
Hybrid Discrete-Continuous Markov Decision Processes 

Zhengzhu Feng 
Department of Computer Science 

University of Massachusetts 
Amherst, MA 01003-4610 

fengzz Q cs.umass.edu 

Abstract 
This paper proposes a Markov decision process (MDP) 
model that features both discrete and continuous state vari- 
ables. We extend previous work by Boyan and Littman on 
the mono-dimensional time-dependent MDP to multiple di- 
mensions. We present the principle of lazy discretization, 
and piecewise constant and linear approximations of the 
model. Having to deal with several continuous dimensions 
raises several new problems that require new solutions. In 
the (piecewise) linear case, we use techniques !?om partially- 
observable MDPs (POMDPS) to represent value functions as 
sets of linear functions attached to different partitions of the 
state space. 

Introduction 
Because of communication limitations, remote spacecraft 
and rovers need the ability to operate autonomously. For 
instance, the Mars Exploration Rovers (MER) will com- 
municate with the ground only twice per Martian day and 
must operate autonomously the rest of the time. Moreover, 
the surfaces of planets are very uncertain environments. In 
the case of Mars, there is uncertainty about the terrain, the 
meteorological conditions, and the state of the-rover itself 
(position, battery charge, solar panels, component wear, 
etc.), resulting in a great deal of uncertainty in the dura- 
tion, energy consumption and outcome of the rover's ac- 
tions (Bresina et al. 2002). The need for autonomy and 
robustness in the face of uncertainty will grow as rovers be- 
come more capable and as missions explore more distant 
planets. 

Planning systems that have been developed for plane- 
tary rovers and other NASA applications typically use a 
deterministic model of the environment and action effects 
(Muscettola et al. 1998; Jcjnsson et al. 2000; Estlin et al. 
2002). Given a pre-specified set of goals, they produce a de- 
terministic sequence of actions that attempts to achieve the 
goals, assuming nominal conditions. They do not model the 
uncertainty in the domain, but instead rely on replanning to 
handle unexpected events. This straightforward approach 
presents several drawbacks: (i) it does not address the com- 
promise between the value of a goal and the risk attached 
to it; (ii) it does not choose good branch points: waiting 
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for a failure of the nominal plan is a poor strategy, since it 
could be too late to do anything interesting; (iii) it does not 
identify the benefits of "set-up actions," that is, actions that 
must be integrated into the nominal plan only because they 
could be useful if we had to revise our plans in the course 
of execution (for instance, putting a spare tire in the trunk 
before going on a car trip). 

Decision theory is a principled framework for reason- 
ing about uncertainty, rewards, and costs (Blythe 1999; 
Boutillier, Dean, & Hanks 1999). It avoids the three pit- 
falls of previous approaches: (i) it makes optimal trade-offs 
between the value of goals and plans, and the risks associ- 
ated with them; (ii) it selects optimal branch points;' (iii) 
it captures the necessity of performing set-up actions each 
time there is benefit in doing so. Therefore, decision the- 
ory seems particularly suited to respond to the need for au- 
tonomy in NASA applications. However, there are many 
obstacles to a direct application of decision-theoretic algo- 
rithms such as dynamic programming (DP) (Howard 1970; 
Puterman 1994) to real domains such as planetary explo- 
ration rovers (Bresina et al. 2002). In this paper, we fo- 
cus on one of these difficulties: the existence of continuous 
'state variables. 

A characteristic of many of NASA application domains 
is the existence of continuous state variables such as time, 
battery levels, location, and available memory. Most of 
them represent resources that constrain the planning prob- 
lem. Moreover, most of the uncertainty in the domain re- 
sults from the effect of actions on these variables. In the 
Mars rover domain, the biggest sources of uncertainty are 
the duration and energy consumption of actions and the 
storage space that pictures will require after compression. 
In contrast, the control framework is not completely contin- 
uous because decisions are made at discrete decision steps. 
Formally, the problem is that of a discrete-step decision 
model, such as a Markov Decision Process (MDP) (Puter- 
man 1994), with several continuous state variables. The 
continuous variables make the state space continuously infi- 

'It is commonly believed that decision theory is limited to 
searching for an optimal policy, that is, a complete conditional 
plan with one "branch" for each possible situation that could be 
encountered at execution. However, recent work has shown that 
it is possible to use a decision theoretic approach to find optimal 
plans of other types, such as conformant plans (Hyafil& Bacchus 
2003) and k-contingency plans (Meuleau & Smith 2003). 



nite and prevent a direct use of classical solution techniques 
such as DP. 

The common practice to deal with continuous state vari- 
ables in MDPs is either to use function approximators such 
as artificial neural networks (Bertsekas & Tsitsiklis 1996; 
Sutton & Barto 1998), or to discretize the continuous state 
space more or less naively, which does not scale well to 
multiple dimensions. Munos and Moore (Munos 2000; 
Munos & Moore 2002) propose a formal model of a contin- 
uous MDP, and the theoretical foundations and algorithms 
for discretizing it. However, their model is a deterministic 
MDP where actions must be applied over continuous du- 
rations. The non-determinism in action outcomes results 
only from the discretization. This does not fit the prob- 
lem of planetary rover planning that uses discrete global 
commands such as “drive from lander to rock l”, and is in- 
trinsically rife with exogenous uncertainty (Bresina et al. 
2002). In another approach, Boyan and Littman have pro- 
posed a model of time dependent MDP (TMDP) that fea- 
tures one uncertain continuous state variable representing 
time (Boyan & Littman 2000). They approximate this 
model using piecewise linear approximations and develop 
algorithms that are able to efficiently solve a collection of 
benchmark problems. 

In this paper, we extend Boyan and Littman’s TMDP 
by introducing hybrid MDPs (HyMDPs) that feature several 
continuous state variables. We then introduce the princi- 
ple of lazy discretization, which is implicit in Boyan and 
Littman’s work. This idea is implemented in a functional 
dynamic programing algorithm that backs up piecewise 
constant approximations of continuous (value) functions, 
from discrete state to discrete state. This algorithm is shown 
to compare favorably to the naive discretization often used 
in the literature. Further, we extend this algorithm to piece- 
wise linear rewards and value functions. There are several 
problems that appear wh& we want to generalize Boyan 
and Littman’s work from one dimension to multiple dimen- 
sions. The problems arise in representing and manipulating 
partitions of the multidimensional continuous state space. 
We propose original solutions to these problems using con- 
cepts from computational geometry and techniques from 
the theory of partially observable MDPs (POMDPS). 

The Continuous Model 
Model Definition 
We propose a model of a hybrid MDP (HYMDP) that features 
both continuous and discrete state variables. 

Discrete state variables: Let z E X represent the dis- 
crete part of a state. X is supposed finite. z may be a vec- 
tor of discrete features with some structure. We do not need 
that kind of representation in this work but do not exclude it. 
If there is some structure in the discrete features, then our 
algorithms can be modified to exploit it in the same way 
as structured DP (Boutilier, Dearden, & Goldszmidt 2000). 
We call x the discrete state of the process. 

Continuous state variables: For all i E {1 ,2 ,  . . . Z}, B i  
represents a continuous state variable taking its value in the 

compact interval 0i of R (or a finite union of such inter- 
vals). we call e = (el,ez,. . .el) E 0 = oi the 
continuous state of the process. This work is motivated by 
problems where the continuous variables represent almost 
exclusively resources such as the time and energy available 
to a rover. In common rover models, the rover position is 
represented as a discrete location, and movement actions 
are assumed either to lead to the destination (taking ran- 
dom time and energy), or to fail and leave the rover in an 
unknown location where back-up plans are used. However, 
there is theoretically no obstacle to applying our approach 
to any kind of continuous variable. 

States: A (Markov) state s is an element of S = X x 0. 
Note that we can easily extend the model so that the domain 
of each continuous variable varies from one discrete state x 
to another. 

Actions: A is the finite set of actions available in each 
state. Again, we can easily extend the model so that the 
set of available actions varies from one state to another.2 
This is necessary in Mars rovers domain because there may 
be olinimum levels of resources required to s t a t  actions 
(Bresina et al. 2002). 

State transitions: The transition probability of the MDP 
is represented by the conditional probability distribution 
T(s’ 1 s, a) on the arrival state s’ = (x’, e’), given the start- 
ing state s = (z, e)  and action a. This distribution must 
reflect the possible monotonicity of some resource. For in- 
stance, if there is only one continuous variable 81 repre- 
senting the time remaining, which can never increase, then 
T((x’,O‘) I (z,B),a) = 0 when@ > 8. Itisconvenientto 
decompose the (joint) transition distribution T into: 

a discrete marginal probability distribution on the arrival 
discrete state: T, (x’ I s, a )  E [0,1] is the probability that 
executing action a in state s results in discrete state 2’. 

For all (s, a) ,  CzEX T ( x  I s, a )  = 1; 
a conditional continuous distribution Te(6’ 1 s ,  a, 2’) on 
the arrival continuous state e‘, given the starting state, 
action and arrival discrete state. This one may in turn 
be decomposed in a sequence of continuous condition- 
als: TO, (0; I s ,  a, z’, 62%) where 02% = (@;, . . E 

Rewards: A reward function R(s, a, s’)  remesents the 

2-1 
@<2 = 0,. 

. 
reward for a transition from state s to state s’ under action 
a. A priori, the reward functions may be any continuous 
function. In practice, we have to assume some particular 
shape to develop practical algorithms. 

Bellman Equations 

We are interested in maximizing the expected reward of a 
plan over a finite horizon of H decision-steps. The flat Bell- 

’To apply the solution techniques proposed hereafter, we have 
to assume that, for each 2 E X ,  the set of actions available in 
(2, e)  is piecewise constant (w.r.t. e). 



* man equation is 

V * ( S )  = 
r r  1 

where V, ( s )  is the optimal reward from state s at decision 
step n E {0,1, . . . H - l}, and Vx(s)  = 0 for all s. It can 
be decomposed in the following way: 

Z’EX 

U*(s, a,z’) = 
(3) 

with the conventions s = (%,e)  and s’ = (z’, e‘) .  Equation 
(3) can in turn be decomposed by introducing a sequence of 
intermediary value functions 

Te(8’ 1 S, a,  2’) (R(s, a, s’) + V(S’)) de‘ ; 
L e  

UA(s, a, z’, 62%) = 

1 e:€@, 
(4) Te. (0: I s, a, 21, e : ~ ~ + l ( s ,  a,  21, e\,+l)de: 

forall i  E {1,2, ... Z -  l},and 
1 Un(s, a, z’, @:A = 

1 Ter (el I s ,  a, z/, e>l) ( ~ ( s ,  a, s‘> + vn+i (SI)) . 
e;E@1 

(5)  
The main obstacle to the application of existing MDP al- 

gorithms (Puterman 1994; Sutton & Barto 1998) to our hy- 
brid model is the convolution in step (3) (or (4) and (5)),  
and the issue of storing in memory continuous multidimen- 
sional value functions. 

Discrete Approximations 
Naive versus Lazy Discretization 
A naive approach is to discretize the continuous variables 
by imposing a grid (uniform or not) over the state space. 
From this discretized model of states, discretized models 
of action effects (transition probabilities and rewards) are 
built. The problem is then solved as any other discrete prob- 
lem. This straightforward approach becomes extremely 
costly as the dimensionality increases. Th~s  is because the 
size of the discrete state space increases exponentially with 
the number of continuous variables. 

Figure 4 represents the optimal value function from the 
initial state of a simple Mars rover problem as a function 
of two continuous variables: the time and energy remain- 
ing. The shape of this value function is characteristic of 
the Mars rover domain, as well as other domains featuring 
a finite set of goals with positive utility and resource con- 
straints. Noticeably, it includes vast pZateau regions where 
the expected reward is nearly constant. These represent 

regions of the state space where the optimal policy is the 
same, and the probability distribution on future history in- 
duced by this optimal policy is nearly constant. Clearly, 
there is no benefit in using a fine discretization grid in these 
regions of the state-space, and in fact there is a large cost 
added for doing so. In other regions of the state space-for 
instance, the curved hump where there is more time and 
energy available-a fine discretization helps increase the 
quality of the value function. This observation motivates 
the approach described below. 

Following Boyan and Littman, we propose to solve 
HyMDPs using lazy discretization, whose principle is the 
following: instead of imposing a uniform discretization of 
states and deducing a discretization of action effects from it, 
we do the inverse. We start by constructing a discrete model 
of action effects on continuous variables, possibly using the 
same grid size (in each dimension) as in the naive approach. 
In the Mars rover domain, it consists of discretizing the re- 
source consumption of actions (which can easily handle de- 
pendencies between different resources). Then, assuming 
that immediate rewards are piecewise constant functions of 
the continuous variables, a minimal discretization of the 
state space is computed at the same t h e  as DP is performed 
(that is, backward from the planning horizon to the initial 
time). The value function at each step is represented by 
a piecewise constant function of the continuous variables, 
and the set of pieces over which it is defined is kept mini- 
mal to retain only the significant differences between states, 
given the discrete model of action effects. States matching 
the same piece of value function 
0 have the same optimal pladpolicy, 
0 generate the same probability distribution on future his- 

tory, in terms of actions performed, rewards received, 
and pieces of value functions traversed under this optimal 
policy (assuming the discrete model of action effects). 

Given a fixed discretization step in each dimension, lazy 
discretization attains exactly the same accuracy as naive 
discretization, but it avoids all redundant computation. If 
the problem structure is such that a fine grid is required ev- 
erywhere, lazy discretization will discretize the state space 
uniformly. In this case, it will be outperformed by naive dis- 
cretization, which is a more direct computation. However, 
we argue that many problems (notably in the rover domain) 
do not require a fine grid everywhere and thus favor the lazy 
approach. 

Functional Dynamic Programming 
Formally, we assume that: 
0 The discrete marginals on the arrival discrete state 

T,(z’ [ s ,  a )  are piecewise constant (w.r.t. e) .  
0 The conditional probability distributions on continuous 

state variables Te(# [ s ,  a ,  z’) are discrete with ajinite 
set of possible outcomes. As in Boyan and Litmann’s 
TMDPS, we distinguish two different ways to discretize 
these probability distributions. For each action a and 
each continuous state variable Bi that it impacts, the ef- 
fect of a on 8i may be: 



absolute: we assume that the set of possible final values 
of Bi is finite and constant for all starting states. Equation 
(4) becomes: 

u;(s, a, d, e>i) = 

~ ~ ~ ( 8 :  I ~,~,~’,e;~)u;+~(~,~,~’,e~,+,) , (6) 
e:€@; 

where 0: is the finite set of values that 0, may take after 
executing action a. We also assume that the probability 
of each discrete outcome To, (0: I s, a, 2’) is piecewise 
constant (w.r.t. e), and thus all conditionals that derive 
from it are also; 
relative: the discretization does not concern the set of 
final values of e,, but the set of possible variations of Bi 
resulting from action a. Denoting the variation of 0, as 

= 0: - Bi, we assume that Si takes its value in the finite 
set A: with probability 1. In other words, the set of pos- 
sible values for e: varies continuously (and “linearly”) 
with the starting state s. Equation (4) becomes: 

u ~ ( ~ ,  a, 2 / ,  e;,) = 

~ ~ ~ ( 6 ~  I ~,~,~’,e:~)u;+l(~,~,~’,e:,+~) . (7) 
bi EA: 

Here too we need to assume that the probability of each 
discrete value for &, Tbi (Si I s, a, d), is piecewise con- 
stant (w.r.t. e), and thus all conditionals derived from it 
are also. 

An action may have an absolute effect on some variables 
and a relative effect on others. In the planetary rover do- 
main for instance, the’action “wait until the battery is full” 
has a relative effect on time and an absolute effect on en- 
ergy. Conversely, the action “wait for the next communica- 
tion window” has an absolute effect on time and a relative 
effect .on energy. 

To specify the shape of the immediate reward function 
R, we use the following result: 
Property 1 Under the hypotheses above, if the reward 
function R(s,  a, s’) is piecewise polynomial of order k 
(w.zt. (e,  e’)), then the value function at each step Vn(s) 
is also piecewise polynomial of order k (w.zt. e). 
Based on this result, we propose piecewise constant and 
piecewise linear approximations of HyMDPs (k = 0 and 
1). We then solve these approximations using a form of 

fiinctiozol dynamic programing. This aigorithm performs 
a finite number of back-ups, but each back-up involves an 
infinite number of states. Instead of backing up scalars that 
represent the value of a single state as in the classical DP, 
it backs up piecewise constant or linear approximations of 
the value of an infinite number of (continuous) states3 By 
keeping the number of pieces as small as possible, we im- 
plement the idea of lazy discretization. 

This is a direct generalization of Boyan and Littman’s 
work. However, there is a major difficulty.that arises when 

3The same principle of functional DP is used in the classical 
solution techniques for POMDPS (Kaelbling, Littman, & Cassan- 
dra 1998; Cassandra, Littman, & Zhang 1997) and Boyan and 
Littman’s TMDPs (Boyan & Littman 2000). 

we move from a uni-dimensional model as the TMDP to 
multiple dimensions. In a uni-dimensional framework, the 
piecewise constant or linear value functions use pieces that 
are simple intervals of the real line. These partitions are 
thus relatively easily to store and manipulate. In multiple 
dimensions, a minimal partition may contain pieces that 
are not hyper-rectangles, and thus it is costly and difficult 
to maintain. In the piecewise constant model, we rem- 
edy this problem by computing an almost minimal partition 
that uses only rectangular pieces. In the piecewise linear 
model, a rectangular decomposition is not possible, since 
the pieces of a minimal partition may have complex poly- 
hedral shapes. Here, we borrow ideas from POMDP solu- 
tion techniques to propose efficient algorithms. These ap- 
proaches for piecewise constant and piecewise linear mod- 
els are detailed in the next sections. 

Piecewise Constant Model 
Foundations 
If actions have been discretized as explained above and 
(immediate) rewards are piecewise constant, then the value 
function at each step is piecewise constant. In this case, 
an almost optimal solution can be obtained by discretizing 
(naively) the state space using the same discretization steps 
as for action effects. Alternatively, we can maintain a more 
compact representation of the value function as a piecewise 
constant function, and try to keep the corresponding state 
partition as coarse as possible. As described above, we 
choose the second approach. 

As dealing with state partitions in multiple dimensions is 
difficult and costly, we would like to restrict our attention to 
partitions using only (hyper-)rectangular pieces, which are 
relatively easy to store and manipulate. Therefore, we must 
assume that all the partitions in the problem definition use 
only rectangulrrr pieces (or can-be reduced to such), that is: 

the partition into pieces over which the rewards 
R(s,  a, s’) are constant, 
the partition into pieces over which the discrete 
marginals T, (d 1 s, a) are constant, 
the partition into pieces over ‘which the discretized con- 
ditionals To; (0: I s ,  a, d, e>,) (absolute) or Tbi (& I 
s, a, d, 
in the case where the actions available vary from one con- 
tinuous state to another, the partition in pieces over which 
the set of actions available is constant. 

(relative) are constant, 

However, this is not sufficient since applying the max oper- 
ator to two piecewise constant functions may create non- 
rectangular pieces, even if both arguments contain only 
rectangular pieces. This may happen in Eqn. 1, where we 
compare Q-values represented as piecewise constant func- 
tions: In other words, the coarsest partition in a piecewise 
constant model is not necessarily composed of rectangular 
pieces, even if all the hypotheses above are true. Therefore, 

4Note that Eqn. 1 represents a crucial step in the DP algo- 
rithm. The max operator implements Bellman’s optimality prin- 
ciple, which is the fundamental principle used to prune the search 
in the plan space. 



we have to abandon either the minimality of the partitions 
or the restriction to rectangular pieces. In this work, we pur- 
sue the first approach and use a max operator that outputs a 
non-minimal partition made only of rectangular pieces. 

We now explain how the rectangular partitions are 
backed up by our functional DP algorithm. Consider back- 
ing up the piecewise constant value function Vn+l to com- 
pute the function Un(s, a, z’) as in Eqn. 3. Given a state 
s = (z, e), we want to determine the shape and position of 
the piece of the new value function U, to which it belongs. 
For this purpose, we first determine the biggest piece P, 
that contains s and over which all parameters of the prob- 
lem (rewards, discrete marginals, and discretized condition- 
als) are constant. This is done by intersecting the partitions 
enumerated above. Then, if action a has an absolute effect 
on all continuous variables, we stop here: the piece of U,, 
to which s belongs has the same shape and position as P,. 
If a has a relative effect on some variables, then the parti- 
tion of Vn+l may also play a role. As shown in Fig. 1, we 
must consider all possible arrival states after applying a in 
s (knowing we end up in z). Then, for each possible arrival 
state s’, we calculate how much each coordinate of s’ could 
vary in each direction before s’ moves to a different piece in 
Vn+l. We then remember the minima of these values, over 
all s’. They represent the bounds inside which the starting 
state s can vary without any of the possible arrival states 
changing piece. The piece of U,, containing s is then ob- 
tained by intersecting P, with the hyper-rectangle defined 
by these bounds and centered on s.’ Once the shape and po- 
sition of this piece is determined, its value is computed us- 
ing Eqn. 3. Then, the computation of the Q-values Qn(s, a) 
from the utility function U,(s, a, z’) following Eqn. 2 is 
straightforward. It requires intersecting the partitions of 
Un(s,  a, z’) for all 2’ E X. Finally, as stated above, the 
max operator in Eqn. 1 outputs a new value function V, 
that contains only rectangular pieces. 

Data Structures 
Even if they are made only of rectangular pieces, state- 
space partitions are cumbersome to store and manipulate. 
To more efficiently implement the operations of intersecting 
partitions and merging pieces, rectangular state-space par- 
titions are represented as &dimensional (kd-) trees (Fried- 
man, Bentley, & Finkel 1977: Naylor, Amanatides. & 
Thibault 1990). A kd-tree is a multidimensional general- 
ization of the binary tree in which space is recursively split 
by hyper-planes orthogonal to one axis. It is constructed 
as follow: the root node T represents the whole continuous 
state space 8. It is split by an hyperplane h perpendicu- 
lar to one axis, which induces a binary partition of T in two 
new regions r.ge and r . l t  corresponding to the positive half- 

’If the reward R(s ,  a, S I )  varies as a function of the anival 
state S I ,  then a similar process must be performed to determine 
how much the starting state can vary without any of the possible 
arrival states changing piece in the reward function. Equivalently, 
one may consider the intersection of the partitions of Vn+l (*) and 
R(s, a, *) (instead of V,+l alone) when performing the reasoning 
of Fig. 1. 

fluFl-$ _ _ _ _ _ - _ _ -  r: . . . .. . ... .. .. . . . .. .. 

U ,  (s, a, x ’ )  
v n  + I  (s) 

Figure 1: This figure shows how the partition of U, is com- 
puted from the partition of Vn+l in the case where there are 
two continuous variable and the action a has a relative ef- 
fect on both. The partition on -the left side is the partition 
defined by the data of the problem: The rewards, discrete 
marginals and discretized conditionals are constant over the 
piece P, to which the state s belongs. First we “project” 
state s through action a, that is we determine all possible 
arrival states after applying a in s (knowing the arrival dis- 
crete state is 2’). In this case, there are two possible ar- 
rival states denoted by t and u. Then we determine to what 
piece of Vn+l the states t and u belong, and we measure 
how far t and u are from the borders of their piece in each 
direction (double arrows). The minima of these distances 
in each direction (solid double arrows) represent the maxi- 
mum distance we can move the starting state s without any 
of the possibles ‘arrival states changing pieces. The piece 
of U, containing s is obtained by intersecting P, with the 
hyper-rectangle defined by these bounds and centered on s. 

space and the negative (open) half-space respectively. Each 
is represented by adding a child node to T .  We then repeat 
this process recursively on the children nodes r.ge and r . l t .  

The kd-trees facilitate the operations of partition inter- 
section. To compute the intersection of two kd-trees x and 
72 defined over the same space, we divide one of them, say 
5, at its root. The two sub-trees obtained, 7;.ge and x.Zt, 
will be recursively processed later. We then take the cut- 
ting plane 7; .h of the root of 71 and intersect it with the 
other kd-tree 72. In the simplest implementation, one can 
perform this operation by constructing a new kd-tree with 
7;.h at the root and two copies of as its children. This 
will be a correct kd-tree. However, we can do better by 
simplifying each copy of 72. Since each is now defined 
over a half-space delimited by the cutting plane 7; .h, we 
can prune each copy by removing subtrees outside the half- 
space. These subtrees can be identified as child nodes of 
cuts outside the half-space. Thus we have implemented 
two routines called PositiveHalf and NegativeHalf that 
traverse the tree, compare the region that each tree node 
represents with the half-space defined by a given cutting 
plane, and prune away any subtree that is outside of the 
correct half-plane. To finish the computation of 7; n 72, 
we must recursively intersect the output of these functions 
with the subtrees 7;.ge and %.It .  The final kd-tree has 
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Figure 2: An 2D example of a kd-tree representation of a 
rectangular partition. 

71.h as root, and 5 . g e  n PositiveHalf(Z,71.h) and 5. l t  
n NegativeHalf(z, 71.h) as childrenof the root. This pro- 
cess is summarized in the algorithms of Fig. 3 .  Here, the 
function IntersectTerminal performs the actual computa- 
tion such as addition or maximization of the data stored at 
the leaves of the kd-trees. 

Partition (7, h) 
1. R.h = h 
2. R.ge =PositiveHalf(7.ge, h) 
3. R.Zt =NegativeHalf(T.Zt, h) 
4. return R 
Intersect ( E , % )  
1. if 5 or fi is terminal node 
2. return IntersectTerminal(5,%); 
3. P =Partition(%, 5 . h )  
4. Rh = 5 . h  
5. R.lt =Intersect(Z.Zt, P.lt) 
6. R.ge =Intersect(71;.ge, P.ge) 
7. returnR 

Figure 3 :  Algorithms for intersecting kd-trees. 

Finally, the kd-tree representation is used to support a 
piece-merging routine for piecewise constant value func- 
tions. This routine just performs a depth first exploration 
of the kd-tree and merges leaf nodes with the same parent 
and the same value. Although this does not guarantee a 
minimum rectangular partition, it provides a good trade-off 
between simplicity and efficiency. 

Piecewise Linear Model 
The next step is to introduce piecewise linear reward func- 
tions into the model. For example, to take into account 
the illumination of a rock in a planetary rover problem, the 
value of a picture could vary (piecewise) linearly with the 
time of the day. Technically, the basic principle is to re- 
place the scalar value attached to each piece of the reward 
and value functions by affine functions of the continuous 
variables. An affine function is a linear function plus a con- 
stant. It is encoded by a vector of @+’ containing the 1 
coefficients of the linear function and the constant. 

The solutions for the piecewise constant case are not 
sufficient in the linear model. In multi-dimensional linear 

models, value functions are linear hyperplanes with arbi- 
trary orientation. Thus applying the max operator in Eqn. 1 
produces the upper envelope of a set of hyperplanes, which 
results in pieces that may have arbitrary polyhedral shapes, 
even if all the hypotheses of the previous section hold. 

A similar issue arises in the theory of POMDPs. In this 
model, the value function is defined over the belief space 
as the upper envelope of a set of linear functions (Kael- 
bling, Littman, & Cassandra 1998; Cassandra, Littman, & 
Zhang 1997). The best solution techniques for POMDPS do 
not keep an explicit representation of the partition induced 
by the max over linear functions, but maintain the subset of 
linear functions (called a-vectors) that are not dominated 
within the belief space. The a-vectors implicitly define a 
partition of the belief space. Instead of using an explicit 
max operator, the algorithms implement Bellman’s opti- 
mality principle by pruning the sets of a-vectors by remov- 
ing dominated vectors, which represent linear functions that 
are optimal nowhere in the belief space. 

Borrowing from the POMDP theory, we solve the linear 
model in the following way. We distinguish between pieces 
of value functions that are created t!mugh the max oper- 
ator of Eqn. 1 and pieces created through another process 
(intersecting the partitions of immediate rewards, discrete 
conditionals and continuous marginals, and the process il- 
lustrated in Fig. l). For the latter case, we perform the 
computation exactly as in the piecewise constant case. That 
is, we explicitly compute the effects of Eqn. 2 and Eqn. 
3 on the partition of the functions Q ,  and U,. As in the 
piecewise constant case, if the hypotheses above hold and 
the value function at step Vn+l contains only rectangular 
pieces, then the pieces created at V, are all rectangular. For 
the piecewise linear case, instead of having a single real 
value attached, each of these pieces carries a set of vectors 
of dimension 1 + 1 that represents a set of affine functions. 
The value function over the piece is defined as the max- 
imum of these affine functions. so, as for POMDPs, the 
value function is piecewise linear convex over a piece. It 
implicitly defines a sub-partition of the rectangular piece 
into polyhedral pieces. 

Equations 2 and 3 reduce to manipulation and production 
of affine functions. For example, when computing Eqn. 3 ,  
after having determined the shape and position of the new 
piece (as in Fig. 1), we must compute its vector set. This 
piece of U, projects to the set of pieces in Vn+l that the 
arrival state can possibly belong to. The resulting vector set 
for U, is made of a function applied to each element of the 
cross-product of the vector sets of these pieces. In particu- 
lar, we choose a vector among those in each possible arrival 
piece (one vector per piece). These vectors are composed 
through a simple process that implements Eqn. 3 and out- 
puts a single affine function: (i) each vector is multiplied 
by the scalar probability of a transition to the piece where 
it has been taken; (ii) the vectors are summed to reflect the 
integral in Eqn. 3; (iii) the linear function representing the 
reward is added to the resulting vector.6 A similar process 
is repeated for all possible choices of vectors at the arrival 

does not represent exactly the order of arithmetics oper- 



pieces. All the resulting affine functions are added to the 
starttng piece. 

Finally, Eqn. 1 is replaced by a mechanism of vector 
pruning. To implement Bellman’s optimality principle, the 
value functions are pruned from every affine function that is 
not optimal somewhere on its piece. In other words, value 
functions at each step are represented as minimal sets of 
affine functions. Pruning is performed by solving simple 

. linear programs. Given a set of affine functions F defined 
over some piece, we build the minimal set M by testing 
each affine functions f E F against M for complete domi- 
nance using the following linear program: 

variables: d,8, E O 
max d 

s.t. f(O) - m ( O )  > d, Vm 6 M 
e;<e,<ef, i i i < i  

where e,b and Sf are the boundaries over the i-th continuous 
variable in the rectangle piece. Let (d*, 0*) be the solution 
of the linear program. If d* < 0, then the affine function 
f is completely dominated by M and is discarded from F .  
Otherwise, we remove the vector from F that has maximal 
value at 0’ and add it to M .  We then repeat this process 
until F is empty. 

Many POMDP algorithms differ only in the way they 
purge sets of a-vectors. Although they use the same kind of 
linear program, they differ in the timing of pruning stages. 
Similarly, different versions of our algorithm could be de- 
rived, For instance, we could prune only the state-wise 
value functions V,, or the intermediate value Qn and U, 
too. Further research is needed to identify the best algo- 
rithm. In our implementation, we prune every intermediate 
function B la Incremental Pruning (Cassandra, Littman, & 
Zhang 1997). 

Simulation Results 
We tested our algorithms on the simple Mars rover domain 
presented in (Bresina et al. 2002). We used three variant 
of this problem with one, two or three continuous variables 
representing resources. Tables 1 to 3 compare the pefor- 
mance of our piecewise constant functional DP algorithms 
with the naive discretization approach. 

Discre- 
tization 

20 

LZY Naive 
time(s) I pieces time(s) I pieces 
0.05 I 262 1.74 I 8000 

ations in Eqn. 3. However, given that the rewards are constants 
over the piece of state-space of interest, the proposed computation 
is equivalent and more efficient. 

Discre- Lazy 
tization time(s) pieces 
25000 29.11 15060 
30000 53.02 18029 
40000 138.32 23931 
50000 254.72 29802 
60000 413.97 35636 
75000 723.79 44312 

Discre- 
tization 

50 
100 
150 
200 
250 
300 
350 
400 
450 
500 
550 

Naive 
time(s) pieces 
17.90 25000 
27.32 3oooO 
51.84 40000 
84.81 5oo00 
124.99 60000 
199.19 75000 

Lazv 
time(s) 
0.05 
0.21 
1.75 
2.70 
4.21 
10.59 
12.45 
16.62 
63.59 
8 1.48 
153.58 

pieces 
3027 
6070 
33716 
29786 
46709 
56483 
69308 
4921 1 
142492 
92999 
180679 

N; 
time(s) 
0.46 
2.45 
9.79 
26.28 
62.84 
129.80 
236.74 
399.15 
629.07 
951.89 
1396.22 

~~ 

re - pieces 
2500 
loo00 
22500 
40000 
62500 
9oo00 
122500 
16oooO 
202500 
250000 
302500 

Table 2: Results in a 2D piecewise constant model. 

40 
60 
80 
100 
120 
140 

0.53 
1.81 
4.65 
11.90 
24.15 
67.23 

1961 
3363 
4835 
2877 
7408 
9274 

70.97 
. 790.98 

4418.52 
> 2hr 
> 2hr 
> 2hr 

Table 3: Results in a 3D piecewise constant model. 

As the tables show, our algorithm is slower than the naive 
approach for the 1D problem, but considerably faster for the 
2D and 3D problems, especially as the discretization be- 
comes finer. In the case of the ID problem, the slower per- 
formance is due to the overhead of tree-building rather than 
the flat representation used in the naive algorithm. This is 
particularly a problem as our kd-tree algorithm is optimized 
for balancing multi-dimensional trees, and performs poorly 
at balancing 1D trees. 

For the 2D and 3D problems, the key advantage of our 
algorithm is the vastly smaller number of pieces that the 
lazy discretization produces. The savings here easily over- 
come the extra cost of maintaining the tree structure. In 
the case of the 50-discretization in Table 2, although the 
final number of pieces is larger than the naive approach, 
the early steps of DP are operating on value functions with 
many fewer pieces, so the overall algorithm still runs much 
faster. The optimal value function for the 2D problem with 
500-discretization is shown in Fig. 4. 

As one might expect, the piecewise-linear algorithm runs 
much more slowly than the piecewise-constant algorithm, 
or the naive algorithm. On the 2D problem, it runs in 14.4, 
108, and 823 seconds respectively for discretizations of 50, 
100, and 150 respectively. However if we have a linear 
model, the piecewise-linear algorithm is solving it exactly, 
while the naive approach (and a piecewise constant repre- 
sentation of the same problem) are only approximating the 
solution. 



Figure 4: The piecewise-constant value function for the 2D 
problem. 

Conclusions 
One important component of Boyan and Littman’s model 
is unadressed by this work. TMDPS use a particular ac- 
tion called dawdling that can be performed for any con- 
tinuous duration. In a sense, this action accepts a contin- 
uous parameter (the duration it should last) that is of the 
same dimension (seconds) as the continuous variable of the 
problem (time). There are different ways to generalize the 
dawdling action in HyMDPs by adding continuous parame- 
ters to actions. This is of particular interest for the plane- 
tary rover domain. Current planning mode!s used at NASA 
feature global actions like “drive to landmark 1” that can 
either succeed if they do not consume more energy than 
available, or fail if they consume too much. Unfortunately, 
there is no way in the domain model language to command 
actions like “dnve to landmark 1 but abort in the middle 
of the drive if the remaining energy falls below threshold 
t”. However, it is clear that the quality of the plans output 
would greatly benefit from this ability. Moreover, such a 
capability wcu!d bridge the gap cmently existing between 
the planning models and rover execution languages, such 
as CRL (Bresina er al. 1999), which allow actions to be in- 
terrupted when some guard condition fails. Therefore, we 
will propose models of parameterized actions for HyMDPs 
in future work. 
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