Final Page | 5 October 1999

Scientific Programming Using Java and C:
A Remote Sensing Example

Donald Prados, Michael Johnson, Mohamed A. Mohamed, Changyong Cao, Jerry Gasser,
Don Powell, and Lloyd McGregor
Lockheed Martin Space Operations - Stennis Programs
Stennis Space Center, Mississippi 39529

ABSTRACT

This paper presents results of a project to port code for processing remotely sensed data from the UNIX environment
to Windows. Factors considered during this process include time schedule, cost, resource availability, reuse of
existing code, rapid interface development, ease of integration, and platform independence. The approach selected
for this project used both Java and C. By using Java for the graphical user interface and C for the domain model, the
strengths of both languages were utilized and the resulting code can easily be ported to other platforms. The
advantages of this approach are discussed in this paper.

Key Words: Remote sensing, aircraft, Java, JNI
I. INTRODUCTION

Scientists at NASA’s John C. Stennis Space Center (SSC) recently completed a pilot project focused on streamlining
the code and algorithms used to process certain types of remotely sensed data. In the course of this project, they
developed a method for porting this code, which was written in C, from the UNIX environment to Windows. This
software was originally developed to process data sets acquired by the Airborne Terrestrial Applications Sensor
(ATLAS) and Calibrated Airborne Multispectral Scanner (CAMS) developed at SSC under NASA's Commercial
Remote Sensing Program (CRSP) Office.

ATLAS is a 15-channel (band) airborne multispectral sensor system designed for ground spatial resolution between
2 - 25 meters and spectral coverage between 0.45 - 12.2 um. ATLAS has 9 reflective bands and 6 thermal bands.
The ninth reflective band, however, is unusable because of extremely low signal-to-noise ratio (Cao, 1999).

CAMS is a 9-channel airborne multispectral sensor system designed for ground spatial resolution between 2 - 25
meters and spectral coverage between 0.45 - 12.5 pm. The first 8 bands are reflective bands, and band 9 is a thermal
band.

ATLAS and CAMS data files are flat files composed of a series of flight lines. Each flight line is organized as a
collection of scan lines. Scan lines are composed of a header block followed by the video portion of the image data.
The header block contains all the housekeeping data, including flight parameters, ambient conditions, and
calibration data. The video data block consists of n channels of video data. The maximum value of n is 15 for
ATLAS and 9 for CAMS. The exact channel numbers that were recorded on each flight mission are stored in the
header block.

The ATLAS and CAMS data processing software was originally developed in C, and the user interface was
developed using the ERDAS IMAGINE Tool Kit. ERDAS IMAGINE is a commercial off the shelf (COTS)
software package used to process remote sensing imagery. As the software evolved, the labor required to manage
and maintain the code increased significantly. The system was also limited to running on UNIX workstations and
required modifications whenever an updated version of ERDAS IMAGINE was received. Additionally, data sets
created by the software were in IMAGINE’s proprietary data format.

To alleviate this growing burden, the CRSP Verification and Validation (V&V) team (Mohamed, 1997) initiated a
pilot project focused on streamlining the code and algorithms used to process ATLAS and CAMS data. The primary
objective of this pilot project was to develop an algorithm validation process and to further identify and address the

Final Page 2 5 Oc¢tober 1999

weaknesses of the validation process, allowing it to serve as a refined model for others to use. The second objective
was to comply with [SO-9000 standards concerning documentation, software development, and certification of data
processing activities. Additional objectives were to reduce processing time, to gain platform independence, and to
remove the restrictions of a proprietary data format.

As part of the V&V effort, the code was simplified and streamlined in the process of making it ISO-9000 compliant
and more maintainable. To gain platform independence, a new, object-oriented user interface was written in the Java
programming language. The proprietary data format was replaced by a conventional format that allows output
images to be imported into other image processing applications. By removing the dependence on proprietary
software, the application can easily be distributed with the data to the users. Several enhancements were also added
to improve the user interface and to speed processing of the data sets.

Code for breaking up a raw ATLAS or CAMS image file into separate housekeeping data and image data files was
ported, along with an algorithm for performing radiometric calibration. The porting process included removing
platform-dependent code, writing C functions according to the Java Native Interface (JNI) convention (Sun
Microsystems, 1999), and compiling the C code into dynamic link libraries (DLL’s). The DLL’s are loaded and
executed from Java using JNL This allows legacy remote sensing code that has already been verified and validated
on the UNIX platform to be reused with few changes on other platforms. Section III provides an example of JNI.

New code was written in C for automatically identifying and separating flight lines and for performing additional
radiometric calibration. The new code was written in C for improved performance and for ease of use, because the
programmers have greater expertise in C than in Java. As with the ported code, the new code was written in a
platform-independent manner and compiled into DLL’s to be called from Java using JNI. Since the Java code is
platform independent, porting the code to another platform requires little more than recompiling the C libraries on
the new platform.

Two core Java features greatly simplified the ability to display ATLAS and CAMS housekeeping and image data.
First, the Image class and related classes made the creation and the display of images relatively easy. Second, the
JTable class and related classes made the creation and the display of housekeeping data much easier.

II. ADPA OVERVIEW

The Aircraft Data Processing Algorithms (ADPA) software (Lockheed Martin Stennis Operations, 1998) allows the
user to read an ATLAS or CAMS image file from tape, split the image file into separate flight line files, split a flight
line file into separate housekeeping data and image data files, and radiometrically calibrate the image data. The user
can view the image file before and after splitting it into flight lines, can view image data as a grayscale or an RGB
image, and can view the housekeeping data in a scrollable table. Bad housekeeping data and bad image data are
automatically flagged. The user can mark, fix, and archive both the bad housekeeping data and the bad image data.

Read ATLAS and CAMS Data from Tape

The first step in processing an ATLAS or a CAMS image is to read the raw image from tape, creating a single file
on the hard disk. The data dump (dd) utility is used to read the image from tape. Versions of the dd utility exist for
both UNIX and Windows platforms. This newly created file contains both housekeeping data and image data for all
flight lines.

The extracted file can be viewed by ADPA using the Java Image class and associated classes. Since this file is often
several hundred megabytes in size, the user is given the option of selecting only the band or bands of interest, a
beginning line within the image, and a line count. Viewing the raw image allows the user to visually identify the
flight lines in the image before splitting the image into separate flight lines.

Split Image into Individual Flight Lines

The next step automatically splits the image file read from tape into several files: one for each flight line. The code
for splitting flight lines was written in C and compiled into a DLL. The user selects the file to split through the Java

Final Page 3 S October 1999

graphical user interface (GUI), and the Java code calls the DLL through JNI. Each raw file created contains both
housckeeping data and image data for a single flight line. The user can select the minimum number of scan lines
required for a valid flight line.

The created files can also be viewed by ADPA after the user selects the instrument type (ATLAS or CAMS), the
band or bands of interest, a beginning line, and a line count. As with the raw image read from tape, the user is shown
both a table of the housekeeping information and an image from the selected bands. ADPA also performs quick
checks for bad housekeeping and bad image data, displaying any bad data found in tables.

Split a Flight Line into Separate Housekeeping Data and Image Data Files

The C code for splitting an image file into separate housekeeping data and image data files was ported from UNIX
and compiled into a DLL. After the user selects an ATLAS or CAMS image file containing a single flight line, the
bands of interest, a beginning line, and a line count, the DLL is called from Java using JNIL.

A header file associated with the flight line is created that contains metadata information, including the instrument
type, the pixel size, and the bands selected. The pixel size can be 8 bits (byte), 16 bits (short integer), or 32 bits
(floating point). The header file also keeps track of other files created for this flight line, including output from
radiometric processing.

Radiometric Processing

At present ADPA implements two separate algorithms,
TRADE (Spiering, 1994) and Radiometry, for performing
radiometric calibration on ATLAS and CAMS images. The . :
TRADE algorithm creates an image data file containing L Dte e Seih [amas
calibrated thermal bands and unchanged reflective bands. 1
The Radiometry algorithm creates an image data file

SiRadiometry

containing both calibrated reflective bands and calibrated - Output Radiance Typs Selection 1"-5“

thermal bands These algorithms were written in C and 1 '

compiled into DLL’s, and they are called from Java using mﬁu WD ey

INI. The TRADE code was ported from UNIX, and the E I

Radiometry code was developed as an enhancement to the L e

new system. .' [hotFe | _ Imas0sn ai 2 - e
The TRADE algorithm uses an estimated system transfer —— E

equation and an atmospheric model generated by
LOWTRAN. TRADE converts thermal image digital
numbers to radiance units, adjusts the radiance values for
atmospheric effects, and, optionally, estimates ground
temperature using the radiance values. The algorithm takes

r
|atlasT 98 src

as input a calibration file from the sensor Performance faes 1 .
Verification Test and a LOWTRAN file containing the
atmospheric model generated by LOWTRAN 6 or hs T
LOWTRAN 7.

Reflectnve Band Mumber For Graph 1 .) v_!

The Radiometry algorithm performs radiometric calibration {2 e]
on the reflective bands as well as the thermal bands, using
lcallackbody values (low‘and hlg_h), a spectral response curve, | | comcat || Viewsrapte |

ata from the onboard integrating sphere, and calibration
lamp values. Figure 1 shows the input screen for the
Radiometry algorithm. The user can select the type of
output (in-band or average spectral radiance), the output
pixel size, an emissivity file, a spectral response file, an
integrating sphere file, and a cutoff frequency for use by a
low-pass filter,

Figure I. Input Screen for Radiometric Calibration
Using the Radiomertry Algorithm

Final Page 4 5 October 1999

wa Because of noise in the low bluckbody and calibration lamp
data needed for calibration, a low-pass filter 15 used to
remove high-frequency components from the calibration
data.

Graphs of these filtered housekeeping values can be
displayed, showing values before and after smoothing.
e Figure 2 shows the graphs for calibration lamp data. This
o chart was created using the JCChart class (KL Group,
1999). Numerous controls and components, such as
\/f’\’\ JCChart, are distributed with most Java development

environments. Creating charts using this component was
much easier than creating charts from scratch.

LBLE LB %G

i
L
il
¥

: | mwmmmmes | The Radiometry input screen also allows the user to choose
- =771 between in-band or average spectral radiance. Average
spectral radiance is obtained by dividing the in-band
radiance by the integral of the spectral response for a
particular band. In-band radiance is useful for examining the
total radiance for a particular band, while the average
spectral radiance is used for cross band studies.

Figure 2. Calibration Lamp Data Before and After
Smoothing

View Image Data as RGB Image

After splitting an ATLAS or CAMS flight line into separate
housekeeping data and image data files, the user can open
the image data file and display an image in a scrollable
window (see Figure 3). Images from radiometrically
calibrated image data files can also be displayed. The user
selects the image data file to view, the pixel size, the bands
of interest, a beginning line, and a line count. If an
associated header file exists for the selected image data file,
the instrument type, pixel size, and bands selected will be
read from the header file.

Sivlntod P

If less than three bands are selected, a gray-level image is
displayed; otherwise, an RGB image is displayed using
three of the selected bands. Input fields allow the user to
change the bands used to create the image. Since all bands
selected are read into random access memory, changing the
bands to be used for red, green, and blue does not require
additional disk access, resulting in a relatively quick redraw
of the image using the new bands. The Java Image class and
associated classes make creating and displaying an image
from the selected bands relatively simple.

Figure 3. ATLAS RGB Image Using Bands 4, 2,
and | for Red, Green, and Blue

Crosshairs, which can be turned off or on, show the location and the value at the location for all bands in the image.
Menu selections allow the user to mark a line as bad, mark a line as good that was previously marked as bad, and
select the starting column and ending column of the bad part of the line. Another menu selection allows the user to
display the image data bad line table.

When opening the image data file, ADPA performs a quick check for bad image data, displaying any bad lines
found in a bad line table. Currently, a line in an image is flagged as bad if one of the calibration data values for that
line is saturated. Figure 4 shows the bad line table for the image data of Figure 3. Input fields allow the user to select
the starting column and ending column of the bad part of the linc and to fix the bad part of the line. [t can be fixed
by averaging the line above and the line below, by copying the line above, by copying the line below, or by shifting

Final Page 5 5 October 1999

the selected portion of the line by one or more columns,

Lines can be marked as fixed using a checkbox. The user [FgaqVano Lines - — |/ Fix Lines
can also undo the last change and can save or print the | P (.
table. II ses L) o i -
2:?; Il Ena Cotumn

View Housekeeping Data in Scrollable Table I

| il Shift Amount
After splitting an ATLAS or CAMS flight line into ? E ' [s
separate housekeeping data and image data files, the user f i
can open and view the contents of the housekeeping file. il
As usual, the user can first select a beginning line and a i
line count to view only part of the table. : .
Figure 5 shows a housekeeping table with two lines l | Cose | Save | |
marked as bad. Menu selections allow the user to mark a e

line as bad, mark a line as good, and select the starting
column and ending column of the bad part of the line.

Another menu selection allows the user to display the

housekeeping bad line table.

Figure 4. Bad Lines Found in Image Data

Both the housekeeping table and the bad line table use the

TONTE weektmades AL ChINEA ____;_mmu.!mmu__.wé_ Java JTable class and related classes. The JTable class has

; S I L facilities that all deri d editing but

| Mk Bad Line Start o LRE. S T 452 um 1950 m ‘5!:—'“"*‘!_ k many acl Itles t at a ow cuStom ren er]ng an e l g u

L e DT lmeemiam e isermwew 1| provides defaults for these features so that simple tables can
0 458w 2424 um 0 & e e S92 um 1450 wm 4 45E-T e .

{ 7488 wr 2824w 82 mecemies $52um 1SS0 an 4556 e be set up eas;ly‘

H RELLE™ 3 QLT am 07 e S92 am 1950 um 4 S5E- T mITe e

i 0456 um Q824 am 0.3 e f52um 1950 um 4 $5E-7 eeiem

i 1468 wr CI'..T:: .\1mm: $452um Isﬁllﬂ :ﬂ!:wm‘h:_ . .

L n o Sin oo n s lcoso | Figure 6 shows the bad line table for the housekeeping data

shown in Figure 5. Input fields allow the user to select the
starting column and ending column of the bad part of the
line and to fix the bad part of the line. It can be fixed by
averaging the line above and the line below, by copying the
line above, by copying the line below, or by shifting the
selected portion of the line by one or more columns. The
user can also undo the last change and can save or print the
table.

Figure 5. ATLAS Housekeeping Table Showing Two

rﬁle Housekeeping: V\adpa_testimx360571_all.i2

Bad Lines Badousskoepingims | focLines T
Experience has shown that ATLAS and CAMS gigg ;;:2: sy T ~
housekeeping data often have some bytes missing with the | 3586 38802 I — B
following bytes shifted to the left. If this is the problem with | %% %8 Gy e—

the bad line, the preferred approach is to fix the line by ' |

shifting to the right. The user would select the beginning |~
and ending column of the part of the line to shift, shift it to | s |
the right, select the beginning and ending column of the part |
of the line with missing data, and fix it by averaging the line oo
above and the line below. Most columns in the

housekeeping table can also be directly edited if averaging
does not make sense. Figure 6. Screen for Fixing Bad Lines in

Housekeeping Data

III. JAVA/C INTERFACES

C code ported from UNIX and compiled into DLL’s can easily be called from Java using INIL. JNT allows legacy
remote sensing code that has already been verified and validated on the UNIX platform to be reused with few

Final Page 6 5 October 1999
changes. The programmers removed platform dependent code, including the user interface code, and wrote C
functions, according to JNI conventions, that could be called from Java.

ADPA is based upon the Model-View-Controller (MVC) architecture and uses Java threads extensively. Put simply,
Model objects contain data, View objects display data, and Controller objects perform actions in response to events.
For example, when the user selects Radiometry from the Process menu, the Radiometry input screen, a View object,
is displayed (Figure 1). Selecting the Process button results in executing the runRadiometry() method of the
Controller object, AircraftController. This method starts the RadiometryThread thread, passing in a reference to the
Controller object. This thread has access to the data entered in the input screen, contained in a Model object, through
the reference to the Controller object. Figure 7 shows the Java code for interfacing with the C code. All of the

methods of the AircraftController class except runRadiometry() were removed for brevity.

/I The Controller in the MVC architecture
public class AircraftController
{
/I One of many methods in the Java
I/l AircraftController class
public void runRadiometry()
{
/I Create and start the thread
new RadiometryThread(this).start();
}
}

/I Radiometry Thread class
public class RadiometryThread extends Thread

{

/I A reference to the controller
AircraftController controller = null;

public RadiometryThread(AircraftController cont)

{
}

/I Executes when the start() method of the Thread
/I class is called.
public void run()
{
Radiometry radiometry = new Radiometry();
if(!radiometry.isLoaded())
return;

controller = cont;

int ret = radiometry.runRadiometry(controller);

}
) .

// class to load the dll and execute one of its functions
public class Radiometry

{
static boolean loaded = false;

public Radiometry() {}

static
{
try
{
/I Load Radiometry.dll

System.loadLibrary("'Radiometry'');
loaded = true;

catch(Exception ex)
{
System.out.printin(ex.getMessage());
System.out.println
("loadLibrary(\"Radiometry\") unsuccessful'');
}
}

public static boolean isLoaded()
{

return loaded;

}

/I Run Radiometry.dil
public native int
runRadiometry(AircraftController cont);

Figure 7. Java Code that Loads Radiometry.dll and Executes One of its Functions

The runRadiometry() method of the AircraftController class creates a RadiometryThread object, passing a reference
to the AircraftController, and starts the thread. The RadiometryThread class creates an object of the Radiometry
class, loads the associated DLL if it is not loaded, and calls the native method, runRadiometry(), of the Radiometry
class. A native method is a platform-specific method that is implemented in a programming language other than

Java.

Final Page 7 5 October 1999
The first time an instance of the Radiometry class is created, the static variable, loaded, is initialized to false, and the
static block is executed. In the static block, Java attempts to load Radiometry.dll. If loading is successful, loaded
gets set to true.

Figure 8 shows the header file, Radiometry.h, and part of one of the C files, Radiometry.c, that make up
Radiometry.dll. When the runRadiometry() method is called from within RadiometryThread, the C function in
Radiometry.c, Java_Radiometry_runRadiometry(), is called. The name of this method takes the form
Java_classname_functionname. Running the javah.exe utility, which is part of the Java Development Kit (jdk), on
the Java file Radiometry.java automatically generates the header file.

Once the C header file is generated, the user can copy the contained function prototype to a C file and implement the
function. Radiometry.c shows the implementation of Java_Radiometry_runRadiometry(). By passing this function a
reference to the Java AircraftController object, the C function has access to all of the public methods of the Java
AircraftController class.

Since AircraftController has access to the data entered in the Radiometry input screen, methods of
AircraftController can be called to retrieve this information. To call these methods, the C code needs the
AircraftController object, passed in as an argument to Java_Radiometry_runRadiometry(), and the
AircraftController class, obtained from the AircraftController object using the GetObjectClass() method of the
JNIEnv class.

After obtaining references to the AircraftController object and the AircraftController class, the radiometry() function
is called to execute the C code for performing radiometric calibration. The showMessageDialog() function shows
how the user can call a Java method from C. In this case a Java message dialog is displayed, indicating completion
of the task.

Final Page 8

5 October 1999

/I Radiometry.h generated using javah.exe from jdk

/* DO NOT EDIT THIS FILE - it is machine
generated */

#include <jni.h>

/* Header for class Radiometry */

#ifndet _Included_Radiometry
#define _Included_Radiometry

#ifdet __cplusplus
extern "C" {

#endif
J,!=|=
* Class: Radiometry
* Method: runRadiometry
* Signature: (LAircraftController;)I
*/

JNIEXPORT jint INICALL
Java_Radiometry_runRadiometry
(JNIEnv *, jobject, jobject);

#ifdef __cplusplus

}
#endif

#endif
/1 Radiometry.c
#include " Radiometry.h”

/I Pointer to JNI environment class
JNIEnv *env;

/l The AircraftController object
jobject controller;

I/l The AircraftController class
jclass AircraftController:

JNIEXPORT jint JINICALL
Java_ Radiometry_runRadiometry(JNIEnv *_env,
jobject obj, jobject cont)
Il Return value
int ret;

Il Get the JNI environment
env = _env:

Il Ger the AircraftController object
controller = cont;

Il Get the AircraftController class for the
/Il AircraftController object
AircraftController =

(*env) -> GetObjectClass(env, controller);

/I call radiometry
ret = radiometry();
return ret;

}

int radiometry()

{

int rc;

/I This function does the calibration
rc = calibrate_main(); '

/I C function to popup Java message dialog
showMessageDialog("Done", "Radiometry”,
INFORMATION_MESSAGE);

return rc;

}

I/l The C function to call a Java method
void showMessageDialog(char* message,
char* title, int type)
{
/I Get the AircraftController method
jmethodID id = (*env)->GetMethodID(env,
AircraftController, "showMessageDialog",
"(Ljava/lang/String;Ljava/lang/String;[)V");
/I passes (String, String, int); returns void

Il Convert input arguments from char* to jstring

jstring jmessage = (*env)->NewStringUTF(env,
message);

jstring jtitle = (*env)->NewStringUTF(env, title);

Il Call the Java method from C
(*env)->CallVoidMethod(env, controller, id,
Jjmessage, jtitle, type);

Il Free resources created with NewStringUTF

(*env)->ReleaseStringUTFChars(env, jmessage,
message);

(*env)->ReleaseStringUTFChars(env, jtitle, title);

Figure 8. C Code for Interfacing with Java

Final Page 9 5 October 1999

IV. CONCLUSIONS

The advantages of object-oriented design and programming were utilized by using Java for the user interface.
Although using C++ or another object-oriented programming language could have been used, Java provides better
platform independence. The object-oriented approach not only made rapid application development easier, but it
also makes modifications and enhancements to the code easier. For example, adding the ability to display CAMS
images and CAMS housekeeping required only minor modifications to the code for displaying ATLAS data. Also,
modifying the image display code to handle 16 bit (short) and 32 bit (float) pixels was only a minor modification to
the code for displaying 8 bit (byte) pixels.

A major advantage of using Java is that several important features are part of the language, including imaging, tables
and other GUI components, threads, and JNI. The imaging and table classes make display of images and
housekeeping data simple and portable. The Thread class makes it easy to run in separate threads such time-
consuming processes as reading and displaying large images or running radiometric calibration algorithms. JNI
makes interfacing Java with other languages, such as C and C++, relatively simple.

Without multithreading, Java GUI screens are unresponsive to being moved or minimized while a time-consuming
process is underway. With multithreading, screens and menus are still responsive to user input, and a progress bar
can provide visual feedback that a time-consuming process is taking place.

Combining Java and C using JNI allows legacy remote sensing code that has already been verified and validated on
the UNIX platform to be reused on other platforms with few changes. It also allows computationally intensive code
to be written in C while writing portable user interface code in Java.

The platform-independent nature of the application and its independence from COTS software allow for easy
distribution of the application with the image data. Furthermore, since the application runs on Windows, it can be
installed on a laptop and taken into the field. This feature provides the ability to decide whether a flight should be
reflown shortly after landing and before the data are sent to Stennis Space Center for processing.

Approximately four months were spent in the porting process. During this time personnel became familiar with Java
and developed new modules and algorithms. Three programmers worked on the software port, spending about 50%
of their time on the project. Some of the project time was attributed to test case development and algorithm
validation.

One measure of the success of this project is the comments from users regarding how quickly ATLAS and CAMS
imagery can now be processed. The ability to process images faster is due in part to the addition of automated
features, in particular, the code for splitting flight lines and the code for detecting bad image and housekeeping data.

Based on the results of this project, the authors believe that Java provides a viable solution for the visualization of
scientific/engineering data. Although using two languages increases the complexity of the code, the strengths of
each language can be utilized. This combination has resulted in a high-performance software application that is
platform independent and easy to maintain.

V. REFERENCES

Cao, C., R. Ryan, D. Olive, M. Johnson, M. Mohamed, D. O’Neil, and G. Gasser, ATLAS At-sensor Radiance
Retrieval and Noise Reduction in the In-flight Calibration Data, Unpublished, 1999.

KL Group, Inc., JClass Chart, hup://www.klg.com/jclass/chart/overview.html, 1999.

Lockheed Martin Stennis Operations, ADPA System Requirements Specification Document, Stennis Space Center,
SSC-ADPA-001, Rev. A, March 10, 1998.

Mohamed, M. A., Algorithm Performance Validation, NASA/CRSP V&V Workshop, 1997.

Final Page 10 5 October 1999

Spiering, B., Descriptive Presentation of the ATLAS Channels 10-15, The ELAS Module “TRADE," and Conversion
of Digital Numbers to Temperature, Unpublished, 1994.

Sun Microsystems, Inc., Java Native Interface, hitp://www javasoft.com/products/jdk/1.2/docs/guide/ini/index.html,
1999.

VI. ACKNOWLEDGEMENTS

This work was supported by NASA's Earth Science Enterprise, Commercial Remote Sensing Program Office under
contract number NAS 13-650 at the John C. Stennis Space Center, Mississippi.

Export Availability Statement

This form must be completed by the lead author, with the assistance of his/her manager, of all
CRSP documentation intended for offsite publication and dissemination. Documentation not
accompanied by this completed and signed form will not be considered for publication. Help text
will appear at the bottom of your screen as you enter each field to be completed. Please complete
sections 1-12, print this form, and sign and date the form. Submit the signed form, an electronic
copy of your documentation, and a copy of the authors’ instructions to Marcia Wise or Rick
Lightfoot in Bldg. 1210.

1. Document Title

Scientific Programming Using Java: A Remote Sensing Example

2. Journal or Proceedings

International Symposium on Spectral Sensing Research (ISSSR), Las Vegas, Nevada, October
31-November 4, 1999 -

3. Lead Author, Affiliation

Donald Prados, Lockheed Martin Space Operations - Stennis Programs

4. Phone Number 5. Fax Number 6. SWR Number for
Document Preparation
228-688-1991 228-688-7918 VXD5-2331-20

7. Co-authors, Affiliations

Mohamed A. Mohamed, Lockheed Martin Space Operations - Stennis Programs

Michael Johnson, Lockheed Martin Space Operations - Stennis Programs

Changyong Cao, Lockheed Martin Space Operations - Stennis Programs (currently NOAA)
Jerry Gasser, Lockheed Martin Space Operations - Stennis Programs

Don Powell, Lockheed Martin Space Operations - Stennis Programs

Lloyd McGregor, Lockheed Martin Space Operations - Stennis Programs

'$ 8. Security Classification 9. Availability Category
| X Unclassified | [] Other [X Publicly Available | [] Other
10. ITAR USML Category Number 11. EAR CCL ECCN Number
120.11(8) 734.8(c)

12. Technical Summary of Document Contents as Related to ITAR/EAR Restrictions

This paper presents results of a project to port code for processing remotely sensed data from the
UNIX environment to Windows. By using Java for the graphical user interface and C for the
domain model, the strengths of both languages were utilized and the resulting code can easily be

The Java programming language is traditionally used in Internet applications, and the C
programming language is traditionally used in scientific applications. Both Java and C are
publicly available and widely used. The innovation presented in this paper is the integration of
the Java and C languages for scientific programming. This technique could easily be duplicated
by anyone with programming experience and is not proprietary. This paper does not discuss any
proprietary techniques or methodologies for exploitation of information that might be sensitive to

intelligence or military applications.

We have determined that the information presented in this paper is not subject to the EAR based
| on the provisions in Sections 734.3(b)(3)(11) and 734.8(c) describing fundamental research, or

| basic and applied research in science and engineering, where the resulting information is
ordinarily published and shared broadly within the scientific community, particulary where such
research is performed by scientists at a federal agency. Similarly, we have determined that the
subject information is not included on the U.S. Munitions List and is exempt from the ITAR
because, referring to Section 120.11(8), this paper presents information defined as Public
Domain by virtue of its being generally accessible or available to the public through fundamental |
research in science and engineering at accredited institutions of higher learning in the U.S.

S

My signature below confirms that | have consulted the International Traffic in
Arms Regulations (ITAR) and the Export Administration Regulations (EAR) and
that, to the best of my knowledge, the technical content of the document
described above meets the export control provisions of the ITAR and the EAR as
specified in sections 10 and 11 of this form.

Lead Author Signature Date
W /M’Z | / 0-1%-99
Manager’s Concurrence Signature Date
(e LA Thcece w1777
O o

J

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0ro4-0183

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headguarters Services, Directorate
far Information Qperations and Feports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, WA 222024302, Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of infornation if it does not display a curently

valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-Y'Y YY) 2. REPORT TYPE
05-10-1999

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
Scientific Programming Using Java: A Remote Sensing Example

5a. CONTRACT NUMBER
NAS13-650

5b. GRANT NUMBER

5¢. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Dron Prados
Mohamed Mohamed
Michael Johnson
Changyong Cao
Jerry Gasser

Don Powell

Lloyd McGregor

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Lockheed Martin Space Operations

8. PERFORMING ORGANIZATION
REPORT NUMBER

SE-1999-04-00017-88C

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Earth Science Application Directorate
Commercial Remote Sensing Program Office

10. SPONSORINGIMONITOR'S ACRONYM(S)

11. SPONSORINGIMONITORING
REPORT NUMBER

12. DISTRIBUTIONAVAILABILITY STATEMENT
Publicly Available STI per form 1676

13. SUPPLEMENTARY NOTES

Conference - Intemational Symposium on Spectral Sensing Research

14. ABSTRACT

15. SUBJECT TERMS

. 17. LIMITATION OF
16. SECURITY CLASSIFICATION OF: ABSTRACT
a. REPORT | b. ABSTRACT | ¢. THIS PAGE
U U U uu

18. NUMBER
OF
PAGES

10

19b. NAME OF RESPONSIBLE PERSON
Don Prados

18b. TELEPHONE NUMBER (inciude area code)

(228) 688-1991

Standard Form 298 (Rev. §-98)
Prescrined by ANS| Std. Z38-18

