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An adaptive generalized predictive control (GPC) algorithm was formulated and ap- 
plied to the cavity flow-tone problem. The algorithm employs gradient descent to update 
the GPC coefficients a t  each time step. The adaptive control algorithm demonstrated 
multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. 
The algorithm was also able to  maintain suppression of multiple cavity tones as the 
freestream Mach number was varied over a modest range (0.275 t o  0.29). Controller 
performance was evaluated with a measure of output disturbance rejection and an input 
sensitivity transfer function. The results suggest that disturbances entering the cavity 
flow are colocated with the control input at the cavity leading edge. In that case, only 
tonal components of the cavity wall-pressure fluctuations can be suppressed and arbitrary 
broadband pressure reduction is not possible. In the control-algorithm development, the 
cavity dynamics are treated as linear and time invariant (LTI) for a fhed Mach number. 
The experimental results lend support this treatment. 

Introduction 
HE grazing flow over a cavity is characterized by T a complex feedback process that leads to large- 

amplitude acoustic tones. Instability waves in the 
cavity shear layer grow and convect downstream. The 
resulting unsteady shear-layer impingement on the 
downstream corner acts as a noise source. Sound from 
this source propagates upstream to the cavity leading 
edge. Here, the feedback disturbances are converted to 
instability waves through a receptivity process to com- 
plete the feedback loop. A schematic illustrating the 
physical elements of the cavity-tone process is shown 
in Fig. 1. Cavity flow-tone generation is of practical 
concern to several engineering applications. In aircraft 
weapons bays, for example, the high sound pressure 
levels (- 160 dB re 20pPa) associated with the tones 
can be damaging to stores within the bay and can in- 
fluence the trajectory of released stores.' 

Passive and open-loop active control methodologies 
were employed for the suppression of cavity-flow tones 
in past studies. Feedback flow control, however, has 
only recently been applied to the problem.2-8 An 
overview of the various feedback-control methodolo- 
gies used is given in the review paper by Cattafesta 
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Fig. 1 Schematic illustrating the physical elements 
of flow-induced cavity tones. 

et al.' There are particular benefits to this approach 
over passive or open-loop control methods. Reduced 
energy consumption,6 no drag penalty, and robustness 
to parameter changes and modeling uncertainties are 
among these benefits. Feedback control algorithms can 
also be made to adapt to changes in process dynam- 
ics that are brought about by changes in freestream 
conditions. 

Aside from the practical interest, the cavity flow 
problem is an excellent test bed for real-time, closed- 
loop flow control. Here, real-time implies that the con- 
trol effort is computed at  the sample rate of a digital 
controller. Although the geometry is relatively simple 
and the physics is low dimensional in the sense that 
only a small number of narrowband tones are to be 
suppressed, the physics of the process is both rich and 
complex. The multiple tones, or Rossiter modes,ll of- 
ten experience significant nonlinear coupling and mode 

the dynamics of the process are sensi- 
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controller (after Astrom and Wittenmark14). 

Block diagram of a self-tuning adaptive 

tive to freestream Mach number, and there are convec- 
tive delays between control inputs and sensor outputs. 
These physical elements are present in many other ac- 
tive flow-control problems. I t  is expected therefore 
that control algorithms and approaches developed for 
this problem will find broader application. Most im- 
portantly, the required sensors, actuators, and digital 
signal processing (DSP) hardware are at  a mature 
enough level such that real-time adaptive control of 
flow-induced cavity tones is currently feasible. 

The present interest is in the development of a self- 
tuning adaptive controller for cavity tone suppression. 
The elements of this controller are shown in Fig. 2. 
There are two distinct loops in the adaptive controller. 
The inner loop is a dynamic feedback control system 
comprised of the process and controller. In this loop, 
the controller operates at a sample rate that is suitable 
for the process under control. The output is unsteady 
pressures at  the cavity walls. The reference signal is 
set to zero since the control objective is to minimize 
the output. The outer loop consists of the model esti- 
mation and controller design steps. Model estimation 
refers to the identification of a model from process 
input-output data. The identified process parameters 
and a specified cost function are then used to design 
a controller that will minimize the output pressures. 
Both steps can be performed recursively at the sample 
rate of the controller ( i e . ,  in real time) or they can 
be performed off-line in a batch mode. This choice 
depends on whether the plant is time varying or time 
invariant. Pillarisetti and Cattafesta" and Kegerise et 
al.* have presented algorithms that are suitable for the 
recursive identification of a process model for the cav- 
ity Aow. Cabell et used a batch-mode approach to 
obtain ked-gain control laws that were suitable only 
for the Mach numbers at which they were designed. 

This paper presents the development and applica- 
tion of a recursive controller design algorithm for even- 
tual use in a self-tuning adaptive controller. Specifi- 
cally, a gradient descent algorithm was used to a d a p  
tively tune the controller parameters at  each time step 
while the process parameters were held constant. The 
gradient descent procedure is an efficient method for 
tuning the controller parameters, and is seen as an im- 

portant step towards enabling fully adaptive control of 
cavity tones. 

The control 
methodology and algorithm are presented in the next 
section. This is followed by a description of the ex- 
perimental setup and data processing methods. The 
results of the control experiments are then presented 
and discussed. In the discussion, the performance 
limitations and the transient behavior of the control 
algorithm are considered. Finally, results demonstrat- 
ing controller adaption to  changing freestream Mach 
number are presented. 

The paper is organized as follows. 

Control Methodology 
In the feedback control of cavity-flow tones, the ob- 

jective is to minimize the output fluctuating pressure 
on the cavity walls. This is disturbance rejection in 
controls terminology. The output sensors are pres- 
sure transducers embedded in the cavity walls and 
they serve as both feedback signals and as performance 
measures. The control input is provided by an actua- 
tor situated at  the cavity leading edge. A piezoelectric 
flap-type actuator was used in the present study. Phys- 
ically, the controller attempts to cancel the instability 
waves in the cavity shear layer that result from the 
aeroacoustic feedback loop. This, in turn, results in 
an unsteady pressure reduction at the output sensors. 

There are several control-design methods that can 
be used to meet the objective. The particular con- 
trol law used in this study is the generalized predictive 
controller (GPC). The GPC is based on a finite range 
prediction equation for future plant outputs. A cost 
function is then defined and subsequently minimized 
to determine the controller coefficients. The GPC was 
first introduced by Clarke et ~ 1 . ~ ~ 1 ~ ~  and has since 
been successfully applied to many active vibration and 
noise control problems. It is applicable to plants that 
are non-minimum phase, plants that are open-loop un- 
stable or have lightly-damped poles and plants that 
have delays. Since the cavity flow dynamics exhibit 
several of these features, the GPC was considered to 
be a good candidate for the problem. 

As with many control-design approaches, a math- 
ematical model of the process must be available for 
controller design. While a physics-based model is de- 
sirable, none of sufficient accuracy is currently avail- 
able. Instead, an empirical model, whose parameters 
are determined from input-output data, can be used. 
This is referred to as system identification. 

System Identification 
The model structure chosen to represent the cavity- 

flow dynamics was a discretetime linear model given 
by : 

y(k) = a1y(k - 1) + . . . + apy(k - P) 
+Pou(k) + . . . + P p 4 k  - P), (1) 
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where y(k) are the m x 1 outputs, u(k) are the r x 1 
inputs, p is the model order, and k is the current 
time step. This model structure is commonly re- 
ferred to as an ARX (aubregressive, exogenous in- 
put) m ~ d e l . ’ ~ ? ’ ~  The coefficient matrices, ai (i = 
1 , 2 , .  . . , p )  of m x  m and Pi (i = 0 , 1 , 2 , .  . . , p )  of m x  T ,  

are the ARX parameters or the observer Markov pa- 
rameters. 

To determine the observer Markov parameters of 
the model, the observer/Kalman filter identification 
(OKID) algorithm of Juang et  al.15~18~1g was used. 
The input to the algorithm is experimental input- 
output data from the open-loop plant. To obtain this 
data, the actuator was driven with a broadband sig- 
nal and input-output timeseries data were collected. 
Models were identified for each of the flow conditions 
considered in the control experiments. 

Adaptive GPC Algorithm 

The algorithm development begins with a p re  
dictive matrix equation formed from the ARX 
model:18,19,22,23 

where ys(k) is a sm x 1 vector of current and future 
outputs: 

us(k) is a sr x 1 vector of current and future inputs: 

and vp(k - p )  is a p ( m  + T )  x 1 vector of past inputs 
and outputs running from time step k - p to k - 1: 

. 
The parameter s is referred to as the prediction hori- 
zon. The predictive matrix equation states that the 
future output data depends on the future control in- 
puts and past input-output data. The matrix T is an 

sm x ST Toeplitz matrix: 

T= 

- Po 1 

where Po, Pi1), e . , 0t-l) are the pulse response para- 
meters of the open loop plant. These parameters can 
be obtained from the observer Markov parameters.18 
The rectangular matrix 0 is formed with a set of r e  
cursive equations and the ARX parameters.18 As will 
be shown below, however, this matrix is not needed in 
the real-time implementation. 

The control input is computed as: 

where H denotes the sr x p ( m  + r )  matrix of controller 
coefficients. 

The next step in the algorithm development is to 
define a cost function: 

J = yY(k)Q~s(k)  + Y . tr (HTH) , (8) 

where J is a scalar value and tr (.) denotes the trace of 
the matrix in parentheses. The first term in Eq. 8 is the 
sum of the squared output values over the prediction 
horizon and Q is a sm x s m  block-diagonal matrix of 
sensor weights: 

(9) 

where the submatrix q is a m x m diagonal matrix of 
sensor weights: 

The sensor weights 41, . - . , qm take on values between 0 
and 1. A value of zero means that the sensor is not in- 
cluded in the cost function, but the sensor information 
is still used by the feedback controller. 

The second term in the cost function imposes an 
effort penalty on the control input. This term is 
necessary to avoid large control inputs and actuator 
saturation. It has other benefits that will be discussed 
below. 

The present goal is to determine the controller coef- 
ficients, H, such that the cost function is minimized. 
One way, that is computationally efficient, is to use a 
stochastic gradient-descent algorithm that iteratively 
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searches the performance surface, J(H),  for the o p  
timal value. This algorithm updates the controller 
coefficients at each time step with: 

where the gradient of J is an instantaneous or s t e  
chastic estimate and p sets the adaptive rate of the 
algorithm. This equation is the basis for the well 
known least-mean squares (LMS) alg~rithrn.’~’ 25 

The gradient of the cost function can be determined 
by substituting Eqs. 2 and 7 into Eq. 8 and taking 
the derivative with respect t o  H. After some algebraic 
manipulation: 

-- a J ( k )  - 2TTQys(k)v;(k - p )  + 2yH(k). (12) aH 

Substituting this expression into Eq. 11 gives: 

H(k + 1) = aH(k) - 2/~T*Qy,(k)v,T(k - p )  (13) 

where a = (1 - 2py). Examination of the update equa- 
tion indicates that it depends on future input values, 
us ( k ) ,  and future output values, ys ( k ) ,  and so cannot 
be implemented in real time. However, assuming the 
gradient of the cost function does not change signifi- 
cantly over the prediction horizon, s, the data vectors 
can be shifted back in time by s time steps and the 
update equation becomes: 

H ( k + l )  = a H ( k )  
- Z ~ P Q ~ , ( ~  - S)VpT(k - - s).  

(14) 

The variable cr in the update equation is referred to 
as the leakage factor. It arises from the y . tr(HTH) 
term in the cost f ~ n c t i o n . ’ ~ ~ ’ ~ ~ ~ ~  The value of (Y is t y p  
ically set to  slightly less than one (e.g., a = 0.9999). In 
that case, the controller coefficients come close to, but 
never reach, their optimal values. Instead, they con- 
stantly fluctuate in a region about their optimal values. 
The benefits of leakage in the update equation include 
improved robustness and rate of c~nvergence.’~~’~~ 27 

Leakage also counteracts parameter drift that can oc- 
cur in the standard LMS alg~ri thm.’~ Most impor- 
tantly, leakage acts like an effort penalty on the control 

27 

The control law in Eq. 7 yields a vector of current 
and future inputs. In the real-time implementation 
of this control law, however, the current control effort, 
u(k), is applied to the process and the future values are 
discarded at  each time step. Therefore, it is sufficient 
to compute the current control effort as: 

4 k )  = hv,(k - P), (15) 

where h denotes the first r rows of the matrix H. In 
turn, the update equation can be rewritten to update 

the r x p ( m  + T )  matrix h as: 

h(k+1)  = ah(k) 

- - ~ P { T ~ Q } , . Y ~ ( ~ -  ~ ) v , T ( k - p - s ) ,  
(16) 

where the subscript T denotes the first T rows of the 
matrix T ~ Q .  

To implement the adaptive GPC algorithm in real 
time, the required algorithm steps are: 

1. Determine the ARX parameters via system iden- 
tification and form the matrix, {T’Q},. 

2. Initialize h(0) to  zero. 

3. Update the data vectors y,(k-s) and v p ( k - p - s ) .  

4. Update h(k) according to  Eq. 16. 

5. Compute the control effort as: u ( k )  = hv,(k - p ) .  

6. Repeat steps 3 to 5. 

In the algorithm listing above, it is assumed that 
the system to be controlled is linear and time in- 
variant. In that case, the system identification can 
be performed offline in a batch mode before running 
the control algorithm. Also, it is expected that the 
controller coefficients will converge to  a steady-state 
level. In our control approach, the cavity dynamics are 
treated as linear and time invariant for a @ed Mach 
number. Therefore, the system identification was per- 
formed offline for each of the Mach numbers tested. 
Whether this is a reasonable approach to the problem 
will be discussed in the results section. It is important 
to recognize, however, that system identification will 
have to be performed recursively to  track changes in 
the cavity dynamics that result from a change in the 
freestream conditions. 

There are several parameters in the algorithm that 
must be tuned to achieve a balance between optimal 
performance and stability of the controller: the model 
order p ,  the prediction horizon s, the adaptive rate p, 
the leakage factor a,  and the sampling rate. Although 
the parameter values are problem dependent, experi- 
ence provides some guidelines for their selection. The 
model order is selected through system identification. 
The key issue in this case is to chose p large enough 
such that all of the pertinent open-loop dynamics are 
captured by the model. The prediction horizon should 
be at least equal t o  the model order, but in practice, is 
typically taken as 2 to 3 times the model order22 For 
the sampling rate, experience indicates that a value 
2 to 3 times the highest frequency results in the best 
performance.” The highest frequency in the present 
context is the highest Rossiter frequency of interest. 

The parameter p controls the convergence rate of 
the algorithm. As the value of p is increased, the con- 
vergence time of the algorithm decreases, but for too 
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Fig. 3 Schematic of cavity model showing sensor 
and actuator locations. 

large a value, the algorithm will become unstable. Ide- 
ally, p should be chosen such the convergence time of 
the algorithm is smaller than the time scale over which 
the process dynamics change. 

As mentioned above, the numerical value of Q is t y p  
ically slightly less than one. As the leakage factor a p  
proaches one, the control effort penalty decreases, re- 
suiting in a more aggressive controller. It is important 
t o  recall that Q also depends on p; i e . ,  Q = 1 - 2py. 
For example, if p is decreased but a remains the same, 
the implication is that y has increased. A larger value 
of y results in a larger control-effort penalty and there- 
fore, a more sluggish, stable controller. The upshot of 
this interdependence is p and a must both be tuned 
to  achieve a balance between the optimal performance, 
convergence rate, and algorithm stability. 

Experimental Details 
The details of the experimental setup and data 

processing methods are presented in this section. 

Wind Tunnel Facility 
The experimental program was conducted in the 

NASA-Langley Probe Calibration Tunnel (PCT). The 
PCT is typically operated as an open-jet pressure tun- 
nel with independent control of stagnation pressure, 
stagnation temperature, and freestream velocity. For 
the current experiment, the facility was fitted with a 
subsonic nozzle that contracts from a circular inlet to 
a 50.8 mm by 152.4 mm exit. A straight duct sec- 
tion of length 0.6 m was attached to the nozzle exit 
and was terminated with a small-angle diffuser. The 
freestream Mach number range for the present tunnel 
configuration was 0.04 to  0.8. 

Cavity Model 
A rectangular cavity model was installed in the ceil- 

ing of the straight duct section of the PCT. The floor 
of the duct section was a foam filled baffle that min- 
imized reflections of acoustic waves radiated by the 
cavity. The cavity model had a fixed length, e = 152.4 
mm, and a variable depth, d, which was fixed to 30.48 
mm for an C/d ratio of 5. The cavity model spanned 
the width of the test section (w = 50.89 mm) to pro- 
vide an un-obscured view of the cavity shear layer for 
optical diagnostics. The incoming boundary layer was 

I - _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ ’  
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Fig. 4 Block diagram of feedback control system. 

turbulent with a thickness of approximately 6 mm. A 
schematic of the cavity is shown in Fig. 3. 

Actuator 
The actuator for the present study was a piezoelec- 

tric bimorph cantilever beam with its tip situated at 
the cavity leading edge (Fig. 3). This actuator was 
chosen for its relatively high bandwidth (- 1 IcHz) 
and ability to generate large streamwise disturbances 
with modest tip deflections (on the order of tens of mi- 
c r o m e t e r ~ ~ ~ ~ ~ ) .  The response of the actuator was char- 
acteristic of a 2nd-order underdamped system with 
a natural frequency of = 1200 Hz and a DC gain of 
“u 0.25 pm/V. Further details on the design and con- 
struction of the actuator can be found in Kegerise et 
al.,4 Mathew” and Schaeffler et aL30 

Sensors 
The cavity model was instrumented with a pair of 

piezoresistive pressure transducers. The nominal sen- 
sitivity and bandwidth of the sensors were 2.2 x lo-’ 
V/Pa and 14 IcHz, respectively. One sensor was l e  
cated in the midplane of the front cavity wall, 12 mm 
down from the cavity leading edge. The second sensor 
was located in the floor midplane, 15 mm upstream 
from the cavity rear wall (see Fig. 3). 

Control Hardware 
A block diagram of the feedback control setup is 

shown in Fig. 4. The voltage signals from the pressure 
sensors were first pre-amplified and anti-aliased fil- 
tered. The filters were 6th-order (6-pole/&zero) with 
nearly constant group delay (linear phase) in the pass- 
band. The zerefrequency group delay was 0.715/Fc 
sec and the cutoff frequency was F, = 1600 Hz. The 
signals were then sampled with a 16-bit A/D. 

The control algorithm was coded in SIMULINK and 
then converted to compiled code via Real-Time Work- 
shop to run on a floating-point DSP (dSPACE DS1005 
card with a clock speed of 480 MHz). Based on the 
current and past sampled voltages from the pressure 
sensors and past control efforts, the control algorithm 
computed the control signal once per time step. For 
all of the results presented in this paper, the sample 
time of controller was set to 250 p e c .  

The computed control effort was then converted to 
an analog signal via a 14bi t  D/A card. This signal 
was passed to a reconstruction filter (same type as 
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anti-alias filter with F, = 1600 Hz) to smooth the zerc- 
order hold signal from the D/A card. The output of 
this filter was sent to a high-voltage amplifier t o  prc- 
duce the drive signal for the bimorph actuator. 

Data Processing 
Pressure sensor timeseries data were collected for 

both the baseline (open-loop) and controlled cavity 
flow. Primarily, the data were processed to obtain 
pressure spectra. In computing the spectra, 1024 point 
FFTs, a hanning window, 50% overlap, and 160 block 
averages were used. The sample rate for data collec- 
tion was 4 kHz and the frequency resolution of the 
spectra was 3.9 Hz. The pressure spectra are presented 
in the results section as d B  re 2.0 x Pa. 

Results and Discussion 
The results of the control experiments are presented 

in this section. Three freestream Mach numbers were 
considered: M ,  = 0.275, 0.32, and 0.38. Throughout 
the tests, the cavity geometry was fixed to e / d  = 5, 
the total pressure was 138 kPa, and the total tem- 
perature was 297 K. The Reynolds number based on 
cavity length (Ret = eUm/v)  for the three test condi- 
tions ranged from 1.2 x lo6 to  1.6 x lo6. 

The section begins with a discussion of the baseline 
flow for the three test conditions. A series of control 
results for the test cases are then presented and perfor- 
mance limitations are discussed. This is followed by an 
examination of the transient behavior of the adaptive 
GPC algorithm at fixed Mach numbers. The section 
ends with a demonstration of controller adaptation to 
changing freestream Mach number. 

Baseline Flow 
Baseline pressure spectra for the three test condi- 

tions are presented in Fig. 5. The spectra display the 
characteristic multiple resonant tones that increase in 
frequency with increasing Mach number. The tone 
amplitudes and broadband levels also increase with 

increasing Mach number. Peaks in the pressure spec- 
trum that correspond to Rossiter modes were iden- 
tified from the coherence function between the two 
sensors in the cavity. The frequencies of these peaks 
were compared to those obtained from the modified 
Rossiter equation:31 

7 (17) 
mst - a s t  

M ,  (1 + +M&)-1’2 + l /kSt  
St ,  = 

where St,  = f e / U ,  is the Strouhal number, mSt is 
the (integer) mode number, and ast = 0.25 and kst = 
0.66 are empirical constants. The results are presented 
in Table 1. The agreement is within lo%, verifying 
that the present cavity model behaves as expected. 

Adaptive GPC Results 

The adaptive GPC algorithm was applied to  the 
three Mach-number conditions. For each of the flow 
conditions, control runs for a range of algorithm pa- 
rameters were performed. In each case, the initial 
conditions were set to zero and the algorithm was used 
to  adapt the controller coefficients over a period of 
time. It was found that the controller coefficients con- 
verged to  steady-state levels in the mean. However, 
the controller coefficients do exhibit stochastic fluctu- 
ations about these mean levels. Once the controller 
coefficients converged, time series of the unsteady wall 
pressures were collected and pressure spectra were 
computed. For any given set of control parameters 
and a given Mach number, the control algorithm was 
run several times. Each time, the controlled pressure 
spectra were repeatable, suggesting that the controller 
coefficients were converging to  the same set of values. 
Comparison of the controller coefficients for the several 
runs revealed that this was indeed true. 

Control results for the three Mach number condi- 
tions are presented in Figs. 6a, c, and e. The fig- 
ures show baseline and controlled pressure spectra 
measured at the rear-floor sensor. These results are 
representative of the best performance achieved for 
each flow condition. Multiple Rossiter modes were 
suppressed by the control algorithm at all three condi- 
tions. For the M ,  = 0.275 case in particular, the first 
four Rossiter modes exhibit some suppression. The 
broadband levels of the pressure fluctuations are not 
significantly altered in any of the control runs. 

Table 2 lists the algorithm parameters for the results 
shown in Fig. 6 .  For all cases, the model order used in 
system identification was 80 and the prediction horizon 
was set t o  240. The sensor weights for the two outputs 
were zero for the front sensor (41) and one for the rear 
sensor (42). The control performance was found to be 
weakly dependent on the sensor weights, and only sub- 
tle differences were observed with different values of 
sensor weightings. At each flow condition the conver- 
gence rate, p, and leakage parameter, a,  were adjusted 
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Fig. 6 Adaptive GPC control results at three Mach numbers. 
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Table 1 Measured vs. predicted frequencies ( H z )  of the first 4 Rossiter modes 

Mode 1 Mode 2 Mode 3 Mode 4 
M ,  Meas. Pred. Meas. Pred. Meas. Pred. Meas. Pred. 
0.275 240 260 613 605 945 952 1320 1298 
0.32 280 295 699 688 1054 1081 1475 1474 
0.38 312 339 806 792 1175 1244 1650 1696 

Table 2 Algorithm parameters 

Model Order Pred. Horizon Sensor Weights Leakage Factor Adaptive Rate 
M5J P S 91 92 ff P 
0.275 80 240 0 1 0.999995 0.0001 
0.32 80 240 0 1 0.99999 0 .oooo 1 
0.38 80 240 0 1 0.999999 0.000001 

to achieve the best performance while maintaining sta- 
bility and avoiding actuator saturation. 

Performance Limitations 
In previous feedback control studies of cavity-flow 

tones, several performance limitations were noted. 
Specifically, the controllers excited new tones or side 
bands of the Rossiter r n o d e ~ . ~ ~ ~ ~  The latter phenom- 
enon is referred to  as peak splitting. None of the 
previous studies reported significant reductions in the 
broadband pressure fluctuations. In the present con- 
trol experiments, the excitation of new tones was not 
observed. While the pressure spectra do not indi- 
cate distinct peak splitting, a close examination of 
the controlled pressure spectra reveals increased en- 
ergy in frequency bands around the Rossiter modes. 
This behavior, which is common in the feedback con- 
trol of sound and vibration, is referred to as spillover. 
It follows from the definition of Hong and B e r n ~ t e i n ~ ~  
which states that spillover occurs at frequency f when 
the closed-loop transfer-function magnitude is greater 
than the open-loop transfer function magnitude at 
that frequency. The result is disturbance amplifica- 
tion in the output sensors. 

A performance measure can be defined to better rep- 
resent the spillover observed in the control results: 

where ycl and yol are vectors of the output sensor spec- 
tra for the controlled and baseline cases, respectively, 
and ( 1  . 112 is the 2-norm. Eq. 18 essentially provides 
a scalar measure of disturbance rejection for the mul- 
tiple output sensors. A value less than one indicates 
disturbance attenuation, while a value greater then one 
indicates disturbance amplification. The performance 
measure was calculated for each of the control cases 
and the results are indicated by the dashed lines in 
Figs. 6b, d, and f. As expected, the performance mea- 
sure is less than one (negative log magnitude) at the 
Rossiter modes where attenuation has occured, but 

Fig. 7 SIMO model of the cavity and controller. 

this is always accompanied by amplification (positive 
log magnitude) in sideband frequencies. 

To understand why spillover arises in the feedback 
control results, the definition of a sensitivity transfer 
function is useful. The sensitivity was recently used 
by Rowley et ~ 1 . ~ ~  to explain performance limita- 
tions in the feedback control of cavity tones. Con- 
sider the single-input/multiple-output (SIMO) model 
for the cavity-flow control system shown in Fig. 7. The 
thicker lines indicate multidimensional signals, while 
the thinner lines indicate scalar signals. The distur- 
bance, w(t), is hypothesized to enter the system at the 
cavity leading edge, where the shear layer is especially 
receptive to inputs. The disturbance is subsequently 
filtered by the cavity dynamics before reaching the 
output sensors. In the absence of feedback control, 
this disturbance drives the response in the output sen- 
sors. This viewpoint, that cavity-flow oscillations can 
be described as forced oscillations of a lightly-damped, 
linear system, was recently put forth by Rowley et 
al. 32,33 

The control input is hypothesized to  follow the same 
path to  the output sensors as the disturbance, as in- 
dicated in Fig. 7. With this hypothesis, anything the 
controller does to reject the disturbance will be re- 
flected equally in all output sensors. 

The input sensitivity for this SISO system can be 
used to verify this hypothesis. The input sensitivity 
represents the transfer function between the distur- 
bance, w(t) ,  and the plant input, v(t), and is written 
as: 
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where P = GG, is the plant transfer function and H 
is the controller transfer function. For a SIMO system 
with a single disturbance following the same path to 
the error sensors as the control input, the input sen- 
sitivity can be shown to be equal to the performance 
measure defined in Eq. 18. The mathematical details 
of this equality are presented in the appendix. If the 
disturbance follows another path or if there are multi- 
ple disturbance paths to the output sensors, then this 
will not be true. 

The log magnitude of the input sensitivity 
(20 log ( ISi I)) is indicated by the solid line in Figs. 6b, 
d, and f. The good agreement between the input sen- 
sitivity and the measured performance for the M ,  = 
0.275 case supports the above hypothesis that the dis- 
turbance enter the system a t  the input. As the Mach 
number is increased, however, the differences between 
them increase. These differences can arise from uncer- 
tainties in the plant model used to calculate Si and 
other disturbances that follow a different path to the 
output sensors. Nevertheless, for the Mach number 
range tested, the disturbance appears to follow the 
same path through the plant as the control input. 

Recall that the input sensitivity was defined to aid 
in understanding the origins of spillover. Since the 
control objective is disturbance rejection, it is desired 
that IS,[ < 1 (negative log magnitude) over all fre- 
quencies. However, the Bode integral constraint places 
certain requirements on the sensitivity. Specifically, 
for a discrete data system with an asymptotically sta- 
ble open-loop transfer function, HP, the Bode integral 
constraint is:35 

The immediate consequence of Eq. 20 is negative val- 
ues of the log sensitivity in one frequency band must 
necessarily be balanced by positive values in another 
frequency band. The result is spillover and the cur- 
rent performance data clearly reflect this integral con- 
straint. 

It is important to consider whether the constraints 
imposed by the Bode integral can be overcome and 
therefore achieve arbitrary levels of broadband reduc- 
tion. Hong and B e r n ~ t e i n ~ ~  have shown that there are 
specific conditions under which a zero-spillover con- 
troller can be designed. One condition is that the 
disturbance and the control input be noncolocated. If 
they are colocated, then spillover is unavoidable. Since 
the present performance data suggest that the distur- 
bance and control input are indeed colocated, spillover 
cannot be avoided. This is unfortunate since, from the 
standpoint of minimal control input energy, the cavity 
leading edge is an ideal place for actuation. From a 
controls perspective, however, it does not appear to  
be an optimal place to achieve broadband disturbance 
rejection. 

130 " I " ~  

s 125[ 

= 120 a 
5 115' I 
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Fig. 8 Time evolution of Rossiter mode 2 ampli- 
tude for two adaptive rates. Controller was turned 
on at t = 0. The log magnitude of the input sen- 
sitivity at f = 613 Hz is plotted for comparison. 
M ,  = 0.275. 

Transient Behavior of the Algorithm 
The transient behavior of the algorithm was ex- 

amined through measurement of unsteady pressures 
and controller coefficients while the control algorithm 
was adapting. Unsteady pressure time series were col- 
lected in a pre/post-triggered mode, where the trigger 
condition was control on. The adaptive controller co- 
efficients were also sampled at  every 100th time step. 
For each test condition, 10 triggered data sets were ac- 
quired. The Short-Time Fourier Transform (STFT), 
which provides a measure of time evolution in the 
frequency spectrum, was then used to process the 
time-series data. The time and frequency resolution of 
the STFT was 13 msec and 7.8 Hz, respectively. The 
STFT was block averaged over the 10 triggered data 
sets to reduce the random uncertainty in the estimate. 

An example of the results is shown in Fig. 8. Here 
the amplitude of the STFT at the frequency of Rossiter 
mode 2 (613 Hz) for M ,  = 0.275 and two adaptive 
rates ( p  = 0.0001, 0.00001) is plotted. The controller 
coefficients were initialized to zero and the algorithm 
was started at  t = 0. Prior to control, the mode am- 
plitude was - 134 dB. Once the control algorithm was 
started, the Rossiter mode amplitude decreased to a 
level of - 125 dB in the mean. For the larger a d a p  
tive rate, p = 0.0001, the Rossiter mode is suppressed 
within 2 seconds, while for the order-of-magnitude 
smaller adaptive rate, p = 0.00001, it takes an order- 
of-magnitude longer to  reach a steady-state level of 
suppression. Although the adaptive rates are different, 
the same level of suppression is achieved, provided the 
leakage factor, a, is adjusted accordingly. 

Using the sampled controller coefficients and the 
open-loop plant model, the input sensitivity at f = 
613 Hz was computed for every 100th time step. This 
was performed for each of the 10 data sets and then 
block averaged. The results are shown in Fig. 8, where 
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Fig. 9 Time evolution of input sensitivity for 
Rossiter modes 2, 3, and 4 and two adaptive rates. 
M ,  = 0.275. 

the log magnitude of the input sensitivity was shifted 
by 134 dB for comparison to the STFT results. Like 
the measured mode amplitude, the input sensitivity 
also reaches a steady state level. This occurs because 
the controller transfer function converges to a steady 
state. The convergence of the controller transfer func- 
tion to a steady state suggests that adaptation can be 
stopped after some time to  freeze the controller coef- 
ficients with no degradation in performance. Pressure 
spectra measured with a fixed set of converged con- 
troller coefficients confirmed this. 

The input sensitivity closely matches the trend of 
the measured mode amplitude with time and there- 
fore, it can be used to study the performance a t  other 
Rossiter frequencies. In Fig. 9, the input sensitivity at  
Rossiter modes 2, 3, and 4 for the M ,  = 0.275 case is 
plotted for two adaptive rates. The plot demonstrates 
that the different Rossiter modes are suppressed at 
different convergence rates. The dominant mode is 
suppressed first, followed by the second largest mode, 
and so on. Nevertheless, given sufficient time, all 
Rossiter modes reach a steady-state level of suppres- 
sion for a fixed Mach number. 

The agreement between the transient performance 
data and the calculated input sensitivity in Fig. 8 sup 
ports treating the cavity dynamics as linear and time- 
invariant for a fixed Mach number. To test this hy- 
pothesis, it should be possible to design a GPC control 
law offline, using only the identified open-loop model, 
that yields similar performance to the adaptive GPC 
algorithm. Methods for computing the GPC gains of- 
fline can be found in several  reference^.'^^^^^ 2 2 1 2 3  Con- 

f 115 

h 110 
I 

500 1000 1500 2000 

a) Baseline and controlled pressure spectra measured at 
rear-floor sensor for GPC and adaptive GPC. Mw = 
0.275. 

105' 
0 

frequency (Hz) 

I 

0 500 lD00 1500 2ooo 
frequency (Hz) 

Y -  a -10 ! 
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frequency (Hz) 

b) Comparison of measured performance and input sen- 
sitivity for GPC and adaptive GPC. Mw = 0.275. 

Fig. 10 
control results. 

Comparison of GPC and adaptive GPC 

trol laws were designed offline for each Mach number 
tested and then compared to the adaptive GPC re- 
sults. An example is shown in Fig. 10 for M ,  = 0.275. 
The pressure spectra, measured performance, and in- 
put sensitivity for the GPC designed offline and the 
adaptive GPC are in close agreement. This was found 
to be true at the other Mach numbers tested. 

Adaptation to Changing Mach Number 

The adaptive GPC algorithm presented in this pa- 
per requires an estimate of the pulse response sequence 
of the open-loop plant. For a fixed Mach number, 
the results of the previous section indicate that the 
pulse response sequence can be determined offline from 
open-loop, input-output data and then subsequently 
used in the real-time control algorithm. If the Mach 
number changes, however, the open-loop dynamics 
change. Then, the open-loop dynamics will have to 
be identified with a recursive algorithm. This has 
not yet been implemented in our experimental pro- 
gram. It is still of interest to consider the robustness 
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Fig. 11 GPC and adaptive GPC control perfor- 
mance as freestream Mach number is increased. 
System identification was performed at Mw = 0.275. 

of the adaptive algorithm to changes in the freestream 
Mach number without re-identification of the system. 
To that end, system identification was performed at 
M ,  = 0.275. The control algorithm was then run 
at that Mach number and the controller was allowed 
to converge. The Mach number was then slowly in- 
creased to 0.28, while the controller continued to run, 
and time-series data were collected. Then, the Mach 
number was increased to 0.29 and data were again col- 
lected. Beyond this Mach number, a stable controller 
could not be maintained. 

Baseline and controlled pressure spectra measured 
at  the rear-floor sensor for M ,  = 0.28 and 0.29 are 
shown in Fig. 11. For this small change in Mach num- 
ber (- 9 %) the controller is observed to maintain 
suppression in the first four Rossiter modes. Previous 
authors36 have shown that for gradient descent algo- 
rithms where the gradient is filtered by a plant model, 
the condition for stability of convergence is that the 
ratio of the plant model to the true plant must be 

10 r=TEc I 
I 

*t 
- 1  fl: 

It 

Conclusions 
An adaptive generalized predictive control algo- 

rithm was formulated and applied to  the cavity flow- 
tone problem. The algorithm employs gradient descent 
to update the GPC coefficients at each time step. Past 
input-output data and an estimate of the open-loop 
pulse response sequence are needed to implement the 
algorithm for application at  fixed Mach numbers. 

The adaptive control algorithm demonstrated multi- 
ple Rossiter mode suppression at fixed Mach numbers 
ranging from 0.275 to  0.38. For these Mach num- 
bers, the controller coefficients were found to converge 
to a steady-state level. This implies that controller 
adaptation can be turned off at  some point with no 
degradation in performance. 
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An input sensitivity transfer function was defined 
and shown to provide a useful measure of controller 
performance. The close agreement between the in- 
put sensitivity and a measure of output disturbance 
rejection suggests that the primary disturbance path 
is through the plant (cavity dynamics) from the in- 
put (cavity leading edge). This, in turn, suggests 
colocation of the control input and disturbance and 
therefore, arbitrary broadband pressure reduction is 
not possible with the present arrangement of sensors 
and actuators. Only the tonal components of the un- 
steady pressure fluctuations can be suppressed. 

In the development of the adaptive control a lge 
rithm, the cavity dynamics were treated as linear and 
time-invariant (LTI) at a fixed Mach number. In that 
case, it is expected that the adaptive controller will 
converge to a steady state. It also follows that a GPC 
law designed offline using standard methods should 
yield similar performance to the adaptive controller. 
The experimental data lend support to the LTI treat- 
ment, since both expectations are displayed. 

Finally, the adaptive control algorithm was applied 
to the cavity problem as the freestream Mach number 
was varied. The algorithm was able to maintain s u p  
pression of multiple cavity tones over a modest change 
in Mach number (0.275 to 0.29). Beyond this range, 
stable operation of the control algorithm was not pos- 
sible. This limitation was the result of using a k e d  
plant model in the algorithm. To extend adaptation 
to higher Mach numbers, the system dynamics must 
be re-identified. 

Future work should consider alternative placements 
of actuators and sensors. One possible arrangement 
would utilize actuation at  both the leading and trail- 
ing edges of the cavity. Measurement sensors in the 
cavity shear layer may also be useful since then, a dis- 
turbance signal that is time advanced from actuation 
at  the trailing-edge would be available. This feedfor- 
ward type of arrangement may greatly enhance the 
control performance, particularly in regard to broad- 
band disturbance rejection. 
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Appendix 
In this section, the performance measure defined in 

Eq. 18 is shown to be equal to the input sensitivity 
for the SIMO model shown in Fig. 7. To that end, an 
expression for the closed-loop response of the SIMO 
system must first be formed. The cavity flow is con- 
sidered to be a single-input/multiple-output system 
described by: 

Y ( f )  = G ( f ) v ( f ) ,  (22) 

where G(f)  is an m x 1 frequency response function 
matrix of the cavity flow. The controller is a multiple- 
input/singleoutput system described by: 

where H( f )  is a 1 x m frequency response function 
matrix of the controller. The input to  the cavity flow 
is given by: 

Substituting Eqs. 23 and 24 into Eq. 22 yields: 

y = Gw + GGaHy, (25) 

where the dependence on frequency, f ,  is understood. 
Solving this expression for y gives the closed-loop re- 
sponse: 

y = [I - GG,H]-l Gw. (26) 

Using the matrix inversion lemma: 

[A + BCD1-l = 

A-’ - A-lB [C-’ + DA-lB1-l DA-l,  

(27) 

the matrix inverse in Eq. 26 can be written as: 

-1 

I + G ( $ - H G )  H 

or 
GG,H 

I + I - H G G , *  
Substituting this expression into Eq. 26 gives: 

G - HGG,G + GG,HG 
1 - HGG, 

20. (30) 

Since HG and G, are scalar transfer functions, Eq. 30 
can be rewritten as: 

Y =  

W (31) 
G - GGaHG + GGaHG 

1 - HGG, Y =  

and there fore, 

(32) 
ti 

W. ’= 1-HGG, 

The input sensitivity for the SIMO system is given by: 

1 

si 1 - HGG, (33) 

Using this definition, the closed-loop response for the 
model system can be written as: 

where the subscript was added to denote the closed- 
loop response. 

In the absence of feedback control, the open-loop 
response of the cavity flow is described by: 

Recall the performance measure defined earlier: 

Substituting Eqs. 34 and 35 into 36 gives: 

Therefore, for this special case of a single control in- 
put, a single disturbance input, and multiple output 
sensors, the input sensitivity is equal to the perfor- 
mance measure. 
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