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This research program has been conducted in the framework of the NASA Earth and Space
Science (ESS) evaluations led by Dr. Thomas Sterling. In addition to the many important
research findings for NASA and the prestigious publications, the program has helped
orienting the doctoral research program of two students towards parallel input/output in
high-performance computing. Further, the experimental results in the case of the MasPar
were very useful and helpful to MasPar with which the P.I. has had many interactions with
the technical management. The contributions of this program are drawn from three
experimental  studies conducted on different high-performance = computing
testbeds/platforms, and therefore presented in 3 different segments as follows.



1. Evaluating the parallel input/output subsystem of a NASA high-performance
computing testbeds, namely the MasPar MP-1 and MP-2;

2. Characterizing the physical input/output request patterns for NASA ESS
applications, which used the Beowulf platform; and

3. Dynamic scheduling techniques for hiding I/O latency in parallel applications
such as sparse matrix computations. This study also has been conducted on the
Intel Paragon and has also provided an experimental evaluation for the Parallel File
System (PFS) and parallel input/output on the Paragon.

This report is organized as follows. The summary of findings discusses the results of each
of the aforementioned 3 studies. Three appendices, each containing a key scholarly
research paper that details the work in one of the studies are included.

SUMMARY OF FINDINGS

MasPar Evaluations
This work has shown that programmers of I/O-intensive scientific applications can tune

their programs to attain good I/O performance when using the MasPar. They should be at
least aware of their I/O configuration, the specific /O RAM size and how it is locally
partitioned in an attempt to partition data into files that can fit into the /O RAM. The work
further establishes that system managers are also encouraged to understand the I/O resource
requirements of the applications running on their machines and tune the I[/O RAM
configuration for best performance. In specific, partitioning the /O RAM among disk
reads, disk writes, data processing unit (DPU) to front end communications, and
interprocessor communications should be based on an understanding of the most common
needs of the local application domain.  Finally, the work has demonstrated that a full

MasPar configuration with MPIOCTM and a full /O RAM has potential for delivering
scalable high /O performance. However for this to happen the /O RAM management
should make good attempt to prefetch anticipated data. Further, the I/O RAM partitioning
strategy should be more flexible by using cache blocks for different purposes as
dynamically needed by the applications. At the least, files smaller than the [/O RAM size
should be cacheable. Finally, the sustained performance of the disk arrays remains to be
the clear bottleneck and is likely to limit the overall performance of parallel I/O systems for
some time to come. For more details on this study, refer to appendix A.



This work has clearly shown that device driver instrumentation has the ability to distinguish
among the different activities in the system, small explicit requests (less than page size),
paging(4KB each in this case), and large objects (such as images). Further, it was shown
ESS codes have high spatial I/O access locality, 90% of accesses into 10% of space. On
the other hand, temporal locality was measured as frequency of accesses and observed to
be as high as 6 repeated accesses per second. In general, astrophysics simulation codes
(PPM and Nbody) have similar /O characteristics and have shown very little /O
requirements for the used problem sizes. Wavelet code, however, required a lot of paging
due to the use of many different files for output and scratch pad manipulations, and could
benefit from some tuning to improve data locality. It is therefore advised that a strategy for
file usage and explicit I/O requests for this code be developed to do so. On the system
side, Linux tends to allow larger physical requests when more processes are running, by
allocating additional blocks for I/O. It is therefore recommended that Linux file caching
should be further investigated and optimized to suite the big variability in the physical
requests of NASA ESS domain. This study was done in collaboration with Mike R. Berry
(GWU).

D i hedulin PES Ev.

Using the worker-manager paradigm, we have introduced a dynamic I/O scheduling
algorithm which maximizes I/O latency hiding by overlapping with computations at run-
time, and is also capable of balancing the total load (I/O and processing). Using sparse
matrix applications as a test case, we have shown empirically that such scheduling can
produce performance gains in excess of 10%. Much higher improvement rates are
expected when the non-zero elements are distributed in a skewed manner in sparse matrix
applications. The end to end (including [/O) scalability of such applications was studied
and was shown to be very satisfactory under these scheduling schemes. In addition, the
Paragon parallel file system (PFS) was evaluated and its various ways of performing

collective input/output were studied. It was shown that the performance of the various calls

=4

depend heavily on the way of managing the file pointer(s). Calls that allow concurren
asynchronous access of processors to their respective blocks, but provide ordering at the
user level performed better than the rest. This study was conducted in collaboration with
Sorin Nastea (GMU) and Ophir Frieder (GMU).
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Abstract

Input/output speed continues to present a performance bottleneck for high-performance
computing systems. This is because technology improves processor speed, memory
speed and capacity, and disk capacity at a much higher-rate. Developments in /O
architecture have been attempting to reduce this performance gap. The MasPar I/O
architecture includes many interesting features. This work presents an experimental study
of the dynamic characteristics of the MasPar parallel 1/0. Performance measurements
were collected and compared for the MasPar MP-1 and MP-2 testbeds at NASA GSFC.
The results have revealed many strengths as well as areas for potential improvements and
are helpful to software developers, systems managers, and system designers.

1. Introduction

This study is aimed at the experimental performance evaluation of the MasPar I/O subsystem. Many /O
benchmarks have been developed and used by researchers for such investigations. A representative set of
them is discussed here. These benchmarks can be divided into two main categories: application benchmarks
and synthetic benchmarks. Selecting one over the other depends on the goals of the evaluation study. This
is because application benchmarks are unique in providing performance results that are understandable to
application-domain experts. Meanwhile, synthetic benchmarks (particularly those that are based on
parameterized workload models [Jain91]) have the potential for providing insightful understanding of the
architectural characteristics of the underlying I/O subsystem.

Among the /O application benchmarks are Andrew [Howard88], TPC-B[TPCB90], and Sdet
[Gaede81,Gaede82]. Andrew is more of a file system benchmark. As a workload, it copies a file directory
hierarchy, then reads and compiles the new copy.  Clearly, much of this work is not necessarily 1/O.
TPC-B [TPCB90] is a transaction processing benchmark aimed at evaluating machines running database
systems in a banking environment. Despite being I/O intensive, TPC-B takes into account database
software. The workload generates, using simulated customer random requests, debit-credit transactions to
read and update account, branch, and teller balances. Sdet is another I/O benchmark which is produced by
the System Performance Evaluation Cooperative (SPEC). SPEC produces independent standard benchmarks
[Scott 90] and it is well known for its CPU performance benchmark, SPEC Release 1.0. Sdet is a part of
their System Development Multitasking (SDM) suite. The workload is based on software-development
environment including text editing and compiling.

Many synthetic 1/O benchmarks were also developed. The list includes IOStone [Park90],
LADDIS [Nelson92], and Willy [Chen92]. I0Stone generates request patterns that approximate locality
properties. 10Stone, however, does not consider concurrency. All requests are generated using a single
process. LADDIS, on the other hand, is a muiti-vendor benchmark intended to evaluate Client/Server
Network File Systems (NFS) and is actually based on NFSStone [Shein89]. Willy, however, represents a
good step on the right direction. Willy is based on a parametrized workload model and allows for gaining
architectural insight from evaluations. It is described [Chen92] as self-scaled and predictive. Scaling, in the
context of the author, refers to changing one workload parameter whiie fixing (he rest. Prediction refers to
the ability to predict the performance under workloads that were not actually used, but should be within

IThis work is supported by NASA HPCC Program for Basic Research through
CESDIS University Program in High-Performance Computing, grant # 5555-18



Router

Global Router

Router 4x4 P.E. Cluster « Router
H Processor Array A
* (Up to 16K, 128x128),
Wrap-Around X-Net
Connected
Front-End
/O Router, (UNIX Subsystem)

Up to1024 MB/Sec Array Control
(1 wire/P.E. Cluster Unit (ACU

Up to 1024) O

000
____":;;;;;;;;____uch'SuBEysGm _____
| 6’ H H N s 256
MB/Sec
B/Sec *MB/Sec
Mosws | [ 128w | _
8MB | IORAM [g4¢¢ 'ORAM | Legend:
=110 RAM i
L | L 1
MPIOC'™ 200 MB/Sec cee
——————— Standard
To Other
I/O Devices | — — —  Optional
(XX}
‘ isk Array (RAID 3) VME Bus
-

-
Figurel. The MasPar Parallel input/Output Architecture

10%-15% of previously used workloads. Willy mainly generates workloads for workstations and
multiprocessor systems with a few number of processors.

Since the goal of this study is to explore the characteristics of the MasPar parallel I/O subsystem,
synthetic benchmarking was used to accomplish that in a massively parallel SIMD architecture. The
workloads generated were, therefore, designed to isolate the behaviors of the PEs-to-I/O communication
channel speed, the I/O cache management, and the disk array. In that sense, the workloads generated here are
closely related to those produced by Wiliy.

This paper is organized as follows. Section 2 discusses the MasPar general architecture, while the
two main I/O subsystem configuration alternatives are discussed in section 3. Sections 4 and 5 present the
experiments as well as the experimental results, for the MasPar MP-1 and MP-2 respectively. Conclusions
and general remarks are given in Section 6.



2. The MasPar Architecture

MasPar computer corporation currently produces two families of massively parallel-processor
computers, namely the MP-1 and the MP-2. Both systems are essentially similar, except that the second
generation (MP-2) uses 32-bit RISC processors instead of the 4-bit processors used in MP-1. The MasPar
MP-1 (MP-2) is a SIMD machine with an amay of up to 16K processing elements (PEs), operating under
the control of a central array control unit (ACU), see figure 1. The processors are interconnected via the X-
net into a 2D mesh with diagonal and toroidal connections. In addition, a multistage interconnection
network called the global router (GR) uses circuit switching for fast point-to-point and permutation
transactions between distant processors. A data broadcasting facility is also provided between the ACU and
the PE. Every 4x4 neighboring PE's form a cluster which shares a serial connection into the global router.
Using these shared wires, array 1/O is performed via the global router, which is directly connected to the I/O
RAM as shown in figure 1. The number of these wires, thus, grows as the number of PEs providing
potential for scalable I/O bandwidth. Data is striped across the MasPar disk array (MPDA), which uses a
RAID-3 configuration, typically with two optional parity disks and one hot standby. For more information
on the MasPar, the reader can consult the MasPar references cited at the end of this study
[Blank90][MasPar92][Nichols90].

3. MPIOCTM versus the PVME 1/O Configurations

Based on the I/O structure, the MasPar computers can be divided into two categories: the MasPar I/O
channel (MPIOCTM ) configuration and the parallel VME (PVME) configuration. It should be noted,
however, that the two configurations are not mutually exclusive and they coexist in the MPIOCTM

configurations. The PVME, however, is the standard MasPar /O subsystem and has no MPIOCTM, [t
should be noted that MasPar I/O subsystem architecture is the same for both the MP-1 and the MP-2 series.

3.1 The PVME 1/O Subsystem Configuration

PVME, or parallel VME, is actually the MasPar name for the I/O controlier, a VME bus, and a limited
amount (8 MB) of /O RAM. The PVME I/O configuration is the MasPar standard I/O subsystem and it
includes all I/O components shown in solid lines in figure 1. The PVME configuration, therefore, is the
most common I/O subsystem on MasPar computers.

3.2 The MPIOCTM (Configuration
This is the more expensive configuration and, thus, the one which has the potential to offer the higher /O

bandwidth due to the high speed MasPar channel, MPIOCTM, shown in dotted lines in figure 1. Disk
controllers interface directly to the channel. A small fraction of MasPar installations have MPIOCTM.
based I/O subsystems. Examples are the the current MasPar facility at NASA GSFC and the installations
at Lockheed and Lawrence Berkeley Labs. The 1/O controller (IOCTLR) provides an 8 Mbytes of [/O RAM
connected directly to 64 wires from the global router, as was the case in the PVME. Optional I/O RAMs

can be added to the MPIOCTM using either 32 Mbyte or 128 Mbyte modules. All memory is Error Code
Correction (ECC)-protected. Each additional I/O RAM, up to a total of four, connects to a different set of
256 wires of the global router, in full PE configurations of 16K PEs. More I/O RAM modules, however,

can be added in parallel for a total of 1 Gbyte of [/O RAM at most[MasPar92]. The MPIOCTM i
functionally similar to a HIPPI channel with 64 bit data bus and can transfer data up to a maximum rate of
200 MB/Sec.

While the number of links from the PE array to the I/O subsystem scales with the size of the array
providing up to 1024 wires for the 16K processor system, the /O RAM size can grow up to 1 Gbytes.
However, since each of the 128 (32) Mbyte modules is linked by 256 wires to the I/O-Global Router link
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Figure 2. Effects of the transfer block size using the full MP-1 array

(1024 wires), we believe that an MPIOCTM with .5 Gbyte made out of 128 Mbyte modules has the
potential for the best scalability characteristics per dollar. However, more I/O RAM still means more files
(or bigger files) in the cache and thus better I/O performance.

3.3. Scope and Methodology of this Study

This work was conducted using two case study configurations at NASA GSFC. The first is a PVME
configured MP-1 which was used to generate the results in section 4. Last Spring, this installation was
upgraded to an MPIOC configured MP-2, which was used to generate the results in section 5. These will
be referred to as the MP-1 and the MP-2 in the rest of this paper for simplicity. The MP-1 had 16K PEs
and a disk array model DA3016 with 16 disks arranged into two banks, two parity disks, and one hot
standby providing a total capacity of 11 GB. The [/O RAM was limited to the 8MB supplied by the
IOCTLR. The MasPar published peak bandwidth for the PVME is 16 MB/Sec. In the PVME
configurations, only 64 wires are used to connect the PE array to I/O system through the global router,
regardless of the number of PEs in the array.

The MP-2 upgrade has also 16K PEs and equipped with an I/O channel (MPIOC) and a 32 Mbyte
I/O RAM module. This implies that 256 wires of the global router are connecting the PE array to the
MPIOC. Two RAID-3 disk amrays (type DK516-15) are also included, each of which has 8 disks and
delivers a MasPar published sustained performance of 15 Mbytes/sec.

Wall clock time was used to time all measured activities. Unless otherwise is stated,
measurements were filtered to remove any unusual observations. Filtering was accomplished by taking the
average of an interval of m observations. This process was repeated n times and the median of these
averages was used to represent the observation. This has also given the cache the opportunity to warm up
and augment its performance into the measurements, for files of sizes that fit into the cache. Files of sizes
greater than that were not able to take advantage of the IORAM. In each experiment, files that much
smaller than the IORAM size as well as files that are much larger than the IORAM were used to represent
the entire span of performance observations that one can get out of scientific sequential workloads.
Measurements were collected using parallel read and write system calls. Therefore, this study reflects the
performance as seen through the MasPar file system (MPFES).

In the context of this work, and unless otherwise is stated, the terms I[/O RAM, cache, disk cache,
and I/O cache indicate the solid state memory interfacing the [/O subsystem to the MasPar PE array through
the global router.



4. Experimental Measurements from the MP-1 Case Study

o 40
o PEs = 64 x 64, Read
m
=
~ 30 4
L
> —8— File Size =2 MB
2 - —o—  File Size = 10 MB
s
m

10

0 v T v T v T v T ¥ T v
0 200 400 600 800 1000 1200
Transfer Block Size (Bytes)

Figure 3. Effects of transfer block size using 64x64 MP-1 PEs

The designed experiments were intended to study the dynamic properties of the MasPar I/O system. In all
experiments, the used metric was the bandwidth reported in MB/Sec. Workload was generated by changing
a number of parallel I/O request attributes. Parameters that were varied in these experiments include:
number of PEs, number of bytes to be transferred by each PE, the file size, the type of I/O operation (read,
write, or read/write), and the number of active files. Generated accesses were sequential which is the case in
the majority of scientific applications [Miller91].

4.1. Effects of Transfer Block Size

The experiment of figure 2 is intended to study the effect of the transfer sizes on the performance, with the
I/0O RAM warmed up. All 16k PEs are used. Performance using the 2 MByte file is far better than that of
the 10 Mbyte, which suggests that while the 2 Mbyte file seem to fit into the [/O RAM, the 10 Mbyte far
exceeds the size to the I/O RAM. The 2 Mbyte file shows an I[/O bandwidth peak of about 42 Mbytes/Sec,
when the transfer sizes were kept at 64 byte per PE.

Figure 3, however, reports the results of a similar experiment, except that only a grid of 64X64 (4K) PEs is
used. Graph is similar to previous one except that the peak is smaller and it occurs at a transfer size of 128
byte per PE, or a total transfer size of 512 Kbyte. Since the total transfer size in the previous case was 1
Mbyte, the peak was expected here at 256 byte per PE. This suggests that either: (1) the link scales down
with the lower number of processors; or (2) the processors or their memories are not fast enough. The first
possibility is excluded for PVME since the link between the PE and the I/O subsystem is fixed at 64 wires
(MBytes per second). Thus, it seems that the limiting factor here was the processors' local memories speed.
Comparing the optimal transfer size and the peak performance in this case and the previous one, leads to
believe that the MasPar possess favorable scalability characteristics that should be further studied.

4.2. Dynamic Behaviors of I/0 Caches
Dynamic cache size can be affected by the specifics of the implementation. The experiments in this
section are designed to focus on the dynamic cache attributes such as the effective read and write cache sizes,

as well as prefetching and write-behinds.

4.2.1 Effective Cache Sizes
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Figure 4 presents the results of the first experiment in this group, which investigates the effective I/O cache
read size. The transfer size of 64 bytes per PE offers the best match for the 16K PE. Regardless of the used
transfer sizes, performance degrades rapidly when file sizes exceed the 4 Mbyte boundary which indicates
that the effective read cache size is 4 Mbyte.
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Figure 5. Effective I/O Write Cache on the PVME Configured MP-1

The write counterpart on the previous experiment is reported in figure 5. Results are very similar to those
of the read case with a few exceptions. When the transfer size is big enough to result in an overall transfer
size that exceeds the file size, some processors will have to remain idle and the overall performance will
degrade. This resulted in an early performance degradation in the case of 128 and 256 byte transfers. This
situation does not arise in the reads, where the transferred bytes are distributed over all enabled processors.
Furthermore, performance degrades when file sizes exceed the 3 Mbyte limit. This indicates that the cache
write size is 3 Mbytes. The 4 Mbyte effective read cache size and the 3 Mbyte effective write size were due

to the system set up of the 8 Mbyte I/O RAM. The [/O RAM can be partitioned into buffers that are to




enhance disk reads, disk writes, processor array to front end communications, and processor t0 processor
communications. At the time of testing, the I/O RAM was configured to set up 4 Mbyte for disk reads, 3
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Figure 6. Effect of Read/Write Mode on Reads

Mbyte for disk writes, and 1 Mbyte for communications with the front end [Busse93]. Finally, the
bandwidth for larger files that can not fit into the cache is slightly higher than the bandwidth of similar file
sizes in the case of read. This is mainly due to the write-behind which allows the executing process to
write to the /O RAM. Writing to the disk proceeds later asynchronous of the processing.

Since different cache blocks seem to be used for readable and writeable files, it became of interests to see the
effect of opening a file with a read/write mode on read operations. The experiment of figure 6 examines this
behavior. Performance of reads in this case falls between the read and the write performance.

4.2.2 File Prefetching

Individual measurements were collected with and without flushing the I/O RAM in between. It was found
that the only form prefetching is to leave files in the cache for future references once they are read, provided
the file in question fits into the allocated part of the I/O RAM. This is done even after the file is closed by
the application. There was no indication from our measurements that a part of a file is cached if the entire
file size is too big to fit into the cache.

4.3. 1/0 Scalability

In our context, scalability refers to the ability of the I/O bandwidth to increase as the number of processors
participating in I/O activities grow. The experiment of figure 7, was designed to study the scalability
characteristics of the I/O subsystem. The size of the system, no. of PEs, under study is changed here by
changing the active set enabling only a subset of processors. The X-axis represents the dimensionally "n"
of the enabled "nxn" submesh. The system exhibits good I/O scalability as long as files fit into the cache.
Spikes of unusually high performance were noticed at 32x32, 64x64, 96x96, and 128x128 processor
subsystems. These subsystems are all multiples of 32x32 (1 K processors) which suggests that optimal
performance is reached when the used processors are multiples of 1k. The reason for this is the fixed I/O-
Router link of 64 wires in the PYME configuration. Recall that each one of these wires can connect, via
the global router, to a cluster of 16 processors. Thus, the 64 wires can connect to a 1K partition of the
processor array. Therefore, when a multiple of 1K processors are performing 1/O, all wires of the link are
used up all the time providing the potential for maximum bandwidth. The 96x96 processor case, although
meets the criteria for high performance, does not show as much improvement in performance as the other
three points. This behavior remains hard to explain. This, however, is the only case where this multiple of
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1K is not a power of two, which might have resulted in some mismatching with other internal design or
packaging properties. Outside the cache, performance is degraded and the bandwidth does not seem to scale
with the increase in the number of processors involved in the I/O.

5. MP-2 Case Study Measurements

A representative set of measurements were obtained once the MP-1 was upgraded to an MP-2 with MPIOC
and I/O RAM. The measurements were designed to highlight the important aspects of the upgrade.
Discovering the effective cache sizes and assessing the scalabiltiy were clear targets to see how the
configuration relates to its predecessor and how the performance of the MPIOC relates to that of the standard
PVME. The effective read cache size measurements are shown in figure 8. The performance of reads drops
significantly when file sizes exceed 12 Mbytes. Thus, the effective cache size is 12 Mbytes for reads.
Transfer blocks of sizes 64 remain to do well but their good performance could also be obtained by using
blocks of 128 bytes instead. The 12 M byte was also found to be the entire allocation for the MasPar file
system (MPFS) out of the used 32 Mbyte I/O RAM. When file sizes exceed the 12 Mbyte limit, the
sustained disk array speed is about 10 Mbyte/ Sec which is 33% less than the published rate. However, the
published rate of 15 Mbyte/Sec is achievable with very large files as will be shown later.

Effective write cache size, as seen in figure 9, remains at 3 Mbyte even with the increased caching
space due to the I/O RAM module. Furthermore, the write performance is about one order of magnitude
worse than that of the read.

Prefetching is not different from the first case study and is still following the same simple strategy
of leaving a previously read file in the cache. Prefetching on this system was again studied by collecting
individual (non averaged) measurements with and without cache flushing in between.

Scaiabiltiy measurements were coilected for two files of sizes 10 Mbyte and 100 Mbyte under
parallel read operations and plotted in figure 10. This figure resembles figure 7 in the general form but now
with much greater values. For the 100 Mbyte case, the system runs at the speed of the disk array which
now demonstrates a sustained performance equal the published 15 Mbyte/Sec. The 10 Mbyte file displays a
great positive spike at 128x128 PEs. This is consistent with figure 7 and the fact that in this new
configuration our I/O RAM module provide 256 wires that support 4K PEs through the global router.
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Thus, positive spikes are expected at dimensionalities that provide multiples of 4K, namely 64x64 and
128x128. No such spike was observed however at 64x64. The negative spikes are basically due to the
systems activities at the time of the measurements.

6. Conclusions

The MasPar has been known for its cost efficiency, ease of use, and computational performance. This work
has shown that programmers of I/O-intensive scientific applications can tune their programs to attain good
I/O performance when using the MasPar. They should be at least aware of their I/O configuration, the
specific I/O RAM size and how it is locally partitioned in an attempt to partition data into files that can fit
into the I/O RAM. The work further establishes that system managers are also encouraged to understand
the 1/O resource requirements of the applications running on their machines and tune the I/O RAM
configuration for best performance. In specific, partitioning the I/O RAM among disk reads, disk writes,
data processing unit (DPU) to front end communications, and interprocessor communications should be
based on an understanding of the most common needs of the local application domain.  Finally, the work

has demonstrated that a full MasPar configuration with MPIOCT™ and a full /O RAM has potential for
delivering scalable high I/O performance. However for this to happen the I/O RAM management should
make good attempt to prefetch anticipated data. Further, the I/O RAM partitioning strategy should be more
flexible by using cache blocks for different purposes as dynamically needed by the applications. At the
least, files smaller than the I/O RAM size should be cacheable. Finally, the sustained performance of the
disk arrays remains to be the clear bottleneck and is likely to limit the overall performance of parallel /O
systems for some time to come.
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Abstract

Parallel input/output (l/0) workload characterization
studies are necessary to better understand the factors that
dominate performance. When translated into system
design principles this knowledge can lead 1o higher
performance/cost systems. In this paper we present the
experimental results of an /O workload characterization
study of NASA Earth and Space Sciences (ESS)
applications. Measurements were collected using device
driver instrumentation. Baseline measurements, with no
workload, and measurements during regular application
runs, were collected and then analyzed and correlated. It
will be shown how the observed disk /O can be identified
as block transfers, page requests, and cdche activiry, erd
how the ESS applications are characterized by a high
degree of spatial and temporal localiry.

1. Introduction

In recent literature, the IO performance bottleneck has
been extensively addressed. It is clear that the current
rends in technology will contnue to increase the
performance gap between processing and I/O. However,
the improvement of parallel YO architectures and file
systems can help in reducing this gap. Improving these
architectures, with cost-efficient solutions, requires an in-
depth understanding of the U/O characteristics and
resource needs of the underlying applications.
Capitalizing on the most common and dominant machine
behaviors thus allows significant performance benefits 10
be achieved at relatively low cost. In this paper we

discuss  empirical  results from our  worklead
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characterization study conducted in the NASA ESS
application domain, revealing the important YO workload
characteristics and the underlying factors.

/O workload characterization requires a methodology
and a tool for measuring /O activities. Instrumentation
can be accomplished at one or more system levels,
including application code, /O libraries, file systems,
device drivers, and hardware monitoring of /O channels
and system bus. Instrumentation of each level can reveal
disparate data.

The workload presented to the VO subsystem is a
combination of requests generated by both the application
and operating system. Therefore, we chose to use device
driver instrumentation of the hard disk sub-system, to
capture both applications and system L/O activities. In
addition, we used a set of experiments designed to aid in
distinguishing the /O behaviors due to the operating
system from those that are directly generated by the
applications. Device driver instrumentation does require
access to the operating system source code, which is
generally hard to acquire from most vendors. Therefore,
the experimental network of workstations (NOW) system,
Beowulf [1], at NASA Goddard was selected as the
platform for this study largely due to the availability of its
operating system source code. Three typical ESS
applications also from NASA provided the workload.

This paper is organized as follows. Section 2 reviews
some of the related work focusing on recent VO workload
characterization studies conducted in the context of
parallel systems. Section 3 describes the methodology
used including the instrumentation technique,
experiments, measurements and information sought. In
section 4, the experimental results are presented and
discussed. A summary and conclusions are given in
section 5.
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2. Related work

There have been several previous studies, both
experimental and theoretical, that have examined the
issue of VO workload characterization. In this section we
describe the related research, highlighting the objectives,
methods, and results of those studies.

The /O behavior of parallelized benchmarks on an
Alliant multiprocessor emulator was examined in [2].
They found the applications exhibited sequential /O
characteristics. /O access rates and patterns were
determined for a Cray YMP in [3] using C library
instrumentation. This work categorized three general
classes of /O access patterns: required (any O at
program start-up and termination), checkpoint (VO 1o
save minimum data for program restart), and data staging
(VO needed when memory requirements are more than
physical memory, e.g., paging). Pasquale and Polyzos in
[4] studied the staic and dynamic /O characteristics of
scientific applications in a production environment on a
Cray YMP, and concluded the intensive VO applications
had a regular access pattern. The architectural
requirements of eight parallel scientific applications were
evaluated on nCube and Touchstone Delta machines in
{5]. This study described the temporal patterns in VO
accesses and rates. A parallel /O modeling and interface
methodology is discussed in [6], along with the parallel
/O requirements observed at the Argonne National Lab.
In [7] system architecture issues concerning parallel /O
on massively parallel processors (MPPs) are discussed.
The need for comprehensive workload characterization
through instrumentation studies of multiple platforms and
applications is emphasized.

In [8) VO workload characteristics were presented for a
parallel file system on an iPSC/860 running parallel
scientific applications in a2 multiprogramming production
environment. File usage and size, read and write request
sizes, request spacing in a file, access patterns, locality,
and design implications for parallel file systems are
presented. In a related study, [9] characterized control-
parallel and data-parallel user-program I/O on a CM-5.
These studies of the CHARISMA project comprise a solid
body of work in characterizing a file system's /O
workload requirements.

In [10] the parallel O workloads of four applications
running on a parallel processor with the Vesta file system
are characterized. This study used six R/S 6000's
connected with an SPn network (same network that is
used in IBM’s SP1 and SP2 machines) and the Unified
Tracing Environment (UTE) to perform the LO
characterization which showed VO request sizes and
rates, and data sharing characteristics.  This study
supported the /O characterization results concerning
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request sizes and rates reported in [8,9]. In {11) ihc
instrumented versions of three scientific applicatons with
high /O requirements were run on an Intel Paragon XP/
S. This study characterized the parallel VO requirements
and access patterns. In [12] VanderLeest used
instrumented L/O library calls, kernel initiated tracing, and
a bus analyzer to study /O resource contention.

The work in [8,11,12] are the most closely related
efforts to ours. OQur work differs from that of these
studies in that we are using device driver instrumentation
instead of I/O library instrumentation. The hybrid
instumentation implemented in [12] is in the form of a
bus analyzer at the lowest level, and library
instrumentation at the high end. That work was not
conducted on parallel systems, nor did it examine
scientific applications with paraliel I/O.

3. Workload characterization methodology

In this section we discuss the characterization method
and the rationale behind the selections that we made.
These elements include, the objectives of the study, the
hardware platform selected, the applications used to
provide the workload excitations, the method of
monitoring the VO and collecting the measurements, the
specific experiments that were performed, the daia
collected, and the information generated.

3.1 Objectives

Most VO workload characterization efforts have
focused on measuring explicit VO requests to data files,
ignoring system activities. Therefore, in this work we pay
particular attention to the total workload which is
ultimately presented to the /O subsystem. Such a
workload consists of explicit applicaion VO, pure
systems activities, and system activities generated in
response to the needs of the applications. We especially.
recognize the benefit of being able to characterize this
total YO workload generated, as well as the elementary
factors that give rise to this overall behavior.
Accordingly we have captured trace file data on all of the
system’s /O activity at the disk level. From the analysis
of this data we characterize the system's /O behavior to
aid in its understanding and in the development of more
efficient systems.

3.2 Platform

In order 10 measure the /O activities at the ph)’-">_i‘:al
level, we implemented disk drive instrumentauon.
Instrumenting disk device drivers required access 10 the
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operating system source code from any target parallel
platform that we considered: Since most such code is
proprietary we found it very difficult to obtain.
Consequently, we decided to use the experimental parallel
testbed, Beowulf {1], built at NASA Goddard, which uses
the Linux operating system. The prototype Beowulf
system, which we used, is a parallel workstation cluster
with 16 Intel DX-4 100 MHz subsystems, each with 16
MB of RAM, a 500 MB disk drive, and 16 KB of primary
cache, connected with two parallel Ethernet networks. In
addition to the Linux operating system, the Beowulf
system has PVM for inter-processor communication, and
can use PIOUS [13} as a parallel file system for
coordinated /O activities. Since Linux's GNU licensing

policy allows public access to the source code, we were_

afforded the opportunity to develop and use device driver
instrumentation. This consideration was a prime
motivator in the selection of this paralie] system.

3.3 Applications

Three representative parallel applications were selected
from the NASA ESS domain. These are a piece-wise
parabolic method (PPM) code, a wavelet decomposition
code, and an N-body code. The PPM code is an
astrophysics application that solves Euler's equations for
compressible gas dynamics on a structured, logically
rectangular grid [14). Our study used four 240x480 gnids
per processor. This code has been used primanly for
computational  aswophysics  simulauons, . such as
supernova explosions, non-spherical accretion flows, and
nova outbursts.

Wavelet transformation codes are used extensively at
NASA Goddard for ESS satellite imagery applications
such as image regiswation and compression, of such
images as from the Landsat-Thematic Mapper {15]. The
version of the code we used decomposed a 512x512 byte
image. N-body simulatons have been used to study a
wide variety of dynamic astrophysical systems. ranging
from small clusters of stars to galaxies and the formation
of large-scale structures in the universe. Qur N-body
code uses an oct-tree algorithm with 8K particles per
processor, which resuited in 303 miilion total parucle
interactions [16].

3.4 Instrumentation

The parallel VO performance data described and
depicted in the following section was collected using an
instrumented disk device driver running on each of the
workstation nodes. Each workstation’s IDE disk device
driver was modified to capture trace data on all /O
activity requested of the hard disk sub-system. The read
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and write handlers in the IDE disk device driver were
instrumented 1o capture the requested level of
instrumentation.  All read or write requests sent to the
disk drive generated a trace entry consisting of a time-
stamp, the disk sector number requested, a flag indicating
either a read or write request, and a count of the
remaining /O requests to be processed.

The /O instrumentation traces were buffered by the
kernel message handling facility through the proc
filesystem [17], and were eventually written to disk.
Using the proc filesystem allowed the trace data to be
transported from kemnel space into user memory in /proc,
without the need to develop and integrate additional
specialized kernel code. Buffering the traces through the
proc filesystem allowed the captured data to be stored
quickly in memory, with the flexibility and ease of
retrieving the data from what appeared to be a regular file
in the proc filesystem. The level of instrumentation was
controlled through the use of an ioctrl call. This allowed
the instrumentation to be turned off and on, without the
need 1o reboot the cluster with the desired instrumented or
non- instrumented kernel.

3.5 Experiments

The instrumentation was turned on and trace file data
was collected for I/O requests during four basic
experiments. The first consisted of gathering data while
no user applicatons were running. This allowed us to
measure the quiescent /O level, with which we could
compare 10 the O activity measured while applications
were running and a user induced /O load was present.
The next three experiments involved running each of the
three applications described above, one at a time. These
experiments were intended to reveal the individual
contribution of each application to the overall behavior.
The final experiment was to collect data while all three
apphcations were running simultaneously. This
experiment created an L/O load resulting from a
combination of different applications, to emulate a typical
production environment.

3.6 Metrics

A number of metrics were used in characterizing the
/O in this study, including I/O request size, the
distribution of requests by disk sectors, and the average
time between consecutive accesses to the same Sector.
Spatial locality information was developed from the
distribution of requests by sector number, and temporal
locality data was produced from the measurements of

time elapsed between accesses to a particular sector.



4. Workload characterization

4.1 Base line

The first part of our study focused on the analysis of
VO activity while no user applications were running,
Figure 1 covers this period of inactivity and shows O
accesses concentrated around a few sectors, which is
consistent with logging and table lookup activities that are
normally part of routine kernel work occurring all of the
tume. These I/O requests can be seen as horizontal lines.
The predominate I/O request size observed during this
period is 1KB [18). A few instances of small multiples of
1KB requests were also seen. This 1KB request size
matches the disk systems block size of 1KB, and is
indicative of small IYO requests generating /O transfers
of the smallest possible physical request size.
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Figure 1. /O Requests (baseline)
4.2 Single applications

Piece-wise parabolic method: The VO during this
application is relatively Jow with no paging activity
occurring while this program is running, except bricfly
toward the end. As can seen in Figure 2, the paging
activity is denoted by a 4KB request at approximately 230
seconds from the beginning of the execution time. The
1KB block VO requests are very prevalent, consistent
with kernel activity, low user program /O demand, and
small infrequent requests.

Wavelet:  Figure 3 presents the /O activity that was
observed while the wavelet decomposition application
was running. In Figure 3, a frequent request size of 4KB
can be observed, which indicates a high rate of paging.
The paging requirements of the wavelet program are due

744

1A heesrt Sizm (D) bisk 10 Moquet Sime
H v v v -

? |

i u“ofn T

10 % b
Tim 18 secros.

Figure 2. Request Size (PPM)

to the large program space and image data requirements.
A spike of /O activity occurs at approximately 50
seconds into the execution. This is generated by the
higher request sizes occurring while the data file is being
read. Requests approaching 16 KB are observed during
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Figure 3. Request Size (wavelet)

this period, and are a result of the 16 KB cache on
Beowulf. As a stream of data is being read at this point of
execution, cache is repeatedly filled with the new data.
Interference from system activities keep the request size
from reaching and maintaining the full 16 KB cache size.
A lull in the I/O activity is the next significant feature 9f
this application, indicating that the computational phase 1S
underway. Note that there are few page requests (at 4KB)
during this period. This is caused by system memory
maintaining the working set of instructions and data,
without the previous higher need for new data and



instructions.

N-body: In Figure 4 the consistent 1 KB block /O is
visible, with more 2 KB requests and a few page swaps
(or 4KB requests) than occurred during PPM. The higher
computational requirements of the N-body problem cause
more frequent page faults than PPM, to maintain the
working set, but the overall activity is obviously much
less than that of the wavelet program with its large daa
requests.
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Figure 4. Request Size (N-Body)

43 Combined applications

Figures 5 and 6 show the resultant VO from running all
three applications simultaneously. The resultant VO
request sizes shown in Figure 5 reflect the simuitaneous
demand on the /O by all three applications. The 1 KB
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Figure 5. Request Size (combined)
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requests are maintained throughout this period, with a
much higher occurrence of 4 KB requests, reflecting the
greater load. The dramatic increase in request size at
approximately 50 seconds, is primarily due to the image
being read in the wavelet application, but the combined
cffect of the applications have driven the total request
sizes much higher than when the applications were run
independently. Request sizes in the 16 KB to 32 KB
range shown in Figure 5 are attributed to an increased VO
buffer size when the wavelet data file is read.
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Figure 6. VO Requests (combined)

Figure 6 also shows a correspondingly higher amount
of request activity, primarily in the lower sector numbers.
The clumping of requests seen in Figure 6 matches the
periods of greater request activity seen in Figure 5. The
distribution of /O requests between reads and writes that
occurred during each application (average per disk) and
during 2000 seconds of baseline inactivity is shown in
Table 1. System and instrumentation logging account for
the almost exclusive amount of writes that was measured

N .. _|requests| total
Application] reads | writes per sec | requests
Baseline 0% | 100%) 0.9 1782
PPM 4% | 96% 1.4 358
Wavelet | 49% | 51%| 294.5 | 88342
N-Body | 13%| 87%{ 10 638

Tabie 1. VO Requests



in all but the wavelet experiment. (Note: L/O
instrumentation did not measurably change the execution
time of any of the applications.) The difference in the
relative percentages between reads and writes for the
wavelet application is because this program is the only one
that has significant input data, in this case from its
imagery data file. The overall low request activity in the
PPM and N-body applications, and the low percentage of
reads, is a result of both of these programs being
simulations with no input data, with and only short
statistical summaries being written.
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Figure 7. Spatial Locality (combined)

Figure 7 shows the spatial locality as a percentage of
/O requests occurring within a band of seciors. In this
figure, sectors have been combined into bands of 100K
each. The higher incidence of /O activity in the lower
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sector numbers is caused by the user programs and data,
swap file space, and kernel file data mainly residing in
these locatons on the disk. Figure 8 shows iemporal
locality as a characterization derived from data also
collected while running the combined application
experiment.  Temporal locality is expressed as the
frequency of accesses (per second) to the same sector on
disk. These access frequencies were averaged over the
700 seconds required to run the combined experiment.
Figure 8 also shows most of the /O occurred at the lower
sector numbers. The most frequently accessed sector
location was approximately 45000, and the next most
frequent at just under 400000.

5. Summary and conclusions

This study has aimed at characterizing the parallel /'O
workload generated by some of NASA's ESS
applications. This was accomplished by insttumentng
the disk device driver and capturing trace information on
the total load of the emulated production environment as
observed by the IO subsystem. Experiments were
conducted to reveal the elementary contributions of the
individual applications, system activities, and the
combined characteristics of a multiprogramming load
with several applications running concurrently.

The proposed instrumentation technique has been able
to identify different VO activites based on the observed
request sizes, that fell into three primary categories. First,
small requests which were observed as 1KB physical
requests. Second, paging activities which were observed
as 4 KB requests. Third, large /O requests distinguished
by sizes approaching multiples of 16 KB, indicating most
of the 16 KB cache data was being replaced.

With the ability to closely observe /O actiivities, the
VO atributes and request patterns were monitored and
characterized. It was shown that in the absence of
applications, systemn activiies of small request sizes
appear at low and high sector numbers due to system
logging. Intensive data set manipulation applications
such as the wavelet image processing code were
distinguished with heavy paging in the beginning of the
application to build the working set of the code and large
data swructures, as-well as with large explicit request sizes
approaching multiple cache block size, when the image
data was read. Limited paging activities still occurred to
maintain the working set, followed by a heavier activity
toward the end of the application run. Both N-body and
PPM are simulation codes, and have shown behaviors that
are similar. In general, these two codes have very limited
VO activities, most of which is implicit. The explicit YO
is due to writing the final simulation results into output
files. A very small amount of paging activity was



observed as a result of processing in these applications.

In addition to the request size characteristics, the ESS
applications’ I/O exhibited substantial locality properties.
The spatial locality of the combined workload, almost
follows the 10-90 rule. Temporal locality analysis
revealed some hot spots on the disk. Also, a relatvely
high rato of writes, as compared to other domain
applications, were observed in the ESS applications,
particularly in wavelet. Our next step is to integrate these
data into a parameter set that can be used for system
design and tuning of parallel systems and applications.
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Abstract

Sparse matrix computations have many important industrial applications and are characterized
by large volumes of data. Due to the lagging input/output (/O) technology, compared to processor
technology, the negative impact of input/output could be challenging to the overall performance of
such applications. In this work, we empirically investigate the performance of typical parallel file
system options for performing parallel I/O operations in sparse matrix applications and select the best
suited one for this application. We introduce a dynamic scheduling method to further hide I/O
latency. We also investigate the impact of parallel I/O on the overall performance of sparse-matrix
vector multiplications.

Our experimental results using the Intel Paragon and standard matrix data will show that, by
using our technique, tangible performance gains can be attained beyond what parallel /O system calls
alone may offer. For some data sets, it is possible to significantly ease the I/O bottleneck through
latency hiding and amortization over increased computations to a limit that can preserve the scalability
characteristics of the computational activities. The resuits will also empirically shed some light on
the pros and cons associated with the different parallel file system calls supported by modern parallel

systems, such as the Intel Paragon.

1. Introduction

A matrix is called sparse if a relatively small number of the matrix elements are non-zero [12].
Sparse matrices are very efficient for accommodating a variety of applications, including engineering,
medical, and military data. Commonly performed matrix computations include: eigenvalues and

eigenvectors computations, matrix multiplication, or solving systems of linear equations. Cheung and



Reeves [1] categorize Sparse Matrix Applications (SMA) into three fundamental classes: 1) SMA
with regular sparse patterns, in which matrices have a regular structure, such as banded, triangular,
or (block) diagonal; 2) SMA with random sparse patterns; 3) Dense applications with sparse
computation, in which, although dense matrices are used, the problem deals only with a small,
limited part of the data. We will focus on the second category, considered as the most general case.
A number of sparse matrix compression formats exist. It is generally acknowledged that it is more
efficient to deal with matrices in the compressed format for at least two reasons: 1) saving disk
storage and memory space; and 2) saving execution time, as only non-zero elements participate in
computations.

We empirically investigate the performance of typical parallel file system options for
performing parallel /O operations in sparse matrix applications. Nitzberg and Fineberg [15]
presented an overview of raw I/O bandwidth of typical parallel systems using synthetic workloads,
including the Paragon. Our investigations go beyond the study of the raw I/O performance, to
include the interaction of I/O with scalable computations. In specific, we study the impact of /O on
the overall performance of typical sparse matrix computations.

One successful way to enlarge the bandwidth of /O systems is to access the data before they
are actually required by the processing nodes in computations. The technique is generally known as
prefetching, and its application is strictly dependent on the application access patterns. Recently,
Arunachalam, Choudhary, and Rullman [Aru96] describe the design and implementation of a
prefetching strategy and provide measurements and evaluation of the file system with and without the
prefetching capability. They found that, by using prefetching, a maximum speedup of 7.7 could be

attained for 8 processing nodes and 8 I/O nodes. Even if we also use prefetching as a way of



boosting I/O bandwidth, some important aspects differentiate our work than the one performed by
Arunachalam et a/. Thus, mstead of using variable delays as simulated load-balanced computations,
we use real applications, including one with inherent load-imbalances, such as the sparse matrix-
vector multiplication. Therefore, our research goal is to go beyond just measuring system's
capabilities, to test our [/O bandwidth improving solutions and the response of the Paragon PFS in
complex real-life situations. We introduce techniques and methods to significantly ease the /'O
bottleneck through latency hiding and load balancing to a limit that can preserve the scalability
characteristics of the computations. Also, we base most of our experiments on the M_ASYNC file
access mode, proven to yield best performance [15, 7, 16] and because of its suitability for MIMD-
type implementations. On the other hand, Arunachalam e al. based their tests on M_RECORD,
which is most suitable for SIMD implementations.

The remainder of this paper is structured as follows. In Section 2, we present the two Sparse
Matrix Applications (SMA) (compression and multiplication) used to study the performance of the
/O system. In Section 3, we describe our experimental testbed, the parallel platform and the matrix
data set. In Section 4, we present the Paragon PFS file access modes and our I/O latency hiding
methods. Finally, in Sections 5 and 6 we present our experimental results and conclusions,

respectively.

2. Sparse Matrix Applications
Our purpose is to find appropriate solutions and techniques to enhance the /O performance
on parallel computers, for applications such as sparse matrix computations. Therefore, we

investigated the /O bottleneck for two typical Sparse Matrix Applications (SMA): sparse matrix



compression and sparse matrix-dense vector multiplication.

2.1 Sparse matrix compression

The quality of compression formats should be judged by considering a number of criteria,
including: the compression ratio (ie. the ratio between the sizes of the matrix in' the compressed and
in the extended format, respectively), the availability of compressed matrix elements to participate
in efficient algorithmic constructions, and the possibility of modifying, extending, and regenerating
the original matrix. Some of the most used sparse matrix compression techniques include the Scalar
ITPACK [3,10, 11}, Horowitz [5, 9], Vector ITPACK [12], ITPLUS [4, 10], and ITPER (ITPACK

permuted blocks) [6, 10]. There is no globally

(2 050 0]
accepted best storage technique. The selection of

8§ 3070
the compression format depends on the actual A={06 201
. . e s . 90010
distribution of non-zero elements within the matrix

07 00 2

and on the application requirements. In our
experiments, we used Scalar ITPACK compression ag[mz]=[2 5 8 3 7 6 21 9 1 7 2]
format, given its suitability for general sparse Jalmz]=[1 3 1 2 4 23 51 4 2 5]
pattern matrices. This compression technique ﬁelds iaN+1]=[1 3 6 9 11 13]

good compression ratio and enables efficient Figure 1. Example ilustrating scalar

algorithmic constructions. ITPACK format

We illustrate the Scalar ITPACK format through an example in Figure 1, in case of a matrix
stored row-wise. It stores values and information regarding the position within the matrix of the non-

zero elements into three vectors, as follows: 1" vector stores non-zero values; 2™ vector stores their



column indices; and 3™ vector stores indices of elements in 1* and 2™ vectors corresponding to

beginning of rows.

2.2 Sparse matrix-dense vector multiplication
Additionally from the sparse matrix compression, we used the sparse matrix-dense vector

multiplication as scalable computation. The algorithm multiplies matrix elements compressed

Procedure 2: multiplication

INPUT:
A[N, M] - matrix compacted according to the scalar [TPACK format:
a[nz] - contains all nz non-zero values |
ja[nz] - contains the corresponding column indexes of all the elements in vector af ];
1a[N+1] - contains the indices of elements in vector af ] that correspond to new rows.
x[M] - an M x | input vector;

OUTPUT:
y[N]-an Nx 1 output vector.

ALGORITHM:
for (1=1,N)
temp=0;
for (k=1ia[i], 1a[i+1]-1)
temp = temp + a[k] * x [ ja[k]];
endfor
y [ 1] = temp;
endfor

Figure 2: Sparse matrix-dense vector multiplication algorithm

according to the Scalar [ITPACK compression scheme (Figure 2) and it is considered a typical sparse

matrix multiplication scheme [6].



3. Experimental testbed
3.1 The Paragon system

Our experiments were performed on an Intel Paragon parallel computer with 64 processing
nodes, among whom 56 are compute nodes. Each node is based on an Intel i860 processor, having
at least 16 MBytes of RAM on-board. The underlying topology of this MIMD machine is a mesh that
enables up to 160 MBytes/s of inter-node communications bandwidth. Large files can be stored on
a Parallel File System (PFS), organized as a two disks system, each of them a RAID 3. File contents
are striped over disks with stripe sizes equal to 64 KBytes. Conceptually, the system combines fine-
grained parallelism within each RAID 3 with coarse-grained parallelism at PFS level. At the concrete
level, the system represents a multi-level striping implementation to achieve a better distribution of
load over /O nodes. We capture in Figure 3 the hierarchical structure of a Paragon PFS with two

/O nodes each one controlling a disk system.

DISK O DISK 1
(o1 [ [=2] 3] T®] (o] [ 2] (] [=»]
RAID le'v.el 3 RAID level 3

RAID level O

Figure 3. Hierarchical structure of a Paragon PFS with two disk systems

3.2 The matrix data
In our experiments, we use several sparse matrices selected from the Harwell-Boeing sparse

matrix collection [2,3]. We summarize the main characteristics of these matrices in Table 1. The




Harwell-Boeing collection is a set of benchmark matrices collected from challenging practical
applications of typical computational problems. Both the User's Guide and the collection are available
on the Internet free of charge.

Table 1. Statistical data of sparse matrices selected from the Harwell-Boeing collection

Name Type Order | Non-zero's | Sparsity
ORANI 678 Unsymmetric 2529 90158 0.014
PSMIGR 1 Unsymmetric, mostly block-diagonal 3140 543162 0.055
BCSSTK28 Symmetric 4410 219024 0.011

Table 2. PFS file access modes main characteristics
PFS file File pointer File access policy Degree of Typical
access mode synchronization applications
independent, random access read/write on
M_UNIX muitiple first-come, first-served basis small disjoint areas
atomicity ensured
M_LOG single, first-come, first-served basis medium writing log files
shared access by order of issuing the
call
M_SYNC single, synchronized access by node high round-robin data
shared number read/write
[ RECORD concurrent access appearing to more efficient
multiple have been done by node number high round-robin data
read/write
'M_GLOBAL single, data read by one node and high reading shared
shared broadcast to all others data
M_ASYNC independent, random, concurrent access small complete
multiple non-atomic writes flexibility of
implementation




4. Parallel File System (PFS) file access modes and I/O latency hiding
4.1 Supported PFS file access modes on an Intel Paragon

The Intel Paragon supports the following PFS file access modes: M_UNIX, M_LOG,
M_SYNC, M_RECORD, M_GLOBAL, and M_ASYNC. The main differences consist of the way
the contents of the file pointer is maintained and the degree of file access synchronization.

In Table 2, we summarize the main characteristics of the PFS file access modes. We have
assumed the following interpretation for the degrees of inter-node synchronization:

1) small - only open and close calls are synchronizing;

2) medium - additionally, calls like fseek and eseek are synchronizing;

3) high - most or all calls are synchronizing, including the read/write calls.

By synchronizing calls we understand two things. First, corresponding syncronizing calls
have to exist in the code run by all compute nodes in a compute partition. Second, the system
executes them in some particular way. Thus, if calls such as fopen, fclose, fseek, or eseek are
involved, all processors execute them at the same time, performing the same action (such as moving
the file pointer to a same file location). On the other hand, if fread or fivrite calls are involved, the
calls are scheduled based on node number and the operations are performed at file locations given
by the node number and size of the read/write call.

Some of the file access modes have some typical applications. For example, the M_LOG
mode is most suitable for creating and maintaining log files, whereas M_GLOBAL has its best
application in implementing a variation of collective read of a file, when all nodes are reading the
same information from disk, but only one node is actually performing the read followed by a

broadcast of the read data through inter-node message-passing. Our implementations are aimed



at setting a fair basis of performance comparison for all these modes rather than providing the most
suitable application for each of the parallel file access modes. A complete description of the PFS
file access modes can be found in the Paragon User's Guide manual [14].

The sparse matrices are uncompressed and resident on disk. Before compression and/or
computations, such as matrix mutltiplication, are performed, data have to be read into main memory.
Some of the PFS file access modes (M_LOG, M_SYNC, M_RECORD, and M_GLOBAL) make
either all nodes truly share the same pointer or make the seek operations transparent to the user
(M_RECORD). All of these file access modes, with the exception of M_LOG, offer some means
of synchronizing the calling nodes. M_LOG is designed for implementing log files, therefore the
access to the file is truly on a first-come, first-served basis, with single shared file pointer. Because
in our case the nodes have to read specific data from disk rather than to write on it, some file
pointer alignment information must be exchanged by the nodes. Each node has to be aware of the
index of the rows it processes to ensure the correctness of the results. In the case of M_SYNC and
M_RECORD file access modes, the access to the file is done by node number. Thus, for M_SYNC
accessing nodes are truly synchronized by node number. M_RECORD is a special case: even if the
file pointer is distributed, compute nodes do not have full control on the contents of the file pointer
and fseek and eseek calls are synchronizing. Performing read-write is similar to M_SYNC, but the
access of nodes to the file just looks to have been by done by node number, but it actually is on a
first-come, first-served basis. To have this opportunity, additional constraints are imposed, such
that each node must perform the same type of operation in a read/write session and use the same
buffer length. For some applications, in which the file size is not evenly divisible by the number of

processors multiplied by the read-block size, errors may occur if these restrictions are not met and



make M_RECORD mode impractical. One way of solving this problem of incompatibility between
the PFS characteristics and the application requirements is to artificially enlarge the size of the file
such that, in the read session, all nodes are fetching the same number of bytes. This anomaly is
corrected in the computations phase when fudge data are simply discarded.

In the case of M_UNIX and M_ASYNC modes, multiple file pointers have to be
appropriately maintained. As no synchronization restrictions are imposed, both these two file access
modes enable flexible scheduling of file access and, therefore, they support MIMD-type

implementations.

4.2 Additional latency hiding

A typical way of hiding the I/O latency is the use of asynchronous read. Modern MIMD
machines have dedicated hardware facilities for achieving the message passing task and for
interfacing the I/O devices. This architectural concept enables processing nodes to carry on their
computations without being directly involved in communications and I/O tasks. Ideally, the full
benefit from an asynchronous I/O call is attained when the I/O operation has the same length as the
computations performed between two consecutive asynchronous calls. In such a case, I/O is fully
overlapped w1th computations. Unfortunately, this is not always easy to reach in practice, and
application programs should make every effort to achieve the maximum possible degree of
overlapping.

Load-balancing is an important issue in computations and /O as well. The structure of the
Paragon PFS itself contributes decisively at ensuring an even distribution of load over /O nodes.

However, especially for a PFS with a large number of /O nodes, the completion of some /O calls

10



can be delayed primarily because the PFS is a shared resource with other users. Therefore, some
compute nodes that posted the delayed calls can experience significant load imbalances. Moreover,
computations themselves can contribute and expand the existing load-imbalance. Thus, we perform
two common computations with sparse matrices: compression and the multiplication with a variable
number of vectors. As opposed to the compression, that does not raise special load-balancing
problems, the muitiplication is typically a good example of a potential source for load-imbalances.
Additionally, the size of the multiplication and its associated challenges can be easily scaled by
changing the number of multiplying vectors.

We compare two approaches for allocating the data to compute nodes to solve the parallel
sparse matrix compression and multiplication:
(1) each node generates, based on its node index, the rows it reads. Thus, the first node reads tﬁe
first n rows, the second node reads the next n, and so on. At the next read cycle, the first node
reads rows: N*n, ...,(N+1)*n- [. As arule, node j reads within read cycle / (if it is the last read
cycle, some nodes may not read at all, and one node may read less) rows: (N*i+j)*n, ...,
(N*i+j+1)*n-1. Thus, each node reads disjoint areas from the file. The physical access to the file
is imposed by the selected PFS file access mode. The advantages are the following: the method
enables large size read sessions and the nodes extract the information about the read data based on
their node index. The main disadvantage of this method is that it does not attempt to evenly
distribute the load onto processing nodes. Based on the actual distribution of the data elements,
some nodes may take longer than others to process a particular subset of the matrix elements. We
call this approach, that is mainly a static allocation, the worker-worker approach (W-W). This

approach is aimed at solving problems with no or with insignificant load-imbalances.
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(2) each node informs the major node when it is able to process new data (master-worker
approach M-W). As a principle, any worker that is ready to accept new data, sends a READY
message to the master node. Ifthe master node, that manages the allocation of rows to workers,
still has unprocessed rows to allocate, sends back a GO message in which includes the starting row
index and the number of allocated rows. Once the EOF is reached, the master node broadcasts a
STOP message. The algorithm efficiently mixes asynchronous message passing and /O calls with
computations for best performance. We present both the master and the corresponding worker
algorithms m Figure 4. This algorithm is a more elaborate alternative for potential sources of load-
imbalances.

One difference between the two approaches is the need for a coordinating master node in
the second approach. In the first approach, the indices of rows fetched and processed by each
compute node can be determined according to the node number of each processor. In a dynamic
allocation, a coordinator is necessary to arbitrate requests for more work from compute nodes and
keep track of the allocated row indices and of the remaining work. A master node can be a service
node, while the workers are compute nodes. The advantage of this procedure is that any delayed
node is not delaying the whole process. As the I/O calls and the associated computations generally
take longer to complete than the short message inter-change, the message passing that referees the
data allocation is carried on in the background. Therefore, there is no measurable penalty paid for
the communication between processing nodes (workers) and the managing node (master).
Whenever a master node is involved in coordinating a parallel application, the concern that the
master node may become a serious bottleneck is raised. In this situation, the load associated with

the master node is minor as compared to the load allocated to compute nodes that deal both with
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Algorithm: master

compute the number of /O reads

for (all /O reads)
receive a READY message from a worker
identify the node that sent the READY message
send back GO message with row identifiers

endfor

for (all processing nodes)
receive a READY message from a worker
identify the node that sent the READY message
send back STOP message with row identifiers

endfor

Algorithm: worker
post an asynchronous receive for a STOP message
read asynchronously the first set of data based on its node index
post an asynchronous receive GO message
send READY message to master node
Terminate=FALSE
while not (Terminate)
for(;;)
if GO message received from master node
post a new asynchronous receive GO message
send READY message to master node
break from for loop
endif
if STOP message received
cancel GO receive message
Terminate=TRUE
break from for loop
endif
endfor
wait unti] previous /O read ends
if not (Terminate)
post a new asynchronous read from disk for next compute iteration
endif :
perform computations on data previously read from disk
endwhile

Figure 4. Dynamic allocation of /O and computations

/O and computational tasks. Therefore, the major node is not impeding on the scalability of the

overall execution. To implement the dynamic (or Master-Worker) allocation, two memory buffers
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may be used. At any moment in the infinite for loop, while one buffer is being filled with data from

disk, the other one, already containing data, is being used in the computations phase.

S. Experimental results
5.1 Performance measurements of the PFS file access modes

In this section, we compare the performance of the PFS file access modes available on an
Intel Paragon. A short preview at these results appeared in the Proceedings of the DCC'96 [7].

Suppose we solve the problem of compressing a sparse matrix, resident in extended format
on the hard disk. Computation and I/O operations must be performed by a number of processors
grouped into a computing partition. The compression and, also, other computations, like the
matrix-vector multiplication, can be embedded in the dynamic allocation algorithm presented in
Figure 4 as the computation taking place at the worker node level

The purpose of our experiments is to show how computations and I/O intensive applications
can be handled efficiently. Therefore, we tested in our experiments all possible PFS file access
modes, and we compared their achieved performance. We respected some principles in designing
the compression process for implementations involving each of the PFS file access modes:
1) Each node reads an integer number of rows, as the compression is row-oriented. This generally
contradicts the constraint to read in integer number of stripe-sizes to achieve high performance.

We compromised on these issues, in the sense that each node reads at one time a number of rows

2) Asynchronous message passing and asynchronous /O reads are efficiently used. They enable
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the computations to occur concurrently with inter-node communications and parallel I/O.

In Figure 5, we present our results regarding the comparative performance evaluation of
the PFS file access modes. We have used 4 different read-sizes, multiple of the stripe-size (64
KBytes): 1 (64 KBytes), 2 (128 KBytes), 4 (256 KBytes), and 6 (384 KBytes) stripe-sizes. Note
that our system has 2 /O nodes. The best overall performance is obtained with the M_ASYNC
PFS file access mode (Figure 5). The explanation is that all restrictions that apply to the other PFS
file access modes are lifted in this case. Good performance is achieved with M_GLOBAL with a
read-size equal to a stripe-size (Figure 5a). The explanation is that only one node is actually
reading the data, followed by the data replication on the inter-node communications network. thus
avoiding all contentions in accessing the disk. As each node processes the same amount of data
during one read cycle, the actual read-size is the basic read-size muitiplied by the number of
processors. However, this feature becomes an aggravating issue once the read-size increases, as
it tends to trigger paging, thus diminishing the overall performance. This behavior is clearly
illustrated when the read sizes are equal to multiple stripe-sizes (Figure 5 ¢, d). File access with
M_SYNC and M_LOG is highly synchronized. The reading with M_SYNC is done by node
number, while with M_LOG is performed on a first-come, first-served basis. Therefore, the degree
of concurrency allowed is much smaller. However, M_SYNC performs better than M_LOG,
because it enables a higher degree of concurrent access of nodes to the file. Similarly to M_LOG,
file access with M_UNIX is also performed on a first-come, first-served basis. Not surprisingly, its
performance is the worse compared to all other PFS file access modes, because it allows the least
concurrency to file access. Worth noting that a signiﬁéant penalty is paid because of the existence

of multiple file pointers, that have to be maintained individually, compared to the single, shared file
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pointer modes. M_RECORD also yields better performance than M_SYNC because it allows a
higher degree of concurrent access to the file. M_ASYNC and M_UNIX are very similar in some
aspects, but they produce completely different resuits because of the lack of constraints in the
M_ASYNC case. A dramatic improvement is recorded for the M_ASYNC in the time to move the
file pointer. Thus, the total time to move the file pointer for the M_UNIX ranges between 3.7 and
16.7 seconds for the studied cases, representing from less than 35% to up to more than 75% of the
whole /O cost. On the other hand, the same operation takes only tens of a second for
implementations using the M_ASYNC PFS file access mode and is negligible as compared to the
entire /O cost (less than 1% of the entire I/O cost). To explain more thoroughly the way timing
results are made up, in Figure 6 we show the compression time results based on the M_ASYNC
mode detailed by I/O and processing components for both M_UNIX and M_ASYNC modes. An

estimation of the overall execution time is:

=T

veer P BT Ty 0i} ¢))

Ttotd

For a read-block size equal to 64 KBytes, the read time is completely above the computations time.
Therefore, the overall execution time is imposed by the /O performance. For a read-block size
equal to 384 KBytes and M_ASYNC mode, the overall results scale for a small oumber of
processors (p< 2), but the [/O time becomes preponderant for large aumber of processors. This
behavior is due to the unscalable characteristics of the PFS that diminishes overall performance for
msufficient amounts of computations. The charts emphasize the scalability of the computation as
compared to the saturation of the /O performance. In Figure 6, we also illustrate another

interesting aspect: the cost of seeking overwhelms the cost for read for M_UNIX and large number
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of processors.

5.2 Effect of the additional I/O latency hiding

As previously shown, the /O bottleneck impacts directly on the overall performance.
Therefore, the application designer should use any available techniques that speed up the /O and/or
hide its latency. In Section 4.2, we present a method that uses dynamic allocation (the Master-
Worker approach) as a meaningful attempt to achieve a better distribution of the work over
compute and /O nodes. The method aims at avoiding the idle times of both compute and I/O
nodes due to any unevenness of the data distribution. In Figure 7, we compare the performance
obtained with the static and dynamic allocations for different read sizes. We show that the dynamic
allocation produces better performance in all 6 cases. Once again, the improvements are not based
on a faster /O, but on a better use of allocations. In this section, our tests are based on operations,
such as the I/O and compression, that, normaily, do not raise special problems of load-balancing.
However, as the load on I/O can generate from other sources than our job as well, the dynamic
allocation proves to be useful. In Table 3, we capture some statistical data on this improvement.
The measured improvement due to dynamic allocation (the Master-Worker approach) is up to
19.79 %. In this case, load-balancing is aimed at smoothing sudden load-unevenness due to external
sources rather than internal ones, therefore it helps prevent loss of performance due to random
rather that persistent and systematic stimuli. We expect this technique to have an even larger and
more conclusive impact when allocated loads have various weights, such as some types of

computations involving sparse matrices. We further address this issue in Section 5.3.

-
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Table 3. Improvement of the performance with the dynamic allocation vs. static allocation

Increase in Read sizes
performance 64 KB 128KB | 256 KB |384KB |512KB |640KB
Highest [%] 15.97 6.49 7.53 10.25 5.04 19.79
Lowest [%] 1.5 0.4 0.15 0 1.16 0.16

5.3 Effect of the multiplication size on scalability and amortization of /O

As we previously stated, computations with high degree of inherent concurrency scale well,
compared to /O operations. To study the effect of the size of the problem on the overall
performance of computations and /O, we have increased the complexity of the gomputations part.
Thus, we have combined the compression of a sparse matrix with the multiplication of this matrix
(in the compressed format) with a number of dense vectors. The sparse matrix-dense vector
multiplication has two interesting effects. First, the operation itself raises load balancing problems,
as the computation load depends on the number of non-zero elements contained in each amount of
data read from disk by each node. Depending on the distribution of non-zeros per each row. the
variations of load can become non-negligible. Second, by varying the number of vectors, we can
conveniently modify the ratio between the amounts of computations and I/O.

In Figure 8, we capture the interrelation among overall scalability, /O, and amortization of
/O with increased computations. As expected, the overall results scale well as long as the scalable
computation part surpasses the /O part. Each of the curves in Figure 8 has a scalable segment and
a saturated one. One interesting result is that the amortization is achieved at an extremely
reasonable size of the multiplication problem (vectors> 100). This is the direct outcome from the
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To show more clearly how these resuits were obtained, in Figure 9 we detail the

components of the overall execution time. Thus, for 25 multiplying vectors, the time to perform

22




computations is above the time for /O only for 4 compute nodes or less. As the amount of
computations mcreases (100 vectors), the scalable computations cost surpasses the /O cost for the
entire range of 10 compute nodes. Thus, overall scalable performance can be obtained when an
unscalable operation, such as [/O, can yield enough work to overlap with and completely hide
behind the scalable computations. Therefore, when two operations, among whom one is scalable
and the other one is unscalable and whose costs can overlap, pass the scalable characteristics of the
overwhelming operation cost to the entire process for a wide range of compute nodes.

To generate the results in Figure 8,

we used the dynamic allocation. We show b a
Road sine = 123 KB i
. . 8- f':.r ~~~~~~ L]
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[ . “:;_{,r
possible types of allocation, given the i - roae
4= "“‘,-
increased interest due to the potential v
—
load-balancing problems embedded into 0 ,
1 2 3 4 [} [} T L] [} 0
Number of processors

the sparse matrix multiplication. In Figure : _
: - Twe -4- Tmw |

10, we plot the speed up results for /O,
Figure 10. Comparison of the static (w-w) and
compression, and multiplication with 125 dynamic (m-w) allocations of /O, compression and

multiplication of 125 vectors for a 3140 x 3140 sparse
vectors with both the static and dynamic matrix
allocations. In addition to what was presented in Figure 6, the multiplication itself involves a
random amount of computations. Therefore, variations of processor behavior may occur, and the
dynamic allocation is aimed at covering the possible node delays. The differences in speed up

obtained using the static and dynamic allocations are more obvious for larger number of processors

because load-imbalances have a larger relative effect for smaller absolute work loads. The dynamic
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(m-w) allocation yields a speed up of 9.405 for 10 nodes, compared to a speed up of 7.921
obtained with the static (w-w) allocation for the same number of processing elements. Figure 10
shows that, to achive high performance, it is not enough to make the scalable operation
preponderant, but also to ensure a high degree of scalability to the computations themselves by
appropriately choosing the load-balancing techniques according to the problem and execution

model.

6. Conclusions

We have studied the effect of the /O bottleneck on the performance of some basic sparse
matrix operations, such as the compression and the multiplication. Our experiments were
performed on an Intel Paragon MIMD machine. In these experiments, we used benchmafk
matrices selected from the Harwell-Boeing collection. We compared the performance of all
applicable PFS file access modes and we showed empirically the performance characteristics of each
of them in real-life applications. It was particularly shown that, although M_GLOBAL does better
for smaller collective reads, due to the ease in managing the single file pointer, it results in loss of
performance in larger read sizes, due to local memory size constraints. M_ASYNC, on the other
hand, can schedule the multiple file pointers intelligently, performing better than M_GLOBAL for
large /O read sizes. We introduced a dynamic allocation that takes place in the background of the
I/O operation. We show that execution time improvements of 10% or more can be obtained with
this technique, and we expect even better behavior on more skewed data distributions. Also, we

studied the effect of scalable computation on hiding the I/O bottleneck, and we showed that for
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moderate sizes of scalable problems, the I/O latency can be effectively hidden using a combination

of asynchronous calls and dynamic load balancing.
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