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0 Image Compression: A paper on our basic single-pass adaptive VQ with variable size 
and shaped codebook entries has appeared in the Proceedings of the IEEE. A new paper 
was presented at the 1994 IEEE Data Compression Conference that describes the use 
of KD-trees for a fast serial implementation that can run on a UNIX workstation. In 
addition, this paper describes a number of key improvements to the basic algorithm. 
The Computer Science Department at Brandeis University has recently received a 1 
million dollar grant from the NSF for the purchase of parallel computing equipment; 
part of these funds have already been used to  purchase a 4,096 processor MASS-PAR 
machine; the remainder was used to purchase a 16-node SGI Challenge machine. We 
have been conducting experiments with this machine on practical sub-linear parallel 
implementations of the algorithm. 

Video Compression: Our work on the basic adaptive displacement estimation algo- 
rithm that tracks variable shaped groups of pixels from frame to frame has appeared 
in the same issue of the Proceedings of the IEEE as our work on adaptive image com- 
pression. In addition, we have submitted for journal publication new work on the 
integration of this algorithm into a complete video and image sequence compression 
system. We are in the process of compiling extensive experimental results with the 
system. 

a Parallel Algorithms: Our work on sublinear algorithms for parallel text compression 
has been submitted for journal publication. We have conducted experiments with our 
new approach to sub-linear text compression that closely approximates optimal com- 
pression but is much more practical to implement. Using an extremely simple parallel 
model (a linear array where processors can only talk to adjacent neighbors), we have 
achieved poly-log time and extremely close approximation to optimal compression. As 
parallel computers become more common, algorithms such as this will provide prac- 
tical ways to fully utilize the power of these machine in NASA applications involving 
large amounts of data. 

0 Error Propagation: A paper on our basic error resilient algorithm has been submit- 
ted for journal publication. We are continuing our investigation of “error resilient” 
systems, and their application to lossy systems. 

Appendix: As indicated above, the two papers that recently appeared in the Proceedings 
of the IEEE give good summaries of the key work performed under this contract. Attached 
are copies of these papers. 
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Fig. 1. (a) ChestCAT original. (b) &SICAT map. (c) C~CSICAT dictionary. 
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Fig. 2. On-line adaptive \:Q. 

an overview on adaptive lossless compression, see the book 
by Storer [14]. 

Vector quantization is a lossy method that compresses 
an image by replacing subblocks by indices into a djctio- 
nary of subblocks. Traditionally. the subblocks are all the 
same size and shape and the dictionary must be computed 
in advance by “training” on sample data. Not only can 
training be computationally expensive, but “full-search” 
encoding that is guaranteed to find the closest vector 
in the dictionary can also be very time-consuming. In 
practice. tree-structured dictionaries are often used. Lin (101 
studies the pefiom,an:e-comp!exi:y t-adeeffs for vector 
quantization. See Gersho and Gray [9) for an introduction 
to vector quantization and references to the literature. 

The basic single-pass adaptive V Q  algorithm presented 
in [4]. [ 5 ]  is depicted in Fig. 2, which is followed by 
Algorithms la and Ib. the Lossy Generic Encoding and 
Decoding Algorithms for on-line adaptive vector quanri- 
zation. Fig. 1 illustrates the algorithms by showing for 
a CAT-scan chest image (Fig. l(a)), a map of how the 
compressor covers the image with rectangles (Fig. I(b)), 
and a portion of the dictionary (Fig. l(c)) about half- 
way through the compression process. The operation of the 
generic algorithms is guided by the following heuristics: 

Thc Gln~ing Heurisric: The heuristic selects one grow- 
ing point GP(2.y.q) from the available pool GPP. All 

1) Initialize the local dirrionor). D to have one entry for each pixel 
of thc input alphabet and the growing jwinrs pool (GPP) with 
(or more) growing poinu. 

2) Replat until there arc no more growing points in GPP: 

a) ISckcr the n u r  growing poinr from GPP:) 
Use a growing hrurisrir to choose a growing point GP fm 
GPP. 

b) I Ger rhr b a r  march block b : I 
Use a murch heurirric io find a block b : in D that ma tch  
with acceptable fidelity h u g e  (GP. b :) (the portion of imrp  
determined by GP having the same size as 6). Transmit 
[logzlDl] bits for the index of b :. 

Add each of the blocks specified by a dicrionary updare 
heurisrk to D (if D is full. first use a delerion heuristic 
IO make space) 

c) IVpdure D nnd GPP:]  

Algorilhm la: Lossy Generic Encoding Algorithm. 

1) llnitialize D and GPP by performing Step 1) of h e  encoding 
algorithm. ] 

2) Repeat until there are no more growing points in GPP: 
a) I Select the next growing point from GPP: 1 

Perform Step ?a of the encoding algorithm to obtain GP. 
b) {Get the best match block b : )  

Receive [log21Dll bits for the index b. Retrieve b from D 
and output b at the position determined by GP. 

c) {Update D and GPP: I 
Perform Step 2c of the encoding algorilhm 

Algorithm Ib: Lossy Generic Decoding Algorithm. 

experiments reported here use the wuw heuristic (a ‘‘u’ave 
front” that goes from the upper left corner down 10 

!ewer rieht comer). Other examples of growing h ~ r i s t i a  
include circular (a “ball” that expands outward from he 
center), diagonal (a successive “thickening” of the maiD 
diagonal), and FIFO (first-in first-out). 

The Morch Heurisric: This heuristic decides what block 
from the dictionary D best matches imageGP (the P0hm 
of <ne image of .ik s m e  shape as b defined by * 
currently selected growing point GP). A11 expenmend 
results reported here use the greedy heuristic (chpose * 
largest match possible of acceptable quality. a n t  among 
two matches of equal size. choose the one of best qua’- 
ity). The parameters that guide the matching process a S  
The disrance nieasure; we use the standard rnean-squfl 
measure in all experiments. The elenienrar> suhhlo~k 
I ;  large matches can be divided into subblocks of constant 



i 
ChestCAT: Cat-scan chest image, 512 by 512 pixels, 8 

bits per pixel. 
BrainMrSide: Magnetic resonance medical image that 

shows a side cross-section of a head, 256 by 256 pixels, 
8 bits per pixel; this is the medical image used by Gray, 
Cosman, and Riskin [GCRSI]. 

BrainMrTop: Magnetic resonance medical image that 
shows a top cross-section of a head, 256 by 256 pixels, 
8 bits per pixel. 

NASA5: Band 5 of a 7-band image of Donaldsonville, 
LA; the least compressible of the 7 bands by UNIX 
compress. 

NASA6: Band 6 of a 7-band image of Donaldsonville, 
LA; the most compressible of the 7 bands by UNIX 
compress. 

WomanHat: The standard woman in the hat  photo, 512 
by 512 pixels, 8 bits per pixel. 

LivingRoom: Two people in the living room of an old 
house with light coming in the window, 512 by 512 pix- 
els, 8 bits per pixel. 

Fingerprint: An FBI finger print image, 768 by 768 pix- 
els, 8 bits per pixel; includes some text at the top. 

Handwri t ing:  The first two paragraphs and part of 
the figure of page 165 of Image and T e d  Compres- 
sion (Kluwer Academic Press, Norwell, MA) written 
by hand on a 10 inch high by 7.5 inch wide piece of 
gray stationary scanned at 128 pixels per inch, 8 bits 
per pixel; approximately 1.2 million bytes. 

Fig. 4. Description of ihe images. 

so-called “bounds-overlap-ball” test). If we use the range 
[zi - d..q + d] for each dimension 1: of the query block 
z (key area). deciding to go left, right, or both ways in 
the k-d tree depending on how this range compares with 
the partition value vi associated with the currently visited 
nonterminal node, we end up by selecting d l  potential best 
matches (all blocks which meet the distortion threshold on 
the key area). no matter what distortion measure we use 
as long as it is monotonic in dimension values as well 
as in the number of dimensions (conditions required also 
by Friedman. Bentley, and Finkel algorithm). An example 
of such a measure is the standard L2 (Euclidean) metric. 
Although mean-square error does not satisfy this condition, 
it is a bit faster to compute (because there is no square root 
to compute) and works equally well in practice. 
kt US naw coiisidei ihe cornpiexity of our aigorithm 

when the k-d tree data structure is employed. Encoding 
time is bounded by 

where N is the number of pixels in the image. S(D,,: 7n) 

is the maximum time to search a dictionary with a 
maximum of Dm, entries each with at most m pixels, 
Q(.V) is the time to insert and delete for the growing 
points queue, and r is the amount of compression (original 
size/compressed size). Straightforward implementation of 
the growing heuristics we have considered uses O(log (A’)) 
time by emplo)*ing a heap data structure; however, this time 

can be reduced to O( 1 )  by implementing all heuristics in a 
manner similar to FIFO. Under ideal assumptions, it can be 
shown that the expected time fer range search in k-d trees 
is O(1ogn + B), where B is the number of blocks found 
(Bentley and Stanat [3], Friedman, Bentley. and Finkel [7]). 
If we take S(Dm,: m) IO be O(1og (Dmw)) (which from 
our experiments appears to be a reasonable assumption), 
the improved encoding time is 

under the reasonable assumption that m = O(1og ( D m a ) ) .  
In many applications, it may be reasonable to assume that 
r is log(D,,,), which brings the encoding time down to 
O(2V) time. As before, decoding is essentially table lookup, 
and can be done in O ( N )  time. 

Some parameters of the k-d tree should be adjusted by 
experimentation with real data or simulation because they 
reflect some compromise between time, memory space, 
and retrieval quality that is generally dependent on the 
application domain. After experimenting with a number of 
alternatives we choose the following settings (used for all 
the experiments reported in this paper): 

Bucket Sire: Maximum 8 blocks per bucket. (We exper- 
imented with bucket sizes ranging from 1 to 32.) 

Discriminating Dimension: The dimension with the 
largest spread of values (computed by estimating the 
variance on every dimension of the key. for the 8 blocks 
in the bucket). (We experimented with random choice, and 
with cyclic choice depending on the level in the tree). 

Partition Value: The mean value between all of the 
discriminating dimension values in the bucket. (We ex- 
perimented with random values which worked relatively 
well). 

Range: 1.25 *d .  (Even thouzh mean-square error does 
not satisfy the monotone properties discussed earlier, by 
extending the range just a little to [zi- 1.35 *d. si+ 1-25 *d], 
the retrieval quality is as good as for full search with an 
insignificant increase in search time.) 

Number of k-d Trees: Four trees tl. t2.63. and t l ,  with 
the following key sizes and block assignment: 

t i  has 1 x 1 key and contains blocks of size 1 x R or 
n x 1, with n 2 2. 
(ti is simply a binary search tree). 

n x 2, with n. 2 2. 

n x 3, with n 2 3 and 

t2 has 2 x 2 key and contains blocks of size 2 x n or 

t3 has 3 x 3 key and contains blocks of size 3 x n or 

t4 has 4 x 4 key and contains blocks of size m x n, 

Regarding the number of trees to use and the key 
sizes, since our algorithm is “normalized“ by using 1 x 1 
elementary areas (1  = 4 for all experiments reported here), 
then using a key of size at least 1 x I ,  no matter how “good” 
a big block is on the rest. if it does not satisfy the distortion 
threshold on the key area it will be rejected also by the full 
search. Practically, the improvement in selectivity hy using 
keys bigger than 4 x 3 does not justify the increase in the 

with m, n 2 4. 
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the "activity" in a region Of the i s q e  as the ratio between 
the variance (to the mean) V and the mean on this 
region. From experimentation. we can say that if the ratio 
A is smaller than 4%-5%, then the area is smooth and we 
use a smaller distortion threshold of 0.4-d for this area; 
if 5% < A 5 10% we use an intermediary threshold of 
0.6*d, and if .4 > 10% than the area is active and we use 
the entire threshold d. Figure 6(a) shows our algorithm on 
the WomanHat image. using a constant distortion threshold 
at 10-to-1 compression. Figure 6(b) shows the results of 
the method described above at 10-to-I compression. For 
comparison, Fig. 6(c) shows JPEG at 10-to- 1 compression. 
Similarly. Fig. 7(a)-(c) shows the ChestCAT image using 
constant distortion threshold at IO-to- 1 compression, the 
method described above at IO-to- 1 compression, and JPEG 
at 10-to-I compression. In both Figs 6(b) and 7(b), the 
visual quality is much improved (especially on smooth 
areas such as the shoulder in the WomanHat image and 
the smooth pan with the "X" in the ChestCAT image). By 
comparison, note that in Fig. 7(c) JPEG is blocky and the 
edges are not preserved: however, for WomanHat, Fig 6(b) 
and (c) has similar visual quality. 

VI. CURREUT RESEARCH 
We are currently working on a number of extensions 

to the basic approach presented in this paper. First we 
are continuing experiments to better understand how 
different heuristics affect performance in terms of both 
speed and quality. Second, parallel algorithms that run 
in neariy O ( n )  time with O(m) processors are 
possible. Third, of interest are formal proofs addressing 
compression-fidelity tradeoffs. 
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If these areas are small enough, ,,,,ration, zooming. etc.. of 
larger objects can be Chely  approximated by piecewise 
translation of these smaller areas. The goal is to approxi- 
mate interframe motion by piecewise translation of one or 
more areas of a frame relative to a reference frame. Let 
U be an M x N size block of an image and U, be an 
( M  + 2 p )  x ('V + 2 p )  size area of a reference (neighboring) 
image, centered at the same spatial location as U,  where p 
is the maximum displacement allowed in either direction 
in integer number of pixels. The algorithm requires for 
each block a search of the direction of minimum distortion 
(DMD), i.e.. of the displacement vector that minimizes 
a given distortion function. A possible mean distortion 
function between I/ and U, is defined in Jain and Jain [4] as 

- A4 -Y 

g(u(m. I I  - u,(m + i ,  n + j))). 1 

.ti rv D ( i . j )  = - 
m r l  n=1  

- p < i . j < p  

where g ( x )  is a given positive and increasing distortion 
function of 2. The direction of minimum distortion is given 
by (ij). such that D ( i . j )  is minimum. 

One problem of this approach is that finding optimal 
displacements requires the evaluation of D ( i . j )  for ( 2 p  + 
1) x ( 2 p  + 1) directions'per block. For example. even for 
motions up to 5 pixels along either side of the axes a 
search of 121 positions per block is required. The solution 
proposed in Jain and Jain [4] is to assume that the data are 
such that the distortion function monotonically increases 
as we move away from the DMD along any direction in 
each of the four quadrants. This assumption makes possible 
a search procedure for the DMD that is an extension in 
two dimensions of the standard logarithmic search in one 
dimension (see Knuth [6]) .  
In the next section we present a parallel algorithm that 

eliminates the need for this assumption and which can 
be implemented to run on-line on a practical parallel 
architecture. 

111. A SPLIT-,MERGE PARALLEL 
BLOCK-MATCHISG ALGORITHM 
In this section we present a new parallel block-matching 

algorithm for displacement estimation based on a split-and- 
merge technique taking advantage of the fact that groups 
of blocks often move in the same direction (for instance. if 
they are part of the same object or part of the background). 
The encoding algorithm computes the displacement vec- 
tors (in parallel) and sends them in compact form to the 
decoder. The decoder receives the data and constructs an 
approximate version of the image, which will be corrected 
in the next step of the general encoding algorithm. 

A. The Model of Compuration 
To process frames Of n pixels each, the encoding algo- 

rithm employs a f i x  fl grid of processors. 1 5 N 5 n, 
each having O(n/.v) local memory. Although all of what 
we present is well defined when :V << 71. to simplify our 

I 
I 

Fig. 1. Displacement estimation encoder. 

presentation we shall assume .V = kn for some 0 < k 5 1 
(and here each processor has O(1) local memory). For 
decoding we will need only a single processor with O(n)  
memory. 

Each frame is divided into N rectangular blocks num- 
bered in the same way as the processors; we assume that 
at time t processor i receives as input block i from the tth 
frame. Since each processor corresponds to a block, and 
rice versa. from now on we will use the terms processor 
and block interchangeably. 

The encoding algorithm implies the use of a sequential 
conrroller to monitor the execution of the algorithm. The 
controller will need O(.V) dynamic memory and will 
perform communication operations only with processor 1. 
We will identify this controller with processor 1 itself 
by allocating to this processor an additional O(,V) local 
dynamic memory. The encoder computes the displacement 
vectors and transmits them in a compact form to the decoder 
on a serial line. Figure i depicts our model of computation. 
The input frames come to the frame buffer on a high-speed 
communication line, in time proportional to n. The data 
flow from the frame buffer to the grid architecture that 
performs the search of the optimal displacement for each 
block. The communication between the frame buffer and 
the grid architecture has to be performed fast enough to 
allow the grid time to perform the necessary computation 
on the actual frame before receiving the next frame. In 
fact. the bold arrow implies that this communication should 
be performed either in parallel or on a serial line with 
a speed of cn/N pixels per unity of time, where c is a 
system-dependent constant. In Fig. 2 is shown a possible 
implementation of the frame buffer: embedded into the grid. 
The input is pipelined through the processors. At each step 
each processor can pass the input to its neighbor and, when 
necessary, can simultaneously copy it into its own working 
memory. 

B.  The Encoder Algorirhm 

processor at time t computes in parallel the displacement 
of the block that it represents (in frame t) with respect to a 
search area in frame t - 1. For simplicity we assume that 
the size of the search area is exactly 3 x 3 blocks, that is, 
for each processor we limit the search area to its adjacent 
blocks. Processor i at time t keeps the description of the 
block it represented at time t - 1 in the variable block,r(i) 

Figure 3 S ~ O W S  i k  eiicodei dgoiiihiii a i  iime i. Each 



the necessary operations. The decoder uses O(,V) memory 
to decode each frame in O(iV) time. 

D. Splits and Displacement Vectors 
One of the critical points of the algorithm is the commu- 

nication from the encoder to the decoder of the list-ofsplirs. 
Le.. of the list of the processors that at time t belonged to 
a superblock but no longer do, and of their displacement 
vectors. There are two requirements that the list-of-splits 
must satisfy: it must be computationally easy to build. and 
it must have a concise encoding; otherwise. sending only 
one displacement vector for each superblock would not be 
convenient because of the necessity of sending also the 
list-ofsplirs. 

The list-of-splits is dynamically built: In line 2.1 of Phase 
2. groups of processors are added to the list. a single 
displacement vector per each group. We keep a hash table 
of the possible displacement vectors: each time a group 
is added to the list we compute the hash value of its 
displacement vector and we associate to the corresponding 
entry in the table this displacement vector and the list 
of the processors in the group. This list begins with the 
ID of the smaller processor, then the ID's of the other 
processors follow. each coded in terms of the displacement 
with respect to the previous one. Because the processors 
were pan of the same sirperblock and are still moving in the 
same direction, we can expect their ID numbers to be very 
close and we can get good compression with this simple 
heuristic. When the encoder sends the list-ofsplits. it sends 
each nonzero entry in the table. 

There might be more than one solution to the computation 
in Line 2 of Phase 1. The block examined could match 
optimally more than one block in the search area, or else 
we may want to consider in the next Phase more than 
one direction in which the block can move. in such a 
way to have more options when it is time to shape the 
superblocks. A way to do this is to save for each block 
all the displacement vectors that allow an error less than a 
threshold t when the block is matched in the search area. 
In this case, in line 1 of Phase 2. the processor sends to 
the controller not only a single vector but a list of possible 
vectors. 

To determine the eventuality of a split, in line 2.1 of Phase 
2, the controller shall compute in which of the possible 
directions the majority of the processors move. The number 
of possible directions is finite and the computation can 
be limited in advance by limiting the length of each list 
of possible vectors to an appropriately chosen constant 
L. Phase 3 is not affected by considering more than 
one displacement value per vector in Phase 2: a single 
displacement vector per block has been sent in Phase 2, 
and now only that vector has to be considered in Phase 3. 

E.  Implementation on a Pipe 
Figure 4 shows how the algorithm can be implemented 

on a pipe. The inputs to the pipe are the actual frame and 
the previous frame reconstructed by the decoder. The input 

Coniroller 

Input 

Fig. 4. Implementation of the slgorirhm on a pipe architecture. 

flows in linear time through all the processors. Each proces- 
sor has to construct the search area by using the information 
from the previous frame: after O(:V) time every processor 
has available both the block it is representing at the current 
time and the search area in the previous frame. 

The computation involved and the details of the algorithm 
are analog to the grid implementation. 

Iv. ANALYSIS OF THE ALGORITHM 

In this section we analyze the encoder algorithm in terns 
of complexity. fidelity. and compression. The analysis is 
done for the grid implementation. similar arguments hold 
for the pipe implementation. 

A. Complesiry 
Let N be the number of processors in the grid. where 

N = kn for 0 < k 5 1. In Phase 1 lines 1 and 3 involve 
direct neighbor communication and take constant time. The 
computation involved in line 2 is the most expensive part of 
Phase 1. but it still takes constant time. where the constant 
depends on the size of the search area. The for loop in line 
1 of Phase 2 might seem to involve O ( N 2 )  communication 
on a grid architecture: processor 1 has to interact with all 
the other processors. If we number the blocks by row and 
column this for loop can be easily pipelined as showed in 
Fig. 5. Tkefore,  p:CCeSSGi I wi!I a!ways inte:act at each 
iteration of the loop with an adjacent processor: processor 
2, and the loop will take O ( N )  time. The complexity 
of line 2 (2.1-2.5) depends on the number of processor 
ID's examined. The superblocks are pairwise-disjoint sets; 
therefore, line 2 has a time complexity of O ( N ) .  Line 3 
invoives also O j N j  rime. 

The for loop of line 1 of Phase 3 can be pipelined and 
takes O(X). For each vector the coblocks have a constant 
size (each processor has at most eight neighbors). therefore. 
line 2 has time complexity O(N) .  
In fact. the whole algorithm has at each step t a time 

complexity O ( N )  = O(kn) ,  i.e.. linear in the size of the 
input. it is an on-line algorithm. 
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Sequence 

Salesman 

.Mountains 

Fog 

Kids 

Pastorale 

typical of the head and shoulaer --quences common in 
video-telephone applications. 

,-orrclrtioa Full Search br l  Pull Search br4 

Splil Merge bs4 Split .Merge br2 
V I  V S  (~...i... F . . ~ )  

S t i l  S I R  : SIZE SSR : SIZE 

: 11225 : %m . 444.01 . 3733 
22.91 2JJ7dbi n 26ndbi - 
19.11 db Z f A d b  : *r l4.92db i : =  : 931 

: 138.96 . 857.03 

. : x x ,  : 931 
34.29db 3lUdb i - %.we i - 

: M o  931 

; n.41 : 69JJl 

. 141.08 a 1 w  

25.07 db 27JPdbi 2131db i * 

: l o a  : 931 
2279 db ?..Ea *I 17.lOdb : n 

, W.71 : 8 9 3 3  

Fog 
From the motion picture “Casablanca,” the final scene 

when Humphrey Bogart and Ingrid Bergman say good-bye 
in the fog at the airport. This sequence is composed of 60 
frames, 152 x 114. 8 bits per pixel, digitized at a rate of 
12 frames per second. There is a considerable amount of 
noisy movement due to the foggy background. 

Kids 
From the motion picture “It’s a Wonderful Life,” it is 

one of the first scenes, where kids (the main characters as 
children) are sitting at a desk. This sequence is composed 
of 100 frames. 152 x 114, 8 bits per pixel, digitized at 
a rate of 12 frames per second. There is a fair amount of 
movement due to the presence of three characters. 

Mountains 
From the motion picture “The Sound of Music.” one of 

the final scenes, where the main characters are walking in 
the mountains. This sequence is composed of 60 frames, 
152 x 113. 8 bits per pixel. digitized at a rate of 12 
frames per second. The scene involve a noticeable amount 
of movement. 

Pastorale 
From the motion picture “Fantasia.” a scene from the pan 

of the movie illustrating Beethoven’s 6th Syimphony. This 
sequence is composed of 60 frames, 152 x 114, 8 bits per 
pixel, digitized at a rate of 12 frames per second. 

We define, as usually, the SNR correlation (in decibels), 
between two frames X and Y, of dimension A 4  x .V as 

i < .\G< .V 

To describe the amount of movement present in each of 
the test sequences, Fig. 11 presents for each sequence the 
SNR correlation between pair of consecutive frames. On the 
Y axis we plot the SNR correlation, in decibels, between 
a frame and the previous one, on the X axis the frame 
number. We can see, for example, that in the sequence 
“Kids” and in the sequence “Mountains” (Fig. 1 l(c). (d)) 
there is at first a higher amount of movement (the first 20 
frames of “Kids” and the first 30 of “Mountains”), and then 
a lower amount of motion. Therefore, the graphs show very 
low points for the first pa17 of the sequence and then a brisk 
increase and a smoother behavior. In the sequence “Kids,” 
this is due to the fact that in the first 20 frames the blonde 
girl moves from the left comer of the picture and sits down 
at the desk while the boy gets closer, then in the rest of the 
sequence the two girls and the boy move slightly and chat. 
In the sequence “Mountains.” at the beginning people are 

Mountains Pastorale 

Fig. 11. 
SNR (dB) correlation with the previous frame. 

Motion in the test sequences. S = frame number; Y = 

walking fast to the top of the hill but at the end they slow 
down and turn to the mountains. 

Figure 12 shows, in a table, the results we have ob- 
tained comparing our algorithm to the standard full search 
algorithm. The first column of the table identifies the 
sequence, the second column reports for each sequence 
the average SNR (in decibels) between consecutive frames 
as a measure of their correlation. The third and fourth 
columns present the results of the comparison between the 
full search algorithm and the Split-Merge algorithm for the 
test sequences. We have run the full search algorithm with 
block size 8 (8 pixels by 8 pixels blocks) and block size 
4 (4 pixels by 4 pixels blocks) and we have reported in 
the first subcolumns of the third and fourth columns the 
average SNR between the original frames and the prediction 
obtained. Then we have run our algorithm setting the 
parameters in such a way to achieve that same average S N R  
and in the second subcolumns we have compared the size 
of the predictions, i.e., the number of bytes needed to send 
the prediction from the encoder to the decoder assuming no 
lossless compression is performed. 

As can be seen in Fig. 12, for the same SNR, our 
algorithm has in general a noticeable saving in size respect 
to the full search algorithm. In the sequence “Fog” the 
foggy background produces noisy effects on the segmenta- 
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