

average skin-friction coefficient,

i

g
f Cfd_X
O

constant in linear relation between viscosity and temperature,

Hywle
HeTy
0.112 (CD)2/3 (for air)
du/q;
local skin-friction coefficient, ES._Z_Z)
(1/2)pu

specific heat at constant pressure, Btu/lb, OR
leading-edge plate thickness, in.

5%
boundary-layer shape parameter 2
heat-transfer coefficient, Btu/sec, ftZ, °R

2
(23]

blast wave pressure term, -
2/3
(x/a)

thermal conductivity, Btu/sec, £t2, CR/ft



distance along body from sharp leading edge, ft (see fiilig. 1)

Mach number

stagnation pressure, lb/sq ft

Q
Prandtl number, EEE

static pressure, 1b/sq ft

local heat—transfer rate per unit area, Btu/ft2 sec

ueped

Reynolds number,
He

Reynolds number, Sebex
He

Reynolds number, YooPooX
Moo

UgPeb

Reynolds number,
He

leading-edge radius, in.

h
PeleCp

Stanton number,

temperature, °RrR
imes see

air velocity, ft/sec

coordinate length in stream direction, ft (see fig. 3(b))

distance from foremost point of detached shock to dintercept
of its asymptote on x axis, ft (see fig 3(b))

distance along the body from plane tangent to leading edge, ft
coordinate length normal to stream direction, ft (see fig. 3(b))
distance normsl to plate surface, ft (see fig. 3(b))

defined in figure 3(b)
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ratio of specific heats
detachment distance, £t (see fig. 3(b))
boundary-layer thickness, ft

boundary-layer displacement thickness, £t

angle between sonic line and normal to free-stream direction,
deg (see fig. 3(b))

boundary-layer momentum thickness, ft

wedge half-angle for which shock becomes detached, deg (see
fig. 3(b))

angle of streamline relative to x axis, deg (see fig. 3(b))
coefficient of viscosity, lb/sec ft

density of air, 1lb/cu ft

density of model material, lb/cu ft

thickness of model material, ft

local inclination of detached shock relative ol S es ide
(see fig. 3(Db))

interaction parameter
Subscripts

conditions at surface for zero heat transfer

centroid of stream tube passing sonic line

local stream condition at outer edge of boundary layer
Mach angle

model material

sonic point on detached shock wave
sonic point on body
conditions at the shock wave

conditions along sonic line




t effective start of turbulent boundary layer
tb theoretical values for blunt leading-edged plates
ts theoretical values for sharp leading-edged plates
W conditions at surface of model
00 undisturbed free-stream conditions
I8 discrete point in the shear layer
Superscripts
n exponent which depends on the temperature-ratio variation

of wviscosity

£) conditions at which incompressible flow relations must be
evaluated in order to represent compressible flow

DESCRIPTION OF EQUIPMENT AND TEST METHOD

Wind Tunnel

The tests were conducted in the Ames 10-Inch Heat Transfer Wind
Tunnel which is a variable-pressure, variable-temperature, continuous-
flow type with a Mach number range from 3 to 5. A description of the
wind tunnel can be found in reference 16. The conditions at which the
wind-tunnel tests were performed were a free-stream Mach number of 4.7,
which was determined from the ratio of the tunnel side-wall pressure
(measured upstream of the shock wave of the body) to the reservoir pres-
sure, a free-stream Reynolds number of 3.8x10°% per foot, a stagnation
pressure of 87 psia, and a stagnation temperature of 850° F.

Test Body

The body tested was a flat plate 10 inches wide by approximately
16 inches long and 3/L4 inch thick with four interchangeable circular
leading-edge slugs as shown in figure 1. The plate spanned the full
width of the wind-tunnel test section. It consisted of a stainless steel
framework covered with a type 321 stainless steel sheet 0.125 inch thick
on the bottom and 0.063 inch thick on top to form the testing surface.
The center portion of the framework was channeled out to a depth of
approximately 1/4 inch and a width of 2-1/2 inches to minimize heat
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conduction from the testing surface and to allow for the passage of
thermocouple wires and pressure tubes. Great care was taken to keep the
surface smooth and level. A profilometer record taken along the center
line showed two scratches no greater than 50 microinches deep and the
remaining deviations no greater than 5 microinches.

The test surface was instrumented with 11 pressure orifices 0.0135
inch in diameter distributed as shown in figure 1. Surface pressures
were measured with a dibutylphthalate manometer. Temperatures were meas-
ured by 33 chromel-constantan thermocouples spot welded to the underside
of the stainless steel skin. The first 11 were placed on the center line
at stations corresponding to the locations of the pressure taps. The
remainder were placed 0.57 inch in a spanwise direction from the centenr
line. Number 36 B and S gage chromel and constantan wires were selected
as the thermocouple materials because of their high thermoelectric

potential.

To obtain a turbulent boundary layer over most of the plate it was
necessary to use an artificial trip. Two strips of 1-50-D garnet paper,
3/8 inch wide, with most of the backing removed, were used for this pur-
pose. They were cemented on the top surface l/h inch from the leading
edge and 1/8 inch apart.

Boundary-Layer Survey Apparatus

Impact and static pressures were obtained throughout the flow region
between the plate and the shock wave by probes mounted on a mechanically
actuated apparatus which had three translational degrees of freedem
(within limited ranges). The static pressure was measured with a long
l/l6—inch—diameter ogive-shaped needle and the total pressure was measured
with a l/32—inch—diameter tube whose opening was flattened to approxi-
mately a 0.005-inch height. The survey apparatus was mounted in the side
wall of the wind-tunnel test section and the probes were mounted on the
end of a diamond-shaped strut which extended into the air stream. Probe
position was determined by reading three counters which were connected to
the drive mechanisms for the x, y, and z axes.

It was possible to obtain continuous plots of impact and static
pressures against distance from the surface of the plate in the following
manner. The pressure detected by the impact pressure probe was fed into
a pressure cell of the unbonded strain gage type. This cell was calibrated
at the beginning and end of each survey by means of a mercury manometer.
The output from the pressure cell was fed into a function plotter where
it was plotted continuously as the abscissa. The position of the ordinate
was obtained from the vertical travel of the survey mechanism.




Heat-Transfer Measurements

The technique of transient temperature rise was used in the heat-
transfer measurements. The output from the center line thermocouples
was fed through an amplifier and differentiator. The temperature and
temperature-time derivatives were recorded on a 50-channel oscillograph.
The remainder of the thermocouples were comnected directly to the oscillo-
graph. All thermocouples were referenced to an ice bath.

The following experimental procedure was maintained during the test
runs. The wind tunnel was operated at a stagnation temperature of 250°. F
until all parts of the test section were in thermal equilibrium and then
the local recovery temperatures of the plate were recorded. Next, liquid
nitrogen was injected upstream of the first throat to cool the plate to
approximately 100° F below the recovery temperature. When the minimum
temperature was reached, injection of the liquid nitrogen was suddenly
stopped, and the temperatures and temperature-time derivatives were
recorded on the oscillograph as the plate was aerodynamically heated.

REDUCTION OF DATA

Determining Heat-Transfer Rates

Tocal heat-transfer rates were evaluated from the oscillograph
readings of temperature and the time rate of change of the temperature,
by means of the following general heat balance equation:

dplate = %aerodynamic * Ytare

or (1)

aT,
2 s h(Tp - Ty) + Atare

The conduction losses in the spanwise direction were calculated from
experimental data obtained from the thermocouples on either side of the
model center line and were found to be negligible for the temperature
gradients encountered during the tests.

The radiation and internal conduction losses were experimentally
determined and are represented by the qig ... Tterm. This term was
obtained from readings of temperature and the time rate of change of
this temperature for the cooled plate at the end of a run immediately
after the wind tunnel had been shut down. The static pressure during
this run was approximately the same as when the tunnel was running. The
magnitude of 9t ope TS approximately 10 percent of the aerodynamic
heating term (qaerodynamic)° The plate density in equation (1) was found
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experimentally, and the specific heat of the skin and its variation with
temperature were obtained from data published in reference 17.

The primary variables to be measured in equation (1) were the wall
temperature and the time rate of change of this temperature. Temperatures
were measured directly by the deflections of the galvanometer traces. The
temperature rates were obtained by two methods: direct measurement of the
galvanometer traces of the differentiator output, and measurement of tem-
perature differences over small increments of time to determine an average
slope by means of the ratio ATy /At. The differences noted between the
two methods were random and did not exceed the experimental scatter.

Evaluating a Local Reynolds Number and Effective Length

The Reynolds number is customarily expressed in terms of a charac-
teristic length. For a laminar boundary layer the characteristic length
is the distance back from the leading edge of the body. For a turbulent
boundary layer, with natural transition, the characteristic length 1is
some lesser distance because the turbulent boundary layer grows at a much
faster rate than the laminar boundary layer. When a turbulent boundary
layer is induced artifically its characteristic length is not readily
determined. The presence of a trip causes a loss of momentum in the
boundary layer and a consequent thickening which cannot be correlated by
using the geometric length of run of the boundary layer. Therefore an
effective origin for turbulent flow is based on the measurement of the
boundary-layer momentum thickness and its correlation with the skin-
friction coefficient. The expression for the length of run from this
origin to any point on the plate is given by

1.22/ 1! Gk He
i 2<T;> <peue> (2)

which is derived in appendix A. Using this equation is equivalent to
determining the local skin-friction coefficient at a particular station
and then calculating the length of run for a completely turbulent boundary
layer which would produce that local skin-friction coefficient.

RESULTS AND DISCUSSION

Surface Pressure Distribution

The measured pressure on the plate surface for various leading-edge
diameters as a function of the distance from the leading edge is shown
in figure 2. The solid line in figures 2(a), (b), (c), and (d) repre-
sents values predicted by the method given in reference 15. These values
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are for a plate with a laminar boundary layer and were calculated from
the following equation:

P X
_w=l+b——+2§I/3 (3)

i Nl

The magnitude of the viscous boundary-layer growth term BQ/JE; was

small for these calculations and has little effect on the predictions
shown in figures 2(a), (b), (¢),and (d). A modification of this equation
for the turbulent boundary-layer case is given in appendix B. The cal-
culated pressure distribution for a turbulent boundary layer is essentially
the same as for a laminar boundary layer, and therefore is not shown in
figure 2. The data in this figure also indicate no difference in pressure
distribution between the two types of boundary layers. With a blunt
leading edge the boundary-layer profiles showed the trip was an effective
means for obtaining a turbulent boundary layer because of the reduced Mach
number at the edge of the boundary layer. With a sharp leading edge the
use of a trip was not so effective, and transition to a turbulent boundary
layer occurred at a considerable distance downstream. The calculated and
measured pressure distributions agree reasonably well for the blunted
plates, with the exception of the plate with the 0.250-inch leading-edge
radius shown in figure 2(a). For this plate a considerable amount of
experimental scatter occurred in the data taken on the rear half of the
plate.

The solid line in figure 2(e) represents values predicted for a
laminar boundary-layer growth on a sharp leading-edged flat plate. For
this case the data agree fairly well with the predictions based on laminar
boundary-layer growth on the forward portion of the plate. Near the end
of the plate a slight pressure rise is noted which corresponds to a Mach
number gradient of 0.06 per foot and is probably caused by the small Mach
number gradient in the test section over this length.

Shock-Wave Shape

The shock-wave shapes for the blunted flat plates were experi-
mentally determined from impact pressure surveys above the surface of
the plates. A sudden change in the impact pressure occurred when the
probe crossed the shock wave and this determined the location of the
shock wave at any particular position along the length of the plate.
The dimensionless detachment distance, A/d, estimated from measurements
compiled in reference 18 was approximately 0.24.

An approximate method was devised in reference 19 by Moeckel to
determine the detachment distance and shape of detached shock waves. The
method depends only upon body shape and free-stream Mach number. It is
based on the following assumptions: (1) that the sonic line is straight
out to the shock wave from the point where body slope equals the wedge
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angle for shock detachment, and (2) that the shock-wave shape is a
hyperbola normal to the free-stream direction on the axis of symmetry
and is asymptotic to the free-stream Mach line. The hyperbola is repre-
sented by the following equation:

Yo = -]B X2 - XO2 (h')

A sketch of the flow field between a blunted flat plate and the shock
wave is shown in figure 3(a) and a schematic diagram of the shock wave
and the pertinent symbols used in equation (4) are shown in figure 2kl

Shock-wave shapes as measured on the plate equipped with 0.250-,
0.062-, and 0.015-inch leading-edge radii are shown in figure e, 0
this figure yg Versus Xgy is plotted, where ygy 1is the ordinate of
the shock wave at the distance xgyw along the X axis (see insert on
fig. 4(a)). The data were obtained when the plate was not equipped with
a boundary-layer trip. The boundary layer on the plates, as determined
from boundary-layer velocity profiles, was laminar throughout the full
length of the plates with 0.250- and 0.062-inch leading-edge radii. For
the plate with a 0.015-inch leading-edge radius, the boundary layer was
turbulent throughout most of the length. Shock-wave shapes were also
experimentally determined for the plates with 0.250- and 0.062-inch
leading-edge radii when they were equipped with a boundary-layer trip and
the boundary layer was turbulent. These shock-wave shapes did not differ
from the ones presented for a laminar boundary layer. The data shown in
figure 4(a) are replotted in figure L(b) as ygw/d versus xgy/d where
the shock-wave coordinates are made dimensionless by dividing them by the
leading-edge thickness d. A prediction of the shock-wave shape using
Moeckel's method (ref. 19) is shown by the solid curve in figure L(v)
labeled P = 4.59. This value was obtained from the assumption postulated
in Moeckel's approximate method that the shape of the shock wave should
be a hyperbola asymptotic to the free-stream Mach line. This led to the

value of B = N M2 - 1 in equation (4). As seen from figure L(b), the
data do not agree with the solid curve at the higher values of eirl @

but do agree reasonably well with the dashed curve labeled B = 3.70
throughout the entire xgy/d range. Thus, the measured data for Ghie
shock-wave shape are correlated with a hyperbola whose asymptote has a
slope of 15.1° as shown by the dashed curve in this figure. This angle

is considerably higher than the free-stream Mach angle of 12,289, At
large values of xsw/d the slope of this curve is approximately constant
and thus is equal to the slope of the asymptote. Therefore the shock-wave
shape depicted by the dashed curve appears to represent an outward deflec-
tion of the flow over the plate, resulting in a change in the shock-wave
angle of approximately 2.82°. The viscous boundary-layer growth term

bX/Cyw given in references 7 and 10 predicts that the displacement
thickness associated with the boundary-layer growth on these plates
results in a shock-wave deflection angle on the order of 0.2° or less,
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depending on whether the boundary layer is laminar or turbulent.
Therefore, it appears that the increase in shock-wave angle of 20290
caused by something other than normal boundary-layer growth.

A theoretical and experimental study of leading-edge bluntness and
boundary-layer displacement effects in air at M = 12.3 has been reported
in reference 20. A considerable portion of the experimental investigation
was concerned with the measurement of shock-wave shapes on sharp and blunt
leading-edged flat plates. The data from these tests are presented in
figure 4(c) where ygy is plotted versus xgy. In figure 4(d) these data
are made dimensionless by means of the leading-edge thickness d. Theo-
retical predictions from the zero order theory and strong blast wave pre-
dictions as obtained from reference 20 are also presented in this figure.
Curves representing Moeckel's approximate method and its modification
identified as B = 12.26 and B = 5.81, respectively, are also shown in
this figure. Since the data of reference 20 were presented in terms of
the horizontal distance from the leading edge of the plate, the dimension-
less detachment distance A/d was needed for the calculation by Moeckel's
method. Measurements obtained from schlieren photographs given in the
report served to determine this distance.

From figure 4(d) it can be seen that at large values of Xgy/d,
Moeckel's approximate method agrees fairly well with the theoretical pre-
dictions presented in reference 20. This indicates that all these theo-
retical predictions assume that the shock wave approaches a Mach line
(i.e., B = 12.26) at large values of Xgy/d corresponding to a Mach angle
of 4.66°. The data in this figure, however, lie above these predictions,
signifying an outward deflection of the flow which is adequately repre-
sented by the modified form of Moeckel's method wherein B = 5.81 which
corresponds to an angle of 9.77°.

To investigate in more detail the effect of leading-edge thickness
on shock-wave deflection, asymptotes were determined for the shock waves
presented in figure 4(c) for M, = 12.3 conditions. The angles of the
asymptotes are listed as Qg in the table given in figure 4(c). As may
be noted from this table, the asymptote angle ¢4, varies from approxi-
mately 7.80 Reoxtd e —0L0002 i nehto 13.20 for d = 0.203 inch. These angles
are considerably larger than a Mach angle of 4.66° for M_ = 12.3. Since
these shock waves were measured at a constant Mach number and a constant
Reynolds number of approximately 7&,000 per inch, the increase in shock-
wave asymptote angle must be due to an increase in leading-edge thickness.
In figure L4(a) insufficient data at higher values of xgy prevented
fairing asymptotes through the shock waves for the plate with 0.250- and
0.062-inch leading-edge radii. Therefore, in the present investigation
it was not possible to determine the variation in shock-wave asymptote
angle with leading-edge radius. The values of p which correlated the
shock-wave shapes in figures 4(b) and 4(d) are an average for the dif-
ferent leading-edge thicknesses.

O\ OO
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The outward deflection noted in the analysis of these two experi-
mental studies may be due to leading-edge disturbances and/or viscous
interaction effects in the flow region between the surface of the plate
and the shock wave. Leading-edge disturbances and secondary shock waves,
resulting from an overexpansion of the flow around the leading edge, may
contribute to maintaining the flow deflection noted in the experimental
study. Viscous interaction effects may originate from: (1) boundary-
layer growth, and (2) interaction between adjacent layers of fluid moving
at different velocities in the shear layer. An analysis of this type
concerning the laminar mixing of a compressible fluid is described in
reference 21. The possibility of an outward deflection occurring in the
flow, when fluids with different velocities mix, can be deduecd from
this reference. However, additional experimental and theoretical study
is needed before positive conclusions can be made.

Static Pressure Gradient Normal to Plate

Static pressures were measured between the plate and the shock wave
and are shown in figures 5(a) and (b). As may be noted from these figures,
the static pressures near the surface of the plate agree reasonably well
with the static pressures measured by the orifices on the plate and remain
fairly constant to approximately one-half the distance to the shock wave.
At this point the static pressures rise rapidly, and near the shock wave
the measured static pressures agree reasonably well with those calculated
at the shock wave (see fig. 4(b)). According to calculations for the
blunted flat plates at a Mach number of 4.7 which were based on the modi-
fied form of Moeckel's method and obligue shock relations in refiercnce
22, the static pressure at the shock wave asymptotically approaches a
value of 1.58 times the free-stream static pressure at large distances
downstream from the leading edge. Measurements for the other leading-
edge configurations showed the same trends with regard to the distri-
bution of the static pressure between the plate surface and the shock
wave.

As a result of the agreement between the measured static pressure
at the shock wave and the static pressure determined from the shock-wave
shape in the current investigation, the static pressure associated with
the Mach number 12.3 tests of reference 20 was estimated. The data for
this shock-wave shape were previously analyzed and are shown in figures
L(c) and (d). Moeckel's method was used to calculate the values of the
static pressure for this shock wave at the same xgw/d values as those
for stations 6 and 7 of the model in the present tests. The values were
found to be 6.81 and 6.47 times the free-stream static pressure, respec-
tively. The static pressure for this shock wave (fie., B=5.81) was
found to approach asymptotically a value of 4.9 times the free-stream
statilec pressures
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Mach Number Distribution in the Shear Layer

Local values of Mach number from the surface of the plate outward
to about one-half the distance to the shock wave were determined from
the measured impact pressure and surface static pressure. The measured
surface static pressure was used to determine the local Mach number
because the local static pressure was verified experimentally to be fairly
constant in this region, as shown in figure 5. The effect of the actual
variation in static pressure on the calculated Mach number distribution
is shown in figure 6(a). The ordinate in this figure is the distance ¥y
above the plate divided by ygy, the distance between the body surface
and the shock wave at the desired station. The Mach number distributions
in figure 6(a) were obtained from the data at stations 3 and 11 (see
fig. 1) when the boundary layer was laminar on the flat plate with a
0.062-inch leading-edge radius. The solid curves in this figure represent
the Mach number distributions determined from the ratio of surface static
pressure to the impact pressure above the surface of the plate. The cal-
culations of Mach number distributions shown by the dashed curves were
based on a varying static pressure between the plate and the shock wave.
The variation in static pressure with distance above the plate was assumed
proportional to that determined from the measured distributions shown in
figure 5. It can be seen from figure 6(a) that the deviations between
the solid and dashed curves are not large in the region from the surface
of the plate outward to approximately one-half the distance to the shock
wave. Figure 5 further indicates a sharp increase in the static pressure
at values greater than one-half the distance to the shock wave. In fig-
ure 6(a) deviations resulting from the sharp increase in static pressure
in this region can be observed for station 3, as the solid and dashed
curves begin to separate. Therefore, the calculation of the Mach number
distribution based on a constant surface static pressure appears to be
reasonable only up to about one-half the distance to the shock wave.

The Mach number distribution in the vicinity of the shock wave is of
particular interest because of the large static pressure gradient in this
region. A plot of the Mach number between the edge of the boundary layer
and the shock wave obtained from impact pressure surveys measured at sta-
tion 6 and a static pressure profile assumed to vary in the same propor-
tion as those measured at stations 5 and 7 is shown in figure 6(b). As
ma&y be noted from this figure, the Mach number in the shear layer reaches

a maximum value at about y/ygy = 0.5. From there out to the shock wave
the Mach number is reduced because of the relatively large static pressure
gradient in this region. At the shock wave the low Mach number as shown
in figure 6(b) and the high values for static pressure as noted in fig-
Yre Hiindieate antontward deflection 'of the fleow over the plate, This
conclusion is also indicated by the outward deflection of the shock-wave
asymptote in figure 4(b).

aOw =
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The Mach number distribution in the shear layer for the present tests
has been estimated by the method given in reference 23 with a minor
static pressure modification. A review of the calculation procedure is
given in appendix C. In reference 23 it was assumed that along the plate
surface the static pressure equals the free-stream static pressure, p.,
and therefore does not very in the X direction.. Her blunted plates,
this assumption may introduce error since large variations in surface
pressures have been found, particularly near the leading edge. In the
current investigation, surface static pressure at a particular station or
X location was determined by means of equation (3). Therefore, the vari-
ation of static pressure along the X direction is the same as shown by
the ‘eurves in figure 2., The effect of the differences in statle pressure
at two X locations on the calculated Mach number distribution is shown
in figure 7 for a flat plate with a 0.062-inch-radius leading edge. The
Mach number distribution is calculated for two widely separated values of
x/d on the plate using the surface static pressures. As may be noted
from this figure, the difference in the two curves is not large, indicat-
ing that the variation in the surface static pressures for the current
tests does not have a large effect on the calculated Mach number distri-
bution in the shear layer. The method given in reference 23 also assumes
that the static pressure is constant in the region between the surface of
the plate and the shock wave at any particular station in the X direc-
tion. As indicated in figure 5 this assumption is essentially wvalid up to
approximately one-half the distance to the shock wave. Therefore, the
method given in reference 23 might be expected to apply to this region
off itherfilow: Tield,

The local values of Mach number from the surface of the plate out-
ward to about one-half the distance to the shock wave have been determined
from data for the flat plates with 0.250-, 0.062- and 0.015-inch leading-
edge radii and are shown in figure 8. The data shown in this figure were
obtained when the boundary layer was laminar and also when a trip was used
to obtain a turbulent boundary layer. It was noticed that weak oblique
shock waves were propagated by these boundary-layer trips. However,
impact pressure surveys showed that their effect was small and they were
neglected. No systematic difference in the Mach number distribution for
the two types of boundary layers was found. The Mach number distribution
for this region of the flow field has also been calculated by the method
of reference 23 using the static pressure modification mentioned earlier.
In order to use this method the shock-wave shape must be known; therefore
the shock-wave-shape correlation obtained by using B = 3.7 and B = 4,59
in equation (4) for the current investigation was used to determine shape
of the shock wave as shown in figure 4(b). The Mach number distributions
are presented in figure 8 as a means of comparison with the data. Although
there is considerable scatter in the measured Mach number distributions,
the data from the plate with the 0.250-inch leading-edge radius agree best
with the curve labeled B = 4,59. These data were obtained at small values
of x/d which corresponded to the last three stations on the plate where
considerable experimental scatter in surface pressures occurred. The data
from the plate with the 0.062- and 0.015-inch leading-edge radii agree
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with the curve labeled B = 3.7. There are indications in the data that
values of y/Ygp for a particular Mach number, M;, increase with the

x/d distance along the plate. Data obtained from adjacent stations do
not always indicate this trend primarily because of experimental scatter.
Such spreading out of the constant Mach number streamlines with distance
along the plate is consistent with the flow deflection noted earlier. As
the Mach number increases beyond the range of the present tests, the
region that would be influenced by the deflection of the flow might extend
farther away from the shock wave and cause significant changes near the
surface of the plate.

Boundary-Layer Growth

The procedure for calculating boundary-layer growth was similar to
one used for predicting turbulent boundary-layer growth in a wind-tunnel
nozzle in reference 24, The method is based on the following equation of
Von Kérmén to evaluate momentum growth:

5* 2
g6 ~So o BLTEo L (5)
dx 2 M dx LS Z%} M2

Equation (5) was solved in a stepwise manner by inserting local values

of the necessary quantities at each point. Small increments of Ax were
used and values of 6, M, and cr were assumed constant over the interval.
The Mach number at the end of each interval was determined at the outer
edge of the boundary layer. The Mach number distribution normal to the
plate was calculated by the method described in appendix C, which is the
same method used to calculate the distributions shown in figure 8. The
turbulent boundary-layer parameters were determined from references 2L
and 25 and were used to obtain the turbulent boundary-layer thickness d.
Local skin-friction coefficients were calculated by the method outlined
in reference 24 and also by means of equation (A10) as shown in appendix
A. The calculation was started near the leading edge of the plate at a
point where local values of Mach number and boundary-layer momentum
thickness were determined from a boundary-layer impact pressure survey.

The distribution of the calculated turbulent boundary-layer thickness
along the plate is shown in figure 9. Curves are shown for blunted flat
plates with 0.062- and 0.015-inch leading-edge radii for the two calcu-
lated Mach number distributions in the shear layer which are identified
as B = 3.70 and 4.59 in figures 8(b) and (c). For comparison, a curve
of boundary-layer thickness on a sharp leading-edged plate is also shown
in figure 9. The boundary-layer thickness does not differ greatly when
cg 1is calculated by the method given in reference 2l or the T' method
(eq. (ALO)) as shown by the dashed curves in figure 9(b). As may be
noted from this figure the boundary layer on the blunted plates grows at
a much faster rate than on the sharp leading-edged plate. The physical
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basis for this rapid growth is apparent from equation (5) in which both
terms on the right-hand side are additive because M2 is larger than
5%/6 + 2; furthermore dM/dx is large when the boundary-layer edge is
in a region of large dM/dy (in the shear layer).

The ratio of the calculated Mach number at the edge of the turbulent
boundary layer to the free-stream Mach number is plotted as a function of
x/d in figure 10 for the blunted plates with 0.062- and 0.015-inch
leading-edge radii. Curves are shown for the two Mach number profiles
identified in figures 8(b) and (c) as B = 4.59 and 3.7. These curves
indicate that the boundary layer thickens rapidly when the Mach number
at the edge of the boundary layer increases rapidly.

The data shown in figures 9 and 10 for boundary-layer thickness and
Mach number at the edge of the boundary layer were evaluated from total
pressure surveys in the boundary layer at various stations along the
plate. Typical plots of Mach number distributions normal to the plate
as determined from these total-pressure surveys are shown in figure 11
for 0.062- and 0.015-~inch leading-edge radii. In order to determine the
edge of the turbulent boundary layer, the velocity distribution in the
boundary layer was assumed to follow a power law. In reference 26 the
substitution of a power law was found to correlate turbulent boundary-
layer velocity profiles for a sharp flat plate at a free-stream Mach
number of 3.0; the velocity profiles measured in the current investigation
on the sharp flat plate also were found to correlate with the use of a
power law velocity distribution. Therefore, the same method was used for
the blunted plates in the current investigation. The velocities and the
corresponding y locations in the boundary layer were made dimensionless
by means of the velocity corresponding to a y; location in the shear
layer and then were plotted to a logarithmic scale. Typical plots are
shown in figure 11. The departure of the data from a straight line was
assumed to be the edge of the boundary layer and, as may be noted from
this figure, the edge is not well defined because there is no abrupt
deviation from the straight-line plot. In figures 9 and 10 the data for
boundary-layer thickness and Mach number at the edge of the boundary
layer show the same general trend as the calculated curves, namely a
rapid boundary-layer growth in the shear layer.

Heat Transfer

One approach to evaluating turbulent heat-transfer coefficients on
blunt leading-edged plates is to use equations for sharp flat plates and
modify them to account for local flow conditions. This method has been
employed in reference 15 for predicting heat transfer with a laminar
boundary layer. Local values of Mach number, temperature, and density
at the edge of the boundary layer were used in the calculations. How-
ever, the turbulent boundary layer grows at a much fasgter rate on a
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blunted flat plate than on a sharp leading-edged flat plate as shown in
figure 9. The turbulent boundary layer also grows at a much faster rate
than the laminar boundary layer. Because of this rapid growth, the tur-
bulent boundary layer quickly extends into the large Mach number gradient
region. In this region the edge of the boundary layer blends with the
shear layer and is difficult to detect by means of an impact-pressure
survey. But, in order to evaluate the conditions at the edge of the tur-
bulent boundary layer which determine the heat transfer, it is necessary
to predict the turbulent boundary-layer growth.

Comparisons of the measured and predicted heat-transfer rates for
the plates with leading-edge configurations of 0.250-, 0.062- and
0.045-inch radii are shown in figure 12. The heat-transfer coefficient,
h, versus the distance from the effective start of the turbulent boundary
layer, xt, is plotted in this figure. The data were obtained when the
plate was equipped with a boundary-layer trip. The location of the
effective start of the turbulent boundary layer was determined by evalu-
ating the boundary-layer momentum thickness near the leading edge of the
plate from impact-pressure surveys and then using equation (A8).

The predicted heat-transfer coefficients, represented by the solid
curves in figure 12, were obtained by means of equation (A5). In the
calculation of these curves, the total pressure at the edge of the bound-
ary layer was assumed to be constant throughout the length of the blunted
flat plate and equivalent to that behind the normal shock wave at the
nose. The dashed curve in figure 12(b) was calculated from the boundary-
layer momentum thickness together with the local flow conditions of Mach
number and density at the edge of the boundary layer using equation (A9).
(The method for calculating boundary-layer momentum thickness was given
in the previous discussion of boundary-layer growth.) As may be noted
from figure 12, the data and predictions agree reasonably well. The two
methods for predicting heat transfer, as shown by the solid and dashed
curves, give results which do not differ appreciably over the length of
the blunted flat plates.

A comparison of the heat-transfer coefficients for blunt and sharp
leading-edged plates at the same test conditions is shown in figure 13.
The ratio of heat-transfer coefficients for plates with blunted leading
edges to those calculated for a sharp leading-edged plate is shown in
this figure as a function of x{. The heat-transfer coefficients on the
plate with a sharp leading edge were calculated by means of equation (85).
The heat-transfer coefficients predicted for the plates with 0.250- and
0.045-inch leading-edge radii are the same as those given by the solid
curves in figures 12(a) and (c). For the plate with a 0.062-inch leading-
edge radius, the heat-transfer coefficients were calculated from the
boundary-layer momentum thickness in the same manner as that used in
evaluating the dashed curve in figure 12(b). As shown in figure 13, the
heat-transfer coefficients for the blunted plates do not differ greatly
from those calculated for the sharp leading-edged plate. For the plate
with a 0.250-inch leading-edge radius, the rates were higher than sharp
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plate values only for x¢ < 0.5. At large values of x{ the coefficients
were reduced to approximately 80 percent of sharp-plate values.

At higher Mach numbers the flow field over a blunted plate may be
different from that found in this investigation. The basis for this
assertion is that at higher Mach numbers the shock wave is closer to the
body and the boundary layer is thicker. Therefore, static pressure and
other flow parameters at the edge of the boundary layer may be different
from those evaluated from surface pressures, and a reduction in turbulent
heat transfer for blunted plates compared to sharp leading-edged plates
may not occur. This may result from the fact that both turbulent and
laminar heat-transfer coefficients increase with increasing density or
pressure at the edge of the boundary layer.

SUMMARY OF RESULTS

The following conclusions are made from measurements of the flow
field and the turbulent heat-transfer coefficient over blunted flat plates
at a Mach number of L4.7:

1. Measurements of the shock-wave shape and static pressure surveys
indicated an outward deflection of the shock-wave asymptote of approxi-
mately 2.82°. Flow deflection due to boundary-layer growth was estimated
to account for a shock-wave deflection of only 0.2°. Therefore, other
phenomena associated with the flow field must contribute to the observed
shock wave deflection.

2. Mach number distributions measured in the shear layer agreed with
predictions (based on measured shock-wave shapes) at downstream locations
on the plate that are greater than 40 leading-edge diameters. At stations
closer to the leading edge the agreement was not so good.

3. Measured and calculated turbulent boundary-layer growth is
rapid when the outer edge of the boundary layer is in a large Mach num-
ber gradient region.

4, Predictions of turbulent heat-transfer coefficients for blunted
plates were in agreement with measured heat-transfer coefficients. A
comparison between blunt and sharp leading-edged plates indicated that
the heat-transfer coefficients near the leading edge (back to 10 leading-
edge diameters) were higher for the blunted plates and decreased to
approximately 80 percent of the sharp-plate values at a considerable dis-
tance from the leading edge.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Nov. 10, 1960




20

APPENDIX A

CALCULATIONS OF THE EFFECTIVE ORIGIN OF THE TURBULENT BOUNDARY LAYER
AND STANTON NUMBER, AND SKIN-FRICTION COEFFICIENT

AS A FUNCTION OF THE MOMENTUM THICKNESS

Colburn's modification of Reynolds analogy gives the local skin-
findicticnscoefiiicicnt ias

S g (Pr) 28 (A1)

but it can also be stated in terms of the rate of growth of the momentum
thickness

©
Sl 8 (A2)
2 adx+
and if no temperature or pressure gradient is assumed,
5. 4 £ (43)
dx+, dRx
if Ry 1s based on an effective leading-edge distance. Thus,
dR
—2 = st(Pr)®/® (Ak)
dR

X

Tn reference 27, it was found that if (Pr)2/3 is set equal to 1/1.2, the
Reynolds analogy holds over a wide range of Reynolds numbers. This sub-
stitution is combined with the approximation to the Karmin-Schoenherr
equation in the same manner as given in reference 16:

0.026

St o= ———— (A5)
RO 18 <?l>
X Te
GO TorEm
e i 0.0217 (A6)

il
. Ry R.O-18 q!
Z Te
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Integrating equation (A6) and transposing

l.22n
Rp= Bl.0 gat-®8 < > (AT)
e

which can be solved for the distance from an effective leading edge

.22
%p = 8,0 ByL=2 " e (A8)
t dl Pele

The value of the exponent n is dependent on the exponent in the power
law relationship between temperature and viscosity. For the temperature
conditions which prevailed during these tests, values of n were chosen
as 0.67 and 0.65 for the plates with blunted and sharp leading edges,
respectively.

If equation (A7) is substituted in equation (A5), there results an
equation for St based on Rg. For n = 0.67, this equation is

i 0.0117 (49)

o 22 OB
Te

By means of the Reynolds analogy, the local skin-friction ceelficient
can be determined from equation (A9) as follows:

e < :f i

C =




22

APPENDIX B
PRESSURE DISTRIBUTION ON SURFACE WITH A TURBULENT BOUNDARY LAYER

The determination of the pressure distribution in the current
investigation is based on the method employed in reference 15 for pre-
dicting the pressure distribution along the surface of a plate with a
laminar boundary layer. The procedure used in reference 15 is based on
the following equation:

Py _ as* eI
B = 1+ M R Y (B1)

where M, 1s the reduced total head Mach number obtained from normal
shock relations. The following relation is valid for a laminar boundary
layer along the surface of the plate:

ab* A BX
s (B2)
N Cyr
and the terms in equation (B2) are defined as:
_10.865 Tw 3
b= { I + 0.166(y - 1) |y (B3)
3
e N C
X = ML__W (BL)
N Rx
Hwle
= B5)
o Helw (
2 2/3 :
For air, ¢ = 0,412 (Cp) and for a cylinder,
Cp = 0.112 (B6)

According to inviscid-flow theory, the term bX/4/C, in equation
(B2) accounts for the laminar boundary-layer displacement growth, and
to determine surface-pressure distribution, the expression for the
effective shape of the body should include this term for boundary-layer
growth.
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In order to evaluate the displacement thickness growth of the
turbulent boundary layer, the following procedure is used:

From equation (A6)

gl ;fx 0.0217 dx st
2 X 2 = By <?,:f.67
= Te
Integrating (B7)
0
ik 0.0264 - (38)
o  BLN =
Sl
Now
Wik, 0.0264 x
G 7§ .67 (B9)
oslls
<Te>
and
*

6 0 .67
0.18
neie (E)

Differentiating equation (BlO), we obtain:

*
aon = O 02]_7 (Bll)

dx R, e 0 .67
Te

which when substituted in equation (Bl) gives the general expression

for the pressure ratio for the turbulent boundary layer along the surface
of the plate; if x, the distance from the leading edge of the plate, is
assumed equal to xt, the distance from the turbulent boundary-layer
oriizin. Slhus),

b
W s O's 0217 e) o ci (Ble)

Do Q18 (el 2o
Te
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APPENDIX C

MOECKEL'S METHOD FOR CALCULATING MACH NUMBER PROFILES

IN THE SHEAR LAYER FOR DETACHED SHOCK WAVES

The analysis and equations given in this appendix are essentially
thersame ags those in references 19 ‘and 23. They are repeated here in
order to define the symbols and to follow more easily the discussion of
the flow field analyzed in this paper.

The continuity equation (see fig. 3) can be written across the shock
wave with the sonic-point area used for reference as follows:

K::]_B ; /;A/ AsB <ASB i

iy A/Asp POO(A*/A)MOO
e B #E e

Since it is assumed that the stagnation pressure remains constant along

a streamline downstream of the shock wave, P/P, is the stagnation-
pressure ratio across the shock at the point where the streamline defining
the area A enters the shock. If the shock angle at this point is o,
then according to reference 22 the total pressure ratio can be written

01

6M .2 sinZp 6

B SR c
P \M Zein® + 5 ™ Zsin®p - 1 e

7/ (7-1) >1/(7—1)

The Mach number M, at the area a, can also be related to the shock
angle by the relation

1+ 0.2M% = <>(7—1)/7 <P oo oo>(7 S/ (ck)

2

"d
“dl

By means of equation (C4) and other identities in reference 22 equation
(C2) can be expressed as follows:

e ¥ fA/ i GLQ_%_ 4% <_A_> (c5)
Agp M P \1+ 0.2v" Agp
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By means of equations (C3) and (C4), M in equation (C5) can be related
to the angle at the point where the streamline crosses the shock wave.
The differential d( A/ASB must be converted into a function in order
that the integration may be carried out from ¢ = 90° to ¢ = @i, where
@1 is the upper limit of integration.

From reference 19, if the shock-wave shape is assumed to be a hyper-
bola, the equation of the shock wave in the notation given in sitil/siobale Sjalisic

Y = %N/X2 = 2 (c6)

g where 1/B 1is the slope of the asymptote. Then
6
6 s )

- tanog - = B oL (c7)

Bl X02 B
and by algebraic manipulation
2
x
Y2 = - (c8)

s BZ(BZtanp - 1)

If Ygg is the reference location on the body, equation (C8) can be
expressed as

< _ (XO/YSB 2 ( C9 )
¥sB 2(p=tan®p - 1)
|
where |
Xo Is_
=8 B2tanp (c10)
Ygp Tap v

The differential d(A/Agp) is determined from equation (C9) as,

Xo | tan @ secZp dp } o
< > Ys§> ¥ YsB [(than%@ CTE L
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Substituting equations (Cl0) and (Cll) into equation (C5),

1/2
2

D1
Bl oe tehglEr e, L P (L +0.2M4 Mo| tan o sec2o
o g2 a1 | G e ¥

ae B 1 SO e (820an"y - 1) 22

(c12)

The value of YS/YSB depends upon the location of the sonic line and is
given in reference 19 as follows:

Yg i
A EL
Ysg (1 - B cos q) (1)

where
n =N = Ag (c1k)

() B

The ratio (B /Pg). is determined from equation (C3) with ¢ equal to
¢. as follows:

and

Prai= e % (LpZtanpg - 3)1/2 (c16)

The Mach number profiles above the plate were determined from equation
(c12). 1In reference 23 the static pressure, p, in equation (Cl2) was
assumed to be equal to that in the undisturbed free stream. As may be
noted from figure 2, however, the static pressure varies considerably
from free-stream values and depends upon the leading-edge bluntness and
the value of x. Therefore, when computing the Mach number profiles,
the static pressure at a particular x value was assumed to correspond
to values determined from the calculated curves shown in figure 2 which
agree reasonably well with measured values.

When methods were evaluated to predict shock-wave shapes, the method
given in reference 28 was also considered. However, it was found that the
shock-wave shape as predicted by either reference 19 or 28 did not differ
appreciably for the conditions in this investigation. This may not be
true for three-dimensional bodies since the method of reference 28 is con-
cerned primarily with shock-wave shapes in the vieinity of the nose. IG
is interesting to note that the equation to predict shock-wave shape is
practically the same for the two methods and the difference is essentially
in evaluating the slope, 71, of the sonic line. In reference 28 this slope
is evaluated from a correlation of measured shock-wave shapes; whereas in
reference 19 the slope is determined from an average of the flow directions
at the surface of the body and at the shock wave, assuming a straight
sonic line.
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Mach number distribution in shear layer (r = 0.062 in.).
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Figure 9.- Turbulent boundary-layer growth on a flat plate with various cylindrical leading edges.
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Figure 10.- Mach number at the edge of the turbulent boundary layer on a flat plate with various
cylindrical leading edges (BL tripped).

119




150

[ e

T — — —

;———-'-_'-—_—_
s ¥ =y
B=3.T
—— :

aLe

Calculations based on ref. 24
i T methed

Data
X - 534, end of plate
*‘i\\\\\M—-From normal shock total pressure
40 80 120 160 200 240

=
d

(b) 0.015-inch leading-edge radius.

Figure 10.- Concluded,

o\ O\W >

cS



23

SN NIV e

1.0
X
Uy
.6 = g
Ol 3.0
50
//-
4.0 //
3.0 \
/ L edge
Ml
20
10
Y2
_\J
0 .02 o)t .06 .08 .10 i)

Yy £

(a) 0.062-inch leading-edge radius, station 10 (BL tripped).

Figure 1l.- Mach number and velocity distributions in the boundary layer
on a flat plate with various cylindrical leading edges.
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Figure 11.- Continued.
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Figure 12,- Turbulent heat-transfer coefficient on a flat plate with various cylindrical leading

edges (BL tripped).
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(c¢) 0.045-inch leading-edge radius.
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