NASA’s Systems Engineering Approaches for Addressing Public Health Surveillance Requirements

November 18, 2003
American Public Health Association
What is Systems Engineering?

Systems Engineering is 21st Century Engineering Practice...

• An interdisciplinary approach and means to enable the realization of successful systems;
• Integrates multiple disciplines and specialty groups into a coordinated team effort;
• Provides the framework for a structured development process that proceeds from concept to production to operation;
• Considers both the business and technical needs of all stakeholders with the goal of providing a quality product that meets user needs.
Heritage in space mission analysis and design: The end-to-end approach to managing every facet of the extreme engineering required for successful space missions.
NASA’s Systems Engineering

Involves:

1. Understanding mission objectives;
2. defining requirements to meet objectives;
3. identification of functional, operational and constraint factors that impact each requirement
NASA’s Earth Science Enterprise is responsible for developing a scientific understanding of the Earth system to enable improved predictions of climate, weather, and natural hazards.

- NASA scientists use *remote sensing technology* as a tool to acquire detailed information about the Earth;

- Remote sensors collect measurement data on physical characteristics;

- These data can be used to characterize, understand and predict environmental phenomena;
PREMISE: NASA sensor technology, understanding of remote sensing, and knowledge of Earth system science, can be powerful new tools for improved disease surveillance and environmental public health tracking.

Earth Science Applications Goal

To expand and accelerate the realization of economic and societal benefits from Earth science, information and technology.

How is this different from NASA’s traditional aerospace engineering?

1. Applications strategy is built on federal partnerships;

2. Applications program is focused on adaptation and adoption of NASA’s Earth science data and technology;

3. Science and technology requirements are not NASA’s, they belong to the partner agency;
Continued...

4. Requirements may be difficult to define if a partner’s disease surveillance systems and tools are conceptual and/or are significantly different from what NASA has encountered before;

5. NASA is often unfamiliar with a partner agency’s mission, operations and organizational culture;

6. Disparate disciplines are brought together to work toward a common goal – often for the first time
Framework:


Re-evaluate → Re-evaluate → Re-evaluate → Re-evaluate

Adapted from Bahill & Gissing (1998)

Approach:

A systems engineering approach facilitates scalable, systemic, and sustainable solutions that contribute to the measurable enhancement of a partner agency’s disease surveillance system.
NASA’s Systems Engineering for Public Health

Partner Needs & System Requirements

- Science/Data
- Technology
- Integration

- Partner Needs
- Define Problem & Baseline System
- Re-evaluate

- Environmental Public Health Tracking Network (EPHTN)
- ArboNET/Plague Surveillance
- Rapid Syndrome Validation Project (RSVP)
- Malaria Modeling

CDC
EPA
USGS

Department of Defense
NASA’s Systems Engineering for Public Health

DATA SOURCE
- Orbital: MODIS
- Sub-Orbital: AVIRIS
- Ground: AERONET

ACCESS & DELIVERY
- Information Systems

COMPUTATIONAL TECHNOLOGIES
- Investigate Alternatives
- Re-evaluate

Modeling
- PLUME DISPERSION MODEL
Fruit fly wing beat signatures were between 230-260 Hz

Moth wing beat signatures were between 20-60 Hz
NASA’s Systems Engineering for Public Health

**DECISION SUPPORT REQUIREMENTS**
- Data
- Access & Delivery
- Computational Technologies
- Technology Innovation

**Environmental Public Health Tracking Network (EPHTN)**

**ArboNET/Plague Surveillance**

**Rapid Syndrome Validation Project (RSVP)**

**Malaria Modeling**

**Enhanced Decision Support**

- Design & Launch Phase (Model, Integrate, Demonstrate)
- Assess Performance “Benchmark”

- Re-evaluate

**Improved Management & Policy**
1. NASA sensor technology, understanding of remote sensing, and knowledge of Earth system science, can be powerful new tools for improved disease surveillance and environmental public health tracking.

2. NASA’s systems engineering framework facilitates the match between partner needs and decision support requirements:
   - Science/Data
   - Technology
   - Integration

3. Goal is systemic and sustainable solutions that contribute to the measurable enhancement of a partner agency’s disease surveillance efforts.
For more information contact:

Timi S. Vann  
Deputy Program Manager, Public Health Applications  
National Aeronautics and Space Administration  
Earth Science Applications Directorate  
Building 1100 Code MA10  
John C. Stennis Space Center, MS 39529  
email: timi.s.vann@nasa.gov
**REPORT DOCUMENTATION PAGE**

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

**PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

1. **REPORT DATE** (DD/MM/YYYY)  05-11-2003
2. **REPORT TYPE**  
3. **DATES COVERED** (From - To)

4. **TITLE AND SUBTITLE**  
   NASA's Systems Engineering Approaches for Addressing Public Health Surveillance Requirements

5a. **CONTRACT NUMBER**  
5b. **GRANT NUMBER**  
5c. **PROGRAM ELEMENT NUMBER**  
5d. **PROJECT NUMBER**  
5e. **TASK NUMBER**  
5f. **WORK UNIT NUMBER**

6. **AUTHOR(S)**  
Timi Vann

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**  
Earth Science Applications Directorate

8. **PERFORMING ORGANIZATION REPORT NUMBER**  
SE-2003-11-00101-SSC

9. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**

10. **SPONSORING/MONITOR'S ACRONYM(S)**

11. **SPONSORING/MONITORING REPORT NUMBER**

12. **DISTRIBUTION/AVAILABILITY STATEMENT**  
Publicly Available STI per form 1676

13. **SUPPLEMENTARY NOTES**  
Conference - Presentation at American Public Health Association

14. **ABSTRACT**

15. **SUBJECT TERMS**

16. **SECURITY CLASSIFICATION OF:**

   - **REPORT**  
   - **ABSTRACT**  
   - **THIS PAGE**

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

17. **LIMITATION OF ABSTRACT**  

   - **U**

18. **NUMBER OF PAGES**

   - **14**

19a. **NAME OF RESPONSIBLE PERSON**  
Timi Vann

19b. **TELEPHONE NUMBER (Include area code)**  
(288) 688-1487