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SUMMARY 

An invest igat ion was conducted t o  determine the  longitudinal  
charac te r i s t i cs  during low-speed f l i g h t  of a large-scale VTOL airplane 
model with a d i r ec t  l i f t i n g  fan enclosed in  t he  fuselage. The model had 
a shoulder-mounted unswept wing of aspect ra t io  5.  The e f f ec t s  on 
longitudinal  charac te r i s t i cs  of fan operation, propulsion by means of 
def lect ing t he  fan eff lux,  trai l ing-edge flap def lect ion,  and horizontal- 
t a i l  height were studied. 

The l i f t  ing-f an performance character is t ics  , three-component 
longitudinal  charac te r i s t i cs  , s t a t i c  -pressure d i s t r ibu t ions  over some 
parts  of the  model, and downwash a t  the horizontal  t a i l  a r e  included 
here i n .  

INTRODUCTION 

Small-scale s tudies  of d i r ec t  l i f t i n g  fans mounted i n  a wing, 
reported i n  references 1, 2, and 3, indicated the  f e a s i b i l i t y  of t h i s  
V/STOL concept. The low disk loading of the fans employed and the  low 
Reynolds number of these investigations made r e su l t s  questionable when 
applied t o  a i r c r a f t  designs with high disk-loading fans .  With the  advent 
of the  General E lec t r ic  X-353-5 l i f t ing- fan  engine, it became possible 
t o  make an invest igat ion with ful l -scale  disk loadings and Reynolds numbers 
over t he  complete low-speed, fan-supported portion of the  f l i g h t  envelope. 

m e  configuration selected f o r  t h i s  investigation had the  fan  and 
duct mounted i n  t he  fuselage t o  provide a good flow environment f o r  the  
fan,  and a shoulder-mounted wing t o  minimize ground e f f e c t .  The f an  was 
mounted a t  t he  wing quarter  chord and was f i t t e d  with duct e x i t  vanes t o  
vector the  f an  flow f o r  propulsion. The wing was f i t t e d  with full-span 
s ingle  -S l o t t e d  f l aps  t o  provide more f l e x i b i l i t y  i n  low-speed f l i g h t .  
Longitudinal control  was supplied by a variable-incidence hor izontal  
t a i l  and a j e t  reaction control  located at the t a i l .  



Engine i n l e t  performance, general  aerodynamic charac te r i s t i cs ,  and 
longitudinal s t a b i l i t y  and con t ro l  charac te r i s t i cs  were obtained. 
Limited data  a t  a  predetermined l i f t ,  with drag and moment trimmed out: 
were obtained over a  speed range from 0 t o  100 knots. 

These r e su l t s  a re  presented without discuss ion t o  expedite publicat  ion.  
A l h i t e d  analysis  of some of t h e  r e su l t s  i s  presented i n  reference 4. 

fan  e x i t  area,  s q  f t  

wing span, f t  

wing chord p a r a l l e l  t o  plane of symmetry o r  vane chord, f t  
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f l a p  chord p a r a l l e l  t o  plane of symmetry, f t  
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D drag coef f ic ien t ,  
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pitching-moment coef f ic ien t ,  M 

%agg 

pitching -moment increment 

drag, l b  

gas horsepower 

hor izon ta l - t a i l  incidence angle, deg 

t o t a l  l i f t  on model, l b  

moment about wing 0.25E, f t / l b  

l o c a l  s t a t i c  pressure, lb/sq f t  



t e s t  sect ion s t a t i c  pressure, lb/sq f t  

pressure coeff ic ient  , Pz, - ps* 

s, 
pressure a t  standard atmosphere, 2116 lb/sq f t  

t o t a l  pressure, lb/sq f t  

dynamic pressure, lb/sq f t  

Reynolds number o r  fan  radius, f t  

corrected fan  ro t a t i ona l  speed 

distance from fan  ro ta t iona l  axis, in. 

wing area,  sq  f t  

complete ducted f a n  t h rus t  i n  the l i f t  d i rect ion,  p~vj21  l b  

a i r  velocity,  f t / sec  

a i r  velocity,  knots 

fan  weight r a t e  of flow, lb/sec 

distance from leading edge of the  a i r f o i l  f l ap ,  o r  of t h e  vane, ft 

spanwise distance perpendicular t o  the  plane of symmetry, f t  

perpendicular distance from the  chord l i n e  t o  the  a i r f o i l  f l ap ,  
o r  vane surface, f t  

angle of a t t ack  of fuselage reference l ine ,  deg 

fan  e x i t  vane def l e c t  ion measured normal t o  the  pivot l i n e  and 
from the  fan axis ,  deg 

ps 
r e l a t i ve  s t a t i c  pressure, 

trai l ing-edge f l a p  def lect ion measured normal t o  the  hinge l ine ,  
deg 

average downwash angle a t  the  horizontal t a i l ,  deg 

f r ac t i on  of wing semispan, a 
b 

spanwise extent of the  trailing-edge f lap ,  f r ac t i on  of semispan 



r a t i o  of absolute am3 i en t  temperature t o  standard temperature, 
519O R 

tip-speed r a t i o ,  WR 

density,  l b  sec2/f t4  

ro t a t i ona l  speed, radians/sec 

Subscripts 

fan  rotor  face  

fan  

fan  e x i t  

react ion control  

s t a t i c  condition 

forward speed condition 

variable 

wing 

f r e e  stream 

variable e x i t  vane angle 

MODEL AND APPARATUS 

Photographs of t he  model mounted i n  t he  Ames 40- by 80 -~oo t  Wind 
Tunnel are  presented i n  f igure  1. A sketch of the  model giving per t inent  
dimensions i s  shown i n  f igure  2. 

Wing Geometry 

The wing had an aspect r a t i o  of 3.0, t aper  r a t i o  of 0.5, and sweepback 
of 0' a t  the  quarter-chord l i n e .  The wing upper surface was tangent with 
the top of t he  fuselage.  NACA 63~-210 sect ions  p a r a l l e l  t o  t he  model 
symmetrical center l i n e  were employed. Coordinates of the  wing sect ion 
are l i s t e d  i n  t ab l e  I. 



Detai ls  of t he  s ingle-s lot ted trailing-edge f l a p  are  shown i n  
f igure  3, and f l a p  ordinates a re  shown in  t ab l e  11. The f l a p  extended 
over t h e  f u l l  span of t he  wing, with a chordwise break a t  60-percent 
semispan, s o  t h a t  shor t  or  full-span f laps  could be t es ted .  Flap deflec- 
t i ons  of oO, 1 5 O ,  30°, and 40' were tes ted.  

Fuse lage 

A sketch of t he  fuselage i s  shown i n  f igure  4. The f ron t  port ion of 
the  fuselage had an e l l i p t i c a l  plan view with a 3.67- by 11.42-foot semi- 
ax i s  and an e l l i p t i c a l  s ide  view with a 2.83- by 11.42-foot semiaxis. 
Cross sect ions  were a l so  e l l i p t i c a l .  The middle port ion which housed t he  
f an  un i t  had a constant, e s sen t i a l l y  rectangular cross sect ion.  The 
a f te rpor t ion  had a s t r a i g h t  t aper  from a 5.04- by 6.44-foot e l l i p t i c a l  
cross sec t ion  t o  a 1.64- by 1.44-foot e l l i p t i c a l  cross sect ion.  

Longitudinal Controls 

Ta i l .  - Geometry of t he  hor izontal  and v e r t i c a l  t a i l s  i s  given i n  - 
f igure  2. The all-movable hor izontal  t a i l  pivoted about t h e  quarter-  
chord l b e  and could be mounted a t  e i t h e r  0.2 o r  0.4 of t he  wing semispan 
above t h e  extended wing chord plane. Most of t he  t e s t i n g  was done a t  t he  
0.4 semispan height .  T a i l  incidence could be varied from -23' t o  
When it was desi red t o  t r im  out moments a t  high l i f t ,  a 0.30-chord f u l l -  
span s p l i t  f l a p  def lected 30' was added t o  t h e  hor izontal  t a i l .  The 
v e r t i c a l  t a i l  had no movable control  surface and was used mainly t o  mount 
t he  hor izontal  t a i l .  

P i t ch  reac t ion  con t ro l  system.- A i r  fo r  t h e  react ion con t ro l  was 
provided by a modified a i r c r a f t  supercharger driven by two var iable  -speed 
e l e c t r i c  motors (see  f i g  . 4 ) .  A i r  flow from t h e  react ion con t ro l  nozzle 
could be d i rec ted  e i t h e r  up or  down by means of an actuated valve located 
ins ide t he  nozzle.  The amount of react ive  force  was changed by varying 
t he  speed of t he  supercharger. 

L i f t  -Fan Unit 

The General E l ec t r i c  X-353-5 l i f t ing- fan  engine consis ts  of a fan  
driven by exhaust gases from a gas generator. The f an  was designed f o r  
a 5-83 gas generator.  A 585-3 was used f o r  t h e  f i r s t  phase of t he  t e s t  
program, and a 585-7 f o r  t he  second phase. The exhaust gases a re  channeled 
through a turbine  a t  the  t i p  of the  fan.  



Fan d e t a i l s . -  The f an  was mounted near  t h e  bottom of t h e  fuse lage .  
A suspension framework supported t h e  5-85 gas genera tor  below and t o  t h e  
r igh t  of t h e  fuse lage .  D e t a i l s  of t h e  i n s t a l l a t i o n  a r e  shown i n  f i g -  
ures 2 and 5. During t h e  second phase of t h e  t e s t s ,  t h e  v e r t i c a l  s ec t ion  
of the exhaust duct  was f a i r e d  wi th  a t ea rd rop  f a i r i n g ,  and a s tub  wing 
f a i r i n g  was placed over t h e  p ro t rus ions  on t h e  r i g h t  s i d e  of t h e  fuse lage .  
Data wi th  t h e s e  f a i r i n g s  i n s t a l l e d  a r e  noted a s  be ing  from t h e  second 
phase of t h e  inves t iga t ion .  

The s ingle-s tage  f a n  r o t o r  had 36 b lades  and a 62.5-inch diameter .  
A s ingle  s t age  of s t a t o r s  was employed behind t h e  r o t o r .  Exi t  vanes were 
mounted downstream of t h e  s t a t o r s .  These vanes could be  de f l ec ted  from 
-15' t o  +75O ( f u l l  duct  c losure)  . The span of t h e  vanes extended ac ross  
t h e  t i p  t u r b i n e  exhaust.  The vane a i r f o i l  s ec t ion  had a maximum th ick -  
ness of 10-percent chord a t  20-percent chord and had a maximum of 2.3- 
percent-chord camber of t h e  mean l i n e  a t  35-percent chord. 

Fan i n l e t . -  A sketch of t h e  i n l e t  i s  shown i n  f i g u r e  5 ( d ) .  The 
f ron t  ha l f  of , the  i n l e t  (coordina tes  i n  t a b l e  111) had a varying radius  
from 0.23 t o  0.06 of t h e  f a n  diameter; t h e  r e a r  ha l f  had a constant  radius  
of 0.06 of t h e  f an  diameter.  A semic i rcular  i n l e t  vane wi th  a 22.71-inch 
chord was mounted i n  t h e  f r o n t  po r t ion  of t h e  i n l e t .  The vane a i r f o i l  
sec t ion  was made up of a 6-inch wedge a t t ached  t o  t h e  t r a i l i n g  edge of a 
conventional a i r f o i l  s ec t ion .  The upper s i d e  of t h e  wedge was tangent  
t o  t h e  upper sur face  of t h e  a i r f o i l  t r a i l i n g  edge and t h e  lower s i d e  was 
f a i r e d  i n t o  t h e  bottom of t h e  a i r f o i l .  The r e s u l t a n t  a i r f o i l  s ec t ion  was 
10-percent-chord t h i c k  with 10.5-percent-chord camber of t h e  mean l i n e .  

TESTING AND PROCEDUKE 

Force and moment d a t a  were obtained through an angle-of-a t tack  range 
from -8' t o  +180. Some f a n  performance and pressure  d i s t r i b u t i o n s  on t h e  
wing and fuse lage  were a l s o  measured. The a i rspeed of t h e  t e s t s  va r i ed  
from 0 t o  100 knots ,  corresponding t o  a maximum Reynolds number of 7.9 
mi l l ion .  Fan RPM was va r i ed  from 1200 t o  2600 RPM. 

Tests  With Constant Angle of Attack 

A t  O0 angle of a t t a c k ,  f a n  speed and wind-tunnel v e l o c i t y  were v a r i e d .  
The r e s u l t s  were obtained f o r  s e v e r a l  exi t-vane d e f l e c t i o n s ,  t h r e e  f l a p  
de f l ec t ions ,  two f l a p  spans, and hor i zon ta l  t a i l  o f f  and a t  two heights  
from t h e  wing chord plane.  

When it was des i r ed  t o  t r i m  t h e  model i n  drag  and moment wi th  a 
speci f ied  l i f t ,  an angle of a t t a c k  was se l ec ted ,  and f a n  RPM, exi t-vane 
angle; s t a b i l i z e r  angle,  and r e a c t i o n  c o n t r o l  were ad jus t ed  t o  g ive  t h e  
desired r e s u l t .  



Tests With Varying Angle of Attack 

Fan RPM was maintained e s sen t i a l l y  constant when angle of a t t ack  
was var ied.  These data  were obtained a t  several  values of RPM and tunnel 
airspeed.  The model var iab les  t e s t e d  i n  t h i s  manner a r e  t h e  same a s  
those mentioned above. 

CORRECTIONS 

Wind-Tunnel Corrections 

Force data  obtained without fan operation were corrected f o r  t he  
e f f ec t  of wind-tunnel wal l  in terference a s  follows: 

Cm = CmU - 0.0194 C h   a ail t e s t  only) 

No corrections were made t o  t h e  force  da ta  obtained with fan  operation 
since t he  e f f ec t  of t he  fan  air  flow on wind-tunnel corrections i s  unknown. 

Tares 

Corrections due t o  t h e  model support s t r u t s  have not been incorporated 
i n  t h e  t e s t  r e su l t s .  The drag coef f ic ien t  of t h e  support s t r u t s  i s  
estimated t o  be 0.02. Removal of t h e  gas generator and v e r t i c a l  sect ion 
of t he  exhaust duct from t h e  model reduced the model drag coef f ic ien t  
0.02 a t  a = OO. The addit ion of f a i r i ngs  t o  t h e  engine t a i l  pipe and 
mounts did  not change t h e  drag coef f ic ien t .  

It should be real ized t h a t  t h e  a i r  flowing through t he  gas generator 
makes small contributions t o  l i f t ,  drag, andmoment. The t e s t  r e s u l t s  
include these  forces  and moments. 

RESULTS 

These r e s u l t s  cover t h e  fan-supported flight-speed range from 0 t o  
100 knots. For convenience, t h e  r e s u l t s  a r e  presented i n  two groups: 
fan and i n s t a l l a t i o n  charac te r i s t i cs  and general aerodynamic character-  
i s t i c s  of t h e  complete model. Results presented were obtained i n  two 



separate wind- tmie l  t e s t s .  Data from the  second t e s t  a r e  denoted on 
t h e  f igures .  P a r t i a l  f a i r i ngs  i n  t he  gas generator a rea  and a more 
powerful gas generator (~85-7 )  were used i n  t he  second program. 

In s t a l l ed  Fan Character is t ics  

Zero airspeed.-  Figures 6 through 8 present fan cha rac t e r i s t i c s  near 
zero forward speed. Figure 6 presents l i f t ,  fan a i r  flow, and gas 
horsepower versus fan RPM. The gas horsepower was measured a t  the  i n l e t  
of the  fan turbine nozzle. L i f t  i s  presented versus t h ru s t  (negative 
drag) f o r  several  power se t t ings  and exit-vane angle s e t t i ngs  i n  f igure  7 .  
Figure 8 presents t he  var ia t ion  of lift, drag, and moment with fan RPM 
fo r  several  exit-vane angle se t t ings .  

Forward speed.- Many independent parameters can be subst i tu ted f o r  
wind-tunnel dynamic pressure and fan RPM. Perhaps t he  most bas ic  param- 
e te r  i s  vW/Vj; however, V j  i s  d i f f i c u l t  t o  measure. Tip-speed r a t i o ,  

p, i s  e a s i l y  measured but has l i t t l e  physical  significance unless t h e  
fan i s  the  exact duplicate of a f l i g h t  a r t i c l e .  As t he  fan t e s t ed  f o r  
t h i s  invest igat ion i s  intended t o  be f ligh? hardware, t ip-speed r a t i o  
w i l l  be used herein.  For those who would pre fe r  t o  analyze t he  data  with 
another parameter, f igure  9 shows the  re la t ionship  between CF, V,/V~, 
and p f o r  j3 = 0'. Total-pressure measurements downstream from t h e  
fan rotor  established these  re la t ionships .  

Figures 10 through 13 show t h e  fan  operating charac te r i s t i cs .  
Figure 10 shows t he  increase i n  fan t h ru s t  and a i r  flow with forward 
speed (tip-speed r a t i o )  . This i s  shown i n  t he  form of t he  r a t i o  of 
thrust  o r  a i r  flow a t  forward speed t o  t he  value a t  zero forward speed 
for the  same fan RPM. Figure 11 presents r e s u l t s  showing t h e  e f f ec t  of 
exit-vane angle on fan t h ru s t  and a i r  flow a t  several  forward speeds. 
The r a t i o  of fan t h ru s t  o r  a i r  flow at some exit-vane angle t o  t he  t h ru s t  
o r  a i r  flow a t  O0 exit-vane angle i s  employed i n  t he  presenta t ion.  Data 
i n  both f igures  10 and 11 were obtained from pressure instrumentation 
upstream and downstream from the  fan ro to r .  Figure 12 shows t h e  ram 
recovery of t h e  i n l e t  a s  a function of forward speed (t ip-speed r a t i o )  
with and without t h e  i n l e t  vane i n s t a l l ed .  Figure 13 presents  corre- 
sponding data  showing t he  e f f ec t  of angle of a t t ack  on the  i n l e t  ram 
recovery f o r  several  tip-speed r a t i o s .  Ram recovery i s  defined a s  
1 - [ ( P ~ ,  - ptC)/%] where Ptc  i s  t h e  average t o t a l  pressure measured 

i n  f ront  of t he  fan rotor .  

Aerodynamic Character is t ics  of t h e  Model 

O0 angle of a t tack. -  Figures 14 through 19 show t h e  e f f ec t  of fan 
power and airspeed (tip-speed r a t i o )  on various aerodynamic cha rac t e r i s t i c s  



a t  O0 angle of a t t ack .  Figure 14  shows the var ia t ion  of t he  r a t i o  of 
l i f t  a t  some airspeed t o  zero airspeed l i f t  a t  t he  same fan RPM as  a 
function of tip-speed r a t i o  f o r  four trai l ing-edge f l a p  configurations. 
Figures 15 and 16 present t he  var ia t ion  of l i f t ,  drag, and pitching-moment 
coef f ic ien t s  with tip-speed r a t i o  a t  a = 0'. Figure 15 shows t h e  e f f ec t  
of t ra i l ing-edge f l a p  configuration and figure 16 shows t h e  e f f ec t  of 
exit-vane angle def lect ion with t h e  t a i l  off and a t  two heights from t h e  
wing chord plane. Figure 17 shows pressure d i s t r ibu t ions  on t he  top and 
bottom of t h e  fuselage a t  four tip-speed ra t ios  and th ree  exit-vane 
def lect ions  with a = 0'. Pressure d i s t r ibu t ions  on t he  wing of t he  
model were in tegrated t o  provide wing l i f t  and moment coef f ic ien t s .  
These da ta  a r e  shown i n  f igure  18 a s  a function of tip-speed r a t i o  f o r  

0 t h r ee  exit-vane angles and a = 0 . The var ia t ion with tip-speed r a t i o  
of t h e  average downwash at the  hor izontal  ta i l ,  computed from the  da ta  
i n  f igure  16, i s  shown i n  f igure  19 f o r  t w o  t a i l  heights. 

Variable angle-of-attack resu l t s . -  Figures 20 through 23 present 
data  showing longi tudinal  charac te r i s t i cs  with t he  fan power o f f .  Figure 
20 shows the  cha rac t e r i s t i c s  f o r  th ree  full-span trai l ing-edge f l a p  
configurations with and without t h e  horizontal t a i l .  Figure 21 shows 
t h e  e f f ec t  of par t ia l -span f l a p  def lect ion and hor izon ta l - t a i l  posi t ion.  
Figure 22 presents data  with t he  i n l e t  open and with the  e x i t  vanes open 
and closed. Figure 23 shows the  e f fec t  of Reynolds number on longi tudinal  
cha rac t e r i s t i c s  . 

Figures 24 through 28 present t h e  longitudinal  charac te r i s t i cs  with 
t h e  l i f t i n g  f an  operating. The charac te r i s t i cs  a t  20 knots airspeed a r e  
presented i n  pounds and foot-pounds, and a t  higher speeds t he  characteris-  
t i c s  a re  i n  a i rplane coeff ic ient  form. Figure 24 presents r e s u l t s  f o r  
t h e  hor izontal  t a i l  o f f ,  and f igures  25 and 26, low-speed r e s u l t s  with 
t h e  t a i l  on. Figure 27 presents da ta  showing t h e  e f f ec t  of full-span 
f l a p  def lect ion on longi tudinal  character is t ics  a t  higher speeds; f igure  
28, t h e  corresponding e f f ec t  of partial-span f l a p s  and t a i l  height. 
Except f o r  data  i n  f igure  27, t he  r e s u l t s  presented i n  f igures  21through 
32 a r e  from t h e  second phese of t he  t e s t .  

Balanced conditions.- Some data  were obtained with e s sen t i a l l y  zero 
drag and moment, and a specif ied value of l i f t .  Figure 29 presents data  
showing t he  var ia t ion  of angle of a t t ack ,  l i f t ,  fan  RPM, exit-vane angle, 
t a i l  incidence, and reaction control  with airspeed f o r  these balanced 
conditions. The f l i g h t  sequences presented i n  f igure  29 were not intended 
t o  be optimum. Figure 30 shows the  control ef fect iveness  of t h e  hor izontal  
t a i l ,  mounted i n  t h e  mid-position, with the react ion control  operating. 
Figure 3 1  presents  longi tudinal  charac te r i s t i cs  with e x i t  vanes def lected 
t o  provide a propulsive force.  While these da t a  a re  not balanced i n  
moment, it i s  believed t h e  longi tudinal  s t a b i l i t y  i s  representa t ive  of 
t h a t  i n  balanced f l i g h t  i f  t h e  hor izontal  t a i l  i s  su f f i c i en t l y  f a r  from 



the angle for stall. Figure 32 presents the variation of moment with 
airspeed for the nearly balanced conditions shown in figure 29. 
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TABLE I. - COORDINATES OF WING AIRFOIL SECTION (NACA 63~-210) PARALLEL 
TO THE MODEL PLANE OF SYMMETRY 

T 

Slope of radius through leading edge 
0.0842 

Upper 

x/ c 

0 
.00423 
.00664 
.01151 
.02384 
.04869 
.07364 
.09863 
.l4869 
.19882 
.24898 
.29916 
.34935 
.39955 
,44975 
.49994 
0 
,60028 
.65041 
.70052 
.75061 
.80074 
.85072 
.90050 
.g5026 

1.00000 

Leading-edge 

Lower 

x / c  

0 
.00577 
.om36 
.01349 
.02616 
.05131 
,07636 
.lo137 
.15131 
.20118 
2 0  
.30084 
.35065 
.40045 
.45025 
,50006 
,54988 
.59972 
.64959 
.69948 
.74939 
.79926 
.84g28 
.89950 
.94974 

1.00000 

0.0077~ 

surface 

z/ c 

0 
.00868 
.01058 
.01367 
.01944 
.02769 
.03400 
.03917 
.04729 
.05328 
.05764 
.06060 
,06219 
.06247 
,06151 
-05943 
.05637 
.05245 
.04772 
,04227 
.03 624 
.02g74 
.02234 
.01519 
,00769 
.coo21 

radius 

surface 

z /  c 

0 
- .00756 
- .00900 
- .01125 
- .01522 
- .02047 
- .02428 
- .02725 
- .03167 
- .03468 
- .o3662 
-.03764 
- .03771 
- .03689 
- .03523 
- .03283 
- .02985 
- .02641 
- .02262 
- .01861 
- .01464 
- .01104 
- .om12 
- ,00339 
- . a 2 7 9  
- .coo21 



TABL;E 11.- SINGLE-SLOTTED TRAILING-EXE-FLAP COORDINATES PARAL;L;EL TO 
THE MODEL PLANE OF flCMMETEiY 

TABLE 111.- FAN INLET COORDINATES 

h, i n .  

0 
.090 
.450 
.goo 

1.350 
1.800 
2.250 
3.150 
4.050 
4.950 
7.550 

10.350 

Upper surface 

I Section B-B l%ection C-C I%ection D-DI 

x/c 

0 
.0018 
.0062 
,0106 
.022l 
.0335 
.0460 
.0902 
.0990 
.lo80 
0 
.ZOO3 
,2500 

Lower surface 

z/ c 

0 
.0071 
,0120 
.0150 
.0193 
.0212 
.0221 
. o a g  
.O2l7 
.0210 
0 
.0077 , .ooo2 

x/c 

0 
. o o q  
,0050 
.oleo 
.0175 
.0250 
.0325 
,0400 
.0493 
.ogg3 
.1495 
.1997 
,2900 

'see figure 5(d). 

z/ c 

0 
- .0042 
- .0051 
-.0085 
-.OlO5 
-.0115 
- . o n 8  
- . O U ~  
- . O l l O  
-.0081 
- .0054 
-.0028 
- .oooe - 

r, i n .  

44.18 
40.98 
38.36 
37.15 
35.35 
35.77 
35.29 
34.55 
33.98 
33-53 
32.57 
31.92 

r, i n .  

38.05 
36.61 
33-34 
34.48 
33.94 
33.54 
33.23 
32-77 
32.45 
32.23 
31.80 
31.58 

r )  i n .  

35.53 
33-42 
34.25 
33.53 
33-07 
32.75 
32.50 
32.14 
31.94 
31.80 
31.56 
----- 



(a)  Overhead view. A-26797 

Figure 1.- Photographs of t h e  model mounted i n  t h e  Ames 40- by 80-~oot Wind Tunnel. 



(b) Three-quarter f ron t  view. 

Figure 1.- Concluded. 



Horizontal Vert ical  
W i n g  - Tail Tai l  

-__. 
Area, sq f t  250 50 25 
Aspect r a t i o  5 -0 5 -0 2.5 
Taper r a t i o  0.5 1 .O 1 .O 
Ai r fo i l  Section NASA 63-210 NASA 63A.012 NlSA 6 ~ 1 5  

Figure 2.-  Geometric d e t a i l s  ot' t h e  model. 



Five chordwise rows of s t a t i c  
pressure o r i f i c e s ,  30 o r i f i c e s  

Fuselage ou t l ine  

Section A-A 

Figure 3.-  Deta i ls  of the  t ra i l ing-edge f l a p .  



Static pressure locations Top and bottom 
---- Bottom only 

3.67~11.42 
Ellipse Pitch 

- -3.~- 9.16 reaction 
control 

Motor-blower 1.64 

Cross sections Elliptical - Constant Elliptical All dimensions - 
Transi t ion Transit ion in feet except 

Section A-A 

2 in. rad. 6.44 --) 

L E n e  of 
symmetry 

Section B-B Section C-C 

as noted 

Section B-B 
X Y 
3.67 0 
3.65 1.38 
3 063 1.88 
3.58 2.45 
3.54 2.74 
3.52 2.81 
3.50 2.83 

Figure 4.- Details  of t he  fuselage and react ion con t ro l  i n s t a l l a t i o n .  



( a )  View of fan i n l e t .  

Figure 5.- Details of the  fan  ins ta l la t ion .  



( b )  View of f a n  e x i t  and gas generator  i n s t a l l a t i o n .  

Figure 5 .  - Continued. 



A i r  flow 

( c ) I n l e t  duct and e x i t  vane arrangement . 
Figure 5 . - Continued . 



\ - ~ n . e t  vane 

'31.50 t o  
Section A-A Section B-B Section C-C 

All dimensions i n  inches, 
&I unless otherwise noted 

Section D-D Section E-E 

See table  I11 f o r  coordinates 

( d )  Deta i ls  of i n l e t  and i n l e t  vane. 

Figure 5. - Concluded. 



~ / 6  or 4000 

~ / 6  and HP 

m / 1 0 0  

0 Figure 6. - Zero airspeed performance characteristics of the fan; a = 0 , P = oO. 



( ~ 1 6 )  /lo00 

Figure 7 . -  Zero airspeed force  charac te r i s t i c s  of the  model; a = 0'. 



Figure 8 .- Varia t ion  of fo rces  and moments with f a n  RPM f o r  s e v e r a l  values 
of p ,  approximately zero forward speed; a = 0'. 



Figure 9. - The re la t ionship between velocity ratio, t h r u s t  c o e f f i c i e n t ,  and t ip-speed r a t i o ;  
a, = 00, p = 00. 



and 

P 

Figure 10.- The e f f e c t  of airspeed ( t ip-speed r a t i o )  on f an  performance; a = oO, P = 0°, 2230 RPM. 



(a) ~ i f t .  (b) Air flow. 

Figure 11.- The e f f e c t  of e x i t  vane angle on fan performance at  severa l  forward speeds; a = 0°, 
2150 t o  2280 RPM. 



Figure 1 2 .  - The e f f ec t  of forward speed ( t ip-speed r a t i o )  on t he  f an  
i n l e t  ram recovery; CL = oO, P = oO. 



( a )  With i n l e t  vane. 

Figure 13.- The e f f e c t  of angle of a t t ack  on 



3.4 

3.4 

*) RPM 2.6 

2.2 

I. .8 

1.4 

1 .o 
0 .04 .08 .12 .16 .a .24 .28 -32 

P 

Figure 14.- The effect of forward speed on lift; a = oO, P = 0'. 

6 f l  deg rl f R P M  

0 0 - 1zl0-2400 

1 5  .a to wo 1ao-1700 

0 30 .a to LOO 1200-1700 

Second phase of test 



Figure 15. - Variat ion of longi tudinal  charac te r i s t i c s  with t ip-speed 
r a t i o ,  high h o r i z o n t a l - t a i l  pos i t ion;  a = oO, p = oO, 1200 t o  
2450 RPM. 



( a )  T a i l  o f f ,  2400 t o  2550 R P M .  

Figure 16.  - The e f f e c t  of e x i t  vane angle and h o r i z o n t a l - t a i l  p o s i t i o n  
on t h e  v a r i a t i o n  of long i tud ina l  c h a r a c t e r i s t i c s  wi th  t ip-speed 
r a t i o  ; a = 0°, 6f = 0°, second phase of t e s t .  







-3 -2  -1 O 1 2 3 4 5 6 7 
r / ~  

v 4 L B- 

On the  l i n e  On the l e f t  side On the l i n e  o f  symmetry 
of symmetry of the fan exit  

Figure 17. - Longitudinal pressure dis t r ibut ions  on t he  fuselage f o r  
severa l  values of tip-speed r a t i o  and e x i t  vane angle s e t t i ng ;  
a = oO, 6f = 30°, 1700 RPM. 



- + * * + 

On the line On the left side On the line of symmetry 
of symmetry of the fan exit 

Figure 17. - Continued . 



-3 -2 - 1 O 1 2 3 4 5 6 7 - 4 

r / ~  
* 4 * 

On the l i n e  On the l e f t  side On the l i n e  of symmetry 
of symmetry of the fan e x i t  

Air flow, 

Figure 17. - Continued . 
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- - 4 

On the line On the left side On the line of symmetry 
of symmetry of the fan exit 

Figure 17. - Concluded. 



O .04 .08 .12 .16 . X )  .24 .28 -32 
P 

(a) Lift. 

v 
(b) Moment. 

Figure 18. - Varia t ions  of measured lift and moment c a r r i e d  on t h e  
model wing wi th  t ip-speed  r a t i o ;  a = 0°, p = oO, 6f = 00, 1200 
t o  1850 RPM. 



Figure 19.- The var ia t ion  of average downwash a t  t he  hor izontal  t a i l  with tip-speed r a t i o  f o r  two 
t a i l  heights;  c~ = oO, = 0'. 



(a) Rorizontal tail off. 

F igu . re  20.- Longitudinal characteristics with power off, duct closed, full-span f lap;  V, = 60 knots. 



0 .1 . 2  3 .4 .1 0 -.l - . 2  - .3  - .4  - . 5  
c D - 4 o 4 8 12 16 18 % 

a ,  deg 

(b ) Horizontal  t a i l  on, high p o s i t i o n .  

Figure 20. - Concluded. 





Figure 22.- Longitudinal c h a r a c t e r i s t i c s  with t h e  i n l e t  open and power o f f ;  par t ia l -span f l a p ,  
high t a i l  pos i t ion ,  V, = 40 knots, second phase of t e s t ,  Ff = 30'. 



Figure 23. - Effect  of Reynolds number on longi tudinal  charac te r i s t i c s ;  6f = 30°, part ial-span,  
duct closed, high t a i l  posit ion,  second phase of t e s t .  



( a )  Low-speed fo rces .  

Figure 24. - Longitudinal cha r ac t e r i s t i c s  with the  fan  operating , hor izonta l  t a i l  o f f ;  Ef = 0°, 
j3 = 00, second phase of t e s t .  





Figure 25.-  Power-on longi tudinal  c h a r a c t e r i s t i c s ;  /3 = 0°, V, = 20 knots.  



Figure 26.- Power-on longi tudinal  charac te r i s t i cs  with t h e  part ial-span f l aps  and two horizontal-  
t a i l  heights;  P = oO, V, = 30 knots, 1650 RPM, second phase of t e s t .  



Ln 
0 

o .2 .4 .6 .8 1.0 1.2 1.0 .8 .6 .4 .2 o -.2 
-8 -4 o 4 8 12 16' 

c D ern 
a ,  deg 

( a )  6f = oO, it = -3.7' 

.@re 27. - Power-on longitudinal  charac te r i s t i cs ;  high t a i l  posi t  ion, full-span f l aps ,  P = 0'. 





( c )  6f = 30°, 4; = l .gO 

Figure 27. - Conc luded . 





( b )  Ff = 40°, high t a i l  pos i t ion.  

Figure 28. - Continued . 



a, deg 

( c )  Ef = 30°, mid t a i l  posi t ion.  

Figure 28. - Concluded. 



Gross weight 

1000 

o l o  20 30 40 50 60 70 80 go loo 110 
V,, knots 

Figure 29.- Measured power and con t ro l  requirements f o r  zero drag and 
moment and two values of l i f t s ,  pa r t  ial-span f l a p  def lected 30°, 
second phase of t e s t .  



o 4 8 1 2  16 20 24 28 32 36 40 
it, deg 

(a) Horizontal-tail effectiveness . 

(b)  Reaction con t ro l  power. 

Figure 30.- Horizonta l - ta i l  and react ion control  ef fect iveness ,  mid t a i l  
pos i t  ion; V, = 40 knots . 



a ,  deg 

Figure 31.- Power-on longi tudinal  charac te r i s t i cs  with e x i t  vanes adjusted t o  give near zero drag, 
p a r t i a l  span f l a p  deflected 30°, high t a i l  posi t ion,  it = oO, second phase of t e s t .  



denote trimmed 

0 10 X )  30 40 50 60 70 80 90 100 
Voot Knots 

(a) Variation of moment coefficient 

b7 Knots 
(b ) Variation of moment. 

Figure 32.- Variation of pitching moment with speed, model near zero 
drag and moment at  t r im  speed (see  f i g .  2 9 ) ,  par t ia l -span f l a p  
def lected 30°, second phase of t e s t .  


