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SUMMARY 

With the renewed interest in Cartesian gridding methodologies for the ease and speed 

of gridding complex geometries in addition to the simplicity of the control volumes used 

in the computations, it has become important to investigate ways of extending the existing 

Cartesian grid solver functionalities. This includes developing methods of modeling the 

viscous effects in order to utilize Cartesian grids solvers for accurate drag predictions and 

addressing the issues related to the distributed memory parallelization of Cartesian solvers. 

This research presents advances in two areas of interest in Cartesian grid solvers, vis

cous effects modeling and MPI parallelization. The development of viscous effects model

ing using solely Cartesian grids has been hampered by the widely varying control volume 

sizes associated with the mesh refinement and the cut cells associated with the solid sur

face. This problem is being addressed by using physically based modeling techniques to 

update the state vectors of the cut cells and removing them from the finite volume inte

gration scheme. This work is performed on a new Cartesian grid solver, NASCART-GT, 

with modifications to its cut cell functionality. The development of MPI parallelization 

addresses issues associated with utilizing Cartesian solvers on distributed memory parallel 

environments. This work is performed on an existing Cartesian grid solver, CART3D, with 

modifications to its parallelization methodology. 

XX 



CHAPTER I 

INTRODUCTION 

Computational Fluid Dynamics (CFD) researchers have always had to strike a balance be

tween the accuracy and fidelity of their model with the efficiency and availability of the 

computational hardware. Early on many sacrifices to the accuracy and fidelity of the model 

were needed in order to accommodate the available computational hardware. Now tech

niques and more powerful computational hardware exist that yield more accurate numerical 

simulations in complex flow fields. One of the early schemes that has gained renewed in

terest is the use of Cartesian grids. A benefit of using Cartesian grids is that the number 

of terms needed in the solution procedure for the governing equations is greatly reduced 

compared to more elaborate gridding techniques since the edges of the control volumes 

are coordinate aligned and thus no need for the more complex contravariant velocity for

mulations. Also, the ability to easily create grids for very complicated geometries makes 

Cartesian grids an attractive approach to CFD. The drawback is the complexity associated 

with the computational cells that intersect the geometries as well as the inability of the tra

ditional Cartesian grid formulations to model viscous flows. The present chapter presents 

an overview of Cartesian grid methods, Navier-Stokes techniques and parallelization ap

proaches, and concludes with the motivation for the present work. 
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Cartesian Grid Origins 

Cartesian grids have been utilized in solving a variety of CFD problems from potential 

flows [13, 135, 184] to the Euler equations [23, 35, 36, 84, 105, 189] to the Navier-Stokes 

equations [38, 39, 49, 59, 79, 180, 178]. Cartesian grids consist of a collection of non-

overlapping, connected control volumes with coordinate aligned edges. Thus, the edge 

(or face in three dimensions) normals for all complete cells are aligned with one of the 

coordinate directions. Figure 1 shows a typical two-dimensional Cartesian grid around a 

curved surface. 

~ 

I 
I 

Figure 1: Example Cartesian Grid Near Curved Surface 

Cartesian gridding techniques have become the focus of recent research due to their 

ability to easily handle complex geometries in the grid generation phase, the ease with 

which higher order schemes can be applied and the natural connection between the grid 
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refinement techniques and multigrid acceleration schemes [105]. The difficulties in using 

Cartesian grids arise from the fact that the control volumes adjacent to the surfaces are not 

usually aligned with the surfaces and thus special techniques need to be employed to handle 

the non-Cartesian (cut or split) cells in these regions. 

Cut cells are created when the intersection of the Cartesian cell and the solid surface 

results in one computational volume with only a fraction of the original volume and possi-

bly non-Cartesian aligned edges, see Figure 2. Split cells are created when the intersection 

of the Cartesian cell and the solid surface results in two or more computational volumes 

which might have non-Cartesian aligned edges, see Figure 3. 

~ ~ 
(SO ~ 

Solid surface overlayed 
Cartesian Cell 

Resulting Cut Cell 

Figure 2: Example of Cut Cell Creation 

~ .,., 

~ 

~ <S<S 

ell~ 

Solid surface overlayed 
Cartesian Cell 

Resulting Split Cells 

Figure 3: Example of Split Cell Creation 
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The original use of Cartesian grids involved solving the two-dimension full poten

tial equation by Purvis and Burkhalter [135], followed shortly afterwards by Wedan and 

South [184], in which a non body-oriented structured grid was created on which the full 

potential equation was solved. Their solution strategy was to use finite volume techniques 

in order to more easily handle the computational cells that were intersected by the solid sur

face. Additionally, they used linear approximations in the cut cells for the reconstruction of 

the wall boundary conditions which provided a simple algorithm for implementation and 

preserved the structure of their coefficient matrix during the solution iteration so that no ex

tra computational costs were incurred for the cut cells. However, this did not preserve the 

actual body curvature and also only provided a linear approximation to the actual surface 

lengths and area for the cut cells, and thus could not exactly model curved surfaces. Also, 

little mention was made of any attempts at cell refinement to more accurately capture the 

surface geometry and flow features. 

Later, Clarke et al. [36] used Cartesian grids to solve the two-dimension Euler equations 

(again on non grid-aligned surfaces). They attempted to more accurately model the solid 

surface boundary conditions by utilizing the local surface curvature in reconstructing the 

wall boundary conditions. They also provided more accurate modeling of the cut cell 

lengths and areas by using the actual surface geometry in their calculations and not linear 

approximations. Additionally, they noted that clustering was needed in certain critical 

regions in order to produce accurate results, and this was achieved by clustering entire grid 

lines. Cut cells that were too small (less than 50% of the original cell size) were merged 
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with neighbor cells in order to avoid time stepping problems associated with very small 

computational cells. Gaffney and Hassan [60] extended this research to three dimensions. 

Figure 4 demonstrates the case of cell merging. In this case the surface cuts through a 

collection of cells, numbered 1-3. Cell 1 turns into a cut cell (numbered 1 in the resulting 

merged cells) while cells 2 and 3 are merged together into the cell numbered 2 since cell 3 

is too small after the cut. 

~ 1 2 
~ 

R:: J 

Solid surface overlayed 
Cartesian Cells 

1 2 

Resulting Merged 
Cells 

Figure 4: Example of Merge Cell Creation 

Adaptive Mesh Refinement 

Berger and LeVeque [23] addressed several deficiencies that existed in the established uni-

form grid methodologies. First, they applied the concept of Adaptive Mesh Refinement [24] 

(AMR) in order to improve the accuracy in critical regions without adversely affecting the 

efficiency of the numerical integration scheme. The use of AMR effectively allowed the 

clustering of blocks of computational grids as the solution process evolved only in the re-

gion that they were needed (and not clustering entire grid lines), by using Richardson-type 
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extrapolation error estimates to identify regions of large errors and adding grid blocks in 

those regions. An example of AMR is Figure 5 which represents a simple adapted grid for 

a supersonic wedge flow with four levels of adaption. As can be seen in the figure, there 

are more control volumes where gradients are to be expected, specifically along the sur

face to capture the geometry and along the oblique shock. In regions with small gradients, 

there is a lower density of control volumes. Also notice that in this figure there is at most 

a 2:1 ratio at the refinement interface, which is typical of most A MR schemes, in order to 

promote stability in the numerical schemes. 

One problem with Berger and LeVeque's original implementation of AMR on Cartesian 

grids was the problem of state variable conservation during the AMR stages. They carefully 

constructed conservative schemes for the inter-grid transfer to address the problem. They 

also used the idea of wave propagation and directional differencing [89] in order to increase 

the stability near the small boundary cells. This helped keep the CFL of the boundary cells 

reasonably close to the CFL of the flow cells and allowed larger time steps to be taken with 

the solver remaining stable. 

Several researchers have extended Berger and LeVeque's research into areas such as 

multigrid Cartesian grids [55, 56], higher accuracy flow solvers using more sophisticated 

flux approximations [45, 46], time-accurate unsteady flows [35], and a front tracking AMR 

scheme [126, 127] that attempted to track the discontinuities (such as shocks) as the so

lution evolved in order to provide more accuracy in the refined mesh calculations. Quirk 

had developed an AMR based software architecture called AMRita [136, 137], a software 
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Figure 5: Example Adaptive Grid for Supersonic Wedge Flow 

system for automating numerical investigations, that attempts to abstract out much of the 

tedium associated with developing and testing CFD software. 

Advanced Geometry Modeling 

Melton et al. [ 1 05] developed techniques for handling more complex surface geometries us-

ing Cartesian gridding techniques. They extracted the surface geometry from CAD/CAM 

compatible geometry definitions and used higher-order surface modeling techniques to de-

termine the cut cell geometries. This provided more accurate solid surface reconstructions 

which resulted in more accurate solid surface boundary conditions. They also addressed 

surface refinement issues that arise from the intersections of arbitrary geometries and the 

computational cells. When an arbitrary geometric surface (or set of surfaces) intersected the 
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computational volume, multiple intersections could occur within one cell or multiple inde

pendent computational regions could be created. They developed an automated technique 

that detected these cases and refined these regions with little or no user input. The result of 

this effort was an application that could extract surface geometries from CAD/CAM mod

els, generate the computational grids, and solve the fluid dynamics equations. Extensions of 

this effort have been done by Melton et al. [104] with improvements to the grid generation 

algorithms as well as the geometry refinement schemes and the geometry representations. 

As an extension to the work performed by Melton and his colleagues, Aftosrnis et 

al. [3, 4, 22] developed a Cartesian grid application (CART3D) that provided a number 

of improvements over the original work. Their major focus was on providing accurate and 

robust resolution of the cut cell geometries and high performance improvements to the solu

tion methodology. Their work on the cut cell geometries dealt with providing a systematic 

way of addressing and handling the variety of cut cell types that could occur when a surface 

with an arbitrary number of facets intersects a computational cell. Along with automatic 

handling of cut cells, split cells and merged cells, they also applied a sub-cell resolution 

procedure to the solid surfaces of the cut and split cells in order to improve the accuracy 

of the surface modeling. This entailed generating a normal for each surface patch from 

the original geometry definition that intersected the control volume. In addition, a surface 

normal agglomeration technique was developed for the cut and split cells could be used 

in order to improve the computational efficiency of the code without sacrificing significant 

accuracy. A comprehensive description of this research can be found in reference [2]. 
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In an effort to handle more complex geometries in computational aeroacoustics config

urations, Kurbatskii and Tam [84] developed a method of treating solid surfaces in high

order numerical schemes without loosing the acoustic wave speed accuracy associated 

with the less dispersive and dissipative high-order schemes in computational aeroacous

tics. Their research utilized a uniform two-dimensional mesh and solid boundary ghost 

cells with coarseness limitations imposed by the body surface curvature that ensured sim

ple cut cell geometries. They used the body curvature to develop accurate hody pressure 

values that could be applied to linear surface approximations and still retain the desired 

accuracy. In order to achieve this accuracy, a linear system of equations on the order of 

the number of surface cells needed to be solved in order to generate the required ghost cell 

pressures which could cause a negative impact on the overall performance of the scheme. 

Another research direction that evolved from the Cartesian grid research was the study 

of unsteady flows, especially about moving bodies. Chiang et al. [35] were one of the 

first researchers to study the unsteady Euler equations on Cartesian grids and provided an 

analysis of two techniques to adequately capture the unsteady effects: (1) small grid cells 

and (2) high-order accurate schemes. Bayyuk et al. [19] addressed the issue of moving and 

deforming bodies by defining the motion of the body through the pre-existing Cartesian 

grid in two dimensions with discussions on the extension to three dimensions, without 

results, by Lahur and Nakamura [86]. As the body moved, mesh refinement occurred in 

order to capture the surface geometry in its new location. Cell merging occurred when the 

body cut a computational cell into a volume that fell below some specified threshold, as 
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well as when cells were just being exposed due to the body motion. One drawback to this 

procedure was that there was a limit placed on the time step that depended on the smallest 

cell size and the body motion such that the body could not sweep through an entire volume 

in one time step. Yang et al. [189] developed a similar solver from an existing stationary 

body solver [188] and also encountered the time-step limitation due to the body sweeping 

over an entire cell. 

One final approach to solving the moving body problem was presented by Munnan et 

al. [115] in which an arbitrarily large time step is allowed by using a space-time conser

vation approach [88, 194] to account for the effects of the body sweeping entirely through 

a control volume in one time step for a three-dimensional configuration. This approach 

exactly satisfies the geometric conservation laws for most cells in the flow at each time step 

with some cells only approximately satisfying the geometric conservation laws. 

Navier-Stokes Modeling 

Numerical solution of the Navier-Stokes equations has been the focus of many researchers 

throughout the history of Computational Fluid Dynamics (CFD), and a number of differ

ent approaches have been utilized. Generally, the attempts fall into three categories: (1) 

solutions of the full Navier-Stokes equations over the entire computational domain, (2) 

solutions of approximations to the Navier-Stokes equations over the entire computational 

domain and (3) solutions of approximations to the Navier-Stokes equations in a subdomain 

of the entire computational domain. 
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Prior to the 1980's, solution of the full Navier-Stokes equations over the entire com

putational domain was normally considered outside of the available computational re

sources [134, 152]. Thus early research into generating computational solutions to the 

Navier-Stokes equations primarily focused on techniques (2) and (3). These methods will 

be reviewed on page 11 and page 15 respectively, followed by a discussion of fully resolv

ing the viscous terms in the N avier -Stokes equations for Cartesian grids on page 17. 

Navier-Stokes Approximations 

There are two approximation techniques of interest to Cartesian solutions to the Navier

Stokes equations. The first is the thin-layer Navier-Stokes approximation that has only 

limited use in pure Cartesian formulations, but can be useful in the chimera or hybrid 

schemes discussed later. The second is the vorticity confinement technique that uses an 

extra force term in the momentum equations to prevent the numerical dissipation of vortices 

and model the vortical regions created by the boundary layers in the flow. 

Thin-Layer Navier-Stokes Approximation 

The thin-layer approximation to the Navier-Stokes equations was developed from a 

dimensional analysis of the governing equations for high Reynolds number flows. By 

eliminating terms that produced higher order effects, sufficiently accurate solutions to the 

Navier-Stokes equations could be developed in a reasonable amount of time on the compu

tational hardware available. Ultimately, this effort resulted in a solution that resolved the 

viscous stresses normal to the body (or bodies) in a thin region while the other directions 
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used the inviscid fluxes only. 

Steger [152] developed the thin-layer Navier-Stokes approximations as a means of ob

taining solutions to three-dimensional flows with high Reynolds numbers, while at the 

same time Baldwin and Lomax [16], as well as Pulliam and Steger [134], demonstrated 

similar ideas for high Reynolds number turbulent flows. The general reasoning behind 

this scheme was that the current computational power and memory requirements would 

not allow adequate grid resolutions in all coordinate directions, so a dimensional analysis 

was performed on the full Navier-Stokes equations to try to eliminate terms. This analysis 

showed that in order to adequately resolve the viscous terms along the body, tJ ( ffe) grid 

spacing would be required in each direction. This level of clustering would require a pro

hibitively large amount of CPU time and memory. In high Reynolds number viscous flows, 

the viscous terms were dominated by the wall normal derivatives [186], thus the thin-layer 

Navier-Stokes approximations neglected all viscous terms that were not in the surface nor

mal direction. Then, by generating a body-oriented structured grid, the thin-layer terms 

could easily be retained by eliminating the terms in the coordinate direction(s) along the 

body surface in the viscous flux calculations. This resulted in a thin, viscous boundary 

layer around the solid surfaces that adequately resolved much of the viscous effects in the 

flow, including separation points, while obtaining results in a reasonable amount of time 

from the computational hardware available. 

This research resulted in the computational packages ARC2D and ARC3D [132] that 

have been in use for many years [133, 154] and have been the basis of other efforts, see 
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references [120] and [149] for examples. Additionally, modeling such effects as thermal 

boundary layers and isothermal walls were not explicitly precluded by the thin-layer ap

proximations, as long as these effects were dominated in the body normal direction (as they 

typically were for the cases being studied at the time), however capturing flow phenomena 

such as leading edge effects and separated regions was beyond the capacity of this approach 

due to the high streamwise viscous stresses present. 

Vorticity Confinement 

The vorticity confinement technique has its origins in the front tracking schemes, such 

as shock capturing methods, that attempt to track a sharp discontinuity by using Lagrangian 

elements in a flow field of an Eulerian based solver. The vorticity confinement approach, 

developed by Steinhoff and others[51, 58, 73, 112, 155, 156, 185], uses the fact that the 

vortical regions, from shed vortices and the boundary layer, in high Reynolds number flows 

are very small. 

For the shed vortices, a forcing function in the direction normal to the vorticity is ap

plied to the momentum equations in these regions to convect the vorticity back to the cen

troid of the cell. This technique has been found to be quite useful for capturing shed vor

tices as they travel long distances through inviscid flow fields without distorting the original 

vortex strength direction. 

For the boundary layer regions, a forcing function related to the distance of the cell to 

the wall is used to advect the vorticity back to the surface. In order to enforce the no-slip 

boundary condition, the domain inside the body and on the surface is forced to have zero 
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velocity. 

The current implementations of vorticity confinement have been limited to uniform 

Cartesian grids and body conforming grids. Attempts to extend this technique into more 

irregular mesh topologies have had limited success because of the dependency of the con

finement parameter on the grid cell size. Without varying the confinement parameter, Mu

rayama and Nakahashi [114] found premature vortex bursting on a delta wing for an un

structured grid formulation. Lohner and Yang [93] have recently attempted to address the 

confinement parameter limitation with a dimensional analysis of the confinement parameter 

and have demonstrated some favorable results. 

This technique allows the use of much coarser grids to model high Reynolds number 

flow fields that have compact vortices. However, it does not capture any of the details of 

the interior of the vertical regions as it only models these regions as thin lines. Further, 

care must be taken in setting the confinement parameter in order to avoid the problems 

discussed by Dietz et al. [51] where the vortical regions become unphysical. There is 

concern [93] that the vorticity confinement, which is introduced as a force term in the 

momentum equations, might alter the local axial and tangential momentum. However, this 

is a promising approach and warrants further study. 
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Viscousllnviscid Coupling 

The other main technique used to provide approximate solutions to the Navier-Stokes 

equations was a technique of coupling an inviscid solver for the majority of the computa

tional domain with a solver that captured the viscous terms for the regions near the solid 

surfaces (or other high viscous regions). The justifications for this technique were similar to 

those presented for the thin-layer Navier-Stokes solutions, i.e. high Reynolds number flows 

confine the viscous effects to small regions where high gradients occur (such as boundary 

layers and shear layers). 

Carter [30, 31] and Vatsa and Carter [168], and later Van Dalsem and Steger [162] 

as well as Kaups and Cebeci [81], were some of the first researchers to develop the vis

cous/inviscid coupling techniques for CFD applications. Their solution procedure started 

with the development of boundary layer equations for their solver configurations using stan

dard dimensional analysis techniques which resulted in the familiar boundary layer equa

tions [186]. The solution procedures for the boundary layer equations mainly focused on 

inverse boundary layer algorithms in order to model small separation regions that the direct 

boundary layer algorithms cannot handle due to the singularity at the separation point [7]. 

These equations were typically solved on body-oriented structured grids that captured the 

entire boundary layer. For the inviscid calculations, early research focused on solving the 

potential equations using body-oriented structured grids that overlay the boundary layer 

grids. Later efforts focused on using the Euler equations as the inviscid model [138, 34] as 

well as solving the Euler equations on unstructured grids [131]. 
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Modeling the viscous/inviscid interaction was done by using the transpiration velocity 

concept [162] or by using the boundary layer displacement approach [34]. The transpiration 

velocity concept used the velocity components as a means of vorticity transport from the 

viscous regions to the inviscid regions. This method imposed a requirement on the inviscid 

mesh that it be fine enough to accurately resolve the vorticity near the surface [154]. The 

velocity differences were then applied to the inviscid velocities which resulted in a blowing

type surface boundary condition [33]. The boundary layer displacement approach used the 

inviscid solution to calculate the boundary layer thicknesses and then modified the solid 

body geometry in the next step of the inviscid solver to include the calculated boundary 

layer thicknesses. It is worth noting that neither the transpiration velocity approach nor 

the boundary layer displacement approach paid any significant attention to the thermal 

boundary layer effects as this research was mainly focused on the subsonic to transonic 

regime. 

Drela and Giles [53] extended the viscous/inviscid solution concept by developing 

a formulation to handle low Reynolds number flows. Additionally, they strongly cou

pled the two solution regimes by solving the entire nonlinear equation set via a global 

Newton-Raphson iterative method. The resulting code was called ISES (and its succes

sor MISES [193]) and has been used extensively in aerodynamic design studies such as in 

reference [147]. 
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Navier-Stokes and Cartesian Grids 

While the majority of research into Cartesian grids has focused on solving the Eu

ler equations in two- and three-dimensions, there has been some notable efforts into the 

utilization of Cartesian grids to solve the Navier-Stokes equations. These efforts have fo

cused on either solving the full Navier-Stokes equations using either the immersed bound

ary methods [64, 110, 128], volume-of-fluid methods [12, 67, 70], reconstruction based 

schemes [95, 190] or cut cell based techniques [38, 59, 178] or coupling body-fitted grid 

solutions of the Navier-Stokes equations with a Cartesian background grid [13, 21, 48, 55, 

79]. The grid coupling technique has its foundations in the idea of the viscous/inviscid 

coupling discussed on page 15. 

Note that the other early approach to the Navier-Stokes equations was the thin-layer 

approximations discussed on page 11 and has found little use in Cartesian grids because the 

thin-layer Navier-Stokes approximations relied on the grid being body oriented. Cartesian 

grids do not, in general, provide grids that are body aligned, however some work has been 

performed applying the thin-layer techniques to Cartesian grids [59]. Hybrid methods do 

exist which couple a body oriented grid solving the thin-layer Navier-Stokes equations with 

a background Cartesian grid [103]. 

Immersed Boundary Methods 

The immersed boundary method was originally developed by Peskin [128, 129] for 

heart valve modeling using the Navier-Stokes equations in two dimensions. The heart 
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valves were modeled as flexible surfaces that can propagate with the flow, subject to certain 

limitations such as hinge points or rigid regions on the surfaces. Instead of remeshing the 

computational domain as the surface is propagated, the cells that contain the surface have 

a body force added to their momentum equations that represents the reactive force that the 

body is applying to the fluid in response to the fluid surface pressure and shear stress. 

Goldstein et al. [64] applied Peskin's work to incompressible, solid body flows using a 

force feedback approach. In this formulation, the surface force takes the form of a feedback 

loop function that acts on the surface cell to bring the surface velocity to zero by adjusting 

the applied forces appropriately. This approach requires an extremely small time step (CFL 

around 1 o-3) in order for it to remain stable. 

The small time step limitation of Goldstein et al. was addressed in the work by Mohd

Yusof [110, 111]. Here, the incompressible Navier-Stokes equations are solved using 

a pseudo-spectral method. The applied body force is developed by utilizing the time

discretized Navier-Stokes equations on the surface. In order to generate a smooth no-slip 

boundary condition, forces are also applied to the cells adjacent to the surface. 

In order to more accurately determine the appropriate surface forces to add to the mo

mentum equations, Fadlun et al. [57] developed a second-order boundary interpolation 

scheme for three-dimensional incompressible flows by using linear interpolation to recon

struct the state information at the surface. This approach resulted in the use of larger time 

steps (CFL around 1.5) and better accuracy at the surface. Further advances by Lai and 

Peskin [87] developed second-order methods for moving membranes. Additionally, Kim et 

18 



al. [82] developed a second-order method with both momentum and mass sources in order 

to improve the overall accuracy of their results. 

While these schemes handle the Navier-Stokes equations on Cartesian grids, they all 

suffer from numerical stability problems that typically require numerical diffusion. Also, 

the surface is not sharply resolved, and is typically smeared between 2 or 3 cells. This can 

cause problems when flow details are needed near the surface. 

Volume of Fluid Methods 

Another approach to solving the Navier-Stokes equations on Cartesian grids is the vol

ume of fluid method. In this method, a scalar transport equation is solved in addition to the 

Navier-Stokes equations. The scalar is a value between 0 and 1 that represents the volume 

fraction that the fluid (or gas) occupies in that cell. The typical use of this scheme is free

surface flows, where the scalar represents the amount of the cell that the fluid occupies, and 

interfacial flows, where the scalar represents the volume fraction that a species occupies in 

the cell. 

Hirt and Nichols [70] originally developed this method as part of an incompressible 

free-surface Navier-Stokes solver. In order to retain the incompressible invariance in the 

transport equation, strict mass conservation was required of the numerical solver. They 

also used a first order accurate surface reconstruction technique which causes problems 

resolving the interface boundaries. 

Ashgriz and Poo [12] were one of the first researchers to d(welop a piecewise linear 

interface construction technique to better resolve the interface boundaries. This is the most 
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popular technique currently in use for interface reconstruction. Almgren et al. [6] used the 

volume of fluid technique, coupled with a finite volume solver, to model the solid surface 

in incompressible viscous flows. Henderson et al. [67] and later Miller and Puckett [108] 

have also extended the volume of fluid technique to compressible flows. 

The volume of fluid schemes typically work well when the interface curvature is small 

with respect to the surface modeling. Otherwise, artificial discontinuities can develop as 

well as the inability to resolve the small scale features at the interfaces. Additionally, 

without accurate propagation of the scalar transport equation and sophisticated schemes to 

resolve the interface boundaries, artificial mixing can occur. Finally, problems can develop 

if there is no limiter placed on the scalar transport propagation to strictly enforce the scalar 

values in the range of 0 to 1. Scardovelli and Zaleski [145] provide a nice review of the 

application of the volume of fluid technique to free-surface and interfacial flows. 

Reconstruction Schemes 

Another class of schemes used to solve the Navier-Stokes equations on Cartesian grids 

are the reconstruction based schemes. These have been proposed by Ye et al.[l90, 191] and 

Majumdar et al.[95]. These schemes are all based around the idea of interpolating the state 

information to the nodes in the computational domain around the surface. 

Ye et al. [190, 191] have developed a two-dimensional incompressible Navier-Stokes 

equation solver. The solver use the cell merging technique to eliminate any surface cells 

that are smaller than 50% of their full size. Then, the state information for the faces of 

the new cell are found by utilizing a linear-quadratic two-dimensional interpolation from 
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the surrounding cells. This technique results in a slow convergence of the pressure Poisson 

equation and requires acceleration techniques. This technique has been extended to moving 

boundaries by Udaykumar et al. [161]. 

Majumdar et al.[95] have developed two-dimensional, turbulent Reynolds Averaged 

Navier-Stokes solver on uniform Cartesian grids. This solver uses interpolation polynomi

als in one- and two-dimensions to reconstruct the state of the cells that are inside the body. 

Thus, the solution process is performed over uniform cells at the surface. The interpolation 

process can cause numerical instabilities due to the negative coefficients that can arise with 

certain interpolation polynomials. 

Cut Cell Based Methods 

Fryrnier et al. [59] developed the first work in the application of the full Navier-Stokes 

equations on Cartesian grids using the cut cell approach. Their work was limited to two 

dimensions and laminar flows. The solution procedure was a straight-forward finite-volume 

approach with the Cartesian grids clustered using grid line clustering and not AMR. Their 

results demonstrated strong dependencies on the smoothness of the surface grid where non

smooth surface grids produced non-smooth skin-friction and surface pressure values. 

A large number of standard viscous flux formulations for cut cell based schemes were 

analyzed by Coirier [38, 39] and Coirier and Powell [40, 41] to ascertain their accuracy 

and positivity characteristics. These viscous flux formulations fell into two categories: (1) 
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Green-Gauss reconstructions where the divergence theorem was applied to cells neighbor

ing the face that the flux was being calculated to build the integration path and (2) polyno

mial based reconstructions that used a Lagrange polynomial and a set of support cells to 

interpolate the state variables where they were needed with the polynomial being differen

tiated to obtain the needed gradients. This research focused on the accuracy of the various 

formulations via a standard Taylor series approximation analysis and on the positivity of 

the formulations. The positivity is a measure of how well the discretization satisfies the 

local maximum principle that holds for all homogeneous, second order partial differen

tial equations (PDEs). The local maximum principle simply states that the solution to a 

homogeneous, second order PDE at one point is bounded by the values of its neighbors. 

It is a statement of the diffusive nature of second order PDEs, and thus it is a necessary 

requirement for any discretization of a homogeneous, second order PDE. 

The results of this effort were that all of the schemes demonstrated (to some degree) 

a competition between the accuracy of the scheme and the viscous stencil positivity for 

non-uniform cells, i.e. any attempt to improve the accuracy/positivity adversely effected 

the resulting positivity/accuracy. Thus, in order to achieve a higher order of accuracy, a 

scheme must be used that does a poor job of preserving the positivity, and vice versa. 

In fact, some of the schemes that were analyzed actually grid divergent, demonstrating a 

truncation error of tJ G). 

The resulting numerical analysis was performed for low to moderate Reynolds number 
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flows using a diamond-path Green-Gauss reconstruction stencil, due to its favorable posi

tivity characteristics, and a quadratic polynomial interpolation scheme, due to its guaran

teed consistency characteristics. Cases where the surface was predominantly aligned with 

the coordinate directions showed excellent agreement with theoretical values, but when the 

body was not aligned with the coordinate directions (thus, the surface had cut cells of vary

ing volume fractions of the uncut cells) large oscillations occurred in the results due to the 

sensitivity of the viscous stencil to the grid smoothness (for both cut cells and coarse/fine 

cell interfaces). This explains the non-smooth skin friction and surface pressure values 

in the Fryrnier et al. results mentioned on page 21. Another impediment to utilizing this 

scheme for high Reynolds number flows was the large number of control volumes needed 

to adequately resolve the viscous regions. Even with AMR this became prohibitively large 

for even moderately complex geometries [178]. 

In addition to the viscous flux formulation results, AMR was applied to Coirier's so

lution strategies with a positive effect, but without fully eliminating the viscous stencil 

sensitivity on the cut cell smoothness. Another approach that was discussed was the use 

of embedded, body oriented grids to capture the boundary layers, but no numerical results 

were given. This topic of embedded body oriented grids will be discuss further on page 24. 

Delanaye et al. [ 49] proposed a fix to the viscous stencil positivity problem by using 

a modified diamond-path Green-Gauss reconstruction stencil that adjusts the shape of the 

stencil to a more uniform shape. The state information at these points is then calculated 

by using a linearity preserving, pseudo-Laplacian interpolation algorithm by Holmes and 
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Connell [71]. While this technique was applied to a hybrid grid (a discussion of this type 

of gridding to follow on page 28) in two-dimensions, this scheme appears to be applicable 

to three-dimensional, pure Cartesian meshes. 

Wang and Chen [178] developed a Cartesian grid approach to the Navier-Stokes equa

tions that attempted to capitalize on the anisotropic nature of the viscous effects by cre

ating anisotropic cells that can be refined in the direction(s) that the viscous effects were 

most dominant. This technique worked well when the direction of the dominant viscous 

stresses were aligned with the coordinate directions as in a fiat-plate, thin wing, or similarly 

shaped body where the majority of its surfaces were coordinate aligned. Effective use of 

anisotropic refinement further required that the dominant flow direction must be aligned 

with a coordinate direction (and preferably in the same coordinate direction as the body). 

While this effort attempted to solve the problem of having a large number of computational 

cells, its effectiveness was limited to a small set of general configurations due to the need 

for favorable flow and body geometry configurations. 

Chimera Grid Schemes 

The use of a collection of grids to cover the computational domain is known as chimera 

gridding. Typically, a body-oriented structured grid is used around each component of 

the solid surfaces. Each of these structured grids are then overlayed onto a background 

Cartesian mesh. Figure 6 shows an example of a two-dimensional chimera grid collection 

around a simple curved surface. Notice that there is no simple mapping of cells in the body 

oriented grid and the background Cartesian grid. This feature is one of the drawbacks to 

24 



chimera gridding schemes, but it is only a performance penalty when the grid needs to be 

generated during initialization and after any AMR processes. 
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Figure 6: Example Chimera Grid Near Curved Surface 

The development of chimera gridding schemes were not solely founded in the vis-

cous/inviscid coupling problems, but chimera gridding schemes were applicable to that use. 

Throughout the history of chimera gridding there have been a number of motivations for 

their investigation such as increasing grid point resolution near solid bodies [13], overcom-

ing structured gridding issues associated with modeling complex geometries for the full 

potential equation [14, 15, 55, 153] as well as the Euler equations [21, 109, 56], solving 

moving body problems [90, 100, 101] and resolving the boundary layers in Navier-Stokes 

calculations [78, 79, 180, 181, 182]. 

Atta [13] developed one of the first uses of chimera grids for the full potential equation 
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in two-dimensions using a finite difference formulation. A uniform Cartesian grid was 

used for the background grid and a body-fitted 0-type structured grid was used around 

the body. The two grids were coupled via boundary information exchanges during the 

iteration process. First, the solution around the body fitted grid was converged through an 

outer iteration using a Dirichlet boundary condition imposed on the outer boundary. Next, 

the outer grid was converged using a Neumann boundary condition on the inner boundary, 

utilizing the solution information from the body solution. This information was then used to 

converge the body fitted grid once again. This cycle continued until the solution approached 

steady-state. This procedure required each grid (body and background) to have at least 

one complete cell inside the domain of the other, with the inner grid having an extent of 

between 1 and 3 chord lengths in all directions. Significant effort was needed to minimize 

the overlapping region in order to achieve optimal performance. Atta later extended this 

methodology to three-dimensions [14] as well as more complex configurations [15]. 

Steger et al. [153] developed a finite-difference chimera grid scheme that could han

dle a much larger variety of configurations compared to Atta's work. While limited to 

two-dimensions, they presented results for an airfoil-flap, cascading blades, a non-lifting 

bi-plane and an inlet with center body configuration. All of these configurations were 

handled automatically by their solver with little changes to the standard finite-difference 

formulations. State variables were exchanged between grids through interpolations which 

can cause performance penalties in the initialization stages when the connectivity is being 

constructed, but they addressed this by using the "stencil-walk" search pattern, where the 
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cells that are used for the interpolation of one cell are assumed to be close to the cells that 

are needed for the interpolation of that cell's neighbors. 

A direct extension to the work of Steger et al. was developed by Benek et al. [21], 

named OVERFLOW, which applied chimera grid techniques to three dimensions and arbi

trary body configurations as well as complete aircraft configurations. Meakin [102, 103] 

developed extensions that applied existing AMR techniques to the background meshes 

in order to resolve the off-body aerodynamics effects for Euler and Navier-Stokes equa

tions. Additionally, Meakin developed techniques to apply AMR to unsteady, viscous, 

three-dimensional flows. In handling the viscous terms efficiently, the body-oriented grids 

were sized to capture the boundary layers, while the Cartesian grids were used for most of 

the computational domain. This resulted in an operation count drop of 2.5-6.5 with respect 

to the general curvilinear formulations (depending on whether the Euler, thin-layer Navier

Stokes or full Navier-Stokes equations were used). To further improve the handling of the 

viscous terms, the thin-layer Navier-Stokes equations could be used on the body-oriented 

grids since they were aligned with the dominant viscous stresses. This work provided 

the potential for significant floating point operation count reductions which resulted in an 

efficient solution technique. An excellent description of the modeling of a complex config

uration was performed by Pearce et al. [125] wher~ OVERFLOW was used to model the 

complete Space Shuttle Launch Vehicle. 

Other interesting applications of chimera gridding was the use of all Cartesian meshes 

in the chimera grids by Mitcheltree et al. [109], and the use of multigridding techniques by 
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Epstein et al. [55, 56] as well as Kao et al. [78]. 

Hybrid Grid Schemes 

Another approach that was related to the chimera grid approach was the use of un-

structured grids between the body surface and the background Cartesian mesh, as opposed 

to the overlaying of these grids. These schemes were usually referred to as hybrid grid 

techniques. Figure 7 demonstrates an example hybrid grid around a curved surface in two 

dimensions. 
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Figure 7: Example Hybrid Grid Near Curved Surface 

One application of a hybrid scheme known as SPLITFLOW, by Karman [79] and en-

hanced by Domel and Karmen [52], used Cartesian grids for the majority of the computa-

tional domain, and prismatic grids to resolve the boundary layers. Standard Cartesian grid 

cutting techniques were used at the interface between the prismatic grids and the Cartesian 
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grid. The prismatic cells were grown from the surface triangulation using a marching layers 

technique [77]. Delanaye et al. [49] addressed significant difficulties that could arise in the 

prismatic-Cartesian technique near convex regions, overlapping regions, and other regions 

where the prismatic marching technique needed to be modified to create viable grids. An

other similar effort to SPLITFLOW was performed by Wang [180, 182] except that instead 

of body oriented triangles or prismatic cells, body oriented quadrilateral cells were used to 

better capture the anisotropic nature of the viscous boundary layer regions. 

Other Related Method 

Similar to the reconstruction method is the class of finite element solution techniques 

called element-free Galerkin methods. Originally developed by Belytschko et al. [20] for 

elasticity and heat conduction problems, it is currently being investigated for its applicabil

ity to fluid dynamics [192] because of its automated handling of grid generation. The basic 

premise of this method is the use of polynomial curve fits to approximately represent the 

data surrounding the node of interest. Typically, a least-squares error minimization is used 

due to the larger number of data points surrounding the node than the number of unknowns 

in the curve fit. Most implementations demonstrate oscillations near sharp gradients ( espe

cially with higher-order interpolation functions) with more research needed to developing 

effective limiters. 

Another scheme related to the reconstruction method that is the gridless method origi

nally developed by Batina [18]. This method uses a cloud of points to reconstruct a poly

nomial curve fit (similar to the element-free Galerkin method) using a least-squares error 
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minimization. These curve fits are then used to calculate the derivatives required to solve 

the Navier-Stokes equations in differential form. The number of calculations per node 

is higher than for other techniques due to the large number of least-squares fits that are 

required. Unfortunately, this scheme does is not conservative and requires numerical dis

sipation in order to obtain a solution. Other researchers have extended this work [91], but 

without addressing the conservation problem. 

Parallelization Efficiency Approaches 

Parallelization efforts throughout the history of CFD have been strongly influenced by the 

computational hardware available to the researchers. In the early years of CFD, the domi

nant hardware available to researchers was SIMD (Single Instruction Multiple Data) archi

tectures. These were also known as vector based architectures, and they used long vectors 

of data (with the size depending on the size ofthe computer's pipeline) and performed the 

same operation on each data item in the pipeline in a single CPU clock cycle. Different 

operations could be chained together to create an assembly line of operations without hav

ing to use excess cycles to fill the pipeline caches on each arithmetic unit. Thus, it took 

the same amount of time to perform 64 multiplies as it would 1 multiply on a vector ma

chine with a pipeline size of 64 or larger. While the SIMD architectures provided excellent 

parallelization potential on problems with long vectors of data, they became of limited use 

to current large CFD applications because of the expensive memory that was required for 

these architectures as well as the rise of other less costly architectures [96]. 
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The main parallelization architectures that took the place of the SIMD architectures was 

the MIMD (Multiple Instruction Multiple Data) architectures. These architectures utilized 

multiple processors to process the data in parallel using possibly different sets of computer 

instructions on each piece. Thus, it was possible to perform two independent tasks concur

rently and not be restricted to the vector paradigm in the algorithm development as in the 

SIMD architectures. 

SIMD Parallelization 

Most early CFD work on SIMD architectures, such as [23, 105, 152] focused on achiev

ing results quickly without quantitative analysis of the parallelization performance. Discus

sions typically provided wall clock results for the cases demonstrated, but no comparison 

was usually offered between scalar and vector runs nor was there any comparison between 

various sized pipelines. Heller [66] provided a table of selected timings for common op

erations on the CDC STAR SIMD architecture that provided useful timing information 

for predicting performance characteristics for a given set of operations on a data vector. 

References [132] and [175] provide additional information about vectorization and how to 

prepare code for vectorization. 

MIMD Parallelization 

MIMD architectures are generally split into two classes depending on the connectivity 

used between processors. The first is the shared memory based architectures where all of 

the memory is available to each processor in one common address space. shared memory 
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architectures usually consist of a number of CPUs connected to a common block of mem

ory that was addressable to all processors. Each processor may also have its own separate 

memory (such as on die caches or memory modules separate from the common banks), but 

that memory was not part of the shared memory collective. Most current shared memory 

architectures provide a hierarchy of physical memory locations the have varying access 

timings such that there is a certain amount of locality associated with memory accesses. 

These (trchitectures, known as cache-coherent Non-Uniform Memory Architectures or cc

NUMA, require the application to address this memory locality issue in order to obtain 

maximum performance. Parallelization in these environments can efficiently be performed 

using common programming techniques such as shared memory structures and light-weight 

threads to perform the parallel tasks on separate processors with little overhead involved in 

exchanging information between the parallel tasks. 

The other MIMD architecture is the distributed memory based architecture where each 

processor has its own local memory address space that is not shared with the other proces

sors. Distributed memory architectures consist of a collection of CPUs that each contain 

their own memory modules with no direct connectivity to the other CPUs memory, and thus 

the memory of another processor is not directly addressable across the processor boundary. 

This architecture does not allow for simple, efficient implementations of the same parallel 

programming techniques typical of shared memory architectures. Specifically, there is no 

simple way of handling shared memory structures, nor is there a way of efficiently spawn

ing threads on separate processors and keeping all of the shared data synchronized between 
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each processor's memory. Thus, information to be shared between parallel tasks needs to 

be explicitly exchanged between the tasks in a much more controlled and orderly fashion. 

Frequently, this is handled by using standard client-server communication paradigms such 

as message passing. 

Heller [66] and Voigt [175] provided an excellent discussion of general paralleliza

tion schemes that could be utilized in MIMD architectures, while Venkatakrishnan [172] 

provided an informative section on the parallelization issues associated with MIMD archi-

tectures and CFD. Wang [179] provided a comparison of the parallelization performances 

of several systems including Cray T3D and T3E [43] shared memory architectures and 

a Beowulf [157, 80] distributed memory system with results that indicated comparable 

speedups for all architectures as long as the amount of communication was much less than 

the amount of computation. 

Parallelization Libraries 

In recent years, three major standard libraries have been used extensively in the par

allelization of CFD applications on MIMD architectures, OpenMP [121, 122], MPI [106, 

107] and PVM [61]. While all three libraries provide unique benefits, only a comparison 

between OpenMP and MPI will be presented. 

OpenMP is a parallelization library that was specifically designed for shared mem

ory architectures. It allows for incremental parallelization of existing applications and 

utilizes many shared memory features to optimize its performance (such as shared mem

ory information exchange, light-weight threads, and operating system level signals and 
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semaphores). It provides coarse grain as well as fine grain parallelization mechanisms, and 

it is compatible with FORTRAN, C, and C++ programming languages on a variety of hard

ware and operating system combinations. However, it currently can not efficiently utilize 

distributed memory parallel hardware because of its intricate dependency on the shared 

memory paradigm. Thus there is an entire class ~f parallel hardware that the OpenMP 

based applications can not support easily. 

MPI is a parallelization application programming interface (API) that is based on the 

idea of parallel tasks communicating using either synchronous or asynchronous message 

exchanges. MPI can be used in both shared and distributed memory architectures, and 

supports FORTRAN, C, and C++ programming languages on a wide range of hardware 

and operating system combinations. Additionally, MPI does not exclude the use of a het

erogeneous collection of hardware and operating systems, thus it allows for an extremely 

diverse configuration to be utilized in a distributed memory parallel fashion. However, 

the MPI API does not specifically handle such issues as byte-ordering, data representation 

differences, or data sizes, this has to be handled by the application. In a shared memory 

environment, the message passing paradigm creates an added overhead to the parallel task 

communication process due to the need to pack, send, receive, and unpack all information 

exchanges. Most MPI implementations optimize the communication on shared memory 

nodes by replacing the send-receive portion of the message passing operation with the use 

of a common shared memory cache. Additionally, MPI does not provide the same level of 

incremental parallelization that OpenMP provided. Jespersen [76] provided an overview 
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of the message passing schemes needed for OVERFLOW (a large scale CFD application) 

usingMPI. 

Shared Memory Based Schemes 

There are currently two main CPU-memory interconnection schemes that are used in 

shared memory architectures, bus-based and switch-based. The bus-based architecture have 

a relatively narrow bandwidth connection between the CPUs that could easily become sat

urated if too many memory access requests occur. Thus, this architecture is limited in its 

scalability. The other type of interconnection is the switched-based architecture. This ar

chitecture provides more of a matrixed connectivity between the CPUs and the memory 

modules, as well as provides multiple paths for memory accesses to travel and reduces 

the bandwidth limitations seen in the bus-based approach. Reference [123] provides an 

excellent review of these topics. With the increased connectivity speeds of networking 

technologies, research into providing a shared memory interface on top of a distributed 

memory architecture has been performed, see reference [139] for more details. 

The high performance improvements that Aftosmis et al. [2, 3] developed for their 

shared memory based CART3D solver, see page 7 for more information, mainly focused 

on the preprocessing steps that were performed before the actual solution code was run. 

In order to improve the parallelization speedup of their code, they developed a set of cell 

reordering techniques that used a concept called space-filling curves [144] to minimize the 

inter-process communication due to the domain decomposition. The space-filling curves 

also provided an optimal ordering of the data on each node that maximized the on-board 
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cache usage on each processor and were utilized in every stage of the multigrid solution 

cycle, which created slightly more communication overhead, but ensured load balancing 

on all multigrid stages. The other major improvement made was a transformation of the 

adaptive refinement techniques from floating point mathematics to integer based mathemat-

ics. This allowed them to utilize geometry calculation techniques from the field of com-

puter graphics [37, 176] to perform the surface intersection tests using only a few machine 

clock-cycles per test. The overall parallelization of their code was done using OpenMP, 

and its performance achieved a nearly linear speedup for up to 64 processors, with parallel 

efficiencies (a measure of how efficiently the solver performed for n processors, defined 

as En= TT.leroc ) of approximately 0.9. An excellent summary of these performance im-
n nprocs 

provements was in references [4] and [22]. 

Another shared memory based CFD solver was an unstructured, three-dimensional tur-

bulent Navier-Stokes solver developed by Mavriplis [99, 96] that used a Runge-Kutta ex-

plicit time solver in a multigrid algorithm. In addition, directional smoothing and coars-

ening techniques were used to address the stiffness associated with high aspect-ratio cells. 

The computational domain was partitioned is such a way as to minimize the inter-grid 

data dependencies in the tri-diagonal solver associated with the directional smoothing. Im-

pressive parallelization speedups were achieved for a variety of parallel architectures using 

the single grid scheme, including parallel efficiencies of 0.9 for a Cray T3E using 1450 

nodes and the ASCI Red machine, with lower efficiencies for V- and W-Cycle multigrid 

cases due to the added communication overhead associated with the lower points per node 
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distribution of the coarser grid. 

Sharov et al. [148] developed a shared memory based CFD solver that optimized the 

performance on cached-based parallel computers by using a variety of grid partitioning 

schemes. In addition to the space-filling curve reordering mentioned above, they also uti

lized a wavefront renumbering [92]. They also paid special attention to the parallelization 

of the GMRES preconditioner in order to optimize performance. Their results indicated 

that the space-filling curves provided the best grid reordering with a parallel efficiency of 

0.5 for 20 nodes on an SGI Origin 2000. 

Distributed Memory Based Schemes 

The interconnection mechanisms for distributed memory architectures typically are 

done by some type of high bandwidth networking, such as 10 Mb, 100 Mb, or gigabit ether

net. In addition to the connectivity bandwidth, there are several interconnection topologies 

that can be employed. There are fully connected networks where every node could di

rectly communicate with every other node (which becomes difficult to maintain with large 

numbers of nodes), as well as hypercubes and meshes where the nodes are conceptually dis

tributed in multiple dimensions and then connected to their nearest neighbors (which limits 

the connectivity for each node, but can require a large number of hops to traverse the entire 

network), and also there are rings and linear arrays where the connectivity to each node 

is limited to 1 or 2 neighbors and traversing the network required sequential hops along 

the nodes (which is a simple network topology, but created only 1 or 2 paths for com

munications to travel and easily leads to network saturation). References [123] and [68] 
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provide more information on these topologies and advances in the distributed memory ar-

chitectures. One final evolving technology is the idea of creating low-latency connectivity 

by providing a near-fully connected network via multiple network interface cards at each 

node [50]. This technique provides extremely high communication bandwidth, but required 

a complicated wiring and network switching scheme. 

Early distributed memory results were from Decker et al. [47]. They provided an excel-

lent discussion of various oarallelization schemes and their efficacy in implicit finite differ-
~ ~ -

ence schemes. They investigated several data distribution schemes for their parallelization 

efforts and provided a timing estimation for each scheme. They also demonstrated paral-

lelization efficiencies of 0.9 for block tridiagonal cases and 0.8 for penta-diagonal cases 

(both using 4, 9, and 16 processors). 

Barth and Linton [17] provided another early distributed memory based parallelization 

effort for an implicit, unstructured, turbulent Navier-Stokes solver in three-dimensions. 

The computational domain used a variety of methods to perform an a priori partitioning 

of the grid into subdomains that reside on each processor [173]. Their results showed that 

the spectral partitioning method provided the best load-balancing, but it required the most 

computational time. They used MPI as their parallelization scheme and provided results 

for the IBM SP2 [151]. Barth and Linton reported acceptable scalability results up to 64 

processors with parallel efficiencies around 0.8 and the total number of iterations required 

for convergence slightly increasing as the number of processors increased. 

More recent work was performed by Wang that utilized GMRES/multigrid schemes [181] 
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to improve convergence, accuracy and distributed memory parallelization speedup on an 

IBM SP2 using MPI. Wang used two different domain decomposition techniques, Recur

sive Coordinate Bisection and Recursive Spectral Bisection [130, 150], and concluded that 

the Recursive Coordinate Bisection method was superior due to its ability to create better 

load-balanced domains quickly at the expense of producing slightly more interface cells 

between domains. Additionally, domain decomposition occurred on the coarsest grid, so 

all finer grids in the multigrid cycle were required to exist on the same processor as the 

parent in order to eliminate the additional communication overhead mentioned above with 

Aftosmis et al. on page 35. Wang's results showed good parallelization performance for 

up to 16 processors (with the parallel efficiencies of 0.7), at which point each processor 

had few computational cells, and the communication costs overwhelmed the paralleliza

tion improvements. Wang also provided a scheme for improving parallelization efficiency 

by using a Communication and Computation Overlap procedure that reordered the com

putational cells such that the interior cells were being computed while the boundary cells 

were being exchanged between processors. This resulted in a savings of 10% to 20%. 

Wu and Zou [187] provided a distributed memory based parallelization scheme for 

the two-dimensional steady and unsteady Euler equations using PVM as outlined in refer

ence [143]. Their work focused on the use of overlapping grids in order to independently 

solve the equations on each grid. This required time-lagging of the overlapping grids, and 

a discussion was presented for the use of various time-lagging schemes. The resulting 

schemes produced reasonable parallelization efficiencies for most time-lagging schemes, 
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with the most consistent results occurring when the entire overlapping grid data was at the 

previous time step, as opposed to it being two time steps back or only lagging the implicit 

portions of their scheme. 

Venkatakrishnan [170, 171] provided an excellent discussion on distributed memory 

parallelization issues for solving the two-dimensional flow problems using explicit and 

implicit formulations. Eidson and Erlebacher [54] presented a detailed description of the 

implementation issues that resulted from solving a periodic tridiagonal linear system (a 

common linear system in CFD) which provided significant implementation details that can 

be of use for other linear system solvers. 

Combined Approaches 

One final MIMD parallelization effort worth noting was, a combination of the shared and 

distributed memory based schemes. Mavriplis [97, 98] developed a combination OpenMP 

and MPI unstructured grid solver [96, 99] based on his research discussed above on page 35. 

This scheme utilized MPI communication techniques for distributed memory paralleliza

tion tasks and OpenMP communication techniques for shared memory parallelization tasks. 

This was an effort to optimize performance on shared memory architectures that resided 

in a distributed memory network. For the architectures that he evaluated, the MPI alone 

and OpenMP alone versions produced similar parallelization results on shared memory ar

chitectures, and the MPI alone version performed better than the hybrid OpenMP and MPI 

version for a cluster of shared memory machines. 
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Scope of Current Work 

As has been mentioned above, the current approaches to modeling the N avier-Stokes equa

tions on Cartesian grids have difficulties near the cut cells. Additionally, the requirements 

put on the numbers of grid cells needed near the solid surfaces in order to accurately resolve 

the viscous effects make the use of traditional solid surface boundary condition treatments 

inadequate to efficiently solve the Navier-Stokes equations on full aerodynamic configu

rations. The grid cell resolution issues also make the use of Cartesian grid schemes on a 

single computer unrealistic for full aerodynamic configurations due to the large numbers 

of computational cells (lO's of millions) and the long computational times (hours or even 

days) required to achieve a practical solution. Thus a strategy must be developed that ad

dresses these major difficulties in Navier-Stokes Cartesian solvers if they are ever to gain 

widespread use. 

This thesis presents two extensions to Cartesian grid solution functionalities. First is 

a scheme for modeling the compressible three-dimensional Navier-Stokes equations in a 

Cartesian solver by using an interpolation based boundary condition for the surface cells in 

order to avoid the non-smoothness associated with the schemes investigated by Coirier [38] 

mentioned above. This technique has the added benefit of removing the cut cells from the 

time step restriction associated with traditional schemes. The second enhancement is a 

distributed memory parallelization port of an existing Cartesian solver in order to utilize 

the solver on a larger variety of parallel processing environments. 
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Traditional boundary condition approaches use Taylor series based approximations of 

one-sided differencing and no-slip boundary conditions for viscous and heat flux calcula

tions. The current research utilizes an interpolation based scheme which utilizes the exist

ing boundary conditions along with the governing equations to update the state vector for 

the computational cells that are on the body surface. This removes the surface cells from 

the finite volume formulation, and thus removes the time step restriction associated with 

the arbitrarily small cut cells. It also provides an alternative to the cell merging techniques 

that other Cartesian schemes use to address the cut cell time step restriction. This scheme is 

implemented within an existing three-dimension finite volume Cartesian grid solver where 

the traditional second order numerical differences are applied to the off-body terms, and 

this new scheme is applied in the solid wall boundary cells. 

To address the increased computational costs associated with Navier-Stokes Cartesian 

grid solvers, Cartesian solvers need to be able to utilize the growing numbers of inexpen

sive commercial off-the-shelf distributed memory parallel computing environments. Using 

standard networking components and techniques, a high-speed distributed memory com

putational environment can be created that competes with more expensive shared memory 

architectures on certain tasks for a fraction of the costs. If implemented properly, Com

putational Fluid Dynamics can be one of those tasks, since interprocess communication 

(IPC) in parallel CFD is a relatively low bandwidth task. The major effort associated with 

utilizing this new parallel environment for existing CFD applications is to take the existing 

shared memory parallel codes and convert them to distributed memory parallel codes. By 
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isolating the IPC tasks from the CFD tasks in the code, identifying similar parallel tasks in 

each paradigm and eliminating the usage of techniques that are exclusive to shared or dis

tributed memory parallelization, an efficient solver has been created that can be utilized in 

a shared or distributed memory environment with little impact on the overall parallelization 

performance. 

In the present thesis, Chapter IT provides a description of the Cartesian solvers that are 

being investigated throughout this research. A detailed description of the newly created 

Cartesian solver NASCART-GT is presented. This is followed by an overview of the exist

ing solver, CART3D, with descriptions of the important functionalities and capabilities. 

Chapter Ill provides a description of the new solid boundary treatment for both inviscid 

and viscous flows. It starts with a description of the limitations of the current procedures 

for viscous flux reconstructions at the solid boundary. It then puts forward an alternative 

treatment of the solid boundary cells that avoids the deficiencies associated with the current 

solid boundary cell treatments. 

The next chapter, Chapter N, describes the development of the parallelization enhance

ments made to CART3D. Specific details are given that describe the changes that were 

made to the existing code as well as the code additions that were made. 

Chapters V and VI provides the results due to these improvements. First, simple ge

ometry results are presented for inviscid cylinder and viscous flat plate flows in order to 

examine the improvements for cases that have well known analytical solutions. Next, sim

ple aerodynamic geometries are presented for transonic inviscid as well as subsonic and 

43 



supersonic viscous flows around a NACA-0012 airfoil. These cases demonstrate the effec

tiveness of these schemes for aerodynamic configurations which have well studied experi

mental and numerical solutions. This is followed by an demonstration of the effectiveness 

of the improvements for a transonic inviscid flow over an ONERA-M6 wing. Finally, re

sults are presented demonstrating the parallelization improvements compared to existing 

shared memory results, as well as parallelization results for a distributed memory architec-

Finally, Chapter VII presents a summary of the conclusions obtained from this research 

as well as some suggestions for future development. 
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CHAPTER II 

EXISTING CARTESIAN GRID SOLVERS 

A summary is presented of the current functionality of the Cartesian solvers that were mod-

ified in order to provide an understanding of the starling point for this research. CART3D 

is a well established Cartesian solver used for a number of problems, see [4] and [124], and 

provides capabilities of solving 3D, compressible, inviscid flows. CART-GT was devel

oped recently and provides capabilities of solving 3D, compressible inviscid flows as well 

as viscous flows with traditional finite differencing of the viscous terms. 

NASCART-GT 

NASCART-GT is an unsteady, three-dimensional Cartesian grid solver of the full Navier

Stokes equations without body forces and a perfect gas thermodynamic model. The Navier

Stokes equations are solved using Roe's approximate Riemann solver coupled with a MUSCL 

data reconstruction technique for the inviscid fluxes and traditional finite differencing of 

the viscous terms. In all this creates a second order spatially accurate scheme. The time 

integration is performed using a Hancock two-stage predictor-corrector scheme which is 

second order accurate in time. In order to accurately capture high gradient regions, a solu

tion adaption scheme is used that is uses the velocity divergence as the coarsening/refining 
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metric. 

Governing Equations 

The three-dimensional Navier-Stokes equations are the governing equations solved in 

NASCART-GT, shown in the integral form in equations (la)-(lc). 

:t j j j p d"f/ + j j p ( v · n) dA = 0 (la) 

cv cs 

:t Jff pv d"f/ + fj pv(v·n) dA =- jj p n dA+ ff [-r]n dA+ jjf p:: d"f/ 
cv cs cs cs cv 

- jjj p [~:~ + dd~ ·r+.Ox(.Qxr)+2.0xv] d"f/ 
cv 

(lb) 

:t Jff pet dJ/ + ff pet (v·n) dA =-fj p (v ·n) dA 
cv cs cs 

+ jj vT [-r] ·n dA+ jj kVT ·n dA (lc) 

cs cs 

where 
V·V 

et = einternal + 2 +h · gEB 

and [ 't" J = 't"yx 't"yy 't"yz 
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With the components of the viscous stress tensor given by 

'rxx = ~Jl (2 au- av- aw) 
3 ax ay az 

'r = ~Jl (2av- au- aw) 
yy 3 ay ax az 

'rzz = ~Jl (2 aw- au- av) 
3 az ax dy (2) 

and h being a height above an arbitrary datum. By allowing no body forces, assuming that 

the elevation changes within the flow field are negligible and assuming the control volume 

is stationary, equations (la)-(1~) become 

;tjjj pd~+ jj p(v·n) dA=O (3a) 

cv cs 

;t]jj pvd~+ jj pv(v·n) dA=- jj pndA+ jj[-r]ndA (3b) 

cv cs cs cs 

:tJjj perd~+ jj per(v·n) dA=- jj p (v·n) dA 
cv cs cs 

where 

+ jj vT [-r]·n dA+ jj kVT ·n dA (3c) 

cs cs 
V·V 

et = einternal + 2 
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with equation set (2) still holding for the stress tensor elements. By defining the state vector 

as 

p 

pu 

U= pv (4) 

pw 

equations (3a)-(3c) can be rewritten as 

:t jjj U d"Y + jj (~1 -~v) ·n dA = 0 (5) 

cv cs 

with the inviscid and viscous fluxes defined as 

pv 0 

puv+ pi 't'x 

grl = pvv+ pi ~v= 't'y (6) 

pwv+pk 't'z 

p (et + p)v ( U't'x + V't'y + W't'z) + kVT 

In order to close the system of equations, a thermodynamic model needs to be used. 

The thermodynamic model used in NASCART-GT is a calorically perfect gas model with 

the standard equation of state given by equation (7). 

p=pRT 

For calorically perfect gas, the following relationships hold 

R 
Cv=--

y-1 
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p y-1 

(7) 

(8) 



Additionally, models need to be established for the transport properties. By assuming 

a constant Prandtl number and Sutherland's formula for the viscosity model, the following 

equations are used for the dynamic viscosity and thermal conductivity, respectively 

T3/2 

Jl = C1T+C2 

k= CpJl 
Pr 

where cl and c2 are constants for a given gas. 

(9a) 

(9b) 

To actually perform the calculations, the equations (4), (5), and (6) are non-dimensionalized 

using a characteristic length, 1, and the freestream density, poo, velocity, Voo, and dynamic 

viscosity, J.Loo. These can be combined to form the Reynolds number Reg = P~~t. The 

following equations are the result of the non-dimensionalization 

p* 

p*u* 

U= p*v* (10) 

p*w* 

p*e; 

where 
v* · v* 

* * + et = einternal -2-

~* JJJ u* d)/*+ JJ (§t -ffJ)·n* dA* =O (11) 

cv cs 
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pv* 0 

puv* + p*i r* X 

!7/ = pvv* + p*j :7J= r* y 
(12) 

pwv* + p*k r* z 

p (e; + p*)v* (u*r* +v*r* +w*r*) + k*VT* 
x y z Pr Ref M~ 

with the following non-dimensionalizations 

* X "* = ~ * z t* =-
t .. *- u ··*- v ···* w 

(13) X=- z =-e . u -- v - w 
£ J £ Z/Voo Voo Voo Voo 

p* = _E_ * p T* = 
T * e J.L* = 1!:_ k* = 

k 
P = PooV~ Poo/ (pooR) e = V2 yRJ.Loo/Pr Poo 00 J.loo 

with the viscous terms non-dimensionalized as 

(14) 
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Inviscid Flux Calculations 

The inviscid fluxes in NASCART-GT are calculated using the well known Roe's ap-

proximate Riemann solver coupled with a MUSCL data reconstruction technique. More 

information about Roe's approximate Riemann solver can be found in references [141, 

142, 159], and more information about the MUSCL data reconstruction technique can be 

found in references [158, 159]. 

Roe's Approximate Riemann Solver 

In order to accurately capture the physical effects modeled by the fluid dynamics equa-

tions, it is important to discretize the equations in the direction of information propaga-

tion. One method of capturing this phenomena is the Flux Difference Splitting technique 

which models the flow phenomena as a collection of local wave propagation between con-

trol volumes, also known as the Godunov approach[62, 63]. Roe's approximate Riemann 

solver belongs to this class of solution procedures, details of which can be found in refer-

ences [141, 142] with implementation details in [159, 177]. 

Roe's method provides a method of calculating the flux across a face of a control vol-

ume using the eigenvalues, Ai, the right eigenvectors, Ki, and the wave strengths, ai. Equa-

tions (15), (17), and (16) show how the flux is calculated for the an x-face. 

(15) 

where F L is the flux calculated using the left state vector and F R is the flux calculated using 
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the right state vector and 

1 1 0 

a-a a 0 

KI= v j(2 = v j(3 = 1 j(4 = 

ln:uaj l;J l:J 
with 

y2 -
- - p H= T+e+ pand y2 =u2+v2+w2 

with the average state calculated as 

P = .JPLPR 

- .JPzPL + v'PJiuR u = ....:...._____;;:..__...;____ 
VPi +v'PR 

- .JPzYL +v'PJivR v = --=---=-==----.:.._____:..:.......::..: 
VPi +v'PR 

- ViJiwL +v'PJiwR w = -=-----::::........::;.___:..______::.;;__;;:.;;. 

VPi +v'PJi 
H = ViJiHL +v'PJiHR 

VPi +v'PJi 
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0 1 

0 u+ii 

0 Ks = v 

l:J ln:uaj 
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Applying equations (15), (17) and ( 16) to a Cartesian control volume results in the follow-

ing formulation for the flux across a face 

(18) 

1 0 

u ~u-nx~tf> 

where B=-1¢1 ( ~p- ~_;) v +p ~v-ny~t/> 

l l;J l fiw - n,fi~ j J 
~ (i2)- ¢~cp 

1 

u+nxii 

-I¢ +iii ~P ~~za~cp v+nyii 

w+nzii 

B+tPii 

For the flux calculation in the x-direction: cp = u, ¢ = u, nx = 1, ny = nz = 0, fi: = Fx 

and L/R vary in the x-direction. For the flux calculation in they-direction: cp = v, ¢ = v, 

ny = 1, nx = nz = 0, § = Fy and L/R vary in they-direction. For the flux calculation in the 

53 



z-direction: </> = w, ~ = w, nz = 1, nx = ny = 0, § = Fz and L/R vary in the z-direction. 

MUSCL Data Reconstruction 

The MUSCL (Monotone Upstream-centered Scheme for Conservation Laws) data re-

construction scheme originated with van Leer [164, 165, 166] introducing a piece-wise 

linear reconstruction of the primitive state variable instead of the piece-wise constant re-

construction used in lower order Godunov schemes. The reconstructed data can be plugged 

into a flux reconstruction scheme, such as equations (17) and (18) to produce the inviscid 

fluxes. Equations (19) and (20) shows a MUSCL reconstruction for the i + ! face of a 

Cartesian control volume. 

WL =W. 'k 
'+I 'k l,j, 
I 'J,), 

+ E:i,j,k [(1- 7C) (w .. k- w._l . k) + (1 + 7C) (w.+l . k- w . . k)] (19) 4 l,j, I ,], l ,], l,j, 

wR = wi+l ·k ·+I . k ,], 
I '1,,), 

- £i,j,k [(1 + 7C) (w.+l . k- w .. k) + (1- 7C) (w.+2 . k- w.+l . k)] (20) 4 l ,], 1,], l ,], l ,], 

where 

p 

u 

W= v (21) 

w 

H 
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and £ .. k = 0 is traditional first order piece-wise constant and ei . k = 1 is second or third 
1,], ,], 

order (depending on the value of K"). For the ei 
1
. k = 1 cases, if K" = -1 use second order , , 

fully upwind biased scheme, if K = 1/3, then use third order upwind biased scheme, if K" = 

0 then use second order upwind biased scheme and if K" = 1 then use second order central 

difference scheme. Details about the population of the neighboring cells is discussed on 

page 58. Reconstructing the other 5 faces follows in a similar fashion. 

The Monotonicity of the scheme is introduced via a limiter that sets the data reconstruc-

tion to first order in regions of high pressure gradients using the following 

{ 

·f A ~ ein 1 LJ.Pmax. · k < 2 l,j, 

ei,j,k = 
0 otherwise 

(22) 

dp.+=p.+1 .k-p .. k, dp._=p .. k-P·-1 'k I I ,], 1,], I 11] 1 I ,], 

dp.+ = P· '+1 k- p .. k, dp ·_ = P· .k-P· ·-1 k J 1,] , 1,], J 1,], 1,] , 

dpk+ = P· · k+1 - p .. k' dpk- = P· · k- p .. k-1 1,], 1,], 1,], 1,], 

To further enhance stability, £
1 
.. k is set to zero on the cut cells. This has the effect of 
,], 

creating first order accurate flux calculations in the cut cells. 

Solid Surface Treatment 

One final issue related to the inviscid fluxes is establishing the wall boundary condi-

tions. In order to implement the surface tangency wall boundary conditions, the § 1 flux in 
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equation (6) (or the non-dimensionalized for of equation (12)) yields 

0 

nxp 

§/= nyp (23) 

nzp 

0 

since v wall · nwall = 0, with p being found by satisfying the non-curved wall boundary 

d .. ~ 0 con 1t1on dn = . 

Viscous Flux Calculations 

The viscous flux calculations are split into two types, the simpler flow cell formulation 

and the more complicated solid surface cell formulation. The viscous flux formulations are 

simplified by the Cartesian nature of the control volumes, with more attention needing to 

be paid to the surface treatment. 

Flow Cells 

The viscous flux calculations of the flow cells are performed using standard second 

order finite difference approximations. The difference stencil is populated such that at 

refinement boundaries the differencing still appears as a uniform sized grid, which results 

in a less than second order accuracy for these regions. Page 58 provides more details on the 

stencil population. Since all of the flow cell faces are coordinate aligned, a large number of 

viscous terms do not need to be calculated in the §v · n term from equations (5) and (6). 
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Solid Surface Treatment 

The solid surface treatment of the viscous flux calculations requires the decomposition 

of the control volume velocities into surface oriented directions. To calculate the viscous 

fluxes for the surface face, a local coordinate system is defined such that ry is normal to the 

surface and ~ and s are perpendicular to each other and are along the surface in order to 

form a right-handed orthogonal coordinate system (the actual directions of~ and s are not 

important as will be shown later). 

The transformation of the x-, y- and z-derivatives into ~ -, ry- and s -derivatives is 

a a~ a a11 a as a -=--+--+--dx ax a~ ax dry ax ds 
a a~ a a11 a as a -=--+---+--dy ay a~ ay ary ay as 
a a~ a a11 a as a -=--+--+-dz dz a~ az dry ()z ds 

(24) 

For all quantities that do not vary on the surface (i.e. velocity, temperature in isothermal 

wall conditions and thin-layer Navier-Stokes approximations to temperature field) the -J; 
and J, terms are zero, and the transformation reduces to 

a a 
dx = nx dry 
a a 
--ndy- y ary 
a a 
dz = nzaTJ 

(25) 

noting that ~, ~ and Pz are just the slopes of the normal vector from the surface to the 

cell center: nx, ny and nz. 
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To find the x-, y- and z-distances from the surface to the cell center, a standard formula 

can be used that finds the shortest distance between a surface and a point, see [74], to get 

the following values 

a·Xc-d 
nx = ao 

a·a 

a·xc-d 
ny = a1 a·a 

(26) 

a·Xc-d 
nz = a2 

a·a 

where a · x - d = 0 is the equation of the surface and Xc is the cell center. From equa-

tions (25) and (26), the viscous fluxes on the surface can be calculated. 

Numerical Stencil Population 

In order to calculate the inviscid and viscous fluxes, a numerical stencil must be con-

structed such that the necessary neighbor information can be determined. NASCART 

firsts determines the state vectors on the same mesh as the local cell and then performs 

a uniformly-spaced finite difference approximation to calculate the fluxes. With the possi-

bility of mesh refinement in the grid, there are three grid configuration possible, a locally 

uniform grid, a local grid with fine neighbors and a local grid coarse neighbors. 

The simplest case is that of a locally uniform grid, Figure 8. For this case no special 

treatment is required and the state of the neighboring control volumes, can be used as is. 

The label 'X' is used to denote the location of the needed state information. 

For the case of the local grid having fine neighbors, Figure 9, the state information of the 

fine neighbor, labeled as 'o', is averaged together to create the required state information. 
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Figure 8: Uniform Stencil Population Exam
ple 

Figure 9: Fine Stencil Population Exam
ple 

The final case is where the local grid has coarse neighbors, Figure 10. For this case, 

the state information for the coarse control volume is used as the state information at the 

desired locations. This reduces the local accuracy of the scheme, but also provides more 

dampening for any instabilities. 

flux face 

Figure 10: Coarse Stencil Population 

Table 1 shows the stencil sizes for various schemes using this approach. 

Table 1: Stencil Size for Each Face 

Scheme 2D 3D 

first order Euler 2 2 
second order Euler 4 4 

first order Navier-Stokes 6 10 
second order Navier-Stokes 8 12 
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.Time Integration 

The time integration within NASCART is performed using a standard 2-stage Hancock 

integration scheme, with implementation details provided in reference [159]. Using the 

semi-discretized form of equation (5) results in the following 

n+
1 n 1 n j} ( ~n ~n) U .. 2 = u .. k- -& . . k .:r1 -._7"v ·n dA l,j,k Z,J, 2 . Z,J, 

(27) 

csi,j,k 

U~~1 = u~:i-&'!. { { (§n+i- g:n+~). n dA 
z,J,k z,J,k z,J,k j j I V 

csi,j,k 

where evaluation of the surface integrals will be discussed on page 61. Notice that the invis-

cid and viscous fluxes in the corrector steps are calculated using the state vectors generated 

from the predictor steps, and that local time-stepping can be employed if the steady-state 

solution is only desired. 

Solution Adaption 

The solution adaption methodology used in NASCART is similar to the velocity diver-

gence approach discussed by Tu [160] where for each control volume, the velocity diver-

gence is scaled by a characteristic length of the control volume to obtain a measure of the 

changing flow properties from cell to cell via 

3 

rd =IV·v. ·kll'l .. k I,], i ]. k 
t,J, ' ' 

(28) 

where l is the cube-root of the cell volume. 

Next the root-mean-square is calculated over the entire computational domain to obtain 
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a reference value, CJd, using 

(29) 

Finally, cells are flagged for coarsening or refinement if the following conditions apply 

(30) 

where kc and k, are threshold values for coarsening and refining, respectively. 

Putting It All Together 

Finally, the surface integrals in the Hancock time integration scheme (27) can be re-

placed with 

+(§ -§, )A 1wa/l vwal/ walli,j,k 

where A 1 is the area of the xmax face, A2 is the area of the xmin face, A 3 is the area of the 

ymax face, A 4 is the area of the ymin face, A 5 is the area of the zmax face, A 6 is the area 

of the zmin face and Awall is the area of the wall face (if the cell has one). Combining all 

of the above results in a scheme that is second order accurate in time and between first and 

third order accurate in space. 
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CART3D 

CART3D is an explicit, finite volume Cartesian grid solver of the three-dimensional Euler 

equations that has been validated in a number of flow conditions and configurations [3, 

4, 22]. CART3D originated from the research of Melton et al. [105]. Improvements to 

the grid generation schemes, geometry representation and flow field refinement techniques 

were later performed by Melton et al. [104]. An overhaul of the flow solver to include 

multigridding, shared memory parallelization and CPU cache-based performance enhance

ments were performed by Aftosrnis et al. [3]. 

The solver portion of CART3D, called flowCart, uses a face-based data structure for the 

spatial integration techniques. Within each control volume a piecewise linear distribution 

is used for the state variable reconstruction for the flux calculations to produce a second 

order scheme. A least-squares procedure provides the gradient estimations within each 

cell which is based on the solution of the normal equations of the local mass matrix. Flux 

quadrature is performed by a midpoint integration coupled with either a van Leer flux

vector splitting [9] or an approximate Riemann solver of Colella [42]. In order to suppress 

the oscillations associated with higher order schemes, flowCart uses either the minmod flux 

limiter [159] or Venkatakrishnan's flux limiter [169]. 

In handling the temporal discretization, flowCart employs a modified Runge-Kutta ex

plicit time-stepping scheme. It supports an arbitrary number of Runge-Kutta stages with the 
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number of stages and the coefficients user configurable, with the van Leer 3-stage and van 

Leer 5-stage optimally dampened schemes [167] the typical schemes used to get second 

order and third order temporal accuracy, respectively. 

To further improve the convergence characteristics, flowCart uses a Full Approximation 

Storage (FAS) multigrid scheme [26] based on the work of Jameson [75] to accelerate 

the convergence of the solver using both V- and W-cycles as well as Full Multigrid V-

cycles. The intergrid transfer occurs by direct injection for the restfictiun phases and linear 

interpolation for the prolongation. A local block Jacobi preconditioning on each control 

volume is possible in order to further accelerate convergence. The combination of the 

upwind spatial discretization and the preconditioning results in rapid convergence for the 

FAS multigrid scheme. 

Grid Creation and Partitioning 

A major focus for CART3D was the issues related to grid creation and partitioning. 

Efforts were made to improve the performance characteristics of the grid generation pro

cedures. Surface cells are constructed using techniques originating in the field of computer 

graphics in order to quickly and efficiently process surface intersections with the Cartesian 

grid. Additional techniques are employed in order to ensure the accurate representation of 

the surface geometry in the grid. Also, efforts are made to increase the solver performance 

by optimally ordering the control volumes as well as by finding acceptable distributions of 

the control volumes over the parallel nodes to achieve excellent load-balancing. The result 
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is a grid generation performance of 1x106 cells/minute on a moderately powered desktop 

workstation in 1997 [3]. 

In the grid generation process, the flow cells are stored as the cell centroid and re

finement level so that the complete geometry could easily be recreated with the additional 

information of the initial grid distribution. For the cut and split cells, they are handled as 

an arbitrarily shaped polyhedra with the centroid of the cell being stored as well as the 

surface iriangulation of the cut surface. Additionally, each grid location is converted from 

a floating point representation to an integer based representation by using a 64-bit integer 

for storing all three coordinates. Thus each coordinate has to be represented in 21-bits, re

sulting in a maximum relative resolution of 2-21 ~ 4.8x1o-7 in each coordinate direction. 

This integer based addressing allows for very fast geometry calculations during the grid 

generation process. 

Wnile the surface cells accounted for only tJ (N2) cells, and the flow cells account 

for tJ (N3) cells, special attention is paid to efficiently addressing the surface cells in order 

to optimize performance without sacrificing accuracy. By using the integer based coor

dinates, intersections of control volumes and surface triangles are determined using the 

bitwise "and" (&) and "or" (j) operators. The coordinates of each cell is relative to the cell 

that is being tested for the intersection. Each vertex in the triangle is given an index that 

corresponds to the cell that it is in. If any of the sides of the triangle intersect an edge of the 

cell, then the triangle is intersected. The intersection test for a cell is given in equation (32). 

This results in an extremely fast algorithm since equation (32) typically takes 3 CPU clock 
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cycles (one for each bitwise operation) compared to the many CPU clock cycles required 

for floating point arithmetic. 

if (facecodej & (coordv
1 
I coordv

2 
I coordv

3
) =/=- 0) then intersect (32) 

Figure 11 shows a example of the intersection test configuration in two-dimensions. Thus 

for lituv' the coordinates for the vertices are coord1 = 0000, coordu = 0000 and coordv = 

0100. The facecode parameter is the coordinate of the cell adjacent to each face, thus for 

the face that intersects with lituv' the facecode is 0100. Plugging these values into 32 

shows that only facecode of 0100 produces a non-zero result, and it is the only edge that 

intersects the triangle. More details on this technique can be found in reference [3]. 

1001 I 
0001 0101 

1000 0000 v 0100 

u 

1010 0010 0110 

Figure 11: Example Surface Triangle Intersection with Cartesian Cell 

In handling the surface triangles that intersect the Cartesian cells, the surface normals 

are used to determine if further grid refinement is needed. This is done by evaluating the 

change in angle of the surface normals for the surface triangles that intersect a cell, if the 

changes are above some threshold then more refinement will be required. Also, CART3D 

could use all of the intersecting surface triangles during the solution, or it could agglomerate 
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all of the surfaces into one area weighted average normal with a surface area equal to the 

sum of each triangles surface area. This functionality requires fewer calculations during 

the solution, while not adversely impacting the results. Figure 12 shows an example of the 

surface agglomeration. Notice that there are 3 sub-surfaces to the cut surface with normals 

n1, n2 and n3 that get agglomerated into one surface normal nagg. while the surface areas 

for all flow calculations and cell centroid determinations use the areas of the three original 

surfaces. 

nagg 

Figure 12: Example of Surface Agglomeration 

Another grid technique that aids the solution process is the use of space-filling curves [144 ], 

or SFC, to generate the indexing of the cells. An effective SFC encourages better data 

locality for neighboring cells which results in better cache-based performance. The two 

orderings that Aftosrnis et al. used were the Peano-Hilbert (or U-ordering) and the Morton 

(or N-ordering) schemes. Figures 13 and 14 show examples of Peano-Hilbert and Morton 

SFCs. Aftosrnis et al. identified three characteristics that made these space-filling curve 

useful as a re-ordering technique [3]: 

1. Mapping !Ji!d - £ : Both ordering schemes provided unique mappings between 

the f4d physical space and a one-dimensional hyperspace, £. 
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2. Locality : The U-ordering maintained adjacency of neighboring cells in the map

ping between gjjd and£, while theN-ordering mostly maintained the adjacency of 

neighboring cells. 

3. Compactness : The encoding and decoding of both orderings required only local 

information to generate the hyperspace indexing from the physical space coordinate 

and vice versa. 

Figure 13: Example of Two-Dimensional Peano-Hilbert Curve 

~ 
~ 

Figure 14: Example of Two-Dimensional Morton Curve 

To generate the Peano-Hilbert curve in Figure 13, the template curve (the left curve) is 

recursively applied to every line segment such that starting and ending segments have the 
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template curve applied to the inside and the two corner segments have the template curve 

applied to the outside. The middle and right curves of Figure 13 show successive iterations 

of the Peano-Hilbert curve. Extending this to three dimensions is done in a similar manner 

using the template curve shown in Figure 15. 

Figure 15: Example of Three-Dimensional Peano-Hilbert Curve 

To generate the Morton curve in Figure 14, each quadrant is given a two-bit index 

representing the x and y location. Thus the lower left quadrant is 00, the upper left is 

01, the lower right is 10 and the upper right is 11. The Morton curve is generated by 

traversing the quadrants in order of their two-bit index. Figure 14 shows three levels of 

iterations of the Morton curve. Extending this to three dimensions is done similarly to the 

two dimension case except that the octants are represented by a three-bit index representing 

the x, y and z locations as shown in Figure 16. 

Using the space-filling curves as the ordering mechanism, Figure 17 shows an example 

mapping of a two-dimensional physical space domain with mixed levels of refinement to 

a one-dimensional hyperspace using the Peano-Hilbert ordering and the integer based cell 

location scheme. 
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~-----~~-------

100 

Figure 16: Example of Three-Dimensional Morton Curve 

Handling of the domain decomposition for the parallelization of CART3D is done by 

simply splitting the SFC ordered cells evenly between the the processors, as shown in 

Figure 17. With the use of the SFC ordering, Berger et al. demonstrated that the resulting 

partitioning created roughly similar numbers of overlapping cells as did a perfectly uniform 

Cartesian mesh with the same number of cells [22]. In order to maintain favorable load

balancing characteristics, extra weighting is applied to cut and split cells in order to account 

for their higher computational cost. Thus partitions with a larger number of cut or split cells 

will have a lower overall number of cells. 

CART3D uses a single pass scheme to create the grids for the multigrid solver. The 

procedure for coarsening the computational domains starts with the finest grid. This grid 

is then indexed using one of the SFCs mentioned above. At this point, the coarser grid 

levels of the multigrid solver can be created by a cell-by-cell traversal of the grid since the 

finest grid is already reordered. This results in the coarse grids retaining the SFC ordering. 

The grid coarsening procedure imposes a limit so that there is at most a refinement ratio 

of 2: 1 on any grid. Thus some cells will not coarsen in the multi grid strategy until all of 

69 



2D Physical Space 
partition 0 partition I 

31 4 71 8 15 16 19 20 

21 5 61 9 14 17 18 21 

13 23 22 
1 10 11 

12 24 25 

26 
28 1--

27 
0 

29 30 partition 2 

1D Hyperspace 
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~--~==========------------ ·-------------·------------------, I I I II • 

Figure 17: Two-Dimensional Mapping from Physical Space to Hyperspace 

its neighbors have been coarsened. Finally, each grid is partitioned out to each processor 

using the SFC indexing in order to improve the overall load balancing characteristics of the 

solver. Figure 18 shows an example of one stage of coarsening around an arbitrary surface. 

Special attention is paid to coarsening cut cells and split cells in order to handle the 

various coarsened grids that can result. Figures 19 and 20 show examples of the coarsening 

that can result around cut and split cells. Figure 19 shows 4 cut cells that coarsen to 2 cut 

cells, and Figure 20 shows 2 full cells and 4 split cells that coarsen to 2 cut cells. These are 

just two examples of the many variations that could occur during the coarsening process 

around cut and split cells. 

The overall coarsening ratio, the ratio of fine cells to coarse cells in one coarsening 
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Figure 18: Grid Coarsening Around Arbitrary Surface 

Figure 19: 4 Cut Cells Coarsen to 2 Cut Cells 

step, for the CART3D coarsening procedures was shown to approach 7.25:1 for a vari-

ety of geometries [4] (noting that for a three-dimensional computational domain a perfect 

coarsening ratio would be 8:1 ). Also, this coarsening procedure was shown to be extremely 

fast, taking (J (NlogN) steps to complete due to the quick-sort that occurs after the SFC 

indexing. 
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Figure 20: 2 Full Cells and 4 Split Cells Coarsen to 2 Cut Cells 

Accuracy and Performance 

CART3D was validated against buth known analytical solutions as well as existing ex-

perimental data. Using the Supersonic Vortex model problem [5], Aftosmis et al. demon

strated a global order of accuracy of 1.88 [4] which compared favorably with other com

putational models. Additional validation was performed comparing results for an ONERA 

M6 wing in transonic flight conditions against experimental data with CART3D demon

strating all of the pertinent flow characteristics [4] as well as good agreement with pressure 

cod.ficient data. 

CART3D uses OpenMP for its parallelization functionality with its parallelization per

formance showing excellent speedup results for up to 64 processors, with speedup figures 

of 28.4 and 52.3 for 32 and 64 processors, respectively [4, 22]. For all parallelization 

results, the residual histories for any number of CPU cases all matched to within machine 

accuracy due to the explicit nature of the time-stepping scheme and the lack of any iteration 

lagging in the updating of the overlapping cells [3]. 

The performance of the multigrid functionality of CART3D demonstrated a 5-times 

decrease in computation work to reduce the residual to machine zero for the test cases 
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mentioned above [4]. The parallelization performance of the multigrid functionality was 

not as good as the single-grid solutions since the coarser grids had smaller ratios of flow 

cells to overlapping cells. 
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CHAPTER III 

SOLID BOUNDARY TREATMENT 

The current schemes for calculating the solid-surface viscous boundary conditions all de

pend on calculating the wall shear stress and heat flux via numerical differences within the 

numerical solver in order to accurately calculate the numerical differences. This has been 

shown by Coirier [38] to produce extreme oscillations near the cut cells for even simple ge

ometries due to the non-positivity of the stencils used in several viscous flux reconstruction 

techniques. In order to avoid these problems, the proposed approach uses special treatments 

for the solid boundary cells to provide a method of solving the Navier-Stokes equations on 

Cartesian grids. In addition, this scheme can be used to solve the Euler equations in order 

to eliminate the cut cells from the integration scheme and thus removing them from the 

time step restriction. 

Existing Solid Boundary Treatment 

The existing research into applying the Navier-Stokes equations to Cartesian grids, such as 

Frymier [59] and Coirier [38, 39], have utilized techniques to reconstruct the solid boundary 

fluxes in combination with the no slip wall boundary condition to model the solid boundary. 
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Frymier used simple extrapolation to obtain the wall pressure, with linear and quadratic 

curve fits for the velocity profiles to obtain the stresses. To model the heat flux at the wall, 

adiabatic wall boundary conditions were the only boundary conditions studied. 

Like Frymier, Coirier used an extrapolation technique to obtain the wall pressure, but 

used a flux reconstruction technique to obtain the wall stresses using the wall centroid and 

the intersection points of the cell edge and the surface. For the wall heat flux boundary con

dition, an isothermai wail boundary condition was used with a one sided finite difference 

based derivative. 

As was discussed in Chapter IT, the Cartesian solver NASCART-GT originally de

termined the wall pressure by satisfying the normal momentum equation for a flat wall, 

¥n = 0, as well as a one sided finite difference formulation for the wall stresses and heat 

flux. 

Unfortunately, all of these techniques produce unsatisfactory results when the result

ing computational domain contains cut cells. As an example, while Coirier demonstrated 

excellent agreement with the Euler Cartesian grid solver, even simple flat plate Blasius 

configurations proved difficult to accurately capture when there were cut cells in the com

putational domain. Coirier's results for a Blasius flat plate configuration, grid shown in 

Figure 21, at Re = 10,000 with the plate at an angle of 30° with respect to the x-axis 

show large oscillations in the skin friction coefficient, shown here in Figure 22. This non

smoothness problem was observed in Fryrnier's work as well as in NASCART-GT, and 

it makes these solid surface boundary condition formulations of little use when general 
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bodies need to be modeled. 

Figure 21: Grid from Coirier [38] for Ro
tated Blasius Flat Plate 
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Figure 22: Skin Friction Results from 
Coirier [38] for Rotated Blasius Flat Plate 

In addition to the non-smoothness problems associated with the existing solid boundary 

treatment, the cut cells generated by the solid surface intersecting with the Cartesian cells 

require very small time steps to maintain the CFL restriction needed to ensure the stability 

of the explicit time integration scheme. Thus to achieve solutions more efficiently, this time 

step restriction needs to be eliminated so that the minimum time step is set by the size of 

the smallest full cell. 

New Solid Boundary Treatment 

After reviewing the existing solid boundary treatments above, it becomes apparent that 

there needs to be a new treatment for the solid boundary condition that addresses the non-

smoothness problems as well as the CFL restrictions associated with the cut cells. The new 
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approach presented addresses these problems by handling the solid body cells separately 

from the rest of the computational domain. 

Basic Model Development 

The problems associated with the non-smoothness of Navier-Stokes using Cartesian 

grids can be traced back to the non-positivity of the viscous flux stencil [38], thus a scheme 

for updating the state of the surface cells without using tht: viscous flux stencils needs 

to be used. One method of removing the dependence on the viscous flux stencils is to 

remove the surface cells from the finite volume formulation, while still using them for the 

flux reconstruction of its neighboring cells. The development of the state vectors for the 

surface cells can be obtained by satisfying the known criteria for the surface cells. Thus 

allowing the calculation of the majority of the control volumes in the computational domain 

to remain unchanged and can be treated as was discussed in Chapter II. 

Reference State Determination 

The formulation of the surface cell properties utilizes the state at a point normal to the 

surface which can be based on the surrounding cells, see figure 23. The state at point 'c' is 

constructed either directly from the state of the cell containing point 'c' (in this case labeled 

'5'), or by using a distance weighted interpolation of the of the surrounding cells (in this 

case cells '1' through '9'). The distance weighted interpolation places a restriction on the 

cells surrounding the surface cell such that all of the cells neighboring the reference cell 

and the reference cell itself must be at the same refinement level as the surface cell. 
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Using the state at point 'c', the state at the centroid of the surface cell, labeled '9', (or 

the wall location, labeled 'w') can be developed by using one-dimensional relationships 

along the line Bw. The specifics of the state reconstruction depends on whether the flow is 

inviscid or viscous. 

2 3 

• • 

7 

• 
Figure 23: Example Configuration for Solid Boundary Treatment 

Inviscid Formulation for Flat Wall 

The inviscid formulation is separated into two cases, one if the flow at point 'c' is 

subsonic and another if it is supersonic. 

Subsonic Case The surface cell velocity is first determined by an interpolation procedure 

along the line Bw from point 'c' to the wall utilizing the surface tangency wall boundary 

condition. The resulting relationship is 

(33) 
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where Oc and o9 are the distances from point 'w' to points 'c' and '9', respectively. This 

has the effect of holding the tangential velocity constant and linearly decreasing the normal 

velocity to zero at the wall. 

With the velocity determined at point '9', the temperature can be found by using the 

adiabatic relation 

( 
y-1 2\ 

T0 = Tc 1 +-
2
-Mc} 

' / 

and the pressure can be found by using the isentropic relation 

( 
y-1 2) ~ 

P9 =Po 1 +-
2
-M9 

(34) 

(35) 

This has the effect of correcting the thermodynamic properties for the velocity changes 

associated with the wail conditions. 

Supersonic Case The supersonic case is split into two separate cases, one if the wall 

angle produces a shock and the other if it produces an expansion (or is parallel to the 

flow). If the wall produces a shock due to a positive wall angle, then the following standard 
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oblique shock relations are used, see [8] for the derivations 

(r+ l)M~ c 

Pg = Pc (y-l)M;,c~2 

Pg=Pc[1+y~l (M~,c-1)] 
2 M~,c+ /-1 M 9 - --::--___:_
n, - __LM2 -1 

y-1 n,c 

T = TcP9 Pc 
n,g Pc P9 

Mg = Mn gCSC (/3- e) 
' 

[ 
M; sin

2 f3 - 1 l 
tan e = 2cotf3 ~ ( /3) 2 

c r+cos2 + 

(36) 

where f3 is the oblique shock angle and e is the wall angle. One additional correction is to 

the velocity magnitude at '9'. The subsonic formulation from above is is used to calculate 

the velocity direction at '9', and the velocity magnitude from the oblique shock relations is 

used for the final velocity magnitude. 

If the wall angle produces an expansion (or is parallel to the flow) then the same sub-

sonic velocity relations are used to calculate the velocity vector. To calculate the thermo-

dynamic properties, the standard Busemann surface pressure coefficient relation, see [25], 

is used to determine the pressure by 

C = 2 lJ+ (y+l)M;-4M;+4e2 

p J~-1 2(~-1)2 
(37) 

PcU1 
P9 = Pc + -

2
-Cp 

where again 8 is the wall angle. From the isentropic relations, the temperature at '9' is 
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calculated from 

(38) 

Viscous Formulation for Flat Wall 

As with the inviscid case, the viscous formulation is separated into two cases, one if the 

flow at point 'c' is subsonic and another if it is supersonic. 

Subsonic Case The surface cell velocity is first determined by an interpolation procedure 

along the line Bw from point 'c' to the wall utilizing the no slip wall boundary condition. 

The resulting relationship is 

Un = r U,- ( 1 - ~9 ) ( U~ · n l n l ( 09 \ 
7 L '"' \ De) ' l- I J \ Oc) 

(':l.O\ 
\-'./) 

where Oc and 89 are the distances from point 'w' to points' c' and '9', respectively. This has 

the effect of linearly decreasing the tangential velocity to zero and quadratically decreasing 

the normal velocity to zero at the wall. 

Next, the pressure at point '9' can be determined by using the normal momentum equa-

tion for a fiat wall to get 

dp =0 
dn 

which when used in a first order forward finite difference approximation yields 

P9 = Pc 
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To close the thermodynamic system and enforce the final wall boundary condition, the 

temperature for the surface cell is determined. For an adiabatic wall boundary condition, a 

first order finite difference formulation for the wall heat flux yields the simple relation 

(42) 

While for the isothermal case, a simple linear interpolation along BW, similar to the veloc-

ity formulation shown above; yields 

(43) 

Supersonic Case The supersonic case should be a pathological case since the wall cell 

must be in the boundary layer (thus subsonic), but it is applicable when the solution do-

main is initialized using the freestream values. If the wall angle produces a shock then the 

subsonic viscous velocity formulation is used to determine the velocity dir<:!ction and the 

oblique shock relations are used to calculate the velocity magnitude and the thermodynamic 

conditions. Otherwise, the viscous subsonic formulations are used. 

Curved Wall Model Development 

While the basic model does address many of the problems that have been mentioned 

above, some deficiencies of the basic model have been addressed with the updated model. 

Specifically, utilizing the surface curvature to ease the grid refinement criteria around re-

gions of high curvature, and utilizing the governing equations to develop the interpola-

tion relationships. The surface curvature modification requires the governing equations 
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to be transformed into geodesic coordinates in order to incorporate the surface curvature 

terms. Appendix A provides the derivation details associated with the full Navier-Stokes 

equations, the boundary layer equations and the Euler equations in both two- and three

dimensions for geodesic coordinates. 

Surface Curvature Determination 

The geodesic coorrlinate directions, ; , TJ a..YJ.d ~, need to be defined for each surface cell 

so that the transformed governing equations can be used. Next, the necessary curvatures 

need to be calculated. Finally, the local velocity vectors need to be transformed from the 

Cartesian coordinate system to the geodesic coordinate system and back. The following 

sections provide the details for each of these steps. 

Defining Geodesic Coordinate Directions In order to use the governing equations de

rived in Appendix A, the geodesic coordinate system for each panel must be determined. 

Recall that the ; -and '-directions are along the surface, while the 77-direction is normal to 

the surface. Further, recall that the surface is represented by a collection panels that can 

each be described by their unit normal vector, n, and the location of the centroid panel, Xc 

in the following equation 

n·(X-Xc)=O (44) 

Thus, the 77-direction is simply the surface normal. The definition of the ; -direction is 

the freestream velocity vector,Uoo, projected onto the surface. This is done so that the;

direction is the primary flow direction for most of the surface panels. For the panels that 
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are perpendicular to the flow direction (i.e. n 1\ Uoo), then the ~-direction is taken to be 

the direction of an edge of the panel (e0). The definition of the '-direction is such that 

it is normal to the other two directions to form a right-handed system. Thus, the three 

coordinate directions are defined as 

Vol' 

r71 = n (45) 

Curvature Calculation Point Selection With the coordinate directions defined on the 

surface panels, the local curvatures can now be calculated. Figure 24 shows a typical three-

dimensional surface configuration. For both the three dimensional Euler and boundary 

Figure 24: Example Surface for Curvature Calculation 

layer geodesic formulations of the momentum equation in the ry-direction, the required 

curvatures are K
11
s and K

11
,. These correspond to the curvature of the surface in the~- and 

'-directions, respectively (the arcs labeled K
11

;; and K
11

' in Figure 24). 
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In order to approximate the local surface curvature, the neighboring surface panels in 

the direction of the ~- and '-coordinate axis are used to determine the local curvature by 

fitting a circular arc onto 3 points on the local surface panels. In figure 24, the calculation 

of the KTJ~ curvature uses panels 0, 1 and 3 to build the arc, while the calculation of the 

KTJ' curvature uses panels 0, 2 and 4. 

For most cases, the neighboring panels in the positive and negative coordinate direction 

can be used to build the arc for the curvature cakulations, however two speciai cases need 

to be addressed. The first is where the panel to be calculated is at a sharp edge, as shown 

in Figure 25. In this case, it would not be appropriate to use the panel on the other side 

of the edge in the calculation of the curvature because the curvature calculated would be 

too large. Instead the sharp edge itself is used. The second special case is when both 

neighboring panels form sharp edges, as shown in Figure 26. In this case, the same logic 

used in the sharp edge case discussed above is used for this case for the determination of the 

points to use in the calculation of the curvature. Thus, both directions use the edges in the 

curvature calculation, however, since all three points lie on the same plane, the curvature 

is zero. The determination of whether a comer is sharp is made by examining the angle 

between the normal vectors for the panels. If the angle between the normal vectors is rc /2 

or greater, then the two panels form a sharp edge. 

Projecting Points onto Geodesic Coordinate System With the three points chosen to 

calculate the curvature from, the next step is to transform the problem into a two-dimensional 
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Figure 25: Single Sharp Edge Degenerate 
Surface 

Figure 26: Double Sharp Edge Degenerate 
Surface 

problem so that the circular arc can be found. This is done by constructing a local coordi-

nate system centered at the center point (i.e. the point on the panel being evaluated) and 

projecting the vectors to the other two points onto the c;- and s -coordinate direction vectors 

obtained above. Thus, for each point,£, its local Cartesian coordinates, (xg,Yg,zg) map to a 

geodesic coordinate, ( c;£, 11.e, s.e). If the KTJ~ curvature is needed, then the c;.e and 77.e values 

are used, and if the KTJ~ curvature is needed, then the 11.e and s.e values are used. 

Curvature Determination The curvature for a panel on the surface given the three sur-

face points projected onto the local geodesic coordinate system is found by substituting the 

three points, defined as (xa,Ya). (xb,yb) and (xc,Yc). into the following equations derived 

in Appendix B 

J [ (xa -xb)
2 + (Ya -yb)

2
] [ (xa -xc)

2 + (Ya- Yc)
2
] [ (xc -xb)

2 + (Yc- Yb)
2
] 

R=±~------------~~--~--------------~--~~------------
2 [xc (Ya- Yb) +xb (Yc- Ya) +xa (yb- Yc)] 

(~ +y~) (Ya- Yb) + (~ +y~) (Yc- Ya) + (x~ +y~) (yb- Yc) 
Xo = 2 [xc (Ya- yb) +xb (Yc- Ya) +xa (yb- Yc)] 

(46) 

(~ +y~) (xa -xb) + (xt +yt) (xc -xa) + (~ +y~) (xb -xc) 
Yo=- 2 [xc (Ya- Yb) +xb (Yc- Ya) +xa (yb- Yc)] 
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where R is the radius of curvature, and x0 and y0 are the locations of the center of the circle. 

There is an ambiguity in equation (46) associated with the sign of R. This can be resolved 

by examining the distance from the centroid of the cell associated with the panel that is 

being evaluated to the center of the arc. If this distance is larger than the circle radius, 

then the surface is convex and the appropriate sign is positive. Otherwise the surface is 

concave and the radius is taken to be negative. With this the surface curvature calculation 

is complete. 

Normal Momentum Equations 

The normal momentum equations are the source of the curvature corrections to the 

surface pressure values. For the inviscid formulation the three-dimensional curvature cor-

rection starts with the normal momentum equation in the geodesic coordinate system, de-

veloped in Appendix A and re-stated here 

Applying equation (47) to the surface and utilizing the boundary conditions for the Euler 

flows (i.e. u17 = 0, aaP = 0, ~ = 0 and aau2 = 0) yields 

(48) 

Notice that in equation ( 48) the sign of the curvatures (K
11

; and K
11 

s) have a significance. 

Recall that as discussed above a sign was assigned to the curvature such that a positive 

curvature was generated by a convex surface, while a negative curvature was generated by 

87 





a concave surface. The sign of the curvature effects the direction of the pressure gradient. 

To adapt this to two dimensions, simply set the s -direction surface curvature to zero to get 

(49) 

Notice that this formulation is different from Wang and Sun [183] by a factor of -1, but 

their denominator for the radius, R, also differs by -1. Thus, curvatures that are positive 

for their system are negative for this system, and the resulting pressure gradient is the same 

sign. 

The geodesic formulation of the boundary layer equations for the three-dimensional 

geodesic coordinate system yields the expression for the normal pressure gradient that will 

be required in this section. This equation, developed in Appendix A, is re-stated here 

(50) 

Notice that this is valid tr.roughout the boundary layer and not simply at the wali as was the 

case for the inviscid formulation. The same sign convention for the curvature is used here 

as for the inviscid formulation. A positive curvature is from a convex surface and a negative 

curvature is from a concave surface. A two-dimensional adaptation of this is found from 

setting the s -direction surface curvature to zero to get 

(51) 

Inviscid Wall Conditions for Curved Wall 

The inviscid formulation is separated into two cases, one if the flow at point 'c' is 

subsonic and another if it is supersonic. 
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Subsonic Case The surface cell state calculation starts with the assumption that the nor-

mal velocity decreases linearly and that the magnitude of the velocity does not change 

between points 'c' and '9'. Further, it is assumed that the tangential velocity vector does 

not change directions with respect to the surface coordinates between points 'c' and '9'. 

The following expresses these criteria 

(52) 

where u~, u11 and u~ are the velocity components in the geodesic coordinate directions, 

ut is the tangential velocity and A is the angle made by the tangential velocity and the 

; -direction. 

To develop the temperature relation, the adiabatic condition is used to get the following 

(53) 

Notice that this has the effect of holding the temperature constant since the velocity mag-

nitudes are the same between points 'c' and '9', thus Tw would also be equal to Tc. 

With the temperature and velocity determined, the pressure relation can be developed 

by assuming a linear profile for the pressure curve along Bw and using equation ( 48) for 
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the slope of the pressure curve at the wall. To start, the equation for the pressure curve can 

be found to be 

where p is the pressure at a point o distance away from the wall along Bw. Since the 

conditions are 'c' as well as the temperature and velocity at the wall are known, the wall 

pressure can be solved for to get 

(55) 

where Kw is the combined curvature effects in the ~ and t; directions. With the wall pressure 

found, the pressure at '9' can be found to be 

(56) 

and the boundary condition development is complete. 

Supersonic Case The supersonic case is again split into two separate cases, one for a 

shock and the other for an expansion (or parallel flow). The shock case uses the oblique 

shock relations developed above to determine the velocity direction and thermodynamic 

conditions and the subsonic relations are used to determine the velocity direction. For the 

expansion or parallel flow case, the Busemann relations from above are used to determine 

the thermodynamic quantities while the subsonic relations are used to determine the veloc-

ity components. 
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Viscous Wall Conditions for Curved Wall 

As with the inviscid case, the viscous fonnulation is separated into two cases, one if the 

flow at point 'c' is subsonic and another if it is supersonic. 

Subsonic Case The subsonic viscous wall conditions again start with an assumption of 

the velocity profiles. As was the case for the inviscid wall conditions, the direction of the 

tangential velocity is assumed constant, i.e. Ac = lt.9. Since there are only two conditions 

available to build a velocity profile around, the velocity at point 'c' and the no-slip boundary 

condition at the wall, the velocity profiles are limited to linear profiles defined as 

0 
UT) = Oc UTI ,c (57) 

For the pressure boundary condition there are three conditions known, the pressure at point 

'c' and~ at the wall and point 'c' from the boundary layer equations in geodesic coordi-

nates derived in Appendix A. Applying the normal momentum equation of the boundary 

layer equation (50) to these conditions yields 

(58) 

where Kc is the same equation as the term Kw presented above, but applied at point 'c' 

instead of at the wall. With three conditions a quadratic profile can be used to describe the 
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pressure distribution throughout the boundary layer to get 

(59) 

The development of the final condition, temperature, utilizes the compressible boundary 

layer energy equation in geodesic coordinates, from Appendix A and restated here 

If steady state is assumed and the equation is applied to the wall (where u = 0), then 

equation ( 60) becomes 

where all derivatives are taken at the wall. Converting this from stagnation enthalpy to 

temperature, H = CpT + U2 /2, and recalling the constant specific heats assumption of 

NASCART-GT yields as well as the boundary layer assumptions that u, >> u11 , the linear 

velocity profile assumption yields 

(62) 

Finally, if the assumption of constant viscosity at the wall is used then the boundary layer 

energy equation at the wall becomes 

a 2~ I = _ Pr ( aur I ) 
2 

aTJ w cp aTJ w 
(63) 
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This condition along with the temperature at point 'c' provides two of the three condi-

tions required for a quadratic curve fit. The third condition comes from the adiabatic or 

isothermal wall boundary condition. 

For the adiabatic wall boundary condition, the third condition is ~~ lw = 0 which results 

in the following equation for the temperature profile 

(64) 

For the isothermal wall boundary condition, the third condition is given by the wall 

temperature which results in the following equation for the temperature profile 

(65) 
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Special Surface Cell Treatment 

The original objective of this alternative boundary condition treatment was to handle 

the arbitrarily small cut cells in a separate fashion so that they do not appear in the finite 

volume formulations (either for non-smoothness or time-step reasons). Thus, the primary 

focus is on cut cells that are much smaller than the flow cells that are at the same refinement 

level, see figure 27. Notice that the distance between point 'wl' and 'cl' is much larger 

1..2 

L1 

Figure 27: Large Cut Cell Example 

than between 'w2' and 'c2'. This increased distance causes larger errors in the interpolation 

procedures. Since these are not the cells that are of primary importance, these cells should 

not be excluded from the finite volume integration. Including these cells in the finite volume 

formulation has the advantages of further reducing the cells that are not included in the 

finite volume integration and removing the cases where the largest interpolation errors will 

occur. There is a trade-off between the non-smoothness of the finite volume scheme and the 

accuracy of the interpolation procedures. If surface cells that are "too small" are included in 

the integration scheme, then the viscous formulation will become unstable and the inviscid 
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scheme will have its time-step greatly restricted, however if no surface cells are included 

in the integration scheme, then the interpolation inaccuracies will appear in these regions. 

In practice, the criteria used to determine the how small of a surface cell to include in the 

formulation is if the surface cells with volume 95% or more of the flow cell volume at the 

same refinement level are included in the integration. 

State Reconstruction 

Once the velocity, pressure and temperature are determined for the surface cell, the state 

vector can be reconstructed using the equation of state and the isentropic relation between 

internal energy and density to get the density, momentum and energy values from 

P9 
Pg 

RT9 

PgUg PgUg 

Ug= PgVg PgVg (66) 

PgWg PgWg 

Eg ~ + p9 (u 9·u9) 
2 
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CHAPTER IV 

PARALLELIZATION ENHANCEMENTS 

Since the OpenMP code in fiowCart (the flow solver in CART3D) was written following 

a domain decomposition strategy, each processor integrates only a sub-region of the entire 

domain, and then exchanges data at the boundaries of its subdomain. While this strategy is 

well suited for the the MPI parallelization of CART3D, there were several significant mod

ifications that needed to be accomplished in order for the MPI port to be completed for the 

non-multigrid scheme. Most changes focused on handling the differences in the OpenMP 

and MPI paradigm, such as ensuring all processes receive the results of serial tasks and 

removing all dependencies on shared memory structures. All of these modifications were 

made such that the temporary memory requirements did not drastically increase with the 

storing of large amounts of configuration data. This chapter will discuss some of the more 

important changes that needed to be accomplished. 

Initialization Information Distribution 

One of the key differences between the OpenMP parallelization and the MPI parallelization 

is how the parallelization is accomplished. For OpenMP, threads are spawned for the paral

lelized regions of the code, leaving the rest of the code to be executed by a single instance 
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of the application. All data that exists for the serial portions of the code is automatically 

available for the parallel threads. For MPI, everything is executed as parallel processes, so 

any serial section must be delegated to one process while the others wait. Any data that 

needs to be available to all processes must be explicitly passed to all processes since MPI 

does not guarantee any data (including command line arguments) will be available to all 

processes. 

Th~ initialization process in the OpenMP version of tlowCart (ftowCart-OpenMP) con

sisted of parsing the command line arguments to get any initial configuration information, 

reading in the configuration file, and finally re-parsing the command line arguments for any 

configuration information that overrides the configuration file settings. All of this initial

ization was performed serially, and was followed by packing the configuration information 

into global data structures. For the MPI version of flowCart (flowCart-MPI), this needed 

to be changed such that the root process (the only process guaranteed to have access to 

the command line arguments and configuration file) performed all of the serial tasks from 

fiowCart-OpenMP and then distributed the configuration information to the rest of the pro

cesses, via the MPLBcast function. 

Grid Information Distribution 

Once the configuration information was distributed to all of the MPI processes, all of the 

grid information needed to be distributed. This was done in fiowCart-OpenMP in a section 

of serial code using two passes through the grid data file, with the first pass determining the 
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grid sizes for each process for appropriate load balancing and the second pass distributing 

the grids. As before, this was delegated to the root process. The first pass required little 

changes except for some extra internal buffers for the root process to store the grid sizes for 

each process. At the end of first pass, the root process distributes the grid sizes using the 

MPI call MPLSend, and each process receives their grid size using the MPI call MPLRecv, 

which is the followed by the allocation of the memory for the grid data by each process. 

The second pass truough the grid data file (where the grids are actually distributed to 

each process) required more attention associated with the exchange of data between grids. 

In addition to reading and distributing the grids, the information required to map partitions 

that share one or more faces is also constructed. Figure 28 shows a simple example of two 

partitions and the overlapping cells that each partition uses to store information about its 

neighbor. 

part.O part. I 

I I 
I I 

part.O overlap cells part. I 

_J 
I 
I ± 

-i 

f---+-"--+ - - - -I 
I 
I 
I 

1----'----+----~--- -, 
I 

'------'-- ------- -· 

I 

,--- _J_ --- +----J.--j 
I 

. --------- -'------' 

Figure 28: Overlapping Cell Configuration for fiowCart 

The indexing scheme that was used in the OpenMP parallelization to map the boundary 

overlap control volumes for each process to the flow volumes in another process needed to 
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be changed. It was setup for each grid to know where its overlapping cells mapped and then 

retrieve that data when needed. Thus for Figure 29, Table 2 shows the indexing scheme that 

flowCart-OpenMP would have used. Under this indexing scheme, when partition 0 needed 

to update overlap cell 1, corresponding to (0,1) in Table 2, the information was retrieved 

from partition 1, cell 1, corresponding to (1,1), and partition 0 only needed to store the 

integer pair (1,1) in order to update overlap cell 1. While this scheme worked well for 

flo\vCart -Open~"1P, it Vv7ould be verj inefficient to try to implen1ent tliis using lv1PI due to 

its strong dependence on direct access to physical memory locations. 

part.O _, ( overlap cells \ r _ 
3 I I 3 
-J ~-

2: : 2 

part. 1 

2 * 6 * 7 
4 

----~ ~----

1 I 

1 3 I : : 1 I 6 
I I ---------1 ~---------

1 I 
I I 

I 

0 0 : 0 0 
I 

Figure 29: Overlapping Cell Indexing for flowCart 

Since MPI is a message based communication scheme, emulating the updating of in-

formation for the example above would require too much bi-directional communication 

between processes. For partition 0 to update overlap cell 1, a message would first need to 

be sent to process 1 requesting the data from cell 1, then process 1 would need to send a 

message back to process 0 with the data. While this scheme could be improved by collect-

ing all of the requests for data going to each process and performing fewer, larger requests 

and sends, this would still result in unnecessary overhead. 
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Table 2: Original Overlapping Cell Indexing for flowCart-OpenMP 

Overlap Cell Internal Cell Stored Data 
(part.,index) (part.,index) (part.,index) 

(0,0) (1,0) (1,0) 
(0,1) (1,1) (1, 1) 
(0,2) (1,2) (1,2) 
(0,3) (1,3) (1,3) 
(1,0) (0,0) (0,0) 
(1,1) (0,3) (0,3) 
(1 ?) (0 fi) (Ofl) 
,~.,-.~ '-'- / 

,-,-.~ 

(1,3) (0,7) (0,7) 

A more direct indexing scheme is to have each partition keep track of its cells that are 

needed by a particular process. For Figure 29, this would result in Table 3. Now overlap 

cell 1 in partition 0 is updated by partition 1 sending cell 1 to partition 0, and partition 1 

only needs to store the index of its cell that needs to be sent, the partition to send the data, 

and the overlap cell index. Using this scheme, the exchange of data between partitions 

occurs in a uni-directional communication. 

In addition to the overlap cell indexing change, significant efforts were made in order 

to not drastically increase the transient memory requirement on the root process in order to 

build all of the overlapping information. While there was an increase in the internal data 

structures required for the grid distribution process, the increase was negligible and had no 

overall impact on the memory usage. 

State and Gradient Exchanges 
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Table 3: New Overlapping Cell Indexing for ftowCart-OpenMP 

Internal Cell Overlap Cell Stored Data 
(part.,index) (part.,index) (index,overlap part., overlap index) 

(1,0) (0,0) (0,0,0) 
(1,1) (0,1) (1,0,1) 
(1,2) (0,2) (2,0,2) 
(1,3) (0,3) (3,0,3) 
(0,0) (1,0) (0,1,0) 
(0,3) (1,1) (3,1,1) 
(0,6) (1,2) (n 1 ?) ,- ,-,-/ 

(0,7) (1,3) (7,1,3) 

In order for the solver to advance in time, the state and gradient information for the overlap-

ping cells mentioned above needed to be exchanged using MPI calls instead of the current 

OpenMP functionality. This was easily accomplished by using the new overlap cell index-

ing scheme. Each process now loops over all of its cells that are overlap cells for other 

processes and packs the state (and later the gradient) data into message buffers (one for 

each process that is to receive data). Once the buffers are packed, they are sent using the 

non-blocking MPI send function MPLisend. This allows each process the ability to send 

all of its data so that it can be ready to receive its overlap cell data from other processes, 

using the MPLRecv function. If the blocking form of the send function MPLSend were 

used, then it is easy to see that dead-lock conditions could easily arise. Take a simple two 

process parallel exchange where the two processes both call MPLSend, they will both be 

stuck waiting because the call will not return until the receiving process receives the data, 

but the receiving process is stuck waiting for its own send to complete. Thus, dead-lock 
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occurs. 

While the use of the non-blocking send solves the dead-lock condition, using it as 

described above does introduce a possible problem. Having all processes sending their 

data at the same time can cause the memory connection bandwidth to become saturated, 

but in practice this appears to have no adverse performance effects. For severely bandwidth 

limited architectures, it is conceivable to create a communication scheduling algorithm so 

that each process Vv'ould either send, receive, or wait for each step in the schedule. This 

schedule could be optimized to minimize the number of steps in the schedule or to minimize 

the total elapsed time in the schedule. However, since bandwidth saturation has not become 

an issue, these schemes will not be studied further. 

Solution Reporting Mechanisms 

Two changes were needed to be made to the solution reporting mechanisms in order to 

complete ftowCart-MPI. The first change was to the residual calculations that occur after 

each solution iteration has been performed. For the residual calculations, there are two 

residuals that are calculated, the Ll and infinity norms of the density values. Each process 

continues to calculate its local residuals as before, but an additional step is added. At the 

end of each residual calculation, each process uses the MPI function MPLAllreduce in or

der to determine the global residuals. The MPLAllreduce function performs a traditional 

gather-scatter operation [123]. A gather-scatter operation is a communication operation 

that collects and processes information from a number of sources and distributes the results 
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to all processes that supplied the information. For the L1 norm, the operation specified to 

the MPI function is the sum operation (using MPLSUM), while for the infinity norm, the 

operation specified is the max operation (using MPLMAX). 

The second change that needed to occur was to the extraction of cutting planes and 

surfaces that occurred during post-processing. As was the case for the residual calculations, 

each process performs its extraction calculations as before, but an additional step is added. 

After each process has performed its own extraction calculations and has crealeu ils uwn 

portion of the resulting cutting plane or surface, the root process cycles through all of 

the other processes and collects the plane or surface information and write~ the data out. 

This data is not stored by the root node since doing so could cause a significant additional 

memory requirement on the root node, especially if the cut plane or surface is larger than 

the available memory. Thus, common sections between processes (i.e. overlap cells or 

shared faces) cannot be eliminated as lhey would in fiowCart-OpenMP. This represents the 

only performance characteristic difference between flowCart-OpenMP and flowCart-MPI 

and in general is only a small portion of the overall extracted cutting plane or surface, 

(< 0.1%). 
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CHAPTERV 

SOLID BOUNDARY RESULTS 

After implementing the modifications to NASCART-GT presented in Chapter ill, tests were 

performed to determine the improvements made in the ability to model the solid boundaries 

in both inviscid and viscous flows in Cartesian grid formulations. These new solid boundary 

treatments remove the non-smoothness seen in the traditional viscous flux reconstruction 

techniques as well as the time-step limitations present in all current Cartesian solvers that 

include the surface cells in the integration procedure. This chapter presents a series of test 

cases that demonstrates the ability of NASCART-GT to handle a variety of inviscid and 

viscous flows. 

Primitive Geometry Flows 

The first set of cases are primitive geometry flows that have well studied solutions, either 

analytically or computationally, which can be used as a first stage of validation. To validate 

the inviscid wall boundary conditions, an incompressible cylinder flow and a compressible 

cylinder flow are studied. To validate the viscous wall boundary conditions, an incompress

ible fiat plate flow and a supersonic fiat plate flow are studied. 
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Incompressible Inviscid Cylinder Flow 

The incompressible inviscid cylinder test case is a circular cylinder with a radius of 0.5, 

or a curvature of 2.0, in a Moo = 0.1 freestream flow. The computational boundaries are 10.5 

diameters ahead and behind the cylinder and 10.5 diameters above and below the cylinder. 

The finest level of cells were ensured to be 0.5 diameters around the cylinder. Solutions 

are presented on two grids, one using a coarse grid of 84x84 root grid dimensions with 4 

levels of refinement for a total of 10,056 cells and a fine grid with 5 levels of refinement 

for a total of 18,216 cells. Figures 30 and 31 show the coarse and fine grids, respectively. 

For this case the reference points for the wall boundary conditions are determined using the 

interpolation procedure. 

Figure 30: Coarse Computational Do
main for Incompressible Cylinder Flow 

Figure 31: Refined Computational Do
main for Incompressible Cylinder Flow 

The cylinder curvature, calculated by NASCART-GT using the methods described in 

Chapter ill, is within 0.1% of the true value 2 for the cylinder. 
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To assess the accuracy of the surface boundary conditions, the surface pressure is com-

pared to the pressure obtained the incompressible potential flow solution 

(67) 

where B = 0° is the leading edge of the cylinder, B = 90° is the pressure minimum on the 

upper half of the cylinder and B = 180° is the trailing edge of the cylinder. Figure 32 shows 

a comparison between the fiat wall and curved wall boundary conditions for the 1st order 

solution on the coarse grid. Both conditions accurately capture the front stagnation pressure 

and under predict the rear stagnation pressure. The rear stagnation pressure under predic-

tions are most likely due to the numerical dissipation associated with the computational 

schemes employed. The curved wall boundary condition does a better job of capturing 

the pressure minimum with a 6.5% relative error compared to a 9.1% relative error for the 

fiat wall boundary condition. Table 4 shows the front stagnation point, minimum pressure 

point and rear stagnation point pressure values for the fiat wall and curved wall boundary 

conditions compared to the theoretical incompressible solution. 

Table 4: Incompressible Cylinder Surface Table 5: Incompressible Cylinder Surface 
Pressure Values for 1st Order Solution Pressure Values for 3rd Order Solution 

fiat curved exact fiat curved exact 
P/Poo P/Poo P/Poo P/Poo P/Poo P/Poo 

front stag. 1.0067 1.0067 1.0070 front stag. 1.0076 1.0057 1.0070 

Pmin 0.9879 0.9854 0.9790 Pmin 0.9828 0.9791 0.9790 
rear stag. 0.9988 0.9988 1.0070 rear stag. 1.0017 1.0047 1.0070 

The curved wall boundary condition solution has a C1 of 0.0000 and a Cd of 0.8166 

while the fiat wall boundary condition solution has a C1 of 0.0000 and a Cd of 0.8608. The 
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Figure 32: Incompressible Cylinder Sur
face Pressure 1st Order Solution with In
terpolated Reference Points 
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Figure 33: Incompressible Cylinder Sur
face Pressure 3rd Order Solution with In
terpolated Reference Points 

non-zero drag calculations are a result of the separation caused by the numerical dissipation 

discussed above. Table 7 shows the lift and drag coefficients for this case along with the 

other cases for the incompressible cylinder. 

Figure 33 shows the results for the same configuration as above except using the 3rd 

order solver. For this case both solutions slightly under-predict the front stagnation pressure 

and under predict the rear stagnation pressure. Again, the numerical dissipation causes a 

separation region in the rear of the cylinder, but the separation point is moved much further 

back compared to the first order solution. The separation point for the first order solution 

is ate~ 156.0 while for the third order solution it is ate~ 167°. While both boundary 

condition schemes are better able to capture the pressure minimum using the 3rd order 

scheme, the curved wall boundary condition is again much better with a -0.01% relative 

error compared to a 0.2% relative error for the flat wall boundary condition. 
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Figure 34: Fine Grid Incompressible 
Cylinder Surface Pressure Flat Wall with 
Interpolated Reference Points 
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Figure 35: Fine Grid Incompressible 
Cylinder Surface Pressure Curved Wall 
with Interpolated Reference Points 

Table 6: Incompressible Cylinder Surface Pressure Values for Fine Grid Solution 

fiat curved exact 
p/poo P/Poo pjpoo 

front stag. 1.0067 1.0067 1.0070 

Pmin 0.9815 0.9796 0.9790 
rear stag. 1.0027 1.0037 1.0070 

Table 6 shows the front stagnation point, minimum pressure point and rear stagnation 

point pressure values for the flat wall and curved wall boundary conditions compared to 

the theoretical incompressible solution. From table 7, the curved wall boundary condition 

solution using the third order solver has a C1 of -0.1001 and a Cd of -0.05578 while the 

flat wall boundary condition solution has a C1 of -0.00987 and a Cd of 0.2250. Again, the 

non-zero drag calculations are due to the separation caused by the numerical dissipation. 
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A comparison of the coarse grid and fine grid solutions are given in figures 34 and 35. 

Both figures show slight improvements to the surface pressure values around the entire sur-

face. Table 6 shows the front stagnation pressure, pressure minimum and rear stagnation 

pressure results for both cases. For the fine grid, the curved wall boundary condition solu-

tion has a C1 of -0.0423 and a C d of 0.1037 while the fiat wall boundary condition solution 

has a C1 of -0.0409 and a Cd of 0.1134, see table 7. 

Table 7: Incompressible Cylinder Lift and Drag Results 

first order coarse 
flat wall curved wall 

C1 0.0000 
cd o.8608 

0.0000 
0.8166 

third order coarse third order fine 
flat wall curved wall flat wall curved wall 

-0.00987 
0.2250 
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-0.1001 
-0.05578 

-0.0409 
0.1134 

-0.0423 
0.1037 



Finally, figure 36 shows the grid convergence for the front stagnation point pressure 

error for the fine grid solution, the coarse grid solution, and one coarser grid not shown. 

The x-axis of this figure corresponds to the number of cells along the cylinder diameter in a 

coordinate direction. For coarser grids the order of accuracy is not quite second order, with 

the actual order of 1.31, while for the finer grids the order of accuracy is just above second 

order, with the actual order of 2.15. 
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Figure 36: Incompressible Cylinder Grid Convergence with Interpolated Reference Points 

110 



Compressible Inviscid Cylinder Flow 

The compressible inviscid cylinder test case is a circular cylinder with a radius of 0.5, 

or a curvature of 2.0, in a Moo = 0.38 freestream flow. The computational boundaries are 10 

diameters ahead and behind the cylinder and 10 diameters above and below the cylinder. 

The finest level of cells were ensured to be 0.5 diameters around the cylinder. Solutions are 

presented on two grids, one using a coarse grid of 42x42 root grid dimensions with 5 levels 

of refinement for a total of 4884 cells and a refined grid with 6levels of refinement for a total 

of 13,052 cells. Figures 37 and 38 show the coarse and fine grids, respectively. For this case 

the reference points for the wall boundary conditions are determined using the interpolation 

procedure. Comparisons are made with results from Dadone and Grossman[44] for their 

structured grid solutions on a 128x32 (4096) cell domain, both with and without curvature 

corrections. 

Figure 37: Original Computational Do
main for Compressible Cylinder Flow 
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Figure 38: Fine Computational Domain 
for Compressible Cylinder Flow 



Table 8 shows a comparison between the pressure at the front and rear stagnation loca-

tions and the pressure minimum location values for the flat wall and curved wall boundary 

conditions with the results from Dadone and Grossman. For the coarse grid solution, both 

boundary conditions are very close to the reference results for the front stagnation point. 

For the rear stagnation point, the same numerical dissipation effects discussed previously 

are apparent here with little difference between the two results. At the pressure minimum, 

the curved wall solution is significantly better with a relative error of 0.9% compared to 

9.2% for the flat wall boundary condition solution. The curved wall boundary condition 

solution has a C1 of -5.857 X 10-4 and a Cd of 0.01905 while the flat wall boundary con-

dition solution has a cl of -5.760 X w-3 and a cd of 0.2221. The curved wall boundary 

condition significantly improved the lift and drag coefficients as well. Table 9 shows the 

lift and drag coefficients for this case along with the fine grid case for comparisons. 

Table 8: Compressible Cylinder Surface Pressure Values 

Flat Wall Curved Wall 
coarse fine coarse fine Dadone 

P/Po P/Po P/Po P/Po P/Po 
front stag. 1.001 1.005 0.999 1.004 1.001 

Pmin 0.630 0.616 0.582 0.578 0.577 
rear stag. 0.943 0.962 0.953 0.966 1.001 

A comparison between the pressure values for the original and curvature boundary 

conditions for the fine grid from table 8 shows that the curved wall solution changed much 

less than the flat wall solution, with the flat wall solution substantially improving. The most 
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pronounced improvement is in the pressure minimum value with a relative error of 6.8% 

(compared to 9.2% for the coarse grid). The curved wall pressure minimum value improved 

to a relative error of 0.2% (compared to 0.9% for the coarse grid). The front stagnation 

point is slightly off (around 0.4%) and the rear stagnation point has improved, but is still 

showing the effects of numerical diffusion. The curved wall boundary condition solution 

has a C1 of -2.050 x w-3 and a Cd of 0.0644 while the flat wall boundary condition 

solution has a C, of -6.932 x w-3 and a C. of 0.1803, Again, the curved wall bounda1·y • u 

condition significantly improved the lift and drag coefficients compared to the flat wall 

boundary condition, while both fine grid solutions result in a slight increase in lift and drag 

coefficients. 

Table 9: Compressible Cylinder Lift and Drag Results 

third order coarse third order fine 
flat wall 

c1 -5.760 x w-3 -5.857 x w-4 -6.932 x w-3 

cd 0.2221 0.01905 0.1803 
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-2.050 x w-3 
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Finally, figures 39 and 40 show the Mach contours for the solutions on the fine grid 

with the flat wall boundary condition and the curved wall boundary condition, respectively. 

Figures 41 and 42 show the Mach contours from Dadone and Grossman for their flat wall 

boundary condition and curvature corrected boundary condition, respectively. Both sets of 

figures have tiM= 0.1 for the contours. Comparing the reference figures to the figures from 

NASCART-GT shows that both NASCART-GT boundary conditions perform quite well 

at capturing the flow features everywhere except near the rear stagnation point. Sirnilar 

stagnation pressure losses that are present in the NASCART-GT cases can be seen in other 

results from Dadone and Grossman for less accurate wall boundary conditions. 
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Figure 39: Mach Contours for Compress
ible Cylinder Flow Flat Wall with Inter
polated Reference Points 

·\ . 5 
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Figure 41: Compressible Cylinder Mach 
Contours No Curvature from [44] 
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Figure 40: Mach Contours for Compress
ible Cylinder Flow Curved Wall with In
terpolated Reference Points 
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Figure 42: Compressible Cylinder Mach 
Contours with Curvature from [ 44] 



Incompressible Viscous Flat Plate Flow 

The incompressible flat plate case is a standard test case where the results can be com

pared to a known Blasius analytical solution, see [186] for details of the derivation. The 

flat plate is one unit long and oriented along the x-axis in a Moo = 0.2 freestream flow and a 

freestream Reynolds number of Reoo = 10,000. The computational boundaries extend 0.25 

units in front of the leading edge and behind the trailing edge and 0.25 units above the flat 

plate. The solution is presented on a computational domain with a root grid dimension of 

60x10 and 6levels of refinement. In addition, the finest level of cells are within 0.008 units 

of the flat plate. The solution converged in approximately 40,000 iterations. The final grid 

consists of 52,926 cells. Figure 43 shows the final grid. For this case the reference points 

for the wall boundary conditions are determined using the interpolation procedure. 

Figure 43: Final Computational Domain for Incompressible Flat Plate Flow 

Figure 44 shows the skin friction coefficient for this case compared against the Blasius 

solution and the results from Coirier [38]. Generally, there is excellent agreement between 

the Blasius solution and the NASCART-GT solution. There are some differences at the 

leading edge of the flat plate that are caused by inadequate cell resolution for the very 
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small boundarY layer region associated with the leading edge region. There is also a slight 

acceleration at the trailing edge due to the fact that the plate is not infinite that causes the 

skin friction coefficient to rise. Figure 45 shows the u-velocity profile through the boundary 

layer at the quarter-point and mid-point of the flat plate. Here excellent agreement is shown 

between the Blasius solution and the computed solution, and the computed solution shows 

the self-similarity that is expected. 
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Figure 44: Incompressible Flat Plate 
Skin Friction Coefficient with Interpo
lated Reference Points 
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Figure 45: Incompressible Flat Plate Ve
locity Profiles with Interpolated Refer
ence Points 

Non-Grid Aligned Incompressible Viscous Flat Plate Flow 

The non-grid aligned incompressible fiat plate case is the same flow conditions as the 

incompressible fiat plate flow case above. The difference is that for this case the fiat plate 

and freestream velocity vector are at a 30° angle to the x-axis. The solution is still a Blasius 

solution, however now there are cut cells along the surface. The grid used for this solution 

is a 18x12 root grid dimension with 6 levels of refinement. The solution converged in 
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approximately 20,000 iterations. The final grid consists of approximately 13,152 cells. 

Figure 46 shows the final grid. For this case the reference points for the wall boundary 

conditions are determined without using the interpolation procedure. 

Figure 46: Final Computational Domain for Incompressible Non-Grid Aligned Flat Plate 
Flow 

Figure 4 7 shows the skin friction coefficient for this case. Once the leading edge grid 

resolution problem is passed, at xj L ~ 0.5, there is good agreement between NASCART-

GT and the Blasius solution. However, at the leading edge, the Blasius solution is not 

reliable due to the low local Reynolds number there, and the computed solution requires 

more grid points to adequately resolve this region. As in the above case, acceleration at 

the trailing edge caused by the finite length of the flat plate causes an increase in the skin 

friction coefficient. 

The skin friction coefficient for this solution should follow the following curve 

(68) 

where for the actual Blasius solution of this flow, the values for a and b are 0.00664 and 

-0.500, respectively. Using a standard nonlinear least-squares algorithm to minimize the 

errors between equation (68) and the NASCART-GT data results in the values of a and b of 
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Figure 47: Incompressible Flat Plate Skin Friction Coefficient on Non-Grid Aligned Flat 
Plate without Interpolated Reference Points 

0.00629 and -0.427 for the NASCART-GT results, respectively. Thus, in the region where 

the leading edge resolution and the trailing edge acceleration are not adversely effecting 

flow, the NASCART-GT solution maps quite closely to the Blasius solution. 
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Supersonic Viscous Flat Plate Flow 

The supersonic flat plate case is another standard test case that has been extensively 

studied. The flat plate is one unit long and oriented along the x-axis in a Moo = 3.0 

freestream flow and a freestream Reynolds number of Reoo = 1000. The computational 

boundaries extend 0.2 units in front of the leading edge and 0.8 units behind the trailing 

edge and 0.8 units above the flat plate. The solution is presented on a computational domain 

with a root grid dimension of 20x 16 and 6 levels of refinement. In addition, solution adap

tion is performed every 1000 iterations. The solution converged in approximately 40,000 

iterations with the CFL number at 0.10. The final grid consists of 15,337 cells. Figure 48 

shows the final grid. For this case the reference points for the wall boundary conditions are 

determined without using the interpolation procedure. 

The results from this case are compared with Arminjon and Madrane [11], Satya Sai et 

al. as well as the standard reference for the computational solution for an infinitely long 

flat plate, Carter [29]. The Satya Sai et al. results are for an infinitely long flat plate and are 

validated against Carter, and the Arminjon and Madrane results are for a finite length flat 

plate and are validated against Satya Sai et al. 

Figure 49 shows the skin friction coefficient for this case. There is excellent agreement 

between the Carter results and NASCART-GT solution until the effects of the finite flat 

plate are seen around x/ L = 0.5 in the NASCART-GT solution. The fact that the plate is 

finite causes the flow to accelerate as it approaches the trailing edge, thus the skin friction 

coefficient increases. Figure 50 shows the surface pressure for this case. Again there is 
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Figure 48: Final Computational Domain for Supersonic Flat Plate Flow 

excellent agreement between the Satya Sai et al. results and the NASCART-GT solution 

until the trailing edge acceleration effects dominate. Notice that these effects appear further 

down the flat plate, x/L = 0.75, since the boundary layer pressure is less sensitive to the 

acceleration effects. Figure 51 shows the Mach contours for this case, and figure 52 shows 
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Figure 50: Supersonic Flat Plate Pressure 
without Interpolated Reference Points 

the reference Mach contours from Arminjon and Madrane. There is excellent agreement 
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Figure 51: Mach Contours for Supersonic Flat Plate without Interpolated Reference Points 

Figure 52: Supersonic Flat Plate Mach Contours from [11] 
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between the two contour plots with NASCART-GT crisply capturing the boundary layer 

induced shock as well as the boundary layer growth. 

Two-Dimensional Airfoil Flows 

The next set of cases are two-dimensional airfoil flows that have well studied computa

tional solutions which can be used to further validate the code. The inviscid wall boundary 

conditions are compared to a transonic NACA-0012 airfoil flow, while the viscous wall 

boundary conditions are compared to a subsonic and supersonic NACA-0012 airfoil flow. 

Transonic Inviscid NACA-0012 Airfoil Flow 

This test case is a NACA-0012 airfoil in a Moo= 0.85 flow at an angle-of-attack of 

a = 1.00°. The computational boundaries are 5 chords ahead and behind the airfoil and 5 

chords above and below the airfoil centerline. Solutions are presented on a computational 

domain with a root grid dimension of 44x42 and 7 levels of refinement. In addition, solu

tion adaption is performed every 200 iterations starting after 1000 iterations. Both solutions 

converged in approximately 20,000 iterations using local time-stepping. The final grids for 

the flat wall solution consists of 7981 cells and 7963 cells for the curved wall solution. 

Also, a curvature maximum of 40.0 is imposed in order to limit the large pressure gradients 

that can result near the leading edge. Figure 53 shows the final grid for the curved wall 

solution. Notice that the solution adaption has refined cells near the leading edge where 

the flow is going through rapid accelerations and near the shocks. The results from this 
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case are compared with the AGARD Advisory Report results [119] which presents general 

results from several researchers as well as detailed results for a 320x64 (20,480) cell struc-

tured grid solution. For this case the reference points for the wall boundary conditions are 

determined using the interpolation procedure. 

To further validate the curvature calculations of NASCART-GT, the exact curvature for 

the NACA-0012 airfoil, see [85] and Appendix C for details, is compared to the values 

obtained from NASCART-GT. Figure 54 shows the plot of the curvature and generally 

excellent agreement can be seen. There are slight differences between the the actual and 

computed curvatures at the leading edge, but these are due to using the minimum curvature 

for each computational cell that has multiple geometric intersections. 

Figure 53: Final Computational Domain 
for Transonic Inviscid NACA-0012 Flow 
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Figure 54: NACA-0012 Curvature Calcu
lated from NASCART-GT 

Figures 55 and 56 show the surface pressure coefficient comparison between the NASCART-

GT solutions and the AGARD solution for the upper and lower surfaces, respectively. The 

curved wall solution does a better job of capturing the rapid accelerations with only slight 
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differences at the leading edge. The upper surface shock locations are missed by approx-

imately 0.023 chords fore and 0.014 chords aft for the curved wall and fiat wall solutions 

respectively. For the lower surface the curved wall solution is very close to the reference 

data, while the fiat wall solution is approximately 0.028 chords aft. 
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Figure 55: Transonic Inviscid NACA-
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Figure 56: Transonic Inviscid NACA-
00 12 Lower Surface Pressure Coefficient 
with Interpolated Reference Points 

Figures 57 and 58 show the Mach contours for the fiat wall and curved wall solutions, 

respectively. Figure 59 shows the Mach contours from the AGARD reference. All three 

figures use a J..M = 0.05 for the contours. Both wall boundary conditions do an excellent 

job of capturing the flow features throughout the computational domain. 

Finally, table 10 shows the lift and drag coefficients for the fiat wall and curved wall 

cases as well as the AGARD committee results. In addition, the scatter associated with 

the various computed results by the AGARD researchers is also provided. The fiat wall 
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boundary condition solution performs slightly better than the curved wall boundary con-

dition solution for the lift coefficient with a 6.8% under-prediction versus 10.7% for the 

curved wall solution, however each result is within the scatter of the AGARD data. The 

curved wall boundary condition does a much better job at predicting the drag coefficient 

and is under the AGARD data by 7.4%. However, the flat wall boundary condition over-

predicts the drag by 23%, but is close to the AGARD range. This is due to the inability of 

the flat wall to capture the leading edge suction peaks. Given the fact that NASCART-GT 

used only approximately 40% of the cells that the AGARD reference used, the curved wall 

results are quite reasonable. 

Table 10: Transonic Inviscid NACA-0012 Lift and Drag Results 

flat wall curved wall 

c1 o.3341 
cd o.07150 

0.3201 
0.05371 
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AGARD [119] (scatter) 

0.3584 (0.0589) 
0.0580 (0.0126) 



Figure 57: Mach Contours for Transonic 
Inviscid NACA-0012 Flat Wall 

Figure 58: Mach Contours for Transonic 
Inviscid NACA-0012 Flow Curved Wall 

Figure 59: Inviscid Transonic NACA-0012 Mach Contours from [119] 
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Subsonic Viscous NACA-0012 Airfoil Flow 

This test case is a NACA-0012 airfoil in a Moo = 0.8 flow at an angle-of-attack of 

a = 1 oo and a freestream Reynolds number of Reoo = 500. The computational bound

aries are 5 chords ahead of the airfoil, behind the airfoil, above the airfoil centerline and 

below the airfoil centerline. Solutions are presented on a computational domain with a 

root grid dimension of 33x30 and 6 levels of refinement. In addition, solution adaption is 

performed every 500 iterations starting after 1000 iterations. Both solutions converged in 

approximately 40,000 iterations. The final grids for the flat wall solution consists of 57,100 

cells and 56,947 cells for the curved wall solution. Also, a curvature maximum of 40.0 

is imposed. Figure 60 shows the final grid for the curved wall solution. For this case the 

reference points for the wall boundary conditions are determined using the interpolation 

procedure. 

Figure 60: Final Computational Domain for Subsonic Viscous NACA-0012 Flow 
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The results from this case are compared with the results from Casalini and Dadone [32], 

whose results compare quite well to a collection of results from Bristeau et al. [27] others 

from an international workshop on compressible Navier-Stokes solvers. The Casalini and 

Dadone results are from a structured grid solution with 256x64 (16,384) cells. 

Figure 61 shows the surface pressure coefficient comparison between the NASCART

GT solutions and the results from Casalini and Dadone. The flat wall and curved wall 

solutions show little differences between each other. They both capture the suction peak 

near the leading edge reasonably well, and slightly over-predict the lower surface pressure. 

In general, the agreement between the reference solution and the NASCART-GT surface 

pressure coefficient distributions is good. 

Figure 62 shows the skin friction coefficient comparison between the NASCART-GT 

solutions and the results from Casalini and Dadone. Here, the leading edge skin friction 

coefficient is not well resolved until xjL of 0.1 on the upper surface and 0.15 on the lower 

surface. This is simply a grid resolution problem that would require multiple levels of grid 

cells along the body to reasonably capture the leading edge effects, which is currently not 

an option in NASCART-GT. Adding this functionality would require careful examination 

of the viscous stencil positivity criteria discussed by Coirier [38] in order to ensure that 

non-smoothness is not introduced into the solution. Notice that there are no large oscilla

tions in the skin friction coefficient as was shown by other cut cell Cartesian approaches. 

Generally, after the leading edge resolution problem, there is excellent agreement between 

the reference skin friction coefficient and the NASCART-GT solutions. 
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Figure 61: Subsonic Viscous NACA-
0012 Surface Pressure Coefficient with 
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Figure 62: Subsonic Viscous NACA-
00 12 Skin Friction Coefficient Interpo
lated Reference Points 

Figures 63 and 64 show the Mach contours for the flat wall and curved wall solutions, 

respectively. Figure 65 shows the Mach contours from the Casalini and Dadone reference. 

All three figures use a flM = 0.05 for the contours. Both wall boundary conditions do 

an excellent job of capturing the flow features throughout the computational domain. In 

particular the recirculation region is clearly evident in both solutions. An examination 

of the skin friction coefficients for both solutions shows that the separation point occurs 

around x/ L of 0.41 for the flat wall solution, which is 0.08 chords off of the location from 

Casalini and Dadone of 0.33, and 0.42 for the curved wall solution, which is 0.09 chords 

off. 

Finally, table 11 shows the lift and drag coefficients for the flat wall and curved wall 

cases. These results are again compared to the Casalini and Dadone references mentioned 

above. The flat wall boundary condition over predicts the lift coefficient by 7.4% and 
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slightly under predicts the drag coefficient by 0.4%. The curved wall boundary condition 

also over predicts the the lift coefficient by 6.9% and slightly over predicts the drag coeffi-

cient by 0.4%. 

Table 11: Subsonic Viscous NACA-0012 Lift and Drag Results 

Casalini and 
flat wall curved wall Dadone [32] 

ct 0.422 0.420 0.393 

cd 0.252 0.254 0.253 
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Figure 63: Mach Contours for Subsonic 
Viscous NACA-0012 Flow Flat Wall with 
Interpolated Reference Points 

Figure 64: Mach Contours for Subsonic 
Viscous NACA-0012 Flow Curved Wall 
with Interpolated Reference Points 

Figure 65: Viscous Subsonic NACA-0012 Mach Contours from [32] 
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Supersonic Viscous NACA-0012 Airfoil Flow 

This test case is a NACA-0012 airfoil in a Moo = 2.0 flow at an angle-of-attack of 

a = 10° and a freestream Reynolds number of Reoo = 1000. The computational boundaries 

are 1 chord ahead of the airfoil, 6 chords behind the airfoil and 5 chords above and 3 chords 

below the airfoil centerline. Solutions are presented on a computational domain with a 

root grid dimension of 24x24 and 6 levels of refinement. In addition, solution adaption is 

performed every 200 iterations starting after 1000 iterations. Both solutions converged in 

approximately 20,000 iterations. The final grids for the flat wall solution consists of 47,741 

cells and 48,088 cells for the curved wall solution. Also, a curvature maximum of 40.0 

is imposed. Figure 66 shows the final grid for the curved wall solution. For this case the 

reference points for the wall boundary conditions are determined using the interpolation 

procedure. 

Figure 66: Final Computational Domain for Supersonic Viscous NACA-0012 Flow 

133 



The results from this case are compared with the results from Arminjon and Mad-

rane [11], whose results compare quite well to a collection of results from Cambier [28] and 

Miiller et al. [113] from an international workshop on compressible Navier-Stokes solvers. 

The Arminjon and Madrane results are from an unstructured grid solution with 7962 ver-

tices. The Cambier results are from a structured grid solution with 193x72 (13,896) cells, 

and the Miiller results are from a structured grid solution with 257x257 (66,049) cells. 

Figure 67 shows the surface pressure coefficient comparison between the NASCART-

GT solutions and the results from Arminjon and Madrane. Both solutions generally show 

excellent agreement with the reference data with slight differences on the upper and lower 

surfaces after about 0.1 chords for about 0.1 chords. In general, there is nice agreement 

between both solutions and the reference data and no significant differences between the 

curved wall or fiat wall solutions. 
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Figure 67: Supersonic Viscous NACA-0012 Surface Pressure Coefficient 
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Figures 68 and 69 show the Mach contours for the flat wall and curved wall solutions, 

respectively. Figure 70 shows the Mach contours from the Arminjon and Madrane refer-

ence. All three figures use a~= 0.1 for the contours. Both wall boundary condition cases 

do an excellent job of capturing the flow features throughout the computational domain. 

The bow shock is crisply captured in both solutions without any noticeable oscillations. 

Finally, table 12 shows the lift and drag coefficients for the flat wall and curved wall 

cases. These results are compared to the Cambier and Mii!!er references mentioned above. 

The flat wall boundary condition slightly under-predicts the lift coefficient by 1.8% com-

pared to Cambier and by 0. 7% compared to Muller. For the drag coefficient, the flat wall 

over-predicts both results, by 1.8% and 2.7%. The curved wall boundary condition is be-

tween the results of Cam bier and Muller with a relative difference of 0.4% and 0.8% respec-

tively. For the drag coefficient, the curved wall boundary condition slightly over-predicted 

by 0.7% and 1.7%. 

Table 12: Supersonic Viscous NACA-0012 Lift and Drag Results 

flat wall curved wall 

0.3364 
0.2583 

0.3415 
0.2554 

Cambier [28] 
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0.3427 
0.2535 

Muller [113] 

0.3388 
0.2515 



Figure 68: Mach Contours for Supersonic 
Viscous NACA-0012 Flat Wall with In
terpolated Reference Points 

Figure 69: Mach Contours for Supersonic 
Viscous NACA-0012 Flow Curved Wall 
with Interpolated Reference Points 

Figure 70: Viscous Supersonic NACA-0012 Mach Contours from [11] 
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Transonic lnviscid ONERA M6 Wing 

This test case is an inviscid flow around an ONERA M6 wing in a Moo = 0.84 flow at an 

angle-of-attack of a= 3.06°. The computational boundaries are 4 root chord lengths away 

in the x-, y- and z-directions. The solution is presented on a computational domain with a 

root grid dimension of 34x34x34 and 6 levels of refinement. In addition, solution adaption 

is performed every 500 iterations starting after 1000 iterations. The solution presented is 

after approximately 5300 iterations. The final grid for this case consists of 404,400 cells 

with 21,556 surface cells. As in the NACA-0012 cases, a curvature maximum of 40.0 is 

imposed in order to limit the pressure gradients caused by the highly curved regions of the 

leading edge. Figure 71 shows the final grid for this case. For this case the reference points 

for the wall boundary conditions are determined without using the interpolation procedure. 

Figure 71: Final Computational Domain for Transonic Inviscid ONERA M6 Flow 
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The results from this case are compared with the results from AGARD Advisory Re

port (AGARD-AR-138) results [146] and AGARD Advisory Report (AGARD-AR-211) 

results [119]. The AGARD-AR-138 data is experimental data performed for a very high 

Reynolds number, 11.72x106, in order to minimize the displacement thickness effects 

caused by the boundary layer. The AGARD-AR-211 data is a collection of computational 

results from several researchers for an inviscid solution to this problem. The AGARD-AR-

211 computational results have significantly more resolution ai ihe ieading edge compared 

to the NASCART-GT geometry with approximately 4 cells from the AGARD fine grid so

lution fitting into the leading edge cell of the NASCART-GT geometry. However, once 

the leading edge section is passed, the cell sizes between the fine AGARD computational 

results and the NASCART-GT geometry are nearly equal. Thus, it is reasonable to expect 

that the leading edge resolution of the NASCART-GT results will not be as accurate as the 

AGARD computational results. 

Figures 72 through 77 show the surface pressure values at several span-wise locations 

for the NASCART-GT solution and the AGARD-AR-138 results. As with many of the 

other cases presented above, more leading edge resolution is needed in order to accurately 

capture the rapid suction peaks, especially near the root of the wing on the upper surface. 

As is typical in inviscid solutions [3], the upper surface shock locations are slightly aft of 

the experimental results due to the neglect of the boundary layer effects. For the inboard 

sections, figures 72 through 75, there are two separate shocks on the upper surface that 

are present in the experimental results, however the inadequate leading edge resolution 
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prevents the capturing of the first. After the first shock, there is better agreement. The 

lower surface shows excellent agreement throughout all of the figures. 

A direction comparison of the NASCART-GT results with other inviscid solutions is 

difficult because other solution techniques are not limited to a single cell size throughout the 

entire solid surface as is NASCART-GT in order to property handle the modeling of viscous 

flows. However, other inviscid solutions also predict the stronger shock location aft of the 

experimental location, for example [3] as well as the AGARD-AR-211 computational 

results, with generally good agreement with the NASCART-GT locations. 

Figures 78 and 79 show the Mach contours on the upper surface of the wing for NASCART

GT and the AGARD-AR-211 results, respectively. Both figures use a !l.M = 0.05 for the 

contours. In these figures it is apparent that there is a lambda-shock structure on the upper 

surface with NASCART-GT only capturing the second shock and the top of the lambda. It 

appears that the first shock, the weaker of the two, is close to forming in the NASCART-GT 

solution. 

Figures 80 and 81 show the Mach contours on the lower surface of the wing for NASCART

GT and the AGARD-AR-211 results, respectively. Both figures use a !l.M = 0.05 for the 

contours. Here there is nice agreement between the two results with only slight differences 

in the center of the mid-span region where there is some discontinuity in the NASCART-GT 

contours. 
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Figure 72: Transonic Inviscid ONERA M6 
Surface Pressure Coefficient at z/ L = 0.2 
'.Vithout Interpolated Reference Points 
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Figure 74: Transonic Inviscid ONERA M6 
Surface Pressure Coefficient at z/L = 0.65 
without Interpolated Reference Points 
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Figure 76: Transonic Inviscid ONERA M6 
Surface Pressure Coefficient at z/L = 0.9 
without Interpolated Reference Points 
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Figure 73: Transonic Inviscid ONERA M6 
Surface Pressure Coefficient at z/ L = 0.44 
without Interpolated Reference Points 
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Figure 75: Transonic Inviscid ONERA M6 
Surface Pressure Coefficient at z/ L = 0.8 
without Interpolated Reference Points 
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Figure 77: Transonic Inviscid ONERA M6 
Surface Pressure Coefficient at z/L = 0.95 
without Interpolated Reference Points 
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Figure 78: Transonic Inviscid ONERA M6 Upper Surface Mach Contours without Inter
polated Reference Points 

Figure 79: Transonic Inviscid ONERA M6 Upper Surface Mach Contours from [119] 
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Figure 80: Transonic Inviscid ONERA M6 Lower Surface Mach Contours without Inter
polated Reference Points 

Figure 81: Transonic Inviscid ONERA M6 Lower Surface Mach Contours from [119] 
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CHAPTER VI 

PARALLELIZATION RESULTS 

With the modifications made to ftowCart (the flow solver part of CART3D) mentioned in 

Chapier iv, tests were performed to demonstrate the parallelization characteristics of the 

MPI version of ftowCart. This chapter discusses the parallelization performance of the 

MPI version of ftowCart and compares the results to the OpenMP version as well as other 

published results for similar configurations. 

Test Hardware Description 

There were two separate hardware configurations used to test the MPI parallelization en

hancements, the first was an Origin 2000 for the shared memory tests, and the second was a 

heterogeneous cluster of SGI workstations connected by Gigabit ethernet for the distributed 

memory tests. 

Shared Memory System Configuration 

The shared memory hardware used for these tests was part of NASA Ames Research 

Center's NAS (NASA Advanced Supercomputing) Division CoSMO/NAS/HPCCP clus

ters. The machine, Lomax [117, 118], was a 256 node Origin 2000 with 2 400 MHz R12000 
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CPUs per node for a total of 512 available processors. Each node contained 768MB of 

memory (with approximately 700MB available for application use) for a total of 192GB 

of memory. Each node also contained 32 KB of on-chip Ll cache and 8MB of external L2 

cache. The memory hierarchy was as follows: 

• CPU registers 

• L1 instruction cache and data cache 

• L2 unified (instruction and data) cache 

• Local main memory 

• Remote main memory 

• Hard disk 

with the latency associated with memory accesses increasing down the list. 

The operating system on Lomax was SGI Irix v6.5 .1 Of. The executables were compiled 

with SGI MIPS Pro FORTRAN 77 and C compilers v7 .3 .1.1 m using the -Of ast optimiza

tion flag in 64-bit mode. The OpenMP and MPI parallelization libraries used were the 

libraries supplied by SGI Message Passing Toolkit v1.4.0.0. 

Distributed Memory System Configuration 

The distributed memory hardware used for these test was a cluster of SGI workstations 

at NASA Ames Research Center. The cluster, Cluster T27B [116], was composed of 19 
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SGI workstations, 14 Octane and 5 Octane2 machines, with processor speeds varying from 

250 MHz to 400 MHz and available memory between 896MB to 3584MB (see Table 13 

for the configuration of the specific machines). The cluster was connected using gigabit 

ethernet. 

Table 13: Distributed Memory Cluster Information 

Machine Processor Type. Processor Speed Memory OS 
fl\KU-\ 
VYH.lL) (l'viB) 

Octane 1 X R10000 250 1280 IRIX v6.5.13m 
Octane 2 X R10000 250 2048 IRIX v6.5.13m 
Octane 2 X RlOOOO 250 2048 IRIX v6.5.13m 
Octane 1 X R12000 300 896 IRIX v6.5.13m 
Octane 1 X R12000 300 1024 IRIX v6.5.13m 
Octane 1 X R12000 300 2048 IRIX v6.5.13m 
Octane 1 X R12000 300 2048 IRIX v6.5.13m 
Octane 2 X R12000 300 2048 IRIX v6.5.13m 
Octane 2 x R12000 300 2048 IRIX v6.5.13m 
Octane 2 X R12000 300 2048 IRIX v6.5.13m 
Octane 2 X R12000 300 2048 IRIX v6.5.13m 
Octane 2 X R12000 300 2048 IRIX v6.5.13m 
Octane 2 X R12000 300 2048 IRIX v6.5.13m 
Octane 2 x R12000 300 2048 IRIX v6.5.13m 

Octane2 2 X R12000 360 2304 IRIX v6.5.13m 
Octane2 2 X R12000 360 2304 IRIX v6.5.13m 
Octane2 2 X R12000 360 2304 IRIX v6.5.13m 
Octane2 2 X R12000 360 3584 IRIX v6.5.13m 
Octane2 2 X R12000 400 2304 IRIX v6.5.14m 

The operating system on each of the machines was SGI IRIX v6.5.13m (except for one 

Octane2 machine which had SGI IRIX v6.5.14m, see Figure 13). The executables were 

compiled with SGI MIPSPro FORTRAN 77 and C compilers v7.3.1.2m using the -Ofast 
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optimization flag in 64-bit mode. The MPI parallelization library used was the MPICH [65] 

library vl.2.1. 

Parallelization Quantization Methodology 

In order to provide an accurate assessment of the peak performance of ftowCart in a parallel 

processing environment, the following procedures were used to create the results. In order 

to objectively compare the parallelization results, the same processors needed to be used 

for the entire range of speedup cases. Thus, the maximum number of processors to be used 

was allocated at the beginning of the tests and each speedup case used a subset of these 

processors. Since there was no guarantee that the optimal processor allocation would be 

obtained for any particular run, three runs of 20 iterations were performed for each set of 

processors and the best timing was taken. This also minimized the effects of any memory 

bandwidth and CPU contention caused by other users on the systems. Finally, to remove 

any one-time initialization costs, the reported time for each run was taken to be the time for 

the 1st iteration subtracted from the 20th iteration. The elapsed time for each iteration was 

recorded using the standard UNIX function getrusage to get the elapsed user time for the 

process with microsecond resolution. 

Shared Memory Results 

Since some of the modifications made to ftowCart were to the core functionality (such as 

the overlap control volume exchange data structures discussed on page 97), a comparison 
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between the new OpenMP functionality and existing parallelization results was performed. 

Figure 83 shows the speedup for the new tlowCart-OpenMP code using up to 64 processors 

compared to Berger et al. [22] results (labeled Berger-2000), Mavriplis [98] results (labeled 

Mavriplis-2000) and the ideal speedup (labeled Ideal). The tlowCart-OpenMP and Berger-

2000 cases used approximately 1.0 million control volumes, while the Mavriplis case used 

approximately 3.1 million control volumes. As can be seen in Figure 83, there is excellent 

agreement between all three cases with a slight decrease in performance for the 32 node 

case which is most likely cased by a poor distribution of the allocated nodes over the pro-

cessors. Analyzing the run times for the 32 node tlowCart-OpenMP result shows a wide 

variety between the slowest run (66.669 s) and the fastest run (51.463 s), which results 

in a 30% difference between the these two cases, while the other runs typically had a 7% 

difference between their slowest and fastest time. 

Figure 82: Sample Solution of ONERA M6 
Wing Parallelization Case 
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Figure 83: OpenMP Speedup Results Com
pared to Published Data 

Figure 84 shows a comparison between flowCart-OpenMP and tlowCart-MPI using the 

same 1.0 million control volume grid used above. For up to 16 processors, the speedup 
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curves are quite similar. For the 32 processor case, both sets of results begin to deteriorate 

due to the poor distribution of processors mentioned above, with flowCart-MPI showing 

less degradation in performance. For the 64 processor case, both speedup curves show im

provements compared to the 32 processor case, with flowCart-MPI showing super-linear 

speedup. This is caused by the fact that the partition sizes are very small (approximately 

16,000 control volumes/processor). Thus, most of the data can exist in the processor's 

cache, resulting in significantly less time required io access data than if the data resided in 

the nodes local memory. This super-linear speedup has also been demonstrated by other re

searchers [98] as shown in Figure 86. This effect is less pronounced for flowCart-OpenMP 

since it utilizes pointers for the IPC and not shared memory buffers as MPI. This also ex

plains why flowCart-MPI does not show as drastic a penalty as flowCart-OpenMP does for 

the 32 processor case. 

One final comparison of interest between flowCart-OpenMP and flowCart-MPI is the 

timing results, Figure 85. Overall flowCart-MPI is within 5% of the flowCart-OpenMP 

times except for the 64 processor case where the cache benefits discussed above result in 

flowCart-MPI being 15% quicker than flowCart-OpenMP, see Table 14. This result seems 

counter-intuitive since flowCart-MPI is at the very least having to perform a buffer fill 

and empty (assuming that the buffer exchange occurs as a shared-memory operation) while 

flowCart-OpenMP does not. The most likely cause is that as the number of control volumes 

per processor decreases, there is going to be many short requests for memory addresses in 
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the ftowCart-OpenMP due to the way that information is exchanged, while the ftowCart-

MPI information exchange occurs as a few large blocks of data. Thus memory contention 

might become more of bottleneck for flowCart-OpenMP when a relatively large fraction of 

the control volumes are on processor boundaries. 

Table 14 also demonstrates the improvements due to the cache benefits that have been 

observed in other figures. 
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Figure 84: Shared Memory OpenMP and 
MPI Speedup Results 
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Figure 85: Shared Memory OpenMP and 
MPI Timing Results 

Table 14: Shared Memory Timing Improvements for ftowCart-MPI 

num. proc. % Improvement 

2 -1.9 
4 -2.1 
8 +4.1 
16 +4.1 
32 +4.9 
64 +15.0 

Finally, Figure 86 shows a comparison between a 3.1 million control volume case from 
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Mavriplis [98] using MPI and a 1.0 million control volume case from ftowCart-MPI. Again, 

there is good agreement between the two cases with the performance from Mavriplis show-

ing slightly better speedup due to the larger grid and the additional computations that are 

being performed (viscous terms, GMRES, etc.). For the 64 processor case both curves 

show the same super-linear speedup caused by the cache benefits. 
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Figure 86: Shared Memory MPI Speedup Results Compared to Published Data 

Distributed Memory Results 

The distributed memory configuration results here are compared with the shared memory 

results obtained from flowCart-MPI for the same 1.0 million control discussed above. Fig-

ure 87 shows the speedup results. Acceptable parallelization performance is demonstrated 

up to 8 processors. After that point, the communication costs begin to overwhelm the 

computational benefits for 16 processors. Figure 88 shows that there is only a 15% per-

formance penalty for using the distributed memory architecture until 8 processors. After 
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that, the communication costs again overwhelm the computations. Luecke et al. [94] as 

well as Kremenetsky et al. [83] have demonstrated that there is a significant performance 

penalty using the MPICH MPI library compared to using the SGI MPI library for both 

performance benchmarking applications as well as similarly sized CFD simulations. This 

seems to explain the relatively poorer distributed memory performance results compared to 

the shared memory results since the MPI version performs well in the SGI shared memory 

architecture. 
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Figure 87: Distributed Memory MPI 
Speedup Results 
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CHAPTER VII 

CONCLUSIONS 

This research has provided insight into ways of extending the functionalities of Cartesian 

grid soivers into viscous effects modeling via novel boundary condition treatments and 

MPI parallelization. The non-smoothness associated with the non-positivity of the viscous 

flux stencil for the surface cells have been minimized in NASCART-GT by separating the 

surface cells from the finite volume formulation that is used to solve the rest of the compu

tational domain. While the surface cells are not part of the finite volume formulation, their 

state is still determined by applying physically based conditions that are consistent with 

the boundary conditions associated with the surface. Additionally, the parallelization func

tionality of CART3D has been extended to use MPI as its parallelization library without 

significant impact to the parallelization speedup or total run time. 

Solid Boundary Treatment 

The new viscous solid boundary treatment developed for NASCART-GT removes the sur

face cells from the finite volume formulation in order to address the non-smoothness and 

small time steps associated with the cut cell treatment. The state at the surface cells in deter

mined by applying interpolation functions and the solid surface boundary conditions with 
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either flat or curved wall approximations. This new treatment shows significant progress 

towards utilizing cut cell Cartesian grid methods for general bodies in viscous flows. In 

all cases presented, the interpolation formulations produce reasonable results without the 

non-smoothness problems associated with the stencil positivity in the viscous cases. The 

integrated quantities of lift and drag are well predicted with both the flat wall and curved 

wall boundary conditions, with the curved wall boundary conditions typically producing 

slightly better results. The solid surface quantities compare well to cxisiing results, with 

some cases showing difficulties near the leading edge. This difficulty is caused by the 

uniform surface cell size limitation imposed by the viscous scheme in order to avoid the 

viscous stencil positivity problem. Even when the leading edge region is not captured ac

curately, the curved wall boundary condition does a better job of predicting the surface 

features. 

In terms of capturing the overall flow field characteristics, both schemes performed well 

in all cases. In general, the curved wall boundary condition formulations have improved 

the ability to capture the surface quantities in the highly curved regions of the surface for 

the inviscid cases and produced only marginal improvements in the viscous results. The 

fluctuations in the pressure and skin friction coefficients have been nearly eliminated by the 

use of the interpolated reference points in the boundary condition formulations. 

These results indicate that the original algorithmic problem of solving the Navier

Stokes equations on Cartesian grids due to the viscous stencil positivity has been converted 

into a computational problem of being able to allocate enough memory and CPU time to 
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adequately resolve the entire surface. At the same time, the inviscid formulations on Carte

sian grids can take advantage of the less stringent time step restrictions by removing the 

small cut cells from the finite volume formulation. 

Parallelization Enhancements 

The parallelization enhancements performed on CART3D demonstrate a conversion of a 

domain-decomposition flow solver implemented with OpenMP to a strict MPI message

passing structure. In all cases the MPI version performed as well as, or better than the 

already good performance of the OpenMP implementation. Moreover, the MPI paralleliza

tion performance also compares well to other published results. Near linear speedup has 

been demonstrated for up to 64 processors with a 1.0 million control volume grid using the 

MPI parallelization without adversely affecting the wall-clock timings for shared memory 

architectures, while reasonable speedups have been demonstrated for similar solutions on a 

distributed memory architecture. Using MPI for the parallelization library allows CART3D 

to be used in a shared memory environment without any performance penalties compared 

to OpenMP, as well as in a distributed memory environment where the OpenMP version 

was not able to be used. 

Three-Dimensional Viscous Modeling 

The final question in this research is how feasible is it to solve the Navier-Stokes 

equations for three-dimensional bodies using this new surface cell treatment. In order 
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to answer this question a quick analysis of the current performance of NASCART-GT is 

needed. Using similar techniques to check the timing of NASCART-GT that were used 

in the parallelization performance study of CART3D, the compute time for NASCART

GT is approximately 4.0x10-4 s/cell/iteration on a 500 MHz AMD-K6® processor (ig

noring grid generation and file input/output times). This value scales linearly with the 

number of cells and the number of iterations. Assuming that the compute timings can 

be halved by upgrading to higher quality components (such as fasier memory as well as 

faster and more up-to-date CPU) and a factor of five improvement from performance ac

celeration techniques (such as multigrid, GMRES and higher order temporal integration), 

then the amount of time needed for NASCART-GT to compute one cell in one iteration 

is approximately 4.0x10-5 s/cell/iteration. Assuming that a reasonable geometry can be 

modeled using 10 million cells (a conservative number in general, but certainly appro

priate for low Reynolds number, Re ~ 1000, simple three-dimensional geometry flows) 

and that 50,000 iterations are required, then the amount of time it would take to solve the 

case is approximately 240 cpu-days. Now, taking the parallelization speedup results that a 

1 million cell case can scale near linearly up to 64 processors and extrapolate that out to a 

10 million cell case that has more computations per iteration, then it is reasonable to ex

pect near linear speedups for 640 processors for this case (ignoring bandwidth limitations 

and other hardware related issues). Using these numbers, then an efficient, parallelized 

NASCART-GT solving a 10 million cell problem on a computational environment using 

current state-of-the-art hardware is projected to be possible in approximately 9 cpu-hours. 
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This is a reasonable tum-around time for full three-dimensional viscous flows. However, to 

model a complete flight vehicle at a reasonable Reynolds number, Re ~ 107, might require 

as much as 40 million cells or more. This means that a complete flight vehicle could take 

2 cpu-days to complete, a less reasonable but still manageable amount of time. Thus, it is 

imperative that parallelization be utilized along side the new surface cell methodology in 

three-dimensional Navier-Stokes Cartesian solver along with aggressive acceleration tech-

niques in order to solve a three-dimensional viscous flow. 

Future Work 

This research has shown that the two most common current limitations in Cartesian grid 

solvers have been addressed, however there are more improvements in both areas that can 

be accomplished in future work. 

Extending the Current Surface Cell Modeling 

While, these results show significant improvements in the handling of viscous solutions 

on Cartesian grids, there are several areas of research that need to be examined further. In 

order to address the accuracy problems in the leading edge regions of the surface, the 

functionality of having multiple levels of refinement on the surface needs to be added to 

NASCART-GT. This needs to be carefully studied since Coirier showed non-smoothness 

problems can arise even in regions where the cell sizes change is comparable to the changes 

at a refinement boundary. One possible approach to these surface refinement regions is to 
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use a viscous flux reconstruction stencil based on the modified diamond-path Green-Gauss 

developed by Delanaye et al. [49]. 

In an effort to improve the accuracy of the interpolation formulations, more sophisti

cated wall modeling techniques should be investigated. Specifically, modeling the states 

along the interpolation line with analytical solutions, such as analytical boundary layer 

modeling, should be studied. In addition, extending the applicable range of solutions from 

laminar to turbulent boundary layers should also be investigated. 

Finally, a larger class of test cases should be studied to find any deficiencies in the wall 

boundary formulations. Cases that focus on phenomena such as shock wave/boundary layer 

interactions will further validate the ability of NASCART-GT to model these processes. 

Larger Parallelization Problems 

As for the parallelization enhancements made to CART3D, a study into the paralleliza

tion performance for datasets comparable to the sizes expected for viscous calculations, 

tens of millions of cells, should be performed. This will further validate the practicality of 

solving the Navier-Stokes equations on Cartesian grids. Also, investigations into ways of 

addressing the bandwidth limitations found in the distributed memory results might prove 

useful. In particular, a method of scheduling the IPC steps in order to not saturate the 

available bandwidth might eliminate the performance penalty associated with network col

lisions on an ethemet based distributed memory architecture. This research might prove 

useful even on shared memory architectures when very large numbers of processors are 
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required (say more than 2000) to solve extremely large problems that could arise with the 

addition of turbulence modeling in high Reynolds number three-dimensional flows. 
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APPENDIX A 

GOVERNING EQUATIONS IN GEODESIC 

COORDINATES 

This appendix develops the fluid dynamics equations in general curvilinear and geodesic 

coordinate systems. The geodesic coordinate system is first developed and is followed by a 

brief presentation of the governing equations in vector form. Finally, the full Navier-Stokes 

equations, the boundary layer equations and the Euler equations are then presented in two

and three-dimensions. 

Coordinate System Basics 

This section presents the basic definitions and descriptions required to develop the geodesic 

coordinate systems. It starts with a description of the more general curvilinear coordinate 

system and is followed by the geodesic coordinate system definition. Next the length ele

ments and various curvatures are defined. Finally, all of the required vector operations are 

presented. 
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Curvilinear Coordinate System 

The curvilinear coordinate system used here is simply a three-dimensional space with 

coordinate directions (;, 1J and ') that form a vector basis in the !!l3. There is no orthogo-

nality requirement on the coordinate directions, just the following mapping requirement 

; =; (x,y,z) 

(69) 

'= '(x,y,z) 

and the equivalent reverse mapping which holds when ; , 1J and ' form a vector basis 

(70) 

Geodesic Coordinate System 

The geodesic coordinate system used here consists of a surface with coordinates, ; 

and ', and the surface normal creating the third coordinate, 1J, orthogonal to ; and ', see 

Figure 89. Notice that in general ; , 1J and s are all functions of the Cartesian coordinate 

160 



z 

Figure 89: Example Geodesic Coordinate System 

directions, x, y and z, i.e. 

; = ;(x,y,z) 

11 = 11 (x,y,z) (71) 

'= '(x,y,z) 

As long as the geodesic coordinate system forms a vector basis of the Cartesian coordinate 

system (which it will as long as ; and ' are not collinear) then the following also holds 

x=x(~,7J,O 

(72) 

Differential Length Elements 

A differential arc length element in the Cartesian coordinates is defined as 

(73) 
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which is can also be defined in the geodesic coordinates by substituting (71) into (73) to 

get 

(74) 

where 

with h;, hTJ and h' being the differential length elements in the ~ -, 11- and '-directions, 

respectively. 

For the curvilinear coordinate system, the differential length elements are described as 

h; =h~(~,11,,) 

hT) = h11 (~' 11, ') 

h,=h,(~,11,,) 

(75) 

In the geodesic coordinate system, 11 is orthogonal to ~ and ', and hTI is only a function of 

1J. Without loss of generality, hTJ can be assumed to be unity. Thus, the differential length 

elements can be described as 

h,., = 1 (76) 
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Further, if the curvilinear coordinate system is only two-dimensional, then the differential 

length elements simplify to 

h~=h~(~,1J) 

hTJ = hTJ ( ~ ' 11) (77) 

and for the two-dimensional geodesic coordinate system, then the differential length ele-

ments simplify to 

hTJ = 1 (78) 

Curvature Definitions 

Three-dimensional geodesic coordinate systems have 6 curvatures that can be defined 

related to the differential length elements. They are expressed as Kab with a being the 

constant coordinate for the surface and b is the coordinate direction of the curvature. For a 

general curvilinear coordinate system, the curvatures are defined as 

(79) 
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For the geodesic coordinate system, the curvatures become 

(80) 

For example, the first curvature in (80), K~1J, is the curvature on the constant ~-surface 

in the 1]-direction. Notice that for this curvature, since 1J is independent of~ (and ') in 

the geodesic coordinate system, this curvature is identically zero. Thus, of the six possible 

curvatures, only four are pertinent to this particular coordinate system. 

The two-dimensional form of the curvatures is found by using (77) for the curvilinear 

coordinate system to get 

1 ()h1j 

K~TI = h
11 

()~ 

1 ()h~ 
K ----

11~ - h~ dTJ 

K'~ =0 

and (78) for the geodesic coordinate system to get 

K~ 11 = 0 

1 ()h~ 
K ----

11~ - h~ dTJ 

K'~ =0 

resulting in only the K11~ curvature as non-zero. 
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K,
11 

= 0 
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Vector Operations 

For a general curvilinear coordinate system, several vector operations take slightly dif-

ferent forms. Since the curvilinear coordinate directions may not be linearly independent, 

they must be included in any derivative calculation. Thus, all of the formulations utilize the 

following expressions for the derivative of the coordinate directions for the ~-direction 

the 7}-direction 

(84) 

and the '-direction 

(85) 

Gradient Operation 

The gradient operation for a scalar, a, becomes 

(86) 

which in two dimensions becomes 

(87) 

For the geodesic coordinate system, the gradient operation becomes 

1 aa aa 1 aa 
Va= h~a~r~+a1Jr1J+h,a'r' (88) 

165 



which in two dimensions becomes 

(89) 

Divergence Operation 

The divergence operation for a vector, a, is found by starting with 

(90) 

which, when the derivatives of the unit vectors are used, becomes 

Which can be rewritten as 

1 aa~ 1 aaTJ 1 aa, ( ) 
V ·a= h~ a~ + hry aTJ + h;; as + K~TJ +K~;; a~ (92) 

+ (KTJ~ +KTJ;;) aTJ + (K;;~ +K;;TJ) at; 

The two-dimensional formulation for this is 

(93) 
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For the geodesic coordinate system, the divergence operation becomes 

The two-dimensional formulation for this is 

(95) 

Curl Operator 

The curl operator for a vector, a, is found by starting with 

which, when the derivatives of the unit vectors are used, becomes 
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Which can be rewritten as 

(98) 

In two dimensions this is 

(99) 

For the geodesic coordinate system, the curl operation becomes 

(100) 

For the two-dimensional geodesic coordinate system, this becomes 

(101) 
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Laplacian Operator 

The Laplacian operation for a scalar, a, is combination of the gradient and divergence 

operators from above. Applying these operators yields 

Which can be rewritten as 

(103) 

In two dimensions this is 
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For the geodesic coordinate system, the Laplacian becomes 

In two dimensions this is 

(106) 

Governing Equations in Vector Form 

The most general expression of the governing equations that is independent of any co-

ordinate system is the vector form of the governing equations. This section presents the 

governing equations in the vector form. 

Continuity Equation 

The continuity equation is simply a statement of the conservation of mass for a control 

volume in space. There is a balance between the density change inside the control volume 

and the mass flux through the control volume surfaces. In differential form this is expressed 

as 

dp 
-+V·(pu)=O 
dt 
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Momentum Equations 

The momentum equations are a statement of Newton's Second Law of Motion for a 

control volume in space. This balances the momentum change within the control volume, 

the momentum convected through the control volume surfaces, the body forces being ex-

erted on the control volume, the pressure gradient across the control volume and the viscous 

stresses applied to the control volume surfaces. In differential form this is expressed as 

au 
Par+ pu · Vu = pfbody- Vp+ V. [-r] (108) 

where [-r] is the second order stress tensor which can be represented as 

't"1 r1 1 , 't"1 2 , 't"1 3 , 

[-r] = r2 !2 1 !2 2 't"2 3 
(109) 

, , 
' 

!3 !3 1 
' 

!3,2 !3,3 

Energy Equations 

The energy equation is an expression of the First Law of Thermodynamics for a control 

volume is space. This balances the energy change within the control volume, the energy 

convected through the control volume surfaces, the temporal change in the pressure, the 

temporal change in the heat production of the control volume caused by external processes, 

the conductive heat loss through the control volume surfaces, the work done by the body 

forces on the control volume, and the work done by the viscous forces. In differential form 

this is expressed as 

aH ap aQ 
Pat +pu · VH =at+ at+ V · (kVT) +pfbody ·u+ V · ([-r] ·u) (110) 
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Governing Equations in Geodesic Coordinates 

While many researchers have developed several variations of the fluid dynamics equations 

in either geodesic or curvilinear coordinate systems, most have focused on the incompress

ible boundary layer equations in two- or three-dimensions [72, 163] with others focused on 

the Euler equations [140, 174] and little effort beyond [69]. 

Navier-Stokes Equations in Geodesic Coordinates 

This section will develop the Navier-Stokes equations starting with the vector form of 

the Navier-Stokes equations. They will be transformed into the general curvilinear coordi

nate system and then the simplifications for the geodesic coordinate system will be applied 

to get the final form of the Navier-Stokes equations in geodesic coordinates. 

Fundamental Relations 

In order to simplify the derivations to follow, some fundamental relations will be devel

oped first that will be used throughout the Navier-Stokes equation derivation. 
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Momentum Convection The momentum convection term starts out as 

Utilizing the derivatives of the general curvilinear coordinate system found in equations (83)-

(85) this becomes 
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Substituting the curvature definitions this becomes 

u· Vu = [ (:J u~ ~"£ + (:J "" ~; + (:J "c ~u~ b 
+ [K11;u;u11 +Ks;u;us-K; 11 u~ -K;su~] f; 

+ [ UJ "" ~"t + UJ "" ~"; + ( :J "' ~"2 J '" (l13) 

+ [K; 11 u;u11 +Ks11 u11 u,-K11 ;u~ -K11 su~] z11 

r I 1 \ au, I 1 \ au, I 1 )\ dUS lJ -
+ l \ h; ) u; ar + ( hl] ) u1J a7i + \ h s us a[ l s 

Applying the geodesic coordinate system simplification yields 

u · Vu = [ ( :<) "< ~"£ + "" ~; + ( :, ) "c ~u~] '< 

+ [K11;u;u11 +Ks;usus -K;su~] r; 

+ [ ( :<) "< ~~" +•n ~~ + ( h~) "c ~"2] '" 
- [ K11 ; u~ + K11 su~ J i"TJ (114) 

+ [ UJ "< ~"{ +•n ~~ + UJ"c ~"f] 'c 
+ [K;,u;us +K11 su1Jus -K,;u~] r, 

Finally, in two. dimensions this becomes 

(115) 
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Stress Tensor The strain expressions in the general curvilinear coordinate system is 

Applying the curvature definitions the strain expressions become 

(117) 
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Applying the strain relations to the stress tensor formulation results in 

·~~ =~Jl [z(:J ~~~- (:J ~~- (:J ~"f] 
+ ~ .u [ 2 ( K11 .; u11 + Ks.; us) - K.; 11 u.; - K, 17 u,- K.;,u.; - K17 ,u17 J 

'"" = ~11 Hh~) ~~"- (hJ ~i- UJ ~"t l 
+ ~J.L [ 2 ( K.; 11 u.; + Ks 17 u,)- K11 .;u11 - Kssus- K.;,u.;- K17 ,u17 ] 

_ 2 lr l/ 1 J\ au, l/ 1 J' au.; (- 1 )- au11 j, r"- 3J.L 2 h' a, - h.; a~ - hry dTJ (llS) 

+ ~J.l [ 2 ( K.;,u.; + K17 ,u11 ) - K11 .;u11 - Kssus- K.; 11 u.; - K, 11 us) 

·~" = 11 [ UJ ~s" + (:J ~~ -K~""" -K"~"~] 
<~> = J1 [ ( :J ~"£ + ( hJ ~i -K,~u~ -K~>">] 
'"' = J1 [ (h~) ~:; + UJ ~"2 -K'""" -K"'"'l 

176 



Utilizing the geodesic coordinate system simplifications results in 

'<< = ~ }l [ 2 ( ~<) ~u£ -~~ -( :, ) ~ut l 
+ ~Jl [2 ( K1J~u1J +K;~us)- K;su~- K1Jsu1J] 

'"" = ~ }l [ 2 ~~ - ( :J ~i -( h1J ~ut l 
- ~Jl [K1J~u1J +Ks~us +K~;u~ +K1Jsu1J] 

'cc = ~!l [ 2 UJ ~"t -( hJ ~i -~~ l (119) 

+ ~Jl [2 ( K~;u~ + K1J;u11 )- K1J~u1J- Ks~u;] 

'<" =Jl [ (h~) ~ug" + ~; -K"<"<] 

'<• = }l [ UJ ~i + ( h~) ~u{ -K><u< -Kgu, l 
'"' =}l [~~ + UJ ~"2 -K"'"'l 

Finally, in two dimensions this becomes 

(120) 

Throughout the equation development in the rest of this section, the stress tensor compo-

nents will take one of the above forms, depending on whether the curvilinear or geodesic 

formulations are being developed. 
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Stress Tensor Divergence The stress tensor divergence development starts with the ap-

plication of the divergence operation onto the stress tensor, noting that the coordinate di-

rections are not independent, to get 

In the stress tensor divergence expression, the first term is the divergence of the three stress 

tensor vectors, and the second term is the divergence of the stress tensor coordinate direc-

tions. Expanding the -r' term yields and collecting terms yields 

- [ 1 a-r~~ 1 a-r~1J 1 a-r~']- [ ] _· 
V · [-r) - h~ -ar + h1J ---a:iJ + hr; a( z~- K~ 11 -r1111 + K~t;'rt;t; z~ 

[ 
1 a-r~1] 1 a-r1]1J 1 arT)s]- [ ] -

+ h~ ----ar + h1J aTJ + ht; --ar- z11 - K11 ; -r;; + KTJt;'rt;t; z11 

[ 
1 a-r;t; 1 a-rTJt; 1 arTJs]- [ ] _ 

+ hs --ar- + hTJ a:TJ + ht; ~ zt;- Kt;~ -r~~ + Kt;11 -r1111 zr; (122) 

+ [ ( K~ 11 + Kgt;) 'rg; + ( 2K11 ; t K11 t;) -r; 11 + ( 2Kt;~ + Kt; 11 ) -r~t;] f~ 

+ [ (2K; 11 +K;t;) -r/; 11 + (KTJ~ +K11 t;) -r7J1J + ( Kt;~ +2Kt;11 ) -r11 t;] r11 

+ [ ( K~ 11 + 2K~;t;) -r~t; + ( K11~ t 2K1Js) -r11 r; + ( Kr;; + Kt; 11 ) -rt; d f; 
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For the geodesic coordinate system, this becomes 

+ [K.;s--r-.; 11 + ( K11 .; + K11 s) -r-1111 + Ks-.; -r-11 s- K11 .; -r.;.; - K11 s-rs s-] f17 

+ [2K.;s-'t"ss + ( K11 .; +2K11 s-) -r11s +Ks-.;'t"S"s -Ks-.;'t".;.;] fs 

For the two-dimensional geodesic coordinate system, this becomes 

[ 
1 a-r.;.; a-r.;TI] - [ 1 a-r-.;11 a-r-1111 J -

v. [-r] = h.; ar-+aT! l.; + h.;~+ ----ail l1l 

+ [2K11 .;-r.; 11 ] f.;+ [K11 ~-r1111 -K11 .;-r.;.;] f17 

(123) 

(124) 

Stress Tensor Energy Dissipation The stress tensor energy dissipation relation develop-

ment starts with the expansion of the dot product inside the divergence operator to get 

u. 'f.; 

v . ( [ 't"] . u) = v . u . 't"11 (125) 
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which, after using the divergence relation for curvilinear coordinate systems, results in 

V. ([<]· u) = :~ :~ (u~<« +un<~n +u'<") 

+ :11 :TJ (u~r~11 +u11r1111 +usr11s) 

+ :, :; (u~<~( +un<n( +u'<") 

+ ( K~ 11 + K~s-) (u~r~~ + u11 r~ 11 + us'r~s) 

+ (K11~ +K1Js) (u~r~11 +u11r1111 +usr11s) 

+ (Ks-~ +Ks-11) (u~'t'~s + U71't'1JS + us't'ss) 

Applying the geodesic coordinate system conditions, this becomes 

V · ([<]·u) = :~ :~ ( u~<« +un<~" +u(<~,) 

+ :TJ (u~r~11 +u1Jr1111 +us't'Tis) 

+ :, :; (u'<"+un<n(+u'<") 

+K~s (u~'t'~~ +u1J't'~ 11 +us-'t'~s-) 
+ (K11~ +K11s) (u~r~11 +u11r1111 +usr11s) 

+Ks-~ (u~'t';; +u1Jr11 ; + u;'t';;) 

Finally, for the two-dimensional coordinate system, this becomes 

(126) 

(127) 

V·([<]·u)= :~:~ (u~<<(+un<~n)+ :TI (u~<~"+un<nn) (128) 

+K1Jl; (u;'t'; 11 +u11 r1111 ) 
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Three-Dimensional Formulation 

With all of the pieces of the three-dimensional Navier-Stokes equations developed 

above, they now can be assembled to complete the derivation. First, the general curvilinear 

coordinate system formulation will be presented, then the geodesic coordinate system will 

be presented for each conservation equation set. 

Continuity The continuity equation uses (1 07) and the divergence operator equation to 

get 

ap + (.2..) a (pu~) + (.2..) a (pu11 ) + (.2..) a (pu~) 
at h~ a~ h11 an h~ as 

(129) 

+ (K~ 11 +K~~) pu~ + (K11 z; +K11 ~) pu11 + (K~~ +K~11 ) pu~ = 0 

In the geodesic coordinate system this becomes 

ap + (_!_) a (pu~) +a (pu1]) + (_!_) a (pu~) 
at hz; a~ a11 h~ as 

(130) 

+Kz;~Pu~ + ( K11 ~ +K11 ~) pu11 +K~z;pu~ = 0 

Momentum The momentum equations use (108), as well as the momentum convection 

and the stress tensor divergence to obtain the~-, 71- and s-momentum equations. For the 

curvilinear coordinate formulation, the stress tensors from (118) are the appropriate ones 
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to be used. The ~-momentum equation becomes 

p a;t< +p [ ( h
1J "< ~i + (h~) uij ~:; + ( h~) "' ~z l 

+ p [x1J~u~u1J + Kt;~ u~ut;- K~1Ju~- K~t;u~] 

=rfbOOyr (:J ~~ + (:J a;~<+ (h~) a;~ij + (:J a;!' (131) 

+ ( K~TJ + K~t;) 't'~~ + (2K1J~ + K1Js) 't'.;TJ + ( 2K;.; + K;11 ) 'l'.;t; 

The 7J-momentum equation becomes 

ra;lij +p [ UJ "" ~? + (h~) "" ~~ + UJ "' ~"; l 
+ p [ K.;TJ u~ u1J + Ks1Ju1lut;- KTJ~u~ - K1Jsu~] 

= P J,,dy,ij - ( ~) ;~ + UJ a;~" + (:J a;~ij + UJ a;"/ (132) 

+ ( 2K.;1J + K.;t;) 't'.;TJ + ( KTJ.; + K1Js) 't'TJTI + ( K;.; + 2Kt;11 ) 't'TJs 

- KTJ~ 't'~~ - KTJ t; 't' t; t; 
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The t; -momentum equation becomes 

P a;ts + P [ ( :~) "~ ~i + ( :") ""~; + ( :, ) "s ~"i] 
+ p [K;~u;u~ + KTJ~uTJu~- K~;u~- K~TJu~] 

= P f,ooy,,- ( :J ~~ + (:J a;~s + ( h~) a;~s + ( :J a;i' (133) 

+ (K;TJ + 2K;~) -r;~ + (KTJ; + 2K1J~) -rTJ~ + ( K~; + K~1J) -r~s 

Applying the geodesic coordinate system simplifications and utilizing the geodesic stress 

tensor formulations (119) yields for the ;-momentum equation 

P a;/ + P [ ( :<) "~ ~"£ + "" ~; + ( :, ) "s ~i] 
+ p [ K1J;u;uTJ + K~;u;u~- K;~u~] (134) 

( 
1 ) ap ( 1 ) a-r;; a-rsTJ ( 1 ) a-r;~ 

= pfbody,;- h; a;+ h; --ar- + ~ + h~ ~ 

+ K;~'t;; + ( 2KTJ; + KTJ~) r;TJ + 2K~; -r;~- K;~'t~~ 

with the T}-momentum equation becoming 

P a;t" + P [ ( :, ) "< ~~" + "" ~~ + ( h
1
,) "s ~"£] 

- p [K1J;u~ + KTJ~u~] (135) 

( 1 ) ap ( 1) a-r;1) a-r11 1) ( 1 ) a-r1)~ 
= Pfbody,T)- h1J (}7J + h; --ar- + aTJ + ht; ~ 

+ K;~ -rsTJ + ( K,1; + KTJ~) 't"rm + K~; -r7J~- KTJ; -r;; - K11 t; -r~ ~ 
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and the t; -momentum equation becoming 

P a;,' +P [ ( :() "< aau{ +u" ~"; + ( :,) "> ~u~] 
p [Kssusus + K11 suTJus- Kssu~ J (136) 

( 1) ap ( 1) arss ar71 s ( 1 ) arss 
= Pfbody,s- h' at;+ hs ~ + --ai7 + hs ~ 

+ 2K~srsl: + (K11s + 2K11 s) rTJs + Kss rss- Kss rc;c;- Ks 11 r7171 

Energy The energy equation uses (110), the curvilinear vector operations and the stress 

tensor energy dissipation to become 

P aa~ + P [ ( :<) "< ~~ + ( :") "" ~~ + ( :, ) "> ~~] 
ap aQ [ J =at+ at + p uc;fbody,s + u1]fbody,1] + u,fbody,s 

+ ( :J :~ [ UJ k~~ +u<<« +u"<<" +u><<>] 

+ (:J :1) [ (:J k ~~ +u<'<" +u"<"" +u> <"' 1 (137) 

+ UJ :, [ UJ k~~ +u<'<> +u"<"' +u'<"] 

+ (K<" +K<>) [ UJ k~~ +u<<« +u"'<" +">'<>] 

+ (K"< +K"') [ (~) k~~ +u<'<" +u"<"" +u'<"' 1 
+ ( K>< +K,") [ UJ k ~~ +"<'<> +u"<"' +u'<"] 
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Applying the geodesic coordinate system conditions, this becomes 

P a;: + P [ UJ "< ~~ + "~ ~~ + UJ "c ~~ l 
ap aQ [ ] 

=at+ at + p u~fbody,~ + u11fbody,11 + ut;fbody,t; 

+ UJ :; [ UJk~~ +u<~«+""~<"+u,~g] 
a r aT l + dTJ '-k dTJ +u~r~11 +utJr1111 +ut;r11t;_ (138) 

+ UJ :, [ UJ k~~ +u<~<,+""~"'+u,~--] 
+ K" [ (:J k ~~ +"<'« + ""~<" +uc~<C] 
+ (K11~ +K11s) [k~~ +u~r~11 +u11r1111 +ut;r11s] 

+K,< [ (:J k~~ +"<'<'+""'"'+"c'"] 

Two-Dimensional Formulation 

With all of the pieces of the two-dimensional N a vier -Stokes equations developed above, 

they now can be assembled to complete the derivation. First, the general curvilinear coor-

dinate system formulation will be presented, then the geodesic coordinate system will be 

presented for each conservation equation set. 

Continuity The continuity equation uses (107) and the divergence operator equation to 

get 

(139) 
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In the geodesic coordinate system this becomes 

(140) 

Momentum The momentum equations use (108), as well as the momentum convection 

and the stress tensor divergence to obtain the ~- and 1J -momentum equations. For the 

curvilinear coordinate formulation, the stress tensors from (118) are the appropriate ones 

to be used with the two-dimensional simplifications applied. The ~-momentum equation 

becomes 

The 1}-momentum equation becomes 

/;t" + p [ UJ "< ~? + (;J u, ~; +K"" """" - K"" ·~ l 
= Pfbod""- (~) ~~ + ( :J a;i" + (h~) a;~" (142) 

+ 2K~1J '!~ 17 + K17~ ( '!77 1J - r~~) 
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Applying the geodesic coordinate system simplifications yields for the ~-momentum equa-

tion 

with the 1]-momentum equation becoming 

Energy The energy equation uses (11 0), the curvilinear vector operations and the stress 

tensor energy dissipation to become 

(145) 
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Applying the geodesic coordinate system conditions and utilizing the geodesic stress tensor 

formulations (119) with the two-dimensional simplifications applied, this becomes 

P aa~ + P [ ( h~ ) "< ~~ +"" ~~] 
ap aQ [ ] 

=at+ at + p ut;fbody,l; + uTifbody,TI 

+ (:J ;S [ ( h~) k~~ +u<T« +u"T'"l 
+ aaTJ [ k ~~ +us -rsTI +uTI -rTITI] 

+ KTIS ( k ~~ +us 't"S1J +UTI 't"TITI) 

Boundary Layer Equations in Geodesic Coordinates 

(146) 

The boundary layer equation will be developed from the Navier-Stokes equations and 

applying the standard boundary layer assumptions to the general curvilinear and geodesic 

formulations. In each formulation, the general curvilinear coordinate system formulations 

will be presented followed by the geodesic coordinate system formulations. 

Assumptions 

The boundary layer equations start off with the following assumptions: 

1. Boundary layer thickness is small, i.e. Re » 1 

2. Buoyancy effects are negligible, i.e. Fr » 1 
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Using these assumptions the following can be said about mathematical relations in the 

Navier-Stokes equations 

u1J « u~ 
() () 

() 11 ::?> () ; 

u11 << u, 

() () 

a11 » as (147) 

where the first and second conditions result from assumption 1 and the third condition 

results from assumption 2. 

In developing the boundary layer equations, an order of magnitude analysis will be done 

on each equation in the Navier-Stokes equation and all of the smaller terms with respect to 

the rest of the terms in each equation will be removed. In doing this process, the following 
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magnitudes are used for each group of terms in the governing equations 

where£« 1. 

u11 rv {j' ( £) 

prvtf(l) 

a 
at"-' tf(l) 

a 
a;; rvtf(l) 

a 
d1J "-' tf(lj£) 

a 
at; rv tf(l) 

hi,j "-' tf(l) {i,j} E {/;, 1J, t;} 

Ki,j""'tf(l) {i,j}E{/;,TJ,t;} 

(148) 

In preparation for the momentum and energy equation development, the shear stress 

components can be analyzed separately with the lowest ordered terms removed. While 

other terms might be removed later, it is assured that the lowest ordered terms will not re-

main. The stress tensor components (118) are reproduced here with the order of magnitudes 
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under-set each term. 

(149) 
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It is clear that all terms of order {j (e) can be ignored, which results in 

'«=~I' H:J ~~- (~) ~~- UJ ~"i l 
+~,U [2K~;~us-K~11 u~-Ks1Jus-K~su~] rv fi(l) 

'"" =~Jl H~) ~~- UJ ~-:- UJ ~"f l 
+~,U [2(K~ 11 u~ +K~;11 u~;) -K~;~us -K~su~J rv fi(l) 

'"=~I' [z UJ ~"i- UJ ~-:- (h~) ~~ l (150) 

+~,U [2K~su~ -Kl;~us -K~11 u~ -Kl;11 us] rv 6(1) 

''" = Jl [ (h~) ~:; -K"'"'] ~ (j (1/ e) 

<"=Jl [ (:J ~u~ + UJ ~7 -K,,u,-K"u'] ~(f(l) 
'"' = Jl [ (h~) ~; -K"'"'] ~ (f(lfe) 

Three-Dimensional Formulation 

The three-dimensional formulation of the boundary layer equations starts with the 

Navier-Stokes equations and then applies the boundary layer assumptions described above. 

Each conservation equation set will first develop the curvilinear boundary layer equations 

and then the geodesic coordinate system equations will be developed. 
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Continuity The continuity equation starts with the Navier-Stokes continuity equation (129) 

reproduced here with the order of magnitudes under-set each term. 

Thus, ihe tenns of order tf (c) can be e!irrdnated which results in the following 

ap + (2_) a (Puc;) +(__!_)a (puTJ) + (2_) a (pus) (152) 
at he; a~ h11 a11 hs at; 

+ ( Kc; 11 + Kc;s) puc; + ( Ksc; + Ks 11 ) pus = 0 

In the geodesic coordinate system this becomes 

Momentum In order to simplify the order of magnitude analysis, all shear stress com-

ponents are first assumed to be the order developed above and then each remaining shear 

stress component will be included into the equations and any further eliminations needed 

can then be done. The shear stress terms will be evaluated separately from the rest of 

the terms in the momentum equations in order to retain both the shear stress and convec-

tive contributions. The ~-momentum equation (131) is reproduced here with the order of 
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magnitudes under-set each term. 

- K~1J r1111 - K~~'t'~~ 
[hl] [hl] 

For the shear stress terms, terms below order {j (1lt:2) can be ignored, while for the rest of 

the terms, terms below order {j ( 1) can be eliminated. Notice that the 't' ~ 1J term is the only 

remaining shear stress term, and recall that the only {j ( 1 I£) term in that shear stress term 

is the au~ I d1J term. Thus the ~-momentum equation for the curvilinear coordinate system 

becomes 

P d;; + P [ ( :J u; ~~; + ( h~) u" ~; + ( hlJ u> ~u£ l 
+p [K~~u~u~ -K~~u~] (155) 

=- ( hJ ;~ + (h~) dan [~ (h~) ~;] 
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which, when incorporating the geodesic coordinate system simplifications, becomes 

/;< +P [ (:J "< ~i +u" ~~< + UJ u( ~u~ +K(<"<"(-K<("~] (156) 

= - ( :<) ~~ + :~ (Jl ~;) 
The T]-momentum equation (132) is reproduced here with the order of magnitudes under-

set each term. 

p a;tTJ +p l" u )u< ~~" + (h~)u" ~~" + u )u, ;;jl 
[I/I] [I1 [he/I] [I] [e*efe] [I1 [he/I] 

+p [K;TJu;uTJ +K,TJu1Ju, -KTJSu~ -KTJ,u~] 
[hhe] [he*I] (hi2] [hi2] 

=pf•oo""-(Z );~+(:)a;~"+(: )a;~"+(:) a;;' 
[O] [I1 [I/e] [l1 [(Ije)/I] [I1 [I/e] [I1 [(I/e)/I] 

(157) 

+ (2K;TJ +K;,) -r;TJ + (KTJ; +K11 ,) -rTJTJ + (K,; +2K'1J) -rTJ, 
[I] [I] [I/e] [I] [1] [I] [I] [I] [I/e] 

- KTJ; r;; - KTJ'-r" 
[hl] [hl] 

To maintain consistency with the ~-direction momentum development above, the shear 

stress terms below order 0' ( 1/£2) are ignored, while for the rest of the terms in the T]-

momentum equation, terms below order tJ ( 1) can be eliminated. What results is 

(158) 

and the formulation for the geodesic coordinate system is 

(159) 
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The s-momentum equation (133) is reproduced here with the order of magnitudes under-

set each term. 

- K,;'r;;- K, 11 T1111 
[hl] [hl] 

To maintain consistency with the ~-direction momentum development above, the shear 

stress terms below order c6' (1/t:2) are ignored, while for the rest of the terms in the T]-

momentum equation, terms below order c6' ( 1) can be eliminated. Notice, as above, that 

the 'r
17

' term is the only remaining shear stress term, and recall that the only .6'(1/t:) term 

in that shear stress term is the au,/CJTJ term. Thus the s-momentum equation for the 

curvilinear coordinate system becomes 

P a;ts + P [ ( ~J "( ~7 + (:J ~ ~; + ( h
1J "s ~"f] 

p [K;,ul;u' -K,l;u~] (161) 

= - UJ ~~ + ( ~) :ij [I' ( ~) ~; l 
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which, when incorporating the geodesic coordinate system simplifications, becomes 

p ii;c + p [ ( :J "< ~~( + uij ~; + ( :J "~; ~ut +K<C"< "~; - Kl;< ~] (162) 

=- (:J ;~ + :n (~ ~:;) 
Energy Similar to the momentum development, all shear stress components are first as-

sumed to be the order developed above and then each remaining shear stress component 

will be included into the equations and any further eliminations needed can then be done. 

The energy equation (137) is reproduced here with the order of magnitudes under-set each 
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term. 

(163) 

For the shear stress and thermal conductivity terms, terms below order 0' ( 1 I e2), can be 

ignored, while for the rest of the terms, terms below order 0' ( 1) can be eliminated. Notice 

that the '!STJ and '!t;TJ terms are the only remaining shear stress terms, and recall that the only 

0' ( 1 I e) terms in these shear stress terms are the a I d1J terms. Thus the energy equation 
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for the curvilinear coordinate system becomes 

(164) 

To proceed, the conductivity term is converted to terms of the stagnation enthalpy and 

velocities to get (after an order of magnitude analysis eliminates the u11 term) 

(165) 

Also, the shear stress components can be manipulated to get the following if the viscosity 

gradient is assumed to be tf (e) 

(166) 

Combining these two results with the curvilinear energy equation formulation results in 
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which, when incorporating the geodesic coordinate system simplifications, becomes 

Two-Dimensional Formulation 

The development of the two-dimensional formulations of the boundary layer equations 

follows the same path as the three-dimensional formulation, with the removal of the third 

coordinate direction. 

Continuity The boundary layer continuity equation in the general curvilinear coordinate 

system becomes 

In the geodesic coordinate system this becomes 

(170) 

Momentum The boundary layer ~-momentum equation in the general curvilinear coor-

dinate system becomes 

(171) 
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In the geodesic coordinate system this becomes 

The boundary layer 71-momentum equation in the general curvilinear coordinate system 

becomes 

(173) 

In the geodesic coordinate system this becomes 

(174) 

Energy The boundary layer energy equation in the general curvilinear coordinate system 

becomes 

In the geodesic coordinate system this becomes 

(176) 

Euler Equations in Geodesic Coordinates 

This section will develop the Euler equations from the vector of the Navier-Stokes 

equations from above applying the requisite assumptions. First the general curvilinear 
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coordinate system form will be presented, followed by the geodesic coordinate system 

form. 

Assumptions 

The primary differences between the Navier-Stokes and the Euler equations are the as-

sumptions of an inviscid and adiabatic flow. The first results in the viscosity, J.l, to approach 

zero, and the second results in the thermal conductivity, k, to approach zero and no heat 

production caused by external processes, aQj at~ 0. 

Three-Dimensional Formulation 

The three-dimensional formulations of the Euler equations follow a similar develop-

ment as the Navier-Stokes equations developed above. The major difference is the added 

simplifications that can be made with respect to the inviscid and adiabatic assumptions. 

First, the general curvilinear coordinate system formulation will be presented, then the 

geodesic coordinate system formulation will be presented for each conservation equation 

set. 

Continuity The continuity equation uses (107) and the divergence operator equation to 

get 

ap + (]__) a (Pu;) + (]__) a (puT!) + (]__) CJ (pus) 
CJt h; a~ hTl a11 hs CJ{ 

(177) 

+ (K/;Tl +K~;s) pul; + (KTI/; +KTI~J puT!+ (Ksl; +K~Tl) pu~ = 0 
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In the geodesic coordinate system this becomes 

ap + (]__) a (pu~) +a (pu11 ) + (]__) a (Pu;) 
ar hs a~ an h; as 

(178) 

+ K;;PU; + ( K11 ; + K11 s) pu11 + K(,~pu(, = 0 

Momentum The momentum equations use (108), as well as the momentum convection 

to obtain the~-, 11- and s -momentum equations. Notice that the stress tensor divergence is 

not needed since it only contains viscous terms. The ~-momentum equation becomes 

P a;t< + P [ ( :J "< ~~< + ( ~) "" ~; + UJ "' ~u~] 
+ p [K11 ;u~u11 + K;~u~us- K; 11 u~-K;;u'] (179) 

=rfbodyr (:J ;~ 
The 71-momentum equation becomes 

P a;t" + P [ ( h~) "< ~";" + ( ~) "" ~~ + ( :, ) "' ~?] 
+ p [ K; 11 u;u11 + K; 11 u11 us- K11 ~ u~ - K11 (,u'] (180) 

= Pfbody,1J- (h~) ;~ 
The s -momentum equation becomes 

P a;,, + P [ ( hJ "< ~i + (:J "" ~:; + (:J "' ~"f] 
+p [K~su~us +K11 (,uTiu(, -Ks~u~ -K;11 u~] (181) 

= pjbody,,- UJ ;~ 
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Applying the geodesic coordinate system simplifications yields for the ~-momentum equa-

tion 

/;,< +p [ UJ "< ~·: +u, ~; + UJ "' ~ud l 
+ p [K11 ~u~u17 + Kt;~u~ut;- K~t;u~] (182) 

=pfbodyr (:J ~~ 
with the T}-momentum equation becoming 

p a;; + p [ ( ;J u < ~~· + "• ~~· + ( ;J u, ~"£] 
- p [ K17 ~ u~ + K17 t; u~] (183) 

= P fbody,1J - ( h~) ~~ 
and the s -momentum equation becoming 

P a;t' + P [ ( :, ) "< ~{ +u, ~; + ( hl') ., ~!] 
+ p [K~t;u~ut; + K17 t;u17 ut;- Kt;~u~] (184) 

= pfbody,,- ( hl') ;~ 
Energy The energy equation uses (110) and the curvilinear vector operations, notice that 

the stress tensor energy dissipation as well as the heat production and conduction terms 

disappear due to the assumptions of inviscid and adiabatic, to become 
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Applying the geodesic coordinate system conditions, this becomes 

(186) 

Two-Dimensional Formulation 

The two-dimensional formuiations of the Euler equations follm.v a similar development 

as the Navier-Stokes equations developed above. The major difference is the added sim-

plifications that can be made with respect to the inviscid and adiabatic assumptions. First, 

the general curvilinear coordinate system formulation will be presented, then the geodesic 

coordinate system formulation will be presented for each conservation equation set. 

Continuity The continuity equation uses (107) and the divergence operator equation to 

get 

(187) 

In the geodesic coordinate system this becomes 

(188) 

Momentum The momentum equations use ( 1 08), as well as the momentum convection 

to obtain the ~- and 1J -momentum equations. Notice that the stress tensor divergence is not 
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needed since it only contains viscous terms. The ~-momentum equation becomes 

p ();< + p [ ( h~) "< ~i + (~) "" ~",; + K"<"<""- K;""~] (189) 

= Pf>roy,;- UJ ~~ 
The T}-momentum equation becomes 

(190) 

( 1) dp 
= Pfbody,T/- hTI d1J 

Applying the geodesic coordinate system simplifications yields for the ~-momentum equa-

tion 

and the T}-momentum equation becoming 

Energy The energy equation uses (11 0) and the curvilinear vector operations, notice that 

the stress tensor energy dissipation as well as the heat production and conduction terms 

disappear due to the assumptions of inviscid and adiabatic, to become 

(193) 
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Applying the geodesic coordinate system conditions, this becomes 

/a~ +p [ (:J "< ~~ +un ~~] = i; + ~; +p [u(fbody,( +unfbody,n] (194) 
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APPENDIXB 

THREE POINT ARC FORMULATION 

This appendix develops a closed form solution for the equation described by three points 

in !%2 . 

Given three non-collinear points, {xa,xb,Xc }, in !%2 then they form a circle of radius R 

with the center of the circle at x0. Thus, each point solves the following equation 

(195) 

Substituting the three points into (195) and multiplying out the squared terms yields 

X a Ya 1 2xo x2+y2 a a 

xb Yb 1 2yo ~+y~ (196) 

Xc Yc 1 R2 ,;d y2 - o- o x~+y~ 

Since (196) is a simple linear algebra equation, Kramer's rule (see for example [1 0] for 
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more information on Kramer's rule) can be used to solve (196) and get 

~+y~ Ya 1 

xt+Y~ Yb 1 

~+y~ Yc 1 

xo= (197a) 

X a Ya 1 

2x 
b Yb 1 

Xc Yc 1 

X a ~+y~ 1 

xb ~+y~ 1 

Xc ~+y~ 1 

Yo= (197b) 

X a Ya 1 

2 xb Yb 1 

Xc Yc 1 

X a Ya ~+y~ 

xb Yb ~+y~ 

Xc Yc ~+y~ 
R2 ~ 2_ - o-Yo- (197c) 

X a Ya 1 

xb Yb 1 

Xc Yc 1 

The location of the center of the circle is given by (197a) and (197b). In order to find the 
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radius of the circle, (197a) and (197b) are substituted into (197c) to get 

2 2 

~+y~ Ya 1 X a ~+y~ 1 X a Ya 1 X a Ya ~+y~ 

~+y~ Yb 1 + xb ~+y~ 1 +4 xb Yb 1 xb Yb ~+y~ 

~+y~ Yc 1 Xc ~+y~ 1 Xc Yc 1 Xc Yc ~+y~ 
R2= 

2 
(198) 

X a Ya 1 

4 x,_ Vz. 1 u • u 

Xc Yc 1 

When (198) is multiplied out and simplified, it becomes 

2 
[(xa-xb)

2
+(Ya-Yb)

2
] [(xa-Xc)

2
+(ya-Yc)

2
] [(xc-xb)

2
+(Yc-Yb)

2
] 

(199) R -
- 4 [xc (Ya- Yb) +xb (Yc -ya) +xa (Yb- Yc)] 2 

R can now be found by taking the square root of (199) to get 

(200) 

Finding x0 and y0 requires expanding the determinates in (197a) and (197b) to get 
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APPENDIXC 

NACA 4-DIGIT AIRFOIL CURVATURE 

This appendix develops the curvature equation for the NACA 4-digit airfoil for both the 

cambered and symmetric airfoils. First, the equations describing the airfoil surface is pre-

sented. This is followed by the development of the equations required in the curvature 

calculation for the general cambered airfoil. Finally, the relatively simpler curvature equa-

tion is developed for the non-cambered (i.e. symmetric) 4-digit airfoil. 

Airfoil Description 

The standard equation for the NACA 4-digit-series airfoil is represented by a four-digit 

number, qnxx, where q and n represent the camber specification and xx represents the 

thickness-chord ratio, tc = x.x/100. The standard equation for the airfoil can be obtained 

from several references such as [1] and is defined by starting with symmetric airfoil repre-

sentation 

(202) 
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and the description of the camber line as 

q 
p= 100 

n 
q=-

10 

~ (2px-x2) 
Yc= 

ifx < p; 

( 
m )2 [(1- 2p) +2px-_x2] if X~ p. 

1-p 

(203) 

Next, the airfoil surface coordinates can be represented by a combination of the symmetric 

airfoil equation (202) and the camber line equation (203) as the following set of equations 

e Yc tan =-
X 

x-yssine, upper surface; 
.X= (204) 

x+yssine, lower surface. 

Yc+Yscose, upper surface; 
y= 

Yc-YsCose, lower surface. 

where .X andy are the non-dimensionalized airfoil coordinates. The a coefficients in the 

symmetric airfoil equation are defined by the following boundary conditions for a thickness 

ratio 0.20 symmetric airfoil, NACA-0020: 

1. Maximum Ordinate - The maximum ordinate occurs at .X = 0. 30 and is y = 0.10 

2. Trailing Edge Ordinate- The trailing edge ordinate is y = 0.002 at .X= 1.0 

3. Trailing Edge Slope- The trailing edge slope is Jdy / dxJ = 0.234 
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4. Nose Shape- The shape of the nose is defined as i = 0.1 andy= 0.078 

Applying these constraints, the coefficients are 

a0 = 0.2969 a 1 = -0.1260 a2 = -0.3516 (205) 

a3 = 0.2843 a4 = -0.1015 

Cambered Airfoil Curvature 

To start developing the cambered airfoil curvature equation, the standard definition of the 

radius of curvature, see [74], is presented here 

(206) 

where K is the curvature and R is the radius of curvature. To find the first and second 

derivatives of the airfoil curve that are required in the curvature equation, it is convenient 

to use the chain rule to obtain the following relations 

dy dyjdx 
dx dxjdx 

(207) 

d2y (d2yjd~) (dxjdx)- (d2xjd~) (dyjdx) 

dx2 (difdx) 3 

Combining equations (207) and (206) yields the following 

K _1 = [ (dxf dx)
2 + (dy; dx)

2f12 

(~) (d2yjdx2) (dxjdx)- (d2xjdx2) (dyjdx) 
(208) 
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Now the curvature equation is in terms of the independent coordinate x. Using equa-

tions (204) to develop the derivatives needed for equation (208) yields 

(209) 

where the upper sign in ± and =F refers to the upper surface and the lower sign refers 

to the lower surface. Applying these to the numerator and denominator of the curvature 

equation (208) yields 

K(~)-1 = N 
D 

where N = 1 + (dYe)z + (dYs)z +i (de)z 
dx dx s dx 

[
dYs (dye . ) de (dye . )] ±2 dx dx cose-sme -ys dx dx sme+cose 

and D-d
2
ye 2 (dys)

2
de dysd

2
e_ d

2
ysde 2 (de)

3 

- dx2 + dx dx +Ys dx dx2 Ys dx2 dx +Ys dx 

{ [
d

2
ys (de) 

2
] ( dye . ) ± dx2 -ys dx cose + dx sme 
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Using the definition of 8, the following derivatives can be found 

cos2 e~- sin 8cos e dx 

X 
(211) 

cos2 e (d
1Yx- dye) +cos e sine (t- 2dB ~x) + (sin2 e- cos2 e) dB X dx dx dx dx dx 

Finally, the first and second derivatives of the symmetric airfoil equation is 

(212) 

and for the camber line equation 

~ (p-x) p if X< p; 
(213) 

( 1 ~;) 2 (p- x) if x 2: p. 

ifx < p; 

- ( 1 ~~)2 if X 2: p. 

Combining equations (202), (203), (211), (212) and (213) with equation (210) yields the 

curvature equation for the NACA 4-digit airfoil. 

Symmetric Airfoil Curvature 

Developing the symmetric airfoil curvature starts with simplifying the general curvature 

equations developed above for the case where Yc = 0. The following is equations (202), (203), 
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(211), (212) and (213) with the symmetric limitation applied 

(214) 

Also, notice that i andy simply become x and Ys. respectively. Applying these simplified 

equations to the curvature equation (210) yields 

[ 
2] 3/2 l+('Y;). 

K(~)-1 = 2 

±~ dx 

(215) 

which is just the curvature equation for the symmetric airfoil with the ± signifying the 

upper or lower surface. This can be simplified further by substituting the equations for the 

y s terms to get 

(216) 
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APPENDIXD 

NUMERICAL CONSERVATION 

This appendix demonstrates the conservation properties of the numerical scheme with and 

without the solid surface treatment. 

Since the original NASCART-GT solver is based on a finite volume scheme solving the 

Euler and Navier-Stokes equations in conservation form, it is a conservative scheme (see 

Chapter II for details). The solid boundary treatment discussed in Chapter ill removes the 

surface cells from the finite volume scheme, and there is no assurance that the surface cell 

treatment remains conservative. Therefore, the use of the solid boundary treatment makes 

the overall scheme non-conservative. 

In order to address how much impact the non-conservative solid boundary treatment 

has on the overall conservation of the scheme, the incompressible, inviscid cylinder case 

discussed on page 105 was used to determine this impact. To determine the degree to which 

this scheme is non-conservative, a control volume is place around the entire computational 

domain, and the net flux through the control volume is calculated. Figure 90 shows a 

schematic of the control used to calculate the net fluxes of the conserved quantities. 

A complete finite volume solution to this case, i.e. using the finite volume formulation 

for the surface cells instead of the solid boundary treatment, is used establish the numerical 
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Figure 90: Incompressible Cylinder Control Volume 

conservation properties of this scheme. While the net flux should be zero for this case, 

numerical errors will cause it to be non-zero. Table 15 shows the results for this. The mass 

net flux is about 0.6% of the flux into the control volume and the energy net flux is about 

0.3%. The same net flux calculation for the curved wall boundary condition solution is 

also shown in table 15. The mass net flux for this case is again about 0.6% and the energy 

net flux is about 0.3%. Also, there is virtually no difference between the 0.2% relative 

difference between the net mass fluxes and 0.2% relative difference for the net energy flux. 

Table 15: Net Fluxes for Incompressible Cylinder 

mass 0.132954 
energy 47.6208 

Finite-Volume Curved Wall 

7 .87867E-04 7 .85989E-04 
0.148208 0.147871 

218 



While the solid boundary treatment makes this scheme formally non-conservative, the 

net flux differences between the conservative finite volume scheme and the solid boundary 

treatment are negligible. 
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