
1

An Expert System for the Development of Efficient Parallel Code

Gabriele Jest'*, Robert Chun2, Haoqiang Jin', Jesus Labarta3, and Judit Gimenez3

NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000, USA
{ gjost,hjin} @nas.nasa.gov

1

Computer Science Department, San Jose State University, San Jose, CA 95192, USA
Robert.Chun@sjsu.edu

European Center for Parallelism in Barcelona-Technical University of Catalonia (CEPBA-

{jesusjudit} @cepba.upc.es

2

3

UPC), cr. Jordi Girona 1-3, Modul D6,08034 - Barcelona, Spain

Abstract

We have built the prototype of an expert system to assist the user in the development of e f l -
cient parallel code. The system was integrated into the parallel programming environment that is
curienily being developed iii XASA Anzes. The expert system tiite$oces to tools for outomatic
parallelization and performance analysis. It uses static program structure information and per-
formance data in order to automatically determine causes of poor performance and to make
suggestions for improvements. In this paper we give an overview of our programming environ-
ment, describe the prototy,ne implementation of our expert system, and demonstrate its mefiilness
with several case studies.

1 Introduction

During the last decades large amounts of time and money have been spent on the development
of large-scale scientific applications exposing an insatiable appetite for floating point operations
per second. High performance computer architectures have evolved to satisfy this demand. Often
the structure of the existing codes can not fully exploit the parallelism provided by the hardware.
Considering the enormous investment in these codes and the niche market status of scientific ap-
plications, there is a strong incentive not to re-implement the applications from scratch, but
rather, employ a conversion process to produce versions of existing codes optimized for the cur-
rent most powerful computer architecture Porting codes from one system to another usually
requires substantial knowledge of both the underlying architecture and the applications them-
selves.

Current programming models support distributed memory, shared memory, and clusters of
shared memory architectures. An example for the support of distributed memory programming is
MPI [11 J which provides the functionality for process communication and synchronization and
assumes a private address space for each process. OpenMP [13] was introduced as an industrial
standard for shared-memory programming with directives. Parallel programming on a shared
memory machines can take advantage of the globally shared address space. Compilers for shared

* The author is an employee of Computer Sciences Corporation.

memory architectures usually support multi-threaded execution of a program. OpenMP allows to
exploit loop level parallelism by using compiler directives. Multiple levels of parallelism can be
exploited by combining MPI and OpenMP.

The techniques described in this paper are applicable to many parallel programming para-
digms, but we will restrict our discussion to OpenMP parallelization for shared memory
computer architectures. During the program development the programmer will usually go
through several cycles of placing directives into the code and gathering performance analysis
data to check the efficiency of the generated code. Deciding which loops can and should be paral-
lelized requires:

0 static source code analysis to determine whether prohibitive data dependences exist, and
dynamic performance information in order io deteimine time consuming code fragments
that might benefit from parallelization.

For large scientific applications, the static and dynamic analysis results are typically very com-
plex and their examination can pose a daunting task for the programmer.

At NASA Ames a programming environment for scientific applications is being developed
which allows the user to jointly navigate through program structure and performance data. Com-
ponents of the environment are the CAPO [6] parallelization tool and the Paraver [15]
performance analysis system. Recently an expert system was added to the existing environment,
which automates the preliminary examination of certain performance characteristics and their
correlation to the program structure. In analogy to medical systems, the system automatically
compares relevant performance metrics against threshold values, diagnoses the reasons for poor
performance and suggests a therapy, if possible.

The rest of the paper is structured as follows: The components of the programming environ-
ment are introduced in Section 2. Section 3 describes the prototype implementation of the expert
system. The usefulness of the expert system is demonstrated in section 4 by several case studies.
Section 5 discusses some related work and the conclusions are drawn in section 6.

2 The Computer Aided Parallelization Process
When parallelizing an application using OpenMP the program developer will usually carry out

several cycles of placing directives into the code, instrumentation of the code for tracing, and per-
formance analysis. In this section we will describe the components of our program environment
which support the user in this task.

2.1 The CAPO Parallelization Support Tool
CAPO was developed to automate the insertion of OpenMP directives with minimal user inter-

action. This is achieved by use of extensive interprocedural analysis from CAPTools [4] (now
known as Parawise) developed at the University of Greenwich, which provides a fully interpro-
cedural and value-based dependence analysis engine. Dependence analysis results and other static
program structure information are stored in an application database. Details on the CAPO paral-
lelization process can be found in [6] . CAPO performs the following steps to exploit loop IeveI
parallelism:

1) Identify parallel loops and parallel regions based on dependence analysis.
2) Merge parallel regions and use the NOWAIT clause on successive parallel loops if possi-

ble, in order to reduce synchronization overhead.

2

3) Place OpenMP directives including variable scope declarations and perform necessary
code transformations.

CAPO is currently integrated in the CAPTools environment and, thus, can access many fea-
tures provided by CAPTools. This enables CAPO to provide a high amount of flexibility for the
user to examine the program structure and provide information for the automated parallelization
process in order to obtain highly efficient parallel code.

2.2 The Paraver Performance Analysis System
We have included the Paraver [151 performance analysis system in our programming environ-

ment. The Paraver system is being developed and maintained at the European Center for
Parallelism in Barcelona (CEPBA) and supports performance analysis of a wide variety of pro-
gramming paradigms such as MPI, OpenMP, and hybrid methods. It has two major components:
A tracing package and a graphical user interface to examine the traces.

Paraver h8s a simple but very flexible trace format. Trace files from a variety of tracing pack-
ages can be converted to the Paraver format in order to leverage the power of the analysis tool.
Paraver also provides its own tracing package, OMPItrace [12]. Depending on the computer sys-
tem, OMPItrace dynamically instruments parallelization runtime libraries such as MPI and
OpenMP. Examples of OpenMP related information dynamically instrumented and traced on our
development platform (SGI Origin 3000) are:

-,entry and exit of OpenMP runtime library routines,
- entry and exit of parallel loops,

0 thread state such as running, idle, synchronization, or in forldjoin overhead, and
0 ’ hardware counters.

User routines are not automatically traced on the SGI Origin, but OMPItrace provides library
rout&es for manual source code instrumentation by the user.

Tge trace collected during the execution of a program contains a wealth of information, which
as a whole can be overwhelming. The information must be filtered to gain visibility of a critical
subset of the data. This can be done through timeline graphical displays or by histograms and
other statistics. Paraver provides flexibility in composing displays of trace data. Examples are
timeline views to show the particular state that a thread is in, when parallel functions are being
executed by each thread, or what the MIPS or cache miss rates are for a given time interval. The
Paraver analysis module allows the computation of a given performance metric from the records
in the trace. Paraver provides flexibility in composing displays or the calculation of metrics that
are suitable for a particular problem. A user can specify through the Paraver GUI a certain view
of a trace files or define how to compute a given performance index from the trace. The specifi-
cation can be saved to a configuration file and re-used later on. This feature allows the
programmability of performance metric computations, which is essential for the automation of
performance analysis.

2.3 User Interaction with the Programming Environment Components
During the program parallelization cycle the user will typically go through several CAPO and

Paraver sessions. The first step is usually the generation of an application database. An important
item of information contained in the application database is a list of questions about values of

3

program variables.
These are questions that
arose during the
dependence analysis,
often due to the fact that
the values of certain
variables are not known
at the time of the
analysis. Unresolved
questions indicate
conservatively assumed
dependences which can
prevent parallelizati on.
The user may browse the
Iist of questions and
provide assertions to
make a more precise
dependence analysis
possible. Removing
conservativei y assumed
dependences can greatly Figure 1 : CAPO Directive Browser and Knowledge Database

increase the efficiency of the generated code.
After providing user knowledge about runtime val-

ues of variables the user can repeat the analysis and
let CAPO generate OpenMP directives. CAPO pro-
vides a directive browser which is designed to display
information gathered during the parallelization such
as the reasons for loops to be parallel or serial, and the
relevant variables. A snapshot of the CAPO directive
browser and a list of questions from the knowledge
database is shown in Figure 1. For each subroutine the
user can retrieve information about the loops i t con-
tains. CAPO classifies loops by types such as serial,
parallel, or being part of a loop nest containing paral-
lelized loops. The browser also provides user
interfaces to declare certain variables as shared or pri-
vate and to overwrite the automatically determined
type. In order to determine whether certain variables
can be made shared or private. the user has the possi-
bility to examine individual edges of the dependence
graph and inquire about the reasons for their exis-
tence. The user can explicitly remove edges from the
dependence graph. Using the CAPO directives
browser to declare the scope of a variable will automa

4

I

.

edges which simplifies the process of dependence pruning for the user. A snapshot of the de-
pendence graph browser is shown in Figure 2.

After pruning the dependences and generating OpenMP directives the user will typically run
the application with a representative set of input data and analyze the performance of the gener-
ated code. Paraver allows the user to obtain a qualitative view about the program and quantify the
behavior by calculating numerical statistics. For example it is often necessary to determine how
much time the individual threads spent in different parallel regions. A sample view and statistic
are displayed in Figures 3 and 4.

. . . - .. -

.._
I I

THRERD 1.1.1

THRERD 1-1.2

THRERD 1.1-3

THRERD 1.1.4

I

Figure 3: Paraver view of time spent in the parallel regions in an OpenMP code running
on 4 threads. The different shadings indicate time spent in different parallel regions

Both tools, CAPO and Pxaver. previde the mer with cqxh,i!ities ar?d information that can as-
sist him in accomplishing code porting from a serial machine to a parallel machine; however, the
user must take an active role in driving the analysis tools and in interpreting their results to make
the proper code transformations to improve parallelism. Both tools provide a high degree of
flexibility and generate a wealth of information. While this is essential for efficient parallelization
of an application, there is also a drawback: For large scientific codes, the static and dynamic
analysis data can be quite complex. and a high level of knowledge and expertise is required by
the user to comprehend its meaning. The process of filtering essential from non-essential infor-
mation can be quite time consuming. For example. pruning the information shown in Fisure 2
can be very challenging. Likewise, a thorough dependence analysis will require many examina-
tions of the kind depicted in Figures 3 and 4. In addition to that. because CAPO and Paraver are
separate tools, correlating information between them is something the user must also perform
manually. The primary goal of our project is to assist the user in the process-intensive and
knowledge-intensive code parallelization task to make it easier and more efficient. From a cost-
performance point of view, the objective is to assist the user in obtaining maximum code per-
formance gain with a minimum amount of analysis and transformation time. The idea is to
unburden the user as much as possible by helping him to focus on only the relevant information
from the static and dynamic analysis, This should in turn help the user to focus on the code with
the best potential for speedup via parallelization.

I

c

Figure
time si
v a1 ues .

4: 1
lent

’araver analysis of the timeline view displayed in Figure 3. The chosen statist
by the individual threads in different parallel regions. Darker shading indicate

:ic is the
:s higher

3 The Expert System Prototype Implementation
A computerized parallelization advisor was developed using an expert system implemented in

CLIPS (“C” Language Integrated Production System) [3]. CLIPS is an open source expert sys-
tem development toolkit developed at the Johnson Space Center and has been used in numerous
NASA applications. The expert system was inserted into the existing tool infrastructure to pre-
process the raw static and dynamic analysis information. There are several advantages to this ar-
chitecture involving the expert system. First, the expert system will work with, rather than
replace either the user or the existing toolset. This facilitates a non-invasive insertion of the new
technology. The user can make use of the expert system advice, but can also choose to work as
he has done previously. Second, the expert system approach enables the system to be pro-
grammed using a set of rules input into the knowledge base of CLIPS. Because the rules are
modular and stored separately from the expert system inferencing mechanism, they can be modi-
fied or added incrementally to the system. Third, the effective parallelization of serial code
requires broad knowledge about the tools, the target computer architecture, code parallelization
techniques, and the algorithms used in the source code. Capturing this knowledge in the expert
system will enable the information to be reused.

By performing information fusion on the static and dynamic analysis. the expert system can
help the user to filter. correlate, and interpret the data. Relevant performance indices are auto-
matically calculated and correlated with program structure information. We have also added an

6

automatic selective source code instrumentation module to facilitate the use of the expert system.
The overall architecture of our program environment is depicted in Figure 5 . In the following
subsections we describe its various components.

T. I I

t i

Figure 5: Architecture of the expert system programming environment. The Parallelization As-
sistant Expert System fuses program structure knowledge and performance trace information to
aid the user narrowing down performance problems. The user can still interact directly with the
parallelization and performance analysis tools for fine tuning of the applications performance.

3.1 Selective Source Code Instrumentation
Conducting performance analysis requires one or more trace files that contain runtime infor-

mation about the program behavior. In our program environment we use the OMPItrace package
to collect such traces. The OMPItrace module dynamically instruments certain runtime libraries,
but does not automatically trace entry and exit to user routines. It may not always be desirable to
trace all of the subroutines because of large instrumentation overhead. For critical code segments.
on the other hand, it is often desirable to obtain information on a finer granularity than a subrou-
tine call. We have extended the source code transformation capability of CAPO to automatically
insert calls to the OMPItrace library. In addition, we use the program structure information from
the application database in order to determine which parts of the source code should be traced. In
our prototype we use the following simple heuristics to select instrumentation points:

routines that are not contained within a parallel region or a parallel loop and contain at
least one DO-loop, and

7

outermost serial loops.
Parallelized loops and parallel regions are automatically traced by the OMPItrace package. More
details on the automatic selective instrumentation can be found in [7].

3.2 Automatic Retrieval of Performance Indices
We have extended the Paraver system by Paramedir, a non-graphical user interface to the

analysis module. Paramedir accepts the same trace and configuration files as Paraver. This allows
capturing the same information in both systems. The detailed human driven analysis can thus be
translated into rules suitable for processing by an expert system. Complex performance metrics,
determined by a human expert. can be automatically computed and processed. In a first step. the
expert system invokes Pararnedir to build up a table of performance metrics. In the prototype im-
plementation of our system we consider a small number of metrics relevant to OpenMP
parallelization. We determine where the time is being spent on a loop or subroutine level and
then evaluate whether the time is spent efficiently. Irisiriimerited routines are not called from
within a parallel region, due to our instrumentation strategy. The Paraver analysis module is used
to calculate the following metrics.

Time profile: The first step is the calculation of a time profile on the basis of the auto-
matically instrumented routines and loops. We calculate the percentage of time spent in
the instrumented code segments. We are considering the exclusive time of the instru-
mented routines. By this we mean that when routine sub-a calk routine sub-b, and
both of them are instrumented, the time reported for sub-a will not include the time for
sub-b.
Efficiency: To evaluate the parallel efficiency of a particular code segment we compute
the average utilization of a11 threads. As explained in Section 2.2 the trace file contains in-
formation about the state of a thread. If we denote by TotTinze the sum of the times in
running state over all threads, excluding all OpenMP overhead, by ElapsedTinze the
elapsed time of the routine and by nt the number of threads, then the ratio (Tot-
Tiine)/(Elapsed Time :ic nt) gives a measure for the parallel efficiency. A value close to 1
indicates good efficiency. A value close to llnt, on the other hand, indicates that only the
master thread performed useful computations most of the time.
Granularity: We determine the average duration of a parallel construct. As explained in
Section 2.2, entry and exit of compiler generated routines containing the body of parallel
loops are traced dynamically and do not require source code instrumentation.
Sequential section: If we denote by SeqTinze the time the master thread spends outside of
parallel constructs and TotTime the sum of the running time over all threads, then the ratio
SeqTinzeflotTinze is a measure for the sequential fraction within each routine. A value
close to 1 indicates that most of the time is spent running sequentially.
Load balance: We use the standard deviation in the fraction of useful time for each thread
as an indicator for the load balance within each routine or loop. At this point we can not
determine whether the load imbalance is caused by an unbalance in the amount of work in
terms of instructions or by memory access time. In the future we will take hardware count-
ers and different scheduling strategies into consideration.

8

3.3 Information Fusion and Rule Based Optimization Guidance
After building the table containing the performance indices, the expert system au,ments this

table by adding program structure information from the application database. At this point our
main interest is the optimal placement of OpenMP directives. We are therefore mainly interested
in the information that would be displayed in the CAPO directives browser described in Section
2.1. In our prototype implementation we only retrieve the type of the instrumented code segment.
such as loop or subroutine, the CAPO loop identifier, and the type of the loop.

The expert system now applies a set of rules to the values contained in the au-mented table in
order to point the user to performance problems. If possible the user will also be presented with
suggestions for improvements. With the first set of rules we identify routines and loops in the
code that take a large percentage of the execution time and show low efficiency. Using Amdahl’s
Law, the expert system gives a limit for the number of threads that can be used efficiently. A sec-
ond set of rules determines the cause for the inefficient parallelization, such as large sequential
sections, fine grained parallelization, or load imbalance. In order to determine the cause of ineffi-
cient parallelization the expert system compares the performance metrics against established
threshold values. The threshold values are based on prior experiences. A third set of rules checks
the loop type and, if appropriate, suggests possibilities for more efficient parallelization. A sam-
ple rule is shown in Figure 6.

Figure 6: Example rule from the expert system which is applied to sequential outer
loops

4 Case Studies
We have tested the parallelization assistant expert system on benchmark codes from the field

of computational fluid dynamics (CFD) and a module from a full scale climate modeling applica-
tion.

4.1 NAS Parallel Benchmarks BT and FT
The NAS Parallel Benchmarks [2] were designed to compare the performance of parallel com-

puters on CFD applications. For our evaluation we used the implementation described in [5] . not
including the OpenMP directives.

The BT benchmark solves three systems of equations resulting from an approximate factoriza-
tion that decouples the x, y and z dimensions of the 3-dimensional Navier-Stokes equations.
These systems are block tridiagonal consisting of 5x5 blocks. Each dimension is swept sequen-

9

tially. The time consuming routines are the solvers in each of the spatial dimensions and the cal-
culation of the right-hand side. In this scenario we assume that the user has already inserted some
OpenMP directives himself and now wants to optimize the code using CAPO. The user supplies
all information about input values to answer the questions from the knowledge database. This
results in a very precise dependence analysis. The code is then automatically instrumented based
on the directives inserted by the user. A time line view for 4 threads is shown in Figure 7.

1 THRERD l - l b l

THRERD 1+1+2

THRERD 1.1.3

THRERD 1.1.4

Figure 7: Time line view of the useful thread time for the BT benchmark running on 4
threads. Dark shading indicates time spent in calculations, light shading indicates idle or
synchronization time. The view shows large sections of non-useful time

The time line shows large sections of non-useful time for the slave threads. The master thread
shows a higher amount of useful time, but the expert system can determine that this is not spent
within parallel regions. The analysis for one of the time consuming loops is shown in Figure 8.

Routine z-solve Loop Number 1

* * * * Takes 21.41 % of the execution time.
* * * * Runs with 37.0 % efficiency on 4 threads.
* * * * The theoretical limit on the number of threads

for an efficiency of 75.0% is 1 thread.
* * * * Loop has a large sequential section
* * * * Loop contains fine grained parallel.loops.
===>>> POSSIBILITY FOR OPTIMIZATION:
===>>> The loop has not been parallelized by the user.
===>>> The loop is parallelizable according to CAPO.

* * x *

I

Figure 8: Expert system analysis of a time consuming loop with BT. The rule applied for this case
is shown in Figure 6

The analysis results quantify what we could qualitatively derive from the time line view. The
parallel efficiency for 4 threads is low and it is indicated that the code would run faster when
employing only 1 thread. A large amount of time in spent in routine z-solve in loop number 1.
The loop number corresponds to the one generated by CAPO. The expert system displays CAPO
analysis results indicating that the loop could be run in parallel. The indicated loop number is

I O

generated by CAPO. It allows the user to identify the loop in the CAPO directives browser and
incrementally insert the directives. After parallelization of all of the loops indicated by the expert
system and re-running the analysis, this time on 64 threads, the user obtains the report shown in
Figure 9.

* * * * Takes 26.45 % of the execution time.
* * * * Runs with 92.0 % efficiency on 64 threads. i

I

Figure 9: ExDert system analwis run for the optimized code running on 64 threads

The FT benchmark is the computational kernel of a spectral method based on a 3D Fast Fou-
rier Transform (FIT). We assume the scenario that the user parallelizes the code using CAPO,
without pruning the dependence graph. The result is that innermost loops are chosen for paralleli-
zation. A Paraver timeline view displaying the running time of the threads is shown in Figure 10.
The timeline view indicates a large amount of short bursts of running time, resulting from the
fine grained parallelization. The expert system report is shown in Figure 1 1.

. . .

THREAD 1.1.1

THREAD 1.1.2

THRERD 1.1.3

T d R E A D l . l r 4

1

~~~~ ~~~~ 

Figure 10: Timeline view ofthe FT benchmqk on running on 4 threads. Dark shading 
indicates time spent in calculations, light shading indicates non-useful time. The view 
shows fine-grained sections of useful calculations 

===> Routine f f t z 2  

* * * *  Takes 78.66 % of the execution time. 
* * * *  Runs with 55.0 % efficiency on 4threads. 
* * * *  Routine contains fine grained parallel loops. 
* * * *  Most time consuming parallel regions: 

* * * * * * * * > > >  - mpregion-fftz2-1 avg. duration 124 us 

===>>> NECESSARY ACTION: 
===>>> Try moving parallelization to an enclosing l oop .  

===>>> Use CAPO’S directive browser to examine dependences. 

* * * *  

* 

* 

zigure 1 1 : Expert system analysis for the FT benchmark 

11 



. 

The system determines that in this case the problem is not due to large sequential sections, but 
rather that the parallelization granularity is too fine, with an average duration of less than 150 mi- 
cro seconds per execution of the parallel construct. The system advises to investigate the 
possibility to move the parallelism to an enclosing loop. At this point we do not indicate a list of 
candidates for loops that should be examined. We are currently working on integrating nesting 
information about instrumented code sezments in order to point the user to enclosing loops. 

4.2 The PSAS Conjugate Gradient Solver 
The PSAS Conjugate Gradient Solver is a component of the Goddard EOS (Earth Observing 

Systems) Data Assimilation System. It contains a nested conjugate gradient solver implemented 
in Fortran 90. The time consuming portions of the code are a symmetric covariance multiply and 
the first level conjugate gradient solver. As in the case of the BT benchmark, we assume the sce- 
nario where the code has been para!!elized by the user. The user then generates an application 
database and the code is automatically instrumented based on the existing directives. A time line 
view of the useful computations for a run on 4 threads is shown in Figure 12. We can visually 
detect a load imbalance among the threads. The reason for the load imbalance is due to the fact 
that the iterations of the nested conjugate gradient solver greatly vary in time. A load imbalance 
also exists in the case of BT (see Figure 7). For BT the load imbalance is introduced by the large 
sequentiai sections, which yield the effect that oniy the master thread performs useful caicula- 
tions for a large amount of time. For the case of PSAS, the expert system detects that there are no 
large sequential sections and that the granularity of the parallelization is not below the established 
threshold. A potential cause for the load imbalance is the variance in the average duration of the 
loop iteratixs. The reported analysis is displayed in Figure 13. 

Figure 12: Timeline view of the PSAS Conjugate Gradient solver running on 4 threads. Dark 
shading indicates that the threads are performing useful calculation. The view shows a load 
imbalance in useful time 

The user can now examine CAPO loop number 5 subroutine in sym-Cxpy in the directives 
browser. The loop number is generated by CAPO and allows the user to identify the loop in the 
CAPO directive browser. Using dynamic instead of static scheduling increased the performance 
of the test case under consideration by a factor of 2 when 8 threads are employed. At this point 
we need to point out that dynamic scheduling should be applied with caution. In the current case 

12 



===> Routine sym-Cxpy Loop N u m b e r  5 

* * * *  Takes 75.75 % of the execution time. 
* * * *  R u n s  with 46.0 % efficiency on 4 threads. 
* * * *  The loop contains parallelized loops  

* * * *  

which show ioad imbalance! 
* * *  
===>>> POSSIBILITY FOR OPTIMIZATION: 
===>>> Check the paralleiized loops  within the indicated l o o p  
===>>> Consider adding the SCHEDULE(DYNAM1C) 

clause €or better work ioad distribution 

Figure 13: Expert system analysis of a time consuming routine with the PSAS Conjugate 
Gradient S 01 ver 

it is beneficial since the workload among the iterations varies widely and each of the iterations 
provides a large enough workload. In case of dynamic scheduling our system can derive a histo- 
gram of the individual iterations and determine their variation. In case of static scheduling, 
however, we can not draw any conclusion about the duration of an individual iteration. We are 
considering emitting information about the iteration space into the trace. Furthermore, we will, in 
the future, include the analysis of traces containing hardware counter information. This will en- 
able us to investigate whether the imbalance in computation time is due to an imbalance in the 
number of instructions or memory access time. 

5 R e b e d  Work 
There are number of commercial and research automatic parallelization and performance 

analysis tools that have been developed over the years. We can only name a few. 
The SUIF Explorer [8] developed at Stanford University is an interactive parallelization tool 

based on the SUIF [16] compiler. It performs extensive static dependence analysis and also in- 
cludes a set of dynamic analyzers to provide runtime information. Runtime information includes 
checking dependences and time profiles for loops and routines. The user can provide assertions 
via a graphical user interface. The most notable difference to our approach is that by interfacing 
to a full performance analysis system like Paraver, we have more performance metrics available 
than just execution time. This allows us a more flexible and detailed analysis and greater oppor- 
tunity to detect performance problems. 

The URSA MINOR [14] tool, developed at Purdue University, also aims at using performance 
data and program structure information in order to guide the user through the optimization proc- 
ess. It includes a performance advisor which automatically checks common performance bottle 
necks. Our approach differs in that we are interfacing to existing parallelization and performance 
analysis tools and have the full functionality of these tools available. Also, to our knowledge the 
URSA MINOR tool does not include a rule based expert system. 

An example of a commercial product for performance analysis is Vampir [18] which allows 
tracing and analysis of MPI codes. The CAPTools system provides an interface for generating 

13 



V&MPR traces and invoking VAMPLX from within CL4?Too1s for perfoiniance analysis of mes- 
sage passing applications. We are using the Paraver system in our programming environment 
because it provides great flexibility in the calculation of performance metrics and allows their 
automatic retrieval via a non-graphical user interface. 

Two research projects on performance analysis are Paradyn [9]. which is developed at the 
University of Madison. and Aksum, which is part of the ASKALON [ 11 project conducted at the 
University of Vienna. Both aim at the automatic detection of performance bottlenecks. A general 
performance model for OpenMP is proposed in [IO]. Performance libraries based on this model 
have been developed for the TAU (Tuning and Analysis Utility) performance analysis framework 
([lo]. [17]) and the EXPERT automatic event trace analyzer [19]. 

Our approach differs from the projects above in various ways. In addition to perfomance trace 
data we also use dependence analysis information in order to detect performance problems. We 
do not focus on a set of bottlenecks, but rather examine the time consuming sections of the code 
according to rules which a mer would apply. The rules are nodular and can be medified er 2dded 
incrementally to the system. 

6 Conclusions and Future Work 
We have built the prototype of an expert system to assist the user in the development of effi- 

cient OpenMP code. The system was integrated into our parallel programming environment. It 
uses the static program analysis information avaiiabie from the CAPO paraiieiization tooi and the 
performance trace data and statistical analysis module from the Paraver performance analysis 
system. This information is correlated, fused and passed to the expert system for analysis. We 
have demonstrated in several case studies how the expert system analysis results can guide the 
user to efficient OpenM? paralieiizadon. 

A thorough performance analysis will usually require more than one trace file. The immediate 
plan for our prototype implementation is to allow the analysis and comparison of several traces 
for the same application. This will include the comparison of trace files with and without hard- 
ware counters, traces employing different numbers of threads, and different scheduling 
algorithms. 

At the moment the information used from the application database is very minimal. We plan to 
include further information such as obstacles to parallelization and the reasons for their existence. 
At this point the expert system points the user to the critical parts of the code. but then the CAPO 
directives browser has to be used for further examination of dependences. 

Not all performance problems in full-scale applications will be solved automatically. At this 
point it is still not clear where to draw the line between automated and user guided responsibili- 
ties. Experiments with our prototype will allow identification of more tasks that can be 
automated. 

Acknowledgments 
This work was supported by NASA contract DTTS59-99-D-O0437/A6 18 12D with Computer 

Sciences CorporatiodAMTI, by the NASA Faculty Fellowship Program: and by the Spanish 
Ministry of Science and Technology, by the European Union FEDER program under contract 
TICZ001-0995-C02-01, and by the European Center for Parallelism of Barcelona (CEPBA). We 



thank the CAPTools development team for many helpful discussions and the continued support 
of our work. 

References 

[ 11 ASKALON, http://www.par.univie.ac.at/project/askalon/ 

[2] D. Bailey, J. Barton, T. Lasinski, and H. Simon (Eds.), “The NAS Parallel Benchmarks,” NAS 

[71 

[91 

Technical Report RNR-91-002. NASA Ames Research Center, Moffett Field, CA, 1991. 

CLIPS: A Tool for Building Expert Systems, http://www.ghg.net/clips/CLIPS.html. 

C.S. Ierotheou, S.P. Johnson, M. Cross, and P. Leggett, “Computer Aided Parallelisation 
Tools (CAPTools) - Conceptual Overview and Performance on the Parallelisation of Struc- 
tured Mesh Codes,” Parallel Computing, 22 (1 996) 163- 195. 
http://www .parallelsp.coiii/parawise.htm. 

H. Jin, M. Frumkin, and J. Yan, “The OpenMP Implementations of NAS Parallel Bench- 
marks and Its Performance,” NAS Technical Report NAS-99-01 I ,  1999. 

H. Jin, M. Frumkin and J. Yan. “Automatic Generation of OpenMP Directives and Its Appli- 
cation to Computational Fluid Dynamics Codes,” Proceedings of Third Znternational 
Symposium on High Performance Computing (1S€i‘?C22000), Tokyo, Japan, Gciober 16- 18. 
2000. 

G. Jost, H. Jin, J. Labarta, J. Gimenez, “Interfacing Computer Aided Parallelization and Per- 
formance Analysis,” Proceedings of the International Conference of Computational Science 
- ICCSO.3, Melbourne, Australia, June 2003. 

Liao, S., Diwan, A., Bosch, R. P., Ghuloum, A., Lam, M.. “SUIF Explorer: An interactive 
and Interprocedural Parallelizer,” 7‘h ACM SIGPLAN Symposium on Principles & Practice 
of Parallel Programming, Atlanta, Georgia, (1 999), 37-48. 

B.P. Miller, M.D. Callaghan, J. M. Cargille. J. K. Hollingsworth, R. B. b i n .  K.L. Karavanic, 
K. Kunchithhapdam and T. Newhall. “The Paradyn Parallel Performance Measurement 
Tools,” IEEE Cornpriter 28. 1 I. pp.37-47 (1 995). 

[lo] B. Mohr, A. D. Malony, S. Shende. and F. Wolf, “Design and Prototype of a Performance 
Tool Interface for OpenMP,” Internal Report FZJ-Z4M-IB-2001-09, Research Centre 
Juelich. Germany. 2001. 

[ 11 J MPI 1.1 Standardl http://www-unix.mcs.anl.gov/mpi/. 
[ 121 OMPItrace User’s Guide, http://www.cepba.upc.es/paraver/manual-i.htm. 

[ 131 OpenMP Fortran/C Application Program Interface, http://www.openmp.org/. 

[I41 I. Park. M. J. Voss. B. Armstrong, R. Eigenmann, “Supporting Users‘ Reasoning in Per- 
formance Evaluation and Tuning of Parallel Applications,” Proceedings of PDCS’2000, Las 
Vegas, NV, 2000. 

[ 151 Paraver, http://www .cepba.upc.es/paraver/. 

[ 161 SUIF Compiler System, http://suif.stanford.edu/. 

15 



[ 171 TAU: Tuning and Analysis Utilities. http://~ww.cs.uore,oon.edu/research/paracomp/tau/. 

[ 181 VAMPIR User’s Guide, Pallas GmbH. http://urwur.pallas.de/. 

[19] Wolf, F., Mohr, B., “Automatic Performance Analysis of SMP Cluster Applications,” Tech. 
Rep. IB 3001-05, Research Centre Juelich, Germany, 2001. 

16 

- 


