CONSTRAINTS ON SOLAR WIND PLASMA PROPERTIES
DERIVED FROM COORDINATED CORONAL OBSERVATIONS

NASA Grant NAG5-9564

Final Report

For the period 1 August 2000 to 31 July 2003

Principal Investigator
Ruth Esser

January 2004

Prepared for
National Aeronautics and Space Administration
Washington, D.C. 20546

Smithsonian Institution
Astrophysical Observatory
Cambridge, Massachusetts 02138

The Smithsonian Astrophysical Observatory
is a member of the
Harvard-Smithsonian Center for Astrophysics

The NASA Technical Officer for this Grant is Dr. William Wagner, NASA Headquarters, Code SR, National Aeronautics and Space Administration, 300 E Street, SW, Washington, DC 20546.
1.1 Scope of the Investigation

The goal of the proposed research was to increase the understanding of coronal plasma phenomena by making use of different observational approaches and combine the observations with the necessary theoretical considerations.

1.2 Progress Made During the Funding Period

We studied the formation of spectral lines in the corona and transition region. The focus was on spectral lines commonly used as density and temperature diagnostic, mainly the lines Mg IX λ 706 and 749, and Si VIII λ 1440 and 1445 which were observed by SUMER in polar coronal hole and other coronal regions. We investigated these spectral lines for density and temperature dependence and found that the Mg lines are indeed a good temperature diagnostic, basically independent of density.

We compared the spectral line ratios that would arise from the type of temperature profile commonly used to explain in situ ion fractions with the actual observed line ratios (see Figure 1, solid lines). Also shown in this figure are the observed values of the ratios from Wilhelm et al. (1998, dotted lines). It is quite obvious from this figure that the type of temperature profiles derived from the charge state measurements results not only in the wrong values of the line ratios, but also the gradients of these curves are completely different. This study shows, in agreement with our previous studies, that there is a significant discrepancy between in situ ion fractions and observed coronal electron temperatures.

We also carried out a theoretical study to investigate how large the electron temperatures can be in the near sun region. We find that if in situ observations of mass flux and electron temperatures are taken into account, then the high electron temperatures necessary to explain in situ ion fractions cannot be achieved in the corona even from a purely theoretical point of view without violating constraints on mass flux and in situ electron temperature (e.g. Esser et al. 2002).

We carried out more detailed studies to show that differential flow speeds between ions of the same element can not bridge the above gap between low coronal electron temperatures and high in situ ion fractions. (Chen, Esser and Hu 2002a; Chen Esser and Hu 2002b). Even though differential flow speeds between ions of the same element in the fast solar wind do develop beyond a certain heliocentric distance (see Figure 2 below), this is beyond the region where a substantial fraction of minor ions form, and differential flow speeds with a low electron temperature in the coronal hole cannot account for the observed high ion charge states.

To investigate the drift between core and halo in the electron distribution function, which is observed in situ in the solar wind, we developed the first solar wind model with two electron populations. It was found that the anomalous frictional forces acting on the halo electrons are the dominant factor inhibiting the core-halo drift in the fast solar wind.

We used kinetic modeling to investigate the Alfvénic turbulence in the extended corona. In these studies we also included the effects of proton heating.
Fig. 1. Mg and Si line ratios from a typical electron temperature derived from in situ ion fractions (solid lines), line ratios observed by SUMER (Wilhelm et al. 1998, dotted lines). As a comparison we also show the line ratios calculated from the temperatures and density derived from these SUMER observations, but using a different set of atomic data (CHIANTI) instead of the atomic data used in the Wilhelm et al. (1998) paper (squares). The figure shows that the electron temperatures commonly derived from in situ ion charge states do not fit the line ratios observed in the corona.
Fig. 2. Solutions for 5 adjacent Si ions and protons. The UVCS observations of O$^{5+}$ are shown as a comparison (squares). At the distance where the charge states form, below 1.5 solar radii, the differential flow speeds are small.
2. Papers fully or partially funded by the grant

O. Lie-Svendsen and R. Esser, Gyrotropic modeling of minor ions in the solar corona: Changes in abundances and temperatures with heating rate, in preparation.

M. Karovska, D. Dobrzycka, M. Marengo and R. Esser, High latitude coronal mass ejection, in preparation.
3. Invited Talks at Meetings

Ruth Esser, Observational and theoretical constraints on the heating/acceleration of the solar wind, Solar Wind 10, Pisa, Italy, 2002.

4. Invited Seminars

Ruth Esser, Differential ion flow speeds, Max-Planck Institute, Bonn, Germany, 2001.

Ruth Esser, High speed wind from polar coronal holes, STELAB, University of Nagoya, Japan, 2002.

Selected Conference Presentations

