Two papers make up the body of this report. One presents a single-pass adaptive vector quantization algorithm that learns a codebook of variable size and shape entries; the authors present experiments on a set of test images showing that with no training or prior knowledge of the data, for a given fidelity, the compression achieved typically equals or exceeds that of the JPEG standard.

The second paper addresses motion compensation, one of the most effective techniques used in interframe data compression. A parallel block-matching algorithm for estimating interframe displacement of blocks with minimum error is presented. The algorithm is designed for a simple parallel architecture to process video in real time.
- 2 -

- **Image Compression**: A paper on our basic single-pass adaptive VQ with variable size and shaped codebook entries has appeared in the *Proceedings of the IEEE*. A new paper was presented at the *1994 IEEE Data Compression Conference* that describes the use of KD-trees for a fast serial implementation that can run on a UNIX workstation. In addition, this paper describes a number of key improvements to the basic algorithm. The Computer Science Department at Brandeis University has recently received a 1 million dollar grant from the NSF for the purchase of parallel computing equipment; part of these funds have already been used to purchase a 4,096 processor MASS-PAR machine; the remainder was used to purchase a 16-node SGI Challenge machine. We have been conducting experiments with this machine on practical sub-linear parallel implementations of the algorithm.

- **Video Compression**: Our work on the basic adaptive displacement estimation algorithm that tracks variable shaped groups of pixels from frame to frame has appeared in the same issue of the *Proceedings of the IEEE* as our work on adaptive image compression. In addition, we have submitted for journal publication new work on the integration of this algorithm into a complete video and image sequence compression system. We are in the process of compiling extensive experimental results with the system.

- **Parallel Algorithms**: Our work on sublinear algorithms for parallel text compression has been submitted for journal publication. We have conducted experiments with our new approach to sub-linear text compression that closely approximates optimal compression but is much more practical to implement. Using an extremely simple parallel model (a linear array where processors can only talk to adjacent neighbors), we have achieved poly-log time and extremely close approximation to optimal compression. As parallel computers become more common, algorithms such as this will provide practical ways to fully utilize the power of these machines in NASA applications involving large amounts of data.

- **Error Propagation**: A paper on our basic error resilient algorithm has been submitted for journal publication. We are continuing our investigation of "error resilient" systems, and their application to lossy systems.

Appendix: As indicated above, the two papers that recently appeared in the *Proceedings of the IEEE* give good summaries of the key work performed under this contract. Attached are copies of these papers.
Vector quantization is a lossy method that compresses an image by replacing subblocks by indices into a dictionary of subblocks. Traditionally, the subblocks are all the same size and shape and the dictionary must be computed in advance by "training" on sample data. Not only can training be computationally expensive, but "full-search" encoding that is guaranteed to find the closest vector in the dictionary can also be very time-consuming. In practice, tree-structured dictionaries are often used. Lin [10] studies the performance—complexity tradeoffs for vector quantization. See Gersho and Gray [9] for an introduction to vector quantization and references to the literature.

The basic single-pass adaptive VQ algorithm presented in [4], [5] is depicted in Fig. 2, which is followed by Algorithms 1a and 1b, the Lossy Generic Encoding and Decoding Algorithms for on-line adaptive vector quantization. Fig. 1 illustrates the algorithms by showing for a CAT-scan chest image (Fig. 1(a)), a map of how the compressor covers the image with rectangles (Fig. 1(b)), and a portion of the dictionary (Fig. 1(c)) about halfway through the compression process. The operation of the generic algorithms is guided by the following heuristics:

The Growing Heuristic: The heuristic selects one growing point GP(x,y,q) from the available pool GPP. All experiments reported here use the wave heuristic (a "wave front" that goes from the upper left corner down to the lower right corner). Other examples of growing heuristics include circular (a "ball" that expands outward from the center), diagonal (a successive "thickening" of the main diagonal), and FIFO (first-in first-out).

The Match Heuristic: This heuristic decides what block b from the dictionary D best matches imageGP (the portion of the image of the same shape as b defined by the currently selected growing point GP). All experimental results reported here use the greedy heuristic (choose the largest match possible of acceptable quality, and among two matches of equal size, choose the one of best quality). The parameters that guide the matching process are: The distance measure; we use the standard mean-square measure in all experiments. The elementary subblock size l; large matches can be divided into subblocks of constant size.

Algorithm 1a: Lossy Generic Encoding Algorithm.

1) Initialize the local dictionary D to have one entry for each pixel of the input alphabet and the growing points pool (GPP) with one (or more) growing points.

2) Repeat until there are no more growing points in GPP:

 a) [Select the next growing point from GPP:]
 Use a growing heuristic to choose a growing point GP from GPP.

 b) [Get the best match block b:]
 Use a match heuristic to find a block b in D that matches with acceptable fidelity image (GP, b) (the portion of image determined by GP having the same size as b). Transmit \(\log_2 |D| \) bits for the index of b.

 c) [Update D and GPP:]
 Add each of the blocks specified by a dictionary update heuristic to D (if D is full, first use a deletion heuristic to make space).

Algorithm 1b: Lossy Generic Decoding Algorithm.

1) [Initialize D and GPP by performing Step 1) of the encoding algorithm.]

2) Repeat until there are no more growing points in GPP:

 a) [Select the next growing point from GPP:]
 Perform Step 2a of the encoding algorithm to obtain GP.

 b) [Get the best match block b:]
 Receive \(\log_2 |D| \) bits for the index b. Retrieve b from D and output b as the position determined by GP.

 c) [Update D and GPP:]
 Perform Step 2c of the encoding algorithm.

Fig. 1. (a) ChestCAT original. (b) ChestCAT map. (c) ChestCAT dictionary.

Fig. 2. On-line adaptive VQ.
so-called "bounds-overlap-ball" test). If we use the range
\[[x_i - d, x_i + d] \]
for each dimension \(i \) of the query block \(x \) (key area), deciding to go left, right, or both ways in the \(k \)-\(d \) tree depending on how this range compares with the partition value \(v_i \), associated with the currently visited nonterminal node, we end up by selecting all potential best matches (all blocks which meet the distortion threshold on the key area), no matter what distortion measure we use as long as it is monotonic in dimension values as well as in the number of dimensions (conditions required also by Friedman, Bentley, and Finkel algorithm). An example of such a measure is the standard \(L_2 \) (Euclidean) metric. Although mean-square error does not satisfy this condition, it is a bit faster to compute (because there is no square root to compute) and works equally well in practice.

Let us now consider the complexity of our algorithm when the \(k \)-\(d \) tree data structure is employed. Encoding time is bounded by

\[
O\left(N + \frac{N(S(D_{max}, m) + Q(N) + m)}{r} \right)
\]

where \(N \) is the number of pixels in the image, \(S(D_{max}, m) \) is the maximum time to search a dictionary with a maximum of \(D_{max} \) entries each with at most \(m \) pixels, \(Q(N) \) is the time to insert and delete for the growing points queue, and \(r \) is the amount of compression (original size/compressed size). Straightforward implementation of the growing heuristics we have considered uses \(O(\log (N)) \) time by employing a heap data structure; however, this time can be reduced to \(O(1) \) by implementing all heuristics in a manner similar to FIFO. Under ideal assumptions, it can be shown that the expected time for range search in \(k \)-\(d \) trees is \(O(\log n + B) \), where \(B \) is the number of blocks found (Bentley and Sianat [3], Friedman, Bentley, and Finkel [7]). If we take \(S(D_{max}, m) \) to be \(O(\log(D_{max})) \) (which from our experiments appears to be a reasonable assumption), the improved encoding time is

\[
O\left(N + \frac{N\log(D_{max})}{r} \right)
\]

under the reasonable assumption that \(m = O(\log(D_{max})) \). In many applications, it may be reasonable to assume that \(r \) is \(\log(D_{max}) \), which brings the encoding time down to \(O(N) \) time. As before, decoding is essentially table lookup, and can be done in \(O(N) \) time.

Some parameters of the \(k \)-\(d \) tree should be adjusted by experimentation with real data or simulation because they reflect some compromise between time, memory space, and retrieval quality that is generally dependent on the application domain. After experimenting with a number of alternatives we choose the following settings (used for all the experiments reported in this paper):

- **Bucket Size**: Maximum 8 blocks per bucket. (We experimented with bucket sizes ranging from 1 to 32.)
- **Discriminating Dimension**: The dimension with the largest spread of values (computed by estimating the variance on every dimension of the key, for the 8 blocks in the bucket). (We experimented with random choice, and with cyclic choice depending on the level in the tree).
- **Partition Value**: The mean value between all of the discriminating dimension values in the bucket. (We experimented with random values which worked relatively well.)
- **Range**: 1.25 \(\times d \). (Even though mean-square error does not satisfy the monotone properties discussed earlier, by extending the range just a little to \([x_i - 1.25 \times d, x_i + 1.25 \times d] \), the retrieval quality is as good as for full search with an insignificant increase in search time.)
- **Number of \(k \)-\(d \) Trees**: Four trees \(t_1, t_2, t_3, \) and \(t_4 \), with the following key sizes and block assignment:
 - \(t_1 \) has 1 \(\times 1 \) key and contains blocks of size 1 \(\times n \) or \(n \times 1 \), with \(n \geq 2 \).
 - \(t_2 \) has 2 \(\times 2 \) key and contains blocks of size 2 \(\times n \) or \(n \times 2 \), with \(n \geq 2 \).
 - \(t_3 \) has 3 \(\times 3 \) key and contains blocks of size 3 \(\times n \) or \(n \times 3 \), with \(n \geq 3 \) and
 - \(t_4 \) has 4 \(\times 4 \) key and contains blocks of size \(m \times n \), with \(m, n \geq 4 \).

Regarding the number of trees to use and the key sizes, since our algorithm is "normalized" by using \(l \times l \) elementary areas \((l = 4 \) for all experiments reported here), then using a key of size at least \(l \times l \), no matter how "good" a big block is on the rest, if it does not satisfy the distortion threshold on the key area it will be rejected also by the full search. Practically, the improvement in selectivity by using keys bigger than \(4 \times 4 \) does not justify the increase in the
the “activity” in a region of the image as the ratio between the variance (to the mean) \(V \) and the mean \(\mu \) on this region. From experimentation, we can say that if the ratio \(A \) is smaller than \(4\%-5\% \), then the area is smooth and we use a smaller distortion threshold of \(0.4d \) for this area; if \(5\% < A \leq 10\% \) we use an intermediary threshold of \(0.6d \), and if \(A > 10\% \) than the area is active and we use the entire threshold \(d \). Figure 6(a) shows our algorithm on the WomanHat image, using a constant distortion threshold at 10-to-1 compression. Figure 6(b) shows the results of the method described above at 10-to-1 compression. For comparison, Fig. 6(c) shows JPEG at 10-to-1 compression. Similarly, Fig. 7(a)-(c) shows the ChestCAT image using constant distortion threshold at 10-to-1 compression, the method described above at 10-to-1 compression, and JPEG at 10-to-1 compression. In both Figs 6(b) and 7(b), the visual quality is much improved (especially on smooth areas such as the shoulder in the WomanHat image and the smooth part with the “X” in the ChestCAT image). By comparison, note that in Fig. 7(c) JPEG is blocky and the edges are not preserved; however, for WomanHat, Fig. 6(b) and (c) has similar visual quality.

VI. CURRENT RESEARCH

We are currently working on a number of extensions to the basic approach presented in this paper. First we are continuing experiments to better understand how different heuristics affect performance in terms of both speed and quality. Second, parallel algorithms that run in nearly \(O(\sqrt{N}) \) time with \(O(\sqrt{N}) \) processors are possible. Third, of interest are formal proofs addressing compression-fidelity tradeoffs.

REFERENCES

James A. Storer received the B.A. degree in mathematics and computer science from Cornell University, Ithaca, NY, in 1975, the M.A. degree in computer science from Princeton University, Princeton, NJ, in 1977, and the Ph.D. degree in computer science, also from Princeton University, in 1980

Corneli Constantinescu received the M.S. diploma in computer engineering in 1976 from the Polytechnic University of Bucharest, Bucharest, Romania.

From 1976 to 1980 he was a software engineer at the State Computer Factory and taught courses in design and use of the Computer Factory products to help in the export of these products (for example, to China). From 1980 to 1990 he was an Assistant Professor in the Computer Science Department at the Polytechnic University of Bucharest. He is presently concluding his work towards the Ph.D. degree at the Computer Science Department, Brandeis University, Waltham, MA.
If these areas are small enough, rotation, zooming, etc., of larger objects can be closely approximated by piecewise translation of these smaller areas. The goal is to approximate interframe motion by piecewise translation of one or more areas of a frame relative to a reference frame. Let U be an $M \times N$ size block of an image and U_r be an $(M+2p) \times (N+2p)$ size area of a reference (neighboring) image, centered at the same spatial location as U, where p is the maximum displacement allowed in either direction in integer number of pixels. The algorithm requires for each block a search of the direction of minimum distortion (DMD), i.e., of the displacement vector that minimizes a given distortion function. A possible mean distortion function between U and U_r is defined in Jain and Jain [4] as

$$D(i,j) = \frac{1}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} g(u(m,n - u_r(m + i, n + j))),$$

where $g(x)$ is a given positive and increasing distortion function of x. The direction of minimum distortion is given by (i,j), such that $D(i,j)$ is minimum.

One problem of this approach is that finding optimal displacements requires the evaluation of $D(i,j)$ for $(2p+1) \times (2p+1)$ directions per block. For example, even for motions up to 5 pixels along either side of the axes a search of 121 positions per block is required. The solution proposed in Jain and Jain [4] is to assume that the data are such that the distortion function monotonically increases as we move away from the DMD along any direction in each of the four quadrants. This assumption makes possible a search procedure for the DMD that is an extension in two dimensions of the standard logarithmic search in one dimension (see Knuth [6]).

In the next section we present a parallel algorithm that eliminates the need for this assumption and which can be implemented to run on-line on a practical parallel architecture.

III. A SPLIT-MERGE PARALLEL BLOCK-MATCHING ALGORITHM

In this section we present a new parallel block-matching algorithm for displacement estimation based on a split-and-merge technique taking advantage of the fact that groups of blocks often move in the same direction (for instance, if they are part of the same object or part of the background). The encoding algorithm computes the displacement vectors (in parallel) and sends them in compact form to the decoder. The decoder receives the data and constructs an approximate version of the image, which will be corrected in the next step of the general encoding algorithm.

A. The Model of Computation

To process frames of n pixels each, the encoding algorithm employs a $\sqrt{N} \times \sqrt{N}$ grid of processors, $1 \leq N \leq n$, each having $O(n/N)$ local memory. Although all of what we present is well defined when $N \ll n$, to simplify our presentation we shall assume $N = kn$ for some $0 < k \leq 1$ (and here each processor has $O(1)$ local memory). For decoding we will need only a single processor with $O(n)$ memory.

Each frame is divided into N rectangular blocks numbered in the same way as the processors; we assume that at time t processor i receives as input block i from the tth frame. Since each processor corresponds to a block, and vice versa, from now on we will use the terms processor and block interchangeably.

The encoding algorithm implies the use of a sequential controller to monitor the execution of the algorithm. The controller will need $O(V)$ dynamic memory and will perform communication operations only with processor 1. We will identify this controller with processor 1 itself by allocating to this processor an additional $O(N)$ local dynamic memory. The encoder computes the displacement vectors and transmits them in a compact form to the decoder on a serial line. Figure 1 depicts our model of computation. The input frames come to the frame buffer on a high-speed communication line, in time proportional to n. The data flow from the frame buffer to the grid architecture that performs the search of the optimal displacement for each block. The communication between the frame buffer and the grid architecture has to be performed fast enough to allow the grid time to perform the necessary computation on the actual frame before receiving the next frame. In fact, the bold arrow implies that this communication should be performed either in parallel or on a serial line with a speed of cN/n pixels per unit of time, where c is a system-dependent constant. In Fig. 2 is shown a possible implementation of the frame buffer: embedded into the grid. The input is pipelined through the processors. At each step each processor can pass the input to its neighbor and, when necessary, can simultaneously copy it into its own working memory.

B. The Encoder Algorithm

Figure 3 shows the encoder algorithm at time t. Each processor at time t computes in parallel the displacement of the block that it represents in frame t with respect to a search area in frame $t - 1$. For simplicity we assume that the size of the search area is exactly 3×3 blocks, that is, for each processor we limit the search area to its adjacent blocks. Processor i at time t keeps the description of the block it represented at time $t - 1$ in the variable $\text{block}_{fr}(i)$.
the necessary operations. The decoder uses $O(V)$ memory to decode each frame in $O(N)$ time.

D. Splits and Displacement Vectors

One of the critical points of the algorithm is the communication from the encoder to the decoder of the list-of-splits, i.e., of the list of the processors that at time t belonged to a superblock but no longer do, and of their displacement vectors. There are two requirements that the list-of-splits must satisfy: it must be computationally easy to build, and it must have a concise encoding; otherwise, sending only one displacement vector for each superblock would not be convenient because of the necessity of sending also the list-of-splits.

The list-of-splits is dynamically built: In line 2.4 of Phase 2, groups of processors are added to the list, a single displacement vector per each group. We keep a hash table of possible displacement vectors: each time a group is added to the list we compute the hash value of its displacement vector and we associate to the corresponding entry in the table this displacement vector and the list of the processors in the group. This list begins with the ID of the smaller processor, then the ID's of the other processors follow, each coded in terms of the displacement with respect to the previous one. Because the processors were part of the same superblock and are still moving in the same direction, we can expect their ID numbers to be very close and we can get good compression with this simple heuristic. When the encoder sends the list-of-splits, it sends each nonzero entry in the table.

There might be more than one solution to the computation in Line 2 of Phase 1. The block examined could match optimally more than one block in the search area, or else we may want to consider in the next Phase more than one direction in which the block can move, in such a way to have more options when it is time to shape the superblocks. A way to do this is to save for each block all the displacement vectors that allow an error less than a threshold t when the block is matched in the search area. In this case, in line 1 of Phase 2, the processor sends to the controller not only a single vector but a list of possible vectors.

To determine the eventuality of a split, in line 2.1 of Phase 2, the controller shall compute in which of the possible directions the majority of the processors move. The number of possible directions is finite and the computation can be limited in advance by limiting the length of each list of possible vectors to an appropriately chosen constant L. Phase 3 is not affected by considering more than one displacement value per vector in Phase 2: a single displacement vector per block has been sent in Phase 2, and now only that vector has to be considered in Phase 3.

E. Implementation on a Pipe

Figure 4 shows how the algorithm can be implemented on a pipe. The inputs to the pipe are the actual frame and the previous frame reconstructed by the decoder. The input flows in linear time through all the processors. Each processor has to construct the search area by using the information from the previous frame: after $O(N)$ time every processor has available both the block it is representing at the current time and the search area in the previous frame.

The computation involved and the details of the algorithm are analog to the grid implementation.

IV. ANALYSIS OF THE ALGORITHM

In this section we analyze the encoder algorithm in terms of complexity, fidelity, and compression. The analysis is done for the grid implementation, similar arguments hold for the pipe implementation.

A. Complexity

Let N be the number of processors in the grid, where $N = kn$ for $0 < k \leq 1$. In Phase 1 lines 1 and 3 involve direct neighbor communication and take constant time. The computation involved in line 2 is the most expensive part of Phase 1, but it still takes constant time, where the constant depends on the size of the search area. The for loop in line 1 of Phase 2 might seem to involve $O(N^2)$ communication on a grid architecture: processor 1 has to interact with all the other processors. If we number the blocks by row and column this for loop can be easily pipelined as showed in Fig. 5. Therefore, processor 1 will always interact at each iteration of the loop with an adjacent processor: processor 2, and the loop will take $O(N)$ time. The complexity of line 2 (2.1–2.5) depends on the number of processor ID's examined. The superblocks are pairwise-disjoint sets; therefore, line 2 has a time complexity of $O(N)$. Line 3 involves also $O(N)$ time.

The for loop of line 1 of Phase 3 can be pipelined and takes $O(N)$. For each vector the coblocks have a constant size (each processor has at most eight neighbors), therefore, line 2 has time complexity $O(N)$.

In fact, the whole algorithm has at each step t a time complexity $O(N) = O(kn)$, i.e., linear in the size of the input, it is an on-line algorithm.
typical of the head and shoulders. Sequences common in video-telephone applications.

Fog

From the motion picture "Casablanca," the final scene when Humphrey Bogart and Ingrid Bergman say good-bye in the fog at the airport. This sequence is composed of 60 frames, 152×114, 8 bits per pixel, digitized at a rate of 12 frames per second. There is a considerable amount of noisy movement due to the foggy background.

Kids

From the motion picture "It's a Wonderful Life," it is one of the first scenes, where kids (the main characters as children) are sitting at a desk. This sequence is composed of 100 frames, 152×114, 8 bits per pixel, digitized at a rate of 12 frames per second. There is a fair amount of movement due to the presence of three characters.

Mountains

From the motion picture "The Sound of Music," one of the final scenes, where the main characters are walking in the mountains. This sequence is composed of 60 frames, 152×114, 8 bits per pixel, digitized at a rate of 12 frames per second. The scene involve a noticeable amount of movement.

Pastorale

From the motion picture "Fantasia," a scene from the part of the movie illustrating Beethoven's 6th Symphony. This sequence is composed of 60 frames, 152×114, 8 bits per pixel, digitized at a rate of 12 frames per second.

We define, as usually, the SNR correlation (in decibels), between two frames X and Y, of dimension $M \times N$ as

$$\text{SNR}(X, Y) = 10 \times \log_{10} \frac{\sum_{i<j,M<j<N} (X(i,j))^2}{\sum_{i<j,M<j<N} (X(i,j) - Y(i,j))^2}.$$

To describe the amount of movement present in each of the test sequences, Fig. 11 presents for each sequence the SNR correlation between pair of consecutive frames. On the Y axis we plot the SNR correlation, in decibels, between a frame and the previous one, on the X axis the frame number. We can see, for example, that in the sequence "Kids" and in the sequence "Mountains" (Fig. 11(c), (d)) there is at first a higher amount of movement (the first 20 frames of "Kids" and the first 30 of "Mountains"), and then a lower amount of motion. Therefore, the graphs show very low points for the first part of the sequence and then a brisk increase and a smoother behavior. In the sequence "Kids," this is due to the fact that in the first 20 frames the blonde girl moves from the left corner of the picture and sits down at the desk while the boy gets closer, then in the rest of the sequence the two girls and the boy move slightly and chat. In the sequence "Mountains," at the beginning people are walking fast to the top of the hill but at the end they slow down and turn to the mountains.

Figure 12 shows, in a table, the results we have obtained comparing our algorithm to the standard full search algorithm. The first column of the table identifies the sequence, the second column reports for each sequence the average SNR (in decibels) between consecutive frames as a measure of their correlation. The third and fourth columns present the results of the comparison between the full search algorithm and the Split-Merge algorithm for the test sequences. We have run the full search algorithm with block size 8 (8 pixels by 8 pixels blocks) and block size 4 (4 pixels by 4 pixels blocks) and we have reported in the first subcolumns of the third and fourth columns the average SNR between the original frames and the prediction obtained. Then we have run our algorithm setting the parameters in such a way to achieve that same average SNR and in the second subcolumns we have compared the size of the predictions, i.e., the number of bytes needed to send the prediction from the encoder to the decoder assuming no lossless compression is performed.

As can be seen in Fig. 12, for the same SNR, our algorithm has in general a noticeable saving in size respect to the full search algorithm. In the sequence "Fog" the foggy background produces noisy effects on the segmenta-

Bruno Carpentieri received the "Laurea" degree in computer science from the University of Salerno, Italy, in 1988, and the M.A. degree in computer science from Brandeis University, Waltham, MA, in 1990, where he is presently completing the requirements for the Ph.D. degree.

Since 1991 he has been Assistant Professor of Computer Science (Ricercatore) the Dipartimento di Informatica ed Applicazioni at the University of Salerno. His research interests include data compression, in particular video compression and motion estimation, parallel computing, and theory of computation.

James A. Storer received the B.A. degree in mathematics and computer science from Cornell University, Ithaca, NY, in 1973, the M.A. degree in computer science from Princeton University, Princeton, NJ, in 1977, and the Ph.D. degree in computer science, also from Princeton University, in 1979.

From 1979 to 1981 he was a researcher at Bell Laboratories, Murray Hill, NJ. In 1981 he accepted an appointment at Brandeis University, Waltham, MA, where he is currently Professor of Computer Science, chair of the Computer Science Department, and a member of the Brandeis Center for Complex Systems. His research interests include data compression: text, image, and video processing; parallel computation; computational geometry; VLSI design and layout; machine learning; and algorithm design.

Dr. Storer is a member of the ACM and the IEEE Computer Society.