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Abstract 

This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight 
Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft’s measured magnetic field 
data into its respective magnetic dipole moment model. The model is most accurate with the earth‘s geomagnetic field 
cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose 
the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction 
with a computer-controiied magnetic fieid measurement system. Such a system, with reai-time magnetic field dispiay 
capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations 
where transport to a magnetics test facility is impractical. 
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Introduction 

A spacecraft whose magnetic field has been accurately calibrated possesses a unique capability for acquiring 
magnetic field and other scientific data. Geomagnetic, as well as planetary and interplanetary magnetic measurements depend 
on such a controlled spacecraft magnetic environment for accurate results. To provide this environment, restraint of magnetic 
materials on board the spacecraft and sophisticated prelaunch magnetic tests are required. Some facilities, like the GSFC 
Spacecraft Magnetic Test Facility (SMTF), are able to null Earth’s geomagnetic field to less than 0.5 nT, providing a 
controlled environment for measurement and control of spacecraft fields. 

The magnetic field modeling technique described herein was developed at the Goddard Magnetic Test Facility as an 
aid in the evaluation of spacecraft magnetic fields and has been used for over thirty years. Three specific problem areas 
requiring magnetic field measurements have been investigated using this technique: 

0 

0 

0 

Spacecraft attitude control problems resulting fiom a large intrinsic magnetic dipole moment; 
Reduced accuracy of data returned fiom magnetometer experiments due to spacecraft bias fields; and 
Complicated data analysis caused by spacecraft magnetic fields around low-energy electron experiments. 

The magnetic field modeling technique described in this paper, combined with a computer measurement system, provides a 
means of solving the above problems. Using the computerized modeling technique to provide a near-real-time visual 
representation of the spacecraft magnetic field reduces testing time required for complex magnetic measurements. This visual 
representation also aids in reduction of the dipole moment by showing the correct orientation for placement of compensation 
magnets or demagnetization treatment. In addition, the magnetic field modeling technique provides a rigorous method of 
determining the magnetic field at any point of interest around the spacecraft, based upon a limited number of measurements 
at discrete points. This enables a rapid and comprehensive evaluation of spacecraft magnetic fields for the solution of 
magnetometer bias and low-energy electron deflection problems. 



Background 

In 1972, William L. Eichhorn published a NASA technical report describing a dipole moment measurement 
technique using near-field magnetic data [I]. The technique assumes that a spacecraft's magnetic field can be represented by 
the addition of a number of multi-pole fields. These fields are measured in the near-field region that begins on a spherical 
surface, which totally encloses the magnetic source and extends outward until the fields become dipolar. Near-field analysis 
allows dipole moment data to be taken closer to the spacecraft where magnetic fields are strong enough for reliable 
measurements. The technique has been used with good results at the Goddard Magnetic Test Facility for magnetic testing of 
various spacecraft. 

A typical spacecraft orientation for magnetic testing is shown in Figure 1 (where o = direction around axis of 
rotation). Four tri-axial magnetometers are located along one of the spacecraft axes, and magnetic field data is acquired while 
rotating the spacecraft about the vertical (2) axis past an array of fmed magnetometer probes. The equations for calculating 
the magnetic fields present at the X-, Y-, and Z-axes of a magnetometer sensor located a distance R fiom the center of the 
spacecraft (as a function of rotational angle e) were derived in [l]. With a few minor changes in notation and truncation of 
the infiiite series at n = 4, to provide a finite series for modeling purposes, these magnetic field equations become: 

Where: 
M W Y O )  = 
R 

Am, Bm= multi-pole moment coefficients; 
e - - rotation angle (0 to 211); 
PF(0) = 
cp - - 

magnetic field component (nT) along X magnetometer axis as a function of R and 8; 
radial distance fiom center of magnetic mass to magnetometer, which must be greater than 
maximum radius of the magnetic source in meters (m); 

- - 

associated Legendre functions of P (cos cp) where cp = d 2 ;  and 
vertical angle with respect to spacecraft axis of rotation. 
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Figure 1. Spacecraft Orientation for Magnetic Testing 



In 1973, the magnetic field modeling technique was developed by Thomas N. Roy to extend near-field analysis. The 
technique is capable of producing accurate mathematical models fiom the same near-field analysis data. Near-field analysis 
involves only the cos 0 and sin 0 terms of the above equations for calculation of X- and Y-axis dipole moments, and the 
constant term with respect to 0 for the Z-axis moment. Extension of near-field analysis for magnetic field modeling involves 
as many as eight harmonic terms of the magnetic field equations. Experience in using these equations to model fields around 
several different spacecraft has shown a solution order of n = 4 to be sufficient for accurate modeling over regions of interest. 
The technique can easily be extended to higher ordered harmonics for modeling the extreme near-field regions of strongly 
multi-polar sources. 

This paper describes the magnetic field modeling technique and its application to spacecraft magnetic fields. 
Limitations of this technique, as well as other possible uses, are discussed at the end of the paper. 

Magnetic Field Modeling 

Results obtained f?om solution of the magnetic field equations for n = 1 to 4 indicate that the magnetic field of a 
spacecraft can be described anywhere on a plane containing the measurement magnetometers by: 

measurement magnetometer axes X, Y or Z; 
radial distance; 
rotational angle with respect to magnetometer axes; 
oidei of Fourier soiuiion usuaiiy truncareci after eight terms; 
constant field (with respect to 0) modeling coefficient calculated for each axis; 
cosine field modeling coefficient calculated for each axis and n = 1 to 4; 
sine field modeling coefficient calculated for each axis and n = 1 to 4; 
constant field decay power calculated for each axis; 
cosine field decay power calculated for each axis and n = 1 to 4; and 
sine field decay power calculated for each axis and n = 1 to 4. 

Therefore, to construct a magnetic field model using the above equation, a method is needed to calculate the field modeling 
coefficients and field decay powers. 

The procedure for calculating field modeling coefficients and field decay powers begins with this fourth-order 
Fourier analysis. The analysis produces eight Fourier coefficients for each axis u) (four for the Z-axis) of every 
magnetometer (i), and their standard deviations. Fourier coefficients typically represent averaged values for five spacecraft 
rotations. 

Four cosine Fourier coefficients, calculated for n = 1 to 4: 

c jni = + c2x &o B I1 .. (R; , 8) cos(n 8) 

Four sine Fourier coefficients, calculated for n = 1 to 4: 

Constant Fourier coefficient: 

DCji = *c;:o B,ji (4 , 8) 
Where: 

i - - magnetometer number, 1 to 4; 
Bji (Ri,0) = rotational magnetic field; and 

magnetometer axes X, Y, or Z. - - j 
Next, dividing them by their respective Fourier coefficients normalizes the standard deviations. The normalized cosine 
standard deviations, calculated for n = 1 to 4 are: 

c~,C~n; = d j n , / C j n i  



The normalized sine standard deviations, calculated for n = 1 to 4 are: 

o,Sjni  = d j n i / S j n i  

The normalized constant (Z-axis) standard deviation is: 

on DCji = oDCj, /DCji 

At this point, the technique assumes that for each axis (i) and each order of Fourier analysis (n), the Fourier 
coefficients from each magnetometer have the same polarity and decrease with increasing radius (R). This permits the 
calculation of field decay powers for each order of Fourier analysis starting with the constant term. All possible combinations 
between the four magnetometers are averaged. Each combination is weighted using the normalized standard deviations 
calculated above: 

- - 4 
Bnj = 

Cnj = 

For example, using DC Fourier coefficients and four magnetometers, where R1, Rz, R3, and R,, are the actual 

constant field decay power; 
cosine field decay power calculated for n = 1 to 4; and 
sine field decay power calculated for n = 1 to 4. 

magnetometer radii fiom the center of rotation, calculating the constant field decay power: 

(Aj )1,2 = log[(DC,jl >/<DCjz )I/'og(Rl /&I 
) l , 3  = 10g[(Dc,jl ) / (Dc jZ  )I/lOg(Rl l R 3  

( A ~  I ! ,~  = i o g r w c  .I - )/(Dc,, ) i p o g ( ~ ,  /RJ  

)2,3 = 1 0 g [ ( D c , ~ Z ) / ( D c j 3  )]/log(& /&I 
( A j ) 2 , 4  = 1og[(DCjZ)/(Dcj4)I/10g(RZ/R4) 

(Aj )3 ,4  = log[(DCj3 ) / (DC~~) I / 'O~(R~  /'4) 

The averaged field decay power is thus: 

)1,2 Dcjl )('nDcj2)1 + >2 ,3  '(Or DcjZ>(DnDcj3 11 + 

L(Aj13.4 /(onDCjj)(0nDCj4)1+ C(Aj),,3 /(0rrDcj,)(0nDCj3)1+ 

[(A, )1,4 /(a,rDCj, )(onDCj4)I [ ( A j  >2,4  '(anDCjZ )(OnDCj4 >I A .  = 
J 1 

~ ~~~ 

[(OnDCjI )(On'Cjz) + (OnDCjz I(onDCj3) + (onDCj3 ) ( ~ n D C j 4 )  + 

(0, DCjl )(onDCj3) + (OnDCjI ) ( o n ' c j 4 )  + (onDCj2 )(0nDCj4)1 

When all the field decay powers have been calculated, the Fourier coefficients are normalized using their respective 
magnetometer radii and field decay powers to produce magnetic field modeling coefficients, These field modeling 
coefficients are a result of a weighted average of each set of Fourier coefficients over all four magnetometers using their 
respective normalized standard deviations to provide the weighting factors: 

Where: 
Cjn = 

Sjn = 
DCj = constant field (Z-axis) modeling coefficient. 

cosine field modeling coefficient calculated for n = 1 to 4; 
sine field modeling coefficient calculated for n = 1 to 4; and 



Magnetic Field Modeling Equation 

Finally, the field modeling coefficients and field decay powers are used in the magnetic field modeling equation. 
This equation reconstructs the three components of the magnetic field on the X-Y plane of the magnetometers as a function 
of radial distance fiom the center of rotation (R) and the angle of rotation (0). 

B~ (R,B) = DC,/R"J + C4 n=l ( ~ ~ n ) c o s ( n ~ ) / ~ ~ ~ ~  + C4 1 1 4  (Sjn)sin(n~)/Rcn~ 
Assuming four triaxial magnetometers are used in the dipole moment measurements (i = 1 to 4), the components (for n+) 
fiom the X-axis magnetometers are: 

CX, = (2A,,/R3 -6A3,/Rf +45A5,/4R' -35A7,/2Rs) 

SX, = (2B,,/R' -6B,,/Rf +45Bs,/4R7 -35B7,/2R;) 

The components fiom the Y-axis magnetometers are: 

CY, = -(B,,/R; -3B3,/2R' +15B5,/8R7 -35B7,/16Rs) 

SY, = (A,,/R' -3A3,/2R? +15As,/8R7 -35A,,/I6Rr) 

The constant component fiom the Z-axis magnetometers is: 

DCZ, = -(Alo/R' -3A3,/2R? +15As0/8R7 -35A7,/16Rs) 

Ai1 
A3], A51, A7] 
B;: 
B31, BS1, B7] 
A 10 

A30, A50, 
The Fourier analysis equations to measure the fundamental and constant components fiom rotational magnetic field 

data taken every 10" are: 

Where: 
= X-axis dipole moment coefficient; 
= Contributions to the fundamental component fiom the X-axis multi-pole (octapole, etc.) moments; 

= Contributions to the fundamental component fiom the Y-axis multi-pole (octapole, etc.) moments; 
= Z-axis dipole moment coefficient; and 
= Contributions to the constant component fkom the Z-axis multi-pole (octapole, etc.) moments. 

= Y-axis dip!e moment coeficient; 

Where: 
B,, B, = X-, Y-  and Z-axis magnetic fields (nT); 

= Magnetometer radial distance (m); 

= Magnetometer number, 1 to 4. 

R 
0 = Rotation angle; and 
1 

X Moment Near-Field Analysis 

The X Moment Fourier coefficient and Near Field matrices are as follows: 

2(R, /R,  >' - 6(R, /Ri r 45(Rl /& y - 35(Rl /Ri y 

(R, /Ri >' - 3(R, /R, 15(R, / R i  y - 35(Rl /Ri y 
dy, 2dy,  S d K  1 6 d T  

column, column, column, column, 

dX, UCX, 4 d X i  2 d X ,  

X 

A, 1 

As, 
, 

I 



Solving for the Data Matrix results in the following: 

D M l  MM21 M31 MM41 

DM2 - MM2?. IMM32 M'42 

DM3 MM23 M33 MM43 

DM4 MM24 M'34 MM44 

- X 

All 

41 
'51 



Y Moment Near-Field Analysis 
Solving for the Y Moment Data Matrix results in the following: 

DM, = x ( R , / R i ) 3  x(2SXi/(aSX,)' -CY,/(oCY,)') 

DM, = x ( R , / R , ) '  x ( - ~ S X ~ / ( ~ S X , ) ~  +3CY,/2(dY,)') 

DM, = x ( R , / R i ) '  x (45SX, /4(~6X~)~ -15C&/8(0C&)~) 

DM, = C ( R , / R i ) 9  ~(-355"~/2(oSX,)~ +35CY,/16(d&)z) 

Solving for the Measurement Matrix results in the following: 

m,,= ('1 /Ril6 x (('/mi )z + ( ~ / K K ' ) ~ )  

MM,, = C(R, /R , ) "  x ((-6/aSXi)2 +(-3/2d?)') 

MM,, = x ( R l / R j ) ' 4  x ((45/40SXi)' + (15/80C?)2) 

MM, = Z(R , /R i ) I8  x ((-35/20iSX,)~ +(-35/16dY,)') 

MM,, = MM,, = c ( R , / R j ) 8  ~ ( - 1 2 / ( a S X ~ ) ~  -3/2(OCyi)') 

MM,, = MM,, = x ( R , / R i ) ' 2  x (- 70/2(oSXi)2 - 35/16(dY,)') 

M M I 3  =MM,, =Z(R,/Rj)'O ~(90/4(aSXj)~ +15/8(dyi)') 

a n  l v l l v ~ 2 3  = M ? V i 3 ,  = ~ ( R l , E i ) "  x (- 270//4(&ij2 - 45/iG(dI:jZ) 

M',4 =MM4, = x ( R , / R , ) l 4  ~(210/2(oSX~)~ +105/32(dY,)') 

MM,, = MM,, = C ( R , / R i ) 1 6  ~(-1575/8(oSX,)~ -525/128(dY,)') 

The Y Moment is calculated using moment equations for the X-axis. 

Z Moment Near-Field Analysis 
Solving for the Z Moment Data Matrix results in the following: 

DM, = Z ( R , / R i ) 3  x (- DCZi/(oDCZi)') 

DM, = x ( R , / R , ) '  X ( ~ D C Z ~ / ~ ( ~ D C Z , ) ~ )  

DM, = C ( R , / R i ) '  x (-15DCZi/8(oDCZi)*) 

DM, = x ( R , / R , ) 9  X ( ~ ~ D C Z ~ / ~ ~ ( ~ D C Z ~ ) ~ )  

Solving for the Measurement Matrix results in the following: 

MM,, = C ( R , / R i ) 6  x(l/oDczi)2 

MM,, = x ( R , / R , ) "  x(-3/20DCZi)' 

MM,, = Z ( R , / R i ) 1 4  x(15/80DCZ,)~ 

MM, = C ( R , / R i ) l B  x(-35/160DCZ,)~ 

MM,, = MM,, = C(R, /R i )8  x(-3/2(oDCZ,)f) 

MM,, = MM,, = C ( R , / R , ) "  x (15/8(oDCZ$) 

MM,, = MM,, = x ( R , / R j ) ' 2  x (-35/16(~1DCz,)~) 

MM,, = MM,, = C ( R  , /R . )I2  , x ( -45/16(oDCZi)') 

MM,, = MM,, = x ( R , / R , ) I 4  x (105/32(oDCZi)Z) 

MM,, = MM,, = C ( R ,  /Ri)16 x (- 525/128(0~Cz,)2) 

The Z Moment is calculated using moment equations for the X-axis. 



The aCXi, aSYi, aSXi, OCYi and aDCZi variables are moment constant term standard deviations derived from the 
average data values calculated based on five rotational runs. Experience has shown that only one rotational run is necessary. 
Since only one rotational run is used, the standard deviation values are equal to 1 and drop out of the dipole moment 
calculations used in the LabVIEW rotational data analysis software. 

Discussion 

The magnetic field dipole moment modeling technique has been implemented on a microcomputer-controlled data 
acquisition and analysis system at the Goddard Space Flight Center Magnetic Test Facility. This system is described in [2] 
and consists of National Instruments (NI) hardware and NI LabVIEW software. The hardware includes a NI plug-in data 
acquisition board inside the microcomputer (or a data acquisition card in a laptop) cabled to an external Signal Conditioning 
extensions for Instrumentation (SCXI) chassis with signal SCXI conditioning equipment. LabVIEW is an object-oriented 
graphic programming code used for data acquisition, analysis and presentation. 

The basic assumption that Fourier coefficients have the same polarity for all magnetometers and decrease with 
increasing radius leads to certain spatial limitations of the technique. In the extreme near-field region, complex magnetic 
sources with higher order multi-pole moments can overshadow lower order moment contributions to the Fourier coefficients. 
This condition allows the possibility of polarity reversals with decreasing radius. Therefore, to maximize accuracy, the region 
to be modeled should be narrowly defined by the placement of in measurement magnetometers around complex magnetic 
sources. 

The possible calculation of total field, three-dimensional magnetic field models is offered by rotating the spacecraft 
and acquiring data for different values of the vertical angle cp, from 0 to n. This provides data for models on R-8 planes as a 
function of cp. allowing modeling on R-cp planes as a continuous function of 8. This would yield coefficients sufficient to 
provide modeling over all R, 8 and cp parameters; however, it is felt that most modeling .requirements could be met with 
simple mapping on a single R-8 plane or over just a limited region of the vertical angle. 

Conclusions 

Test results obtained from modeling magnetic fields around several different spacecraft and flight experiments 
indicate that the magnetic field modeling technique, combined with a computer-controlled measure system, provides 
capability for complex magnetic dipole moment analysis. Modeling accuracy is sufficient to provide detailed analysis of 
complex magnetic sources, even where field levels are less than 1 .O nT. 

Presentation of the magnetic dipole moment model can he achieved in real-time, using high-speed data acquisition 
and analysis augmented by a CRT and laser printer. Similar systems have been incorporated into existing magnetic 
measurement facilities and also could be designed as part of the spacecraft checkout platform on the Space Shuttle. Magnetic 
testing using the Shuttle would allow measurements to be made on spacecraft operating in true flight configurations, 
significantly increasing the reliability and utility of the data. 
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