
FINAL ADMINSTRATIVE REPORT

Title: GSRP/David Marshall: Fully Automated Cartesian Grid
CFD Application for MDO in High Speed Flows

Sponsor: NASA Ames Research Center

University: Georgia Institute of Technology

Project Director: Stephen M. Ruffin

GT PIS Project No.: 1606R84

GT Old Project No: E-16-R84

Contract No.: NGT 2-52266

Date: November 14, 2003

CONTENTS

ACKNOWLEDGEMENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS

SUMMARY

CHAPTER

I INTRODUCTION
Cartesian Grid Origins
Adaptive Mesh Refinement . .
Advanced Geometry Modeling
Navier-Stokes Modeling ...

Navier-Stokes Approximations .
Thin-Layer Navier-Stokes Approximation .
Vorticity Confinement . .

Viscous!Inviscid Coupling
Navier-Stokes and Cartesian Grids ..

Immersed Boundary Methods
Volume of Fluid Methods
Reconstruction Schemes
Cut Cell Based Methods
Chimera Grid Schemes .
Hybrid Grid Schemes ..
Other Related Method .

Parallelization Efficiency Approaches
SIMD Parallelization
MIMD Parallelization

Parallelization Libraries
Shared Memory Based Schemes
Distributed Memory Based Schemes .
Combined Approaches .

Scope of Current Work

v

iv

ix

X

xiii

XX

1
2
5
7

10
11
11
13
15
17
17
19
20
21
24
28
29
30
31
31
33
35
37
40
41

II

III

IV

EXISTING CARTESIAN GRID SOLVERS
NASCART-GT

Governing Equations
Inviscid Flux Calculations

Roe's Approximate Riemann Solver .
MUSCL Data Reconstruction
Solid Surface Treatment

Viscous Flux Calculations . . .
Flow Cells
Solid Surface Treatment

Numerical Stencil Population . .
Time Integration
Solution Adaption . . .
Putting It All Together

CART3D
Solver
Grid Creation and Partitioning .
Accuracy and Performance . . .

SOLID BOUNDARY TREATMENT
Existing Solid Boundary Treatment . .
New Solid Boundary Treatment

Basic Model Development
Reference State Determination .
Inviscid Formulation for Flat Wall
Viscous Formulation for Flat Wall

Curved Wall Model Development
Surface Curvature Determination
Normal Momentum Equations . .
Inviscid Wall Conditions for Curved Wall
Viscous Wall Conditions for Curved Wall

Special Surface Cell Treatment .
State Reconstruction

PARALLELIZATION ENHANCEMENTS
Initialization Information Distribution
Grid Information Distribution . .
State and Gradient Exchanges
Solution Reporting Mechanisms

vi

45
45
46
51
51
54
55
56
56
57
58
60
60
61
62
62
63
72

74
74
76
77
77
78
81
82
83
87
88
91
94
95

96
96
97

. 100

. 102

v

VI

SOLID BOUNDARY RESULTS
Primitive Geometry Flows

Incompressible Inviscid Cylinder Flow .
Compressible Inviscid Cylinder Flow .
Incompressible Viscous Flat Plate Flow
Non-Grid Aligned Incompressible Viscous Flat Plate Flow
Supersonic Viscous Flat Plate Flow

Two-Dimensional Airfoil Flows
Transonic Inviscid NACA-0012 Airfoil Flow
Subsonic Viscous NACA-0012 Airfoil Flow .
Supersonic Viscous NACA-0012 Airfoil Flow .

Transonic Inviscid ONERA M6 Wing

PARALLELIZATION RESUt:fS
Test Hardware Description

Shared Memory System Configuration . . .
Distributed Memory System Configuration .

Parallelization Quantization Methodology
Shared Memory Results . . .
Distributed Memory Results

104
. 104
. 105
. 111
. 116
. 117
. 120
. 123
. 123
. 128
. 133
. 137

. 143

. 143

. 144

. 146

. 146

. 150

VII CONCLUSIONS 152
. 152
. 154
. 154
. 156
. 156
. 157

Solid Boundary Treatment
Parallelization Enhancements

Three-Dimensional Viscous Modeling
Future Work

Extending the Current Surface Cell Modeling
Larger Parallelization Problems

APPENDIX A- GOVERNING EQUATIONS IN GEODESIC COORDINATES 159
Coordinate System Basics. 159

Curvilinear Coordinate System . . 160
Geodesic Coordinate System . . . 160
Differential Length Elements . . 161
Curvature Definitions 163
Vector Operations 165

Gradient Operation . . . 165
Divergence Operation . . 166
Curl Operator 167
Laplacian Operator 169

Governing Equations in Vector Form . . 170
Continuity Equation 170
Momentum Equations. . . . 171

vii

Energy Equations
Governing Equations in Geodesic Coordinates

Navier-Stokes Equations in Geodesic Coordinates .
Fundamental Relations
Three-Dimensional Formulation
Two-Dimensional Formulation

Boundary Layer Equations in Geodesic Coordinates .
Assumptions
Three-Dimensional Formulation .
Two-Dimensional Formulation ..

Euler Equations in Geodesic Coordinates
Assumptions
Three-Dimensional Formulation
Two-Dimensional Formulation .

APPENDIX B- THREE POINT ARC FORMULATION

APPENDIX C- NACA 4-DIGIT AIRFOIL CURVATURE
Airfoil Description
Cambered Airfoil Curvature
Symmetric Airfoil Curvature

APPENDIX D- NUMERICAL CONSERVATION

BffiLIOGRAPHY

VITA

viii

. 171

. 172

. 172

. 172

. 181

. 185

. 188

. 188

. 192

. 200

. 201
.. 202
.. 202

. 205

208

211
. 211
. 213
. 215

217

220

236

Table
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

LIST OF TABLES

Stencil Size for Each Face
Original Overlapping Cell Indexing for flowCart-OpenMP
New Overlapping Cell Indexing for flowCart-OpenMP ..
Incompressible Cylinder Surface Pressure Values for 1st Order Solution
Incompressible Cylinder Surface Pressure Values,for 3rd Order Solution
Incompressible Cylinder Surface Pressure Values for Fine Grid Solution
Incompressible Cyiinder Lift and Drag Resuits
Compressible Cylinder Surface Pressure Values
Compressible Cylinder Lift and Drag Results
Transonic lnviscid NACA-0012 Lift and Drag Results .
Subsonic Viscous NACA-0012 Lift and Drag Results .
Supersonic Viscous NACA-0012 Lift and Drag Results
Distributed Memory Cluster Information
Shared Memory Timing Improvements for flowCart-MPI
Net Fluxes for Incompressible Cylinder

ix

Page
. 59
. 100
. 101
. 106
. 106

108
109
112
113
126
131
135

. 145

. 149

. 218

Figure
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

LIST OF FIGURES

Example Cartesian Grid Near Curved Surface
Example of Cut Cell Creation . .
Example of Split Cell Creation
Example of Merge Cell Creation
Example Adaptive Grid for Supersonic Wedge Flow .
Example Chimera Grid Near Curved Surface
Example Hybrid Grid Near Curved Surface
Uniform Stencil Population Example .
Fine Stencil Population Example
Coarse Stencil Population
Example Surface Triangle Intersection with Cartesian Cell
Example of Surface Agglomeration
Example of Two-Dimensional Peano-Hilbert Curve .
Example of Two-Dimensional Morton Curve
Example of Three-Dimensional Peano-Hilbert Curve
Example of Three-Dimensional Morton Curve
Two-Dimensional Mapping from Physical Space to Hyperspace
Grid Coarsening Around Arbitrary Surface
4 Cut Cells Coarsen to 2 Cut Cells

Page
2
3
3
5
7

25
28
59
59
59
65
66
67
67
68
69
70
71
71

20 2 Full Cells and 4 Split Cells Coarsen to 2 Cut Cells . 72
21 Grid from Coirier [38] for Rotated Blasius Flat Plate 76
22 Skin Friction Results from Coirier [38] for Rotated Blasius Flat Plate . 76
23 Example Configuration for Solid Boundary Treatment . 78
24 Example Surface for Curvature Calculation 84
25 Single Sharp Edge Degenerate Surface . 86
26 Double Sharp Edge Degenerate Surface . . 86
27 Large Cut Cell Example 94
28 Overlapping Cell Configuration for flowCart . 98
29 Overlapping Cell Indexing for flowCart . . . 99
30 Coarse Computational Domain for Incompressible Cylinder Flow . 105
31 Refined Computational Domain for Incompressible Cylinder Flow . 105
32 Incompressible Cylinder Surface Pressure 1st Order Solution with Interpo-

lated Reference Points . 107
33 Incompressible Cylinder Surface Pressure 3rd Order Solution with Inter-

polated Reference Points 107

X

34 Fine Grid Incompressible Cylinder Surface Pressure Flat Wall with Inter
polated Reference Points . 108

35 Fine Grid Incompressible Cylinder Surface Pressure Curved Wall with In
terpolated Reference Points . 108

36 Incompressible Cylinder Grid Convergence with Interpolated Reference
Points . 110

37 Original Computational Domain for Compressible Cylinder Flow 111
38 Fine Computational Domain for Compressible Cylinder Flow 111
39 Mach Contours for Compressible Cylinder Flow Flat Wall with Interpo-

lated Reference Points 115
40 Mach Contours for Compressible Cylinder Flow Curved Wall with Inter-

polated Reference Points . 115
41 Compressible Cylinder Mach Contours No Curvature from f44l . 115
42 Compressible Cylinder Mach Contours with Curvature from [44] . 115
43 Final Computational Domain for Incompressible Flat Plate Flow . 116
44 Incompressible Flat Plate Skin Friction Coefficient with Interpolated Ref-

erence Points . 1 i 7
45 Incompressible Flat Plate Velocity Profiles with Interpolated Reference Points 117
46 Final Computational Domain for Incompressible Non-Grid Aligned Flat

Plate Flow 118
47 Incompressible Flat Plate Skin Friction Coefficient on Non-Grid Aligned

Flat Plate without Interpolated Reference Points 119
48 Final Computational Domain for Supersonic Flat Plate Flow 121
49 Supersonic Flat Plate Skin Friction Coefficient without Interpolated Refer-

ence Points . 121
50 Supersonic Flat Plate Pressure without Interpolated Reference Points 121
51 Mach Contours for Supersonic Flat Plate without Interpolated Reference

Points . 122
52 Supersonic Flat Plate Mach Contours from [11] 122
53 Final Computational Domain for Transonic Inviscid NACA-0012 Flow. 124
54 NACA-0012 Curvature Calculated from NASCART-GT. 124
55 Transonic Inviscid NACA-0012 Upper Surface Pressure Coefficient with

Interpolated Reference Points 125
56 Transonic Inviscid NACA-0012 Lower Surface Pressure Coefficient with

Interpolated Reference Points . 125
57 Mach Contours for Transonic Inviscid NACA-0012 Flat Wall 127
58 Mach Contours for Transonic Inviscid NACA-0012 Flow Curved Wall . 127
59 Inviscid Transonic NACA-0012 Mach Contours from [119] 127
60 Final Computational Domain for Subsonic Viscous NACA-0012 Flow . 128
61 Subsonic Viscous NACA-0012 Surface Pressure Coefficient with Interpo-

lated Reference Points . 130

Xl

62 Subsonic Viscous NACA-0012 Skin Friction Coefficient Interpolated Ref-
erence Points 130

63 Mach Contours for Subsonic Viscous NACA-0012 Flow Flat Wall with
Interpolated Reference Points . 132

64 Mach Contours for Subsonic Viscous NACA-0012 Flow Curved Wall with
Interpolated Reference Points . 132

65 Viscous Subsonic NACA-0012 Mach Contours from [32] 132
66 Final Computational Domain for Supersonic Viscous NACA-0012 Flow 133
67 Supersonic Viscous NACA-0012 Surface Pressure Coefficient 134
68 Mach Contours for Supersonic Viscous NACA-0012 Flat Wall with Inter-

polated Reference Points . 136
69 Mach Contours for Supersonic Viscous NACA-0012 Flow Curved Wall

with Interpolated Reference Points . 136
70 Viscous Supersonic NACA-0012 Mach Contours from [11] 136
71 Final Computational Domain for Transonic Inviscid ONERA M6 Flow . . . 137
72 Transonic Inviscid ONERA M6 Surface Pressure Coefficient at z/ L = 0.2

without Interpolated Reference Points . 140
73 Transonic Inviscid ONERA M6 Surface Pressure Coefficient at z/ L = 0.44

without Interpolated Reference Points . 140
74 Transonic Inviscid ONERA M6 Surface Pressure Coefficient at z/L = 0.65

without Interpolated Reference Points . 140
75 Transonic Inviscid ONERA M6 Surface Pressure Coefficient at z/L = 0.8

without Interpolated Reference Points . 140
76 Transonic Inviscid ONERA M6 Surface Pressure Coefficient at z/ L = 0.9

without Interpolated Reference Points 140
77 Transonic Inviscid ONERA M6 Surface Pressure Coefficient at z/L = 0.95

without Interpolated Reference Points . 140
78 Transonic Inviscid ONERA M6 Upper Surface Mach Contours without In-

terpolated Reference Points 141
79 Transonic Inviscid ONERA M6 Upper Surface Mach Contours from [119] . 141
80 Transonic lnviscid ONERA M6 Lower Surface Mach Contours without

Interpolated Reference Points 142
81 Transonic Inviscid ONERA M6 Lower Surface Mach Contours from [119] . 142
82 Sample Solution of ONERA M6 Wing Parallelization Case 147
83 OpenMP Speedup Results Compared to Published Data . 147
84 Shared Memory OpenMP and MPI Speedup Results 149
85 Shared Memory OpenMP and MPI Timing Results 149
86 Shared Memory MPI Speedup Results Compared to Published Data 150
87 Distributed Memory MPI Speedup Results . 151
88 Distributed Memory MPI Timing Results 151
89 Example Geodesic Coordinate System . . . 161
90 Incompressible Cylinder Control Volume . 218

xii

LIST OF SYMBOLS

Alphanumeric

0 Zero vector

A Area

a Speed of sound

cs Control surface of integration

cv Control volume of integration

Cp Specific heat at constant pressure

Cv Specific heat at constant volume

et Total energy per unit mass of control volume

einternal Internal energy of control volume

gEB Acceleration due to earth's gravity

h Distance vector from common datum for potential energy calculation

n Surface normal vector

fi Surface normal vector

p Pressure

q Scalar heat flux value

q Heat flux vector

r Radius from rotation point

xiii

u,v,w

v

x,y,z

i

j

k

K

N

R

SUn

T

u

u

u

u

Velocities in the x-, y-, and z-directions

Velocity vector

Velocity vector

Component of velocity normal to surface

Component of velocity tangent to surface

Physical coordinate directions

Parallelization efficiency for n processors

Function vector of system of 1st order ODEs

Body force acting on control volume

Unit vector in the x-direction

Unit vector in the y-direction

Unit vector in the z-direction

Right eigenvectors of matrix

Number of control volumes in grid

Gas constant

Parallelization Speed-up for n processors

Temperature

Speed

Velocity vector

State vector of conserved variables

Solution vector of system of 1st order ODEs

xiv

W State vector of primitive variables

Caligraphic

§I Inviscid flux

§v Viscous flux

.)'{' One-dimensional hyperspace

(j Order of magnitude

f%d d dimensional space

"f/ Volume

Greek and other

a Wave speed in Roe's Approximate Riemann Solver

y Ratio of specific heats

e Tolerance

1C Thermal conductivity

A. Eigenvalue of a matrix

f.1 Dynamic viscosity

v Kinematic viscosity

p Density

'! Shear stress

['!] Shear stress tensor

XV

't'x Component of shear stress tensor acting in

x-direction (first row of shear stress tensor)

'!y Component of shear stress tensor acting in

y-direction (second row of shear stress tensor)

'!z Component of shear stress tensor acting in

z-direction (third row of shear stress tensor)

Txx Shear stress acting on x-face in x-direction

'!xy Shear stress acting on x-face in y-direction

't'xz Shear stress acting on x-face in z-direction

'!yx Shear stress acting on y-face in x-direction

'!yy Shear stress acting on y-face in y-direction

'!yz Shear stress acting on y-face in z-direction

'!zx Shear stress acting on z-face in x-direction

'!zy Shear stress acting on z-face in y-direction

'!zz Shear stress acting on z-face in z-direction

.Q Angular velocity vector

oo Shorthand for lim s
$-tOO

6.xyz Triangle with vertices x, y and z

& Bitwise "and" operator

Bitwise "or" operator

xvi

Special Constants

Ec Eckert number

Fr Froude number

Pr Prandtl number

Re Reynolds number

Superscripts

* Non-dimensionalized quantity

n nth derivative of single value function

Subscripts

n1ax maximurnitem

n nth item

w,wall wall

oo infinity, freestream values

Abbreviations

AMR

API

CFD

CPU

Adaptive Mesh Refinement

Application Programming Interface

Computational Fluid Dynamics

Central Processing Unit

xvii

FAS Full Approximation Storage

IPC Interprocess Communication

MIMD Multiple Instruction Multiple Data

MUSCL Monotone Upstream-centered Scheme for Conservation Laws

MPI Message Passing Interface

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PVM Parallel Virtual Machine

SFC Space-Filling Curves

SIMD Single Instruction Multiple Data

const. Constant

Operators

a
dx Partial derivative with respect to x

nth partial derivative with respect to x

d
dx

v

Derivative with respect to x

nth derivative with respect to x

Gradient

Miscellaneous Symbols

~ approximately equal

xviii

I Evaluated at • •

» Much greater than

« Much less than

xix

SUMMARY

With the renewed interest in Cartesian gridding methodologies for the ease and speed

of gridding complex geometries in addition to the simplicity of the control volumes used

in the computations, it has become important to investigate ways of extending the existing

Cartesian grid solver functionalities. This includes developing methods of modeling the

viscous effects in order to utilize Cartesian grids solvers for accurate drag predictions and

addressing the issues related to the distributed memory parallelization of Cartesian solvers.

This research presents advances in two areas of interest in Cartesian grid solvers, vis

cous effects modeling and MPI parallelization. The development of viscous effects model

ing using solely Cartesian grids has been hampered by the widely varying control volume

sizes associated with the mesh refinement and the cut cells associated with the solid sur

face. This problem is being addressed by using physically based modeling techniques to

update the state vectors of the cut cells and removing them from the finite volume inte

gration scheme. This work is performed on a new Cartesian grid solver, NASCART-GT,

with modifications to its cut cell functionality. The development of MPI parallelization

addresses issues associated with utilizing Cartesian solvers on distributed memory parallel

environments. This work is performed on an existing Cartesian grid solver, CART3D, with

modifications to its parallelization methodology.

XX

CHAPTER I

INTRODUCTION

Computational Fluid Dynamics (CFD) researchers have always had to strike a balance be

tween the accuracy and fidelity of their model with the efficiency and availability of the

computational hardware. Early on many sacrifices to the accuracy and fidelity of the model

were needed in order to accommodate the available computational hardware. Now tech

niques and more powerful computational hardware exist that yield more accurate numerical

simulations in complex flow fields. One of the early schemes that has gained renewed in

terest is the use of Cartesian grids. A benefit of using Cartesian grids is that the number

of terms needed in the solution procedure for the governing equations is greatly reduced

compared to more elaborate gridding techniques since the edges of the control volumes

are coordinate aligned and thus no need for the more complex contravariant velocity for

mulations. Also, the ability to easily create grids for very complicated geometries makes

Cartesian grids an attractive approach to CFD. The drawback is the complexity associated

with the computational cells that intersect the geometries as well as the inability of the tra

ditional Cartesian grid formulations to model viscous flows. The present chapter presents

an overview of Cartesian grid methods, Navier-Stokes techniques and parallelization ap

proaches, and concludes with the motivation for the present work.

1

Cartesian Grid Origins

Cartesian grids have been utilized in solving a variety of CFD problems from potential

flows [13, 135, 184] to the Euler equations [23, 35, 36, 84, 105, 189] to the Navier-Stokes

equations [38, 39, 49, 59, 79, 180, 178]. Cartesian grids consist of a collection of non-

overlapping, connected control volumes with coordinate aligned edges. Thus, the edge

(or face in three dimensions) normals for all complete cells are aligned with one of the

coordinate directions. Figure 1 shows a typical two-dimensional Cartesian grid around a

curved surface.

~

I
I

Figure 1: Example Cartesian Grid Near Curved Surface

Cartesian gridding techniques have become the focus of recent research due to their

ability to easily handle complex geometries in the grid generation phase, the ease with

which higher order schemes can be applied and the natural connection between the grid

2

refinement techniques and multigrid acceleration schemes [105]. The difficulties in using

Cartesian grids arise from the fact that the control volumes adjacent to the surfaces are not

usually aligned with the surfaces and thus special techniques need to be employed to handle

the non-Cartesian (cut or split) cells in these regions.

Cut cells are created when the intersection of the Cartesian cell and the solid surface

results in one computational volume with only a fraction of the original volume and possi-

bly non-Cartesian aligned edges, see Figure 2. Split cells are created when the intersection

of the Cartesian cell and the solid surface results in two or more computational volumes

which might have non-Cartesian aligned edges, see Figure 3.

~ ~
(SO ~

Solid surface overlayed
Cartesian Cell

Resulting Cut Cell

Figure 2: Example of Cut Cell Creation

~ .,.,

~

~ <S<S

ell~

Solid surface overlayed
Cartesian Cell

Resulting Split Cells

Figure 3: Example of Split Cell Creation

3

The original use of Cartesian grids involved solving the two-dimension full poten

tial equation by Purvis and Burkhalter [135], followed shortly afterwards by Wedan and

South [184], in which a non body-oriented structured grid was created on which the full

potential equation was solved. Their solution strategy was to use finite volume techniques

in order to more easily handle the computational cells that were intersected by the solid sur

face. Additionally, they used linear approximations in the cut cells for the reconstruction of

the wall boundary conditions which provided a simple algorithm for implementation and

preserved the structure of their coefficient matrix during the solution iteration so that no ex

tra computational costs were incurred for the cut cells. However, this did not preserve the

actual body curvature and also only provided a linear approximation to the actual surface

lengths and area for the cut cells, and thus could not exactly model curved surfaces. Also,

little mention was made of any attempts at cell refinement to more accurately capture the

surface geometry and flow features.

Later, Clarke et al. [36] used Cartesian grids to solve the two-dimension Euler equations

(again on non grid-aligned surfaces). They attempted to more accurately model the solid

surface boundary conditions by utilizing the local surface curvature in reconstructing the

wall boundary conditions. They also provided more accurate modeling of the cut cell

lengths and areas by using the actual surface geometry in their calculations and not linear

approximations. Additionally, they noted that clustering was needed in certain critical

regions in order to produce accurate results, and this was achieved by clustering entire grid

lines. Cut cells that were too small (less than 50% of the original cell size) were merged

4

with neighbor cells in order to avoid time stepping problems associated with very small

computational cells. Gaffney and Hassan [60] extended this research to three dimensions.

Figure 4 demonstrates the case of cell merging. In this case the surface cuts through a

collection of cells, numbered 1-3. Cell 1 turns into a cut cell (numbered 1 in the resulting

merged cells) while cells 2 and 3 are merged together into the cell numbered 2 since cell 3

is too small after the cut.

~ 1 2
~

R:: J

Solid surface overlayed
Cartesian Cells

1 2

Resulting Merged
Cells

Figure 4: Example of Merge Cell Creation

Adaptive Mesh Refinement

Berger and LeVeque [23] addressed several deficiencies that existed in the established uni-

form grid methodologies. First, they applied the concept of Adaptive Mesh Refinement [24]

(AMR) in order to improve the accuracy in critical regions without adversely affecting the

efficiency of the numerical integration scheme. The use of AMR effectively allowed the

clustering of blocks of computational grids as the solution process evolved only in the re-

gion that they were needed (and not clustering entire grid lines), by using Richardson-type

5

extrapolation error estimates to identify regions of large errors and adding grid blocks in

those regions. An example of AMR is Figure 5 which represents a simple adapted grid for

a supersonic wedge flow with four levels of adaption. As can be seen in the figure, there

are more control volumes where gradients are to be expected, specifically along the sur

face to capture the geometry and along the oblique shock. In regions with small gradients,

there is a lower density of control volumes. Also notice that in this figure there is at most

a 2:1 ratio at the refinement interface, which is typical of most A MR schemes, in order to

promote stability in the numerical schemes.

One problem with Berger and LeVeque's original implementation of AMR on Cartesian

grids was the problem of state variable conservation during the AMR stages. They carefully

constructed conservative schemes for the inter-grid transfer to address the problem. They

also used the idea of wave propagation and directional differencing [89] in order to increase

the stability near the small boundary cells. This helped keep the CFL of the boundary cells

reasonably close to the CFL of the flow cells and allowed larger time steps to be taken with

the solver remaining stable.

Several researchers have extended Berger and LeVeque's research into areas such as

multigrid Cartesian grids [55, 56], higher accuracy flow solvers using more sophisticated

flux approximations [45, 46], time-accurate unsteady flows [35], and a front tracking AMR

scheme [126, 127] that attempted to track the discontinuities (such as shocks) as the so

lution evolved in order to provide more accuracy in the refined mesh calculations. Quirk

had developed an AMR based software architecture called AMRita [136, 137], a software

6

...,..., ~ .---------- H--1,---
.J,J_..t.- v---.-1--~

f.----- 1--,..;---
~

.-- ::::~~ ----.-----
f-..-

1-- -- ...-...- ...-...-.- f-.-r- .-----r---
...-1-- ~--~---~-- ----~----- v---...-
f.-,..- """ 1--- .J....-

~ ~--" v_.....
...- v

__.v """
r:d::f ~ I-

f.-
1- ~ lXI .m

Figure 5: Example Adaptive Grid for Supersonic Wedge Flow

system for automating numerical investigations, that attempts to abstract out much of the

tedium associated with developing and testing CFD software.

Advanced Geometry Modeling

Melton et al. [1 05] developed techniques for handling more complex surface geometries us-

ing Cartesian gridding techniques. They extracted the surface geometry from CAD/CAM

compatible geometry definitions and used higher-order surface modeling techniques to de-

termine the cut cell geometries. This provided more accurate solid surface reconstructions

which resulted in more accurate solid surface boundary conditions. They also addressed

surface refinement issues that arise from the intersections of arbitrary geometries and the

computational cells. When an arbitrary geometric surface (or set of surfaces) intersected the

7

computational volume, multiple intersections could occur within one cell or multiple inde

pendent computational regions could be created. They developed an automated technique

that detected these cases and refined these regions with little or no user input. The result of

this effort was an application that could extract surface geometries from CAD/CAM mod

els, generate the computational grids, and solve the fluid dynamics equations. Extensions of

this effort have been done by Melton et al. [104] with improvements to the grid generation

algorithms as well as the geometry refinement schemes and the geometry representations.

As an extension to the work performed by Melton and his colleagues, Aftosrnis et

al. [3, 4, 22] developed a Cartesian grid application (CART3D) that provided a number

of improvements over the original work. Their major focus was on providing accurate and

robust resolution of the cut cell geometries and high performance improvements to the solu

tion methodology. Their work on the cut cell geometries dealt with providing a systematic

way of addressing and handling the variety of cut cell types that could occur when a surface

with an arbitrary number of facets intersects a computational cell. Along with automatic

handling of cut cells, split cells and merged cells, they also applied a sub-cell resolution

procedure to the solid surfaces of the cut and split cells in order to improve the accuracy

of the surface modeling. This entailed generating a normal for each surface patch from

the original geometry definition that intersected the control volume. In addition, a surface

normal agglomeration technique was developed for the cut and split cells could be used

in order to improve the computational efficiency of the code without sacrificing significant

accuracy. A comprehensive description of this research can be found in reference [2].

8

In an effort to handle more complex geometries in computational aeroacoustics config

urations, Kurbatskii and Tam [84] developed a method of treating solid surfaces in high

order numerical schemes without loosing the acoustic wave speed accuracy associated

with the less dispersive and dissipative high-order schemes in computational aeroacous

tics. Their research utilized a uniform two-dimensional mesh and solid boundary ghost

cells with coarseness limitations imposed by the body surface curvature that ensured sim

ple cut cell geometries. They used the body curvature to develop accurate hody pressure

values that could be applied to linear surface approximations and still retain the desired

accuracy. In order to achieve this accuracy, a linear system of equations on the order of

the number of surface cells needed to be solved in order to generate the required ghost cell

pressures which could cause a negative impact on the overall performance of the scheme.

Another research direction that evolved from the Cartesian grid research was the study

of unsteady flows, especially about moving bodies. Chiang et al. [35] were one of the

first researchers to study the unsteady Euler equations on Cartesian grids and provided an

analysis of two techniques to adequately capture the unsteady effects: (1) small grid cells

and (2) high-order accurate schemes. Bayyuk et al. [19] addressed the issue of moving and

deforming bodies by defining the motion of the body through the pre-existing Cartesian

grid in two dimensions with discussions on the extension to three dimensions, without

results, by Lahur and Nakamura [86]. As the body moved, mesh refinement occurred in

order to capture the surface geometry in its new location. Cell merging occurred when the

body cut a computational cell into a volume that fell below some specified threshold, as

9

well as when cells were just being exposed due to the body motion. One drawback to this

procedure was that there was a limit placed on the time step that depended on the smallest

cell size and the body motion such that the body could not sweep through an entire volume

in one time step. Yang et al. [189] developed a similar solver from an existing stationary

body solver [188] and also encountered the time-step limitation due to the body sweeping

over an entire cell.

One final approach to solving the moving body problem was presented by Munnan et

al. [115] in which an arbitrarily large time step is allowed by using a space-time conser

vation approach [88, 194] to account for the effects of the body sweeping entirely through

a control volume in one time step for a three-dimensional configuration. This approach

exactly satisfies the geometric conservation laws for most cells in the flow at each time step

with some cells only approximately satisfying the geometric conservation laws.

Navier-Stokes Modeling

Numerical solution of the Navier-Stokes equations has been the focus of many researchers

throughout the history of Computational Fluid Dynamics (CFD), and a number of differ

ent approaches have been utilized. Generally, the attempts fall into three categories: (1)

solutions of the full Navier-Stokes equations over the entire computational domain, (2)

solutions of approximations to the Navier-Stokes equations over the entire computational

domain and (3) solutions of approximations to the Navier-Stokes equations in a subdomain

of the entire computational domain.

10

Prior to the 1980's, solution of the full Navier-Stokes equations over the entire com

putational domain was normally considered outside of the available computational re

sources [134, 152]. Thus early research into generating computational solutions to the

Navier-Stokes equations primarily focused on techniques (2) and (3). These methods will

be reviewed on page 11 and page 15 respectively, followed by a discussion of fully resolv

ing the viscous terms in the N avier -Stokes equations for Cartesian grids on page 17.

Navier-Stokes Approximations

There are two approximation techniques of interest to Cartesian solutions to the Navier

Stokes equations. The first is the thin-layer Navier-Stokes approximation that has only

limited use in pure Cartesian formulations, but can be useful in the chimera or hybrid

schemes discussed later. The second is the vorticity confinement technique that uses an

extra force term in the momentum equations to prevent the numerical dissipation of vortices

and model the vortical regions created by the boundary layers in the flow.

Thin-Layer Navier-Stokes Approximation

The thin-layer approximation to the Navier-Stokes equations was developed from a

dimensional analysis of the governing equations for high Reynolds number flows. By

eliminating terms that produced higher order effects, sufficiently accurate solutions to the

Navier-Stokes equations could be developed in a reasonable amount of time on the compu

tational hardware available. Ultimately, this effort resulted in a solution that resolved the

viscous stresses normal to the body (or bodies) in a thin region while the other directions

11

used the inviscid fluxes only.

Steger [152] developed the thin-layer Navier-Stokes approximations as a means of ob

taining solutions to three-dimensional flows with high Reynolds numbers, while at the

same time Baldwin and Lomax [16], as well as Pulliam and Steger [134], demonstrated

similar ideas for high Reynolds number turbulent flows. The general reasoning behind

this scheme was that the current computational power and memory requirements would

not allow adequate grid resolutions in all coordinate directions, so a dimensional analysis

was performed on the full Navier-Stokes equations to try to eliminate terms. This analysis

showed that in order to adequately resolve the viscous terms along the body, tJ (ffe) grid

spacing would be required in each direction. This level of clustering would require a pro

hibitively large amount of CPU time and memory. In high Reynolds number viscous flows,

the viscous terms were dominated by the wall normal derivatives [186], thus the thin-layer

Navier-Stokes approximations neglected all viscous terms that were not in the surface nor

mal direction. Then, by generating a body-oriented structured grid, the thin-layer terms

could easily be retained by eliminating the terms in the coordinate direction(s) along the

body surface in the viscous flux calculations. This resulted in a thin, viscous boundary

layer around the solid surfaces that adequately resolved much of the viscous effects in the

flow, including separation points, while obtaining results in a reasonable amount of time

from the computational hardware available.

This research resulted in the computational packages ARC2D and ARC3D [132] that

have been in use for many years [133, 154] and have been the basis of other efforts, see

12

references [120] and [149] for examples. Additionally, modeling such effects as thermal

boundary layers and isothermal walls were not explicitly precluded by the thin-layer ap

proximations, as long as these effects were dominated in the body normal direction (as they

typically were for the cases being studied at the time), however capturing flow phenomena

such as leading edge effects and separated regions was beyond the capacity of this approach

due to the high streamwise viscous stresses present.

Vorticity Confinement

The vorticity confinement technique has its origins in the front tracking schemes, such

as shock capturing methods, that attempt to track a sharp discontinuity by using Lagrangian

elements in a flow field of an Eulerian based solver. The vorticity confinement approach,

developed by Steinhoff and others[51, 58, 73, 112, 155, 156, 185], uses the fact that the

vortical regions, from shed vortices and the boundary layer, in high Reynolds number flows

are very small.

For the shed vortices, a forcing function in the direction normal to the vorticity is ap

plied to the momentum equations in these regions to convect the vorticity back to the cen

troid of the cell. This technique has been found to be quite useful for capturing shed vor

tices as they travel long distances through inviscid flow fields without distorting the original

vortex strength direction.

For the boundary layer regions, a forcing function related to the distance of the cell to

the wall is used to advect the vorticity back to the surface. In order to enforce the no-slip

boundary condition, the domain inside the body and on the surface is forced to have zero

13

velocity.

The current implementations of vorticity confinement have been limited to uniform

Cartesian grids and body conforming grids. Attempts to extend this technique into more

irregular mesh topologies have had limited success because of the dependency of the con

finement parameter on the grid cell size. Without varying the confinement parameter, Mu

rayama and Nakahashi [114] found premature vortex bursting on a delta wing for an un

structured grid formulation. Lohner and Yang [93] have recently attempted to address the

confinement parameter limitation with a dimensional analysis of the confinement parameter

and have demonstrated some favorable results.

This technique allows the use of much coarser grids to model high Reynolds number

flow fields that have compact vortices. However, it does not capture any of the details of

the interior of the vertical regions as it only models these regions as thin lines. Further,

care must be taken in setting the confinement parameter in order to avoid the problems

discussed by Dietz et al. [51] where the vortical regions become unphysical. There is

concern [93] that the vorticity confinement, which is introduced as a force term in the

momentum equations, might alter the local axial and tangential momentum. However, this

is a promising approach and warrants further study.

14

Viscousllnviscid Coupling

The other main technique used to provide approximate solutions to the Navier-Stokes

equations was a technique of coupling an inviscid solver for the majority of the computa

tional domain with a solver that captured the viscous terms for the regions near the solid

surfaces (or other high viscous regions). The justifications for this technique were similar to

those presented for the thin-layer Navier-Stokes solutions, i.e. high Reynolds number flows

confine the viscous effects to small regions where high gradients occur (such as boundary

layers and shear layers).

Carter [30, 31] and Vatsa and Carter [168], and later Van Dalsem and Steger [162]

as well as Kaups and Cebeci [81], were some of the first researchers to develop the vis

cous/inviscid coupling techniques for CFD applications. Their solution procedure started

with the development of boundary layer equations for their solver configurations using stan

dard dimensional analysis techniques which resulted in the familiar boundary layer equa

tions [186]. The solution procedures for the boundary layer equations mainly focused on

inverse boundary layer algorithms in order to model small separation regions that the direct

boundary layer algorithms cannot handle due to the singularity at the separation point [7].

These equations were typically solved on body-oriented structured grids that captured the

entire boundary layer. For the inviscid calculations, early research focused on solving the

potential equations using body-oriented structured grids that overlay the boundary layer

grids. Later efforts focused on using the Euler equations as the inviscid model [138, 34] as

well as solving the Euler equations on unstructured grids [131].

15

Modeling the viscous/inviscid interaction was done by using the transpiration velocity

concept [162] or by using the boundary layer displacement approach [34]. The transpiration

velocity concept used the velocity components as a means of vorticity transport from the

viscous regions to the inviscid regions. This method imposed a requirement on the inviscid

mesh that it be fine enough to accurately resolve the vorticity near the surface [154]. The

velocity differences were then applied to the inviscid velocities which resulted in a blowing

type surface boundary condition [33]. The boundary layer displacement approach used the

inviscid solution to calculate the boundary layer thicknesses and then modified the solid

body geometry in the next step of the inviscid solver to include the calculated boundary

layer thicknesses. It is worth noting that neither the transpiration velocity approach nor

the boundary layer displacement approach paid any significant attention to the thermal

boundary layer effects as this research was mainly focused on the subsonic to transonic

regime.

Drela and Giles [53] extended the viscous/inviscid solution concept by developing

a formulation to handle low Reynolds number flows. Additionally, they strongly cou

pled the two solution regimes by solving the entire nonlinear equation set via a global

Newton-Raphson iterative method. The resulting code was called ISES (and its succes

sor MISES [193]) and has been used extensively in aerodynamic design studies such as in

reference [147].

16

Navier-Stokes and Cartesian Grids

While the majority of research into Cartesian grids has focused on solving the Eu

ler equations in two- and three-dimensions, there has been some notable efforts into the

utilization of Cartesian grids to solve the Navier-Stokes equations. These efforts have fo

cused on either solving the full Navier-Stokes equations using either the immersed bound

ary methods [64, 110, 128], volume-of-fluid methods [12, 67, 70], reconstruction based

schemes [95, 190] or cut cell based techniques [38, 59, 178] or coupling body-fitted grid

solutions of the Navier-Stokes equations with a Cartesian background grid [13, 21, 48, 55,

79]. The grid coupling technique has its foundations in the idea of the viscous/inviscid

coupling discussed on page 15.

Note that the other early approach to the Navier-Stokes equations was the thin-layer

approximations discussed on page 11 and has found little use in Cartesian grids because the

thin-layer Navier-Stokes approximations relied on the grid being body oriented. Cartesian

grids do not, in general, provide grids that are body aligned, however some work has been

performed applying the thin-layer techniques to Cartesian grids [59]. Hybrid methods do

exist which couple a body oriented grid solving the thin-layer Navier-Stokes equations with

a background Cartesian grid [103].

Immersed Boundary Methods

The immersed boundary method was originally developed by Peskin [128, 129] for

heart valve modeling using the Navier-Stokes equations in two dimensions. The heart

17

valves were modeled as flexible surfaces that can propagate with the flow, subject to certain

limitations such as hinge points or rigid regions on the surfaces. Instead of remeshing the

computational domain as the surface is propagated, the cells that contain the surface have

a body force added to their momentum equations that represents the reactive force that the

body is applying to the fluid in response to the fluid surface pressure and shear stress.

Goldstein et al. [64] applied Peskin's work to incompressible, solid body flows using a

force feedback approach. In this formulation, the surface force takes the form of a feedback

loop function that acts on the surface cell to bring the surface velocity to zero by adjusting

the applied forces appropriately. This approach requires an extremely small time step (CFL

around 1 o-3) in order for it to remain stable.

The small time step limitation of Goldstein et al. was addressed in the work by Mohd

Yusof [110, 111]. Here, the incompressible Navier-Stokes equations are solved using

a pseudo-spectral method. The applied body force is developed by utilizing the time

discretized Navier-Stokes equations on the surface. In order to generate a smooth no-slip

boundary condition, forces are also applied to the cells adjacent to the surface.

In order to more accurately determine the appropriate surface forces to add to the mo

mentum equations, Fadlun et al. [57] developed a second-order boundary interpolation

scheme for three-dimensional incompressible flows by using linear interpolation to recon

struct the state information at the surface. This approach resulted in the use of larger time

steps (CFL around 1.5) and better accuracy at the surface. Further advances by Lai and

Peskin [87] developed second-order methods for moving membranes. Additionally, Kim et

18

al. [82] developed a second-order method with both momentum and mass sources in order

to improve the overall accuracy of their results.

While these schemes handle the Navier-Stokes equations on Cartesian grids, they all

suffer from numerical stability problems that typically require numerical diffusion. Also,

the surface is not sharply resolved, and is typically smeared between 2 or 3 cells. This can

cause problems when flow details are needed near the surface.

Volume of Fluid Methods

Another approach to solving the Navier-Stokes equations on Cartesian grids is the vol

ume of fluid method. In this method, a scalar transport equation is solved in addition to the

Navier-Stokes equations. The scalar is a value between 0 and 1 that represents the volume

fraction that the fluid (or gas) occupies in that cell. The typical use of this scheme is free

surface flows, where the scalar represents the amount of the cell that the fluid occupies, and

interfacial flows, where the scalar represents the volume fraction that a species occupies in

the cell.

Hirt and Nichols [70] originally developed this method as part of an incompressible

free-surface Navier-Stokes solver. In order to retain the incompressible invariance in the

transport equation, strict mass conservation was required of the numerical solver. They

also used a first order accurate surface reconstruction technique which causes problems

resolving the interface boundaries.

Ashgriz and Poo [12] were one of the first researchers to d(welop a piecewise linear

interface construction technique to better resolve the interface boundaries. This is the most

19

popular technique currently in use for interface reconstruction. Almgren et al. [6] used the

volume of fluid technique, coupled with a finite volume solver, to model the solid surface

in incompressible viscous flows. Henderson et al. [67] and later Miller and Puckett [108]

have also extended the volume of fluid technique to compressible flows.

The volume of fluid schemes typically work well when the interface curvature is small

with respect to the surface modeling. Otherwise, artificial discontinuities can develop as

well as the inability to resolve the small scale features at the interfaces. Additionally,

without accurate propagation of the scalar transport equation and sophisticated schemes to

resolve the interface boundaries, artificial mixing can occur. Finally, problems can develop

if there is no limiter placed on the scalar transport propagation to strictly enforce the scalar

values in the range of 0 to 1. Scardovelli and Zaleski [145] provide a nice review of the

application of the volume of fluid technique to free-surface and interfacial flows.

Reconstruction Schemes

Another class of schemes used to solve the Navier-Stokes equations on Cartesian grids

are the reconstruction based schemes. These have been proposed by Ye et al.[l90, 191] and

Majumdar et al.[95]. These schemes are all based around the idea of interpolating the state

information to the nodes in the computational domain around the surface.

Ye et al. [190, 191] have developed a two-dimensional incompressible Navier-Stokes

equation solver. The solver use the cell merging technique to eliminate any surface cells

that are smaller than 50% of their full size. Then, the state information for the faces of

the new cell are found by utilizing a linear-quadratic two-dimensional interpolation from

20

the surrounding cells. This technique results in a slow convergence of the pressure Poisson

equation and requires acceleration techniques. This technique has been extended to moving

boundaries by Udaykumar et al. [161].

Majumdar et al.[95] have developed two-dimensional, turbulent Reynolds Averaged

Navier-Stokes solver on uniform Cartesian grids. This solver uses interpolation polynomi

als in one- and two-dimensions to reconstruct the state of the cells that are inside the body.

Thus, the solution process is performed over uniform cells at the surface. The interpolation

process can cause numerical instabilities due to the negative coefficients that can arise with

certain interpolation polynomials.

Cut Cell Based Methods

Fryrnier et al. [59] developed the first work in the application of the full Navier-Stokes

equations on Cartesian grids using the cut cell approach. Their work was limited to two

dimensions and laminar flows. The solution procedure was a straight-forward finite-volume

approach with the Cartesian grids clustered using grid line clustering and not AMR. Their

results demonstrated strong dependencies on the smoothness of the surface grid where non

smooth surface grids produced non-smooth skin-friction and surface pressure values.

A large number of standard viscous flux formulations for cut cell based schemes were

analyzed by Coirier [38, 39] and Coirier and Powell [40, 41] to ascertain their accuracy

and positivity characteristics. These viscous flux formulations fell into two categories: (1)

21

Green-Gauss reconstructions where the divergence theorem was applied to cells neighbor

ing the face that the flux was being calculated to build the integration path and (2) polyno

mial based reconstructions that used a Lagrange polynomial and a set of support cells to

interpolate the state variables where they were needed with the polynomial being differen

tiated to obtain the needed gradients. This research focused on the accuracy of the various

formulations via a standard Taylor series approximation analysis and on the positivity of

the formulations. The positivity is a measure of how well the discretization satisfies the

local maximum principle that holds for all homogeneous, second order partial differen

tial equations (PDEs). The local maximum principle simply states that the solution to a

homogeneous, second order PDE at one point is bounded by the values of its neighbors.

It is a statement of the diffusive nature of second order PDEs, and thus it is a necessary

requirement for any discretization of a homogeneous, second order PDE.

The results of this effort were that all of the schemes demonstrated (to some degree)

a competition between the accuracy of the scheme and the viscous stencil positivity for

non-uniform cells, i.e. any attempt to improve the accuracy/positivity adversely effected

the resulting positivity/accuracy. Thus, in order to achieve a higher order of accuracy, a

scheme must be used that does a poor job of preserving the positivity, and vice versa.

In fact, some of the schemes that were analyzed actually grid divergent, demonstrating a

truncation error of tJ G).

The resulting numerical analysis was performed for low to moderate Reynolds number

22

flows using a diamond-path Green-Gauss reconstruction stencil, due to its favorable posi

tivity characteristics, and a quadratic polynomial interpolation scheme, due to its guaran

teed consistency characteristics. Cases where the surface was predominantly aligned with

the coordinate directions showed excellent agreement with theoretical values, but when the

body was not aligned with the coordinate directions (thus, the surface had cut cells of vary

ing volume fractions of the uncut cells) large oscillations occurred in the results due to the

sensitivity of the viscous stencil to the grid smoothness (for both cut cells and coarse/fine

cell interfaces). This explains the non-smooth skin friction and surface pressure values

in the Fryrnier et al. results mentioned on page 21. Another impediment to utilizing this

scheme for high Reynolds number flows was the large number of control volumes needed

to adequately resolve the viscous regions. Even with AMR this became prohibitively large

for even moderately complex geometries [178].

In addition to the viscous flux formulation results, AMR was applied to Coirier's so

lution strategies with a positive effect, but without fully eliminating the viscous stencil

sensitivity on the cut cell smoothness. Another approach that was discussed was the use

of embedded, body oriented grids to capture the boundary layers, but no numerical results

were given. This topic of embedded body oriented grids will be discuss further on page 24.

Delanaye et al. [49] proposed a fix to the viscous stencil positivity problem by using

a modified diamond-path Green-Gauss reconstruction stencil that adjusts the shape of the

stencil to a more uniform shape. The state information at these points is then calculated

by using a linearity preserving, pseudo-Laplacian interpolation algorithm by Holmes and

23

Connell [71]. While this technique was applied to a hybrid grid (a discussion of this type

of gridding to follow on page 28) in two-dimensions, this scheme appears to be applicable

to three-dimensional, pure Cartesian meshes.

Wang and Chen [178] developed a Cartesian grid approach to the Navier-Stokes equa

tions that attempted to capitalize on the anisotropic nature of the viscous effects by cre

ating anisotropic cells that can be refined in the direction(s) that the viscous effects were

most dominant. This technique worked well when the direction of the dominant viscous

stresses were aligned with the coordinate directions as in a fiat-plate, thin wing, or similarly

shaped body where the majority of its surfaces were coordinate aligned. Effective use of

anisotropic refinement further required that the dominant flow direction must be aligned

with a coordinate direction (and preferably in the same coordinate direction as the body).

While this effort attempted to solve the problem of having a large number of computational

cells, its effectiveness was limited to a small set of general configurations due to the need

for favorable flow and body geometry configurations.

Chimera Grid Schemes

The use of a collection of grids to cover the computational domain is known as chimera

gridding. Typically, a body-oriented structured grid is used around each component of

the solid surfaces. Each of these structured grids are then overlayed onto a background

Cartesian mesh. Figure 6 shows an example of a two-dimensional chimera grid collection

around a simple curved surface. Notice that there is no simple mapping of cells in the body

oriented grid and the background Cartesian grid. This feature is one of the drawbacks to

24

chimera gridding schemes, but it is only a performance penalty when the grid needs to be

generated during initialization and after any AMR processes.

~ -a H::: t:\= 1-
0!5

t;::: :><;:::.-'

~ ~, '-!-
-.....c f:t::: ::r:::

Figure 6: Example Chimera Grid Near Curved Surface

The development of chimera gridding schemes were not solely founded in the vis-

cous/inviscid coupling problems, but chimera gridding schemes were applicable to that use.

Throughout the history of chimera gridding there have been a number of motivations for

their investigation such as increasing grid point resolution near solid bodies [13], overcom-

ing structured gridding issues associated with modeling complex geometries for the full

potential equation [14, 15, 55, 153] as well as the Euler equations [21, 109, 56], solving

moving body problems [90, 100, 101] and resolving the boundary layers in Navier-Stokes

calculations [78, 79, 180, 181, 182].

Atta [13] developed one of the first uses of chimera grids for the full potential equation

25

in two-dimensions using a finite difference formulation. A uniform Cartesian grid was

used for the background grid and a body-fitted 0-type structured grid was used around

the body. The two grids were coupled via boundary information exchanges during the

iteration process. First, the solution around the body fitted grid was converged through an

outer iteration using a Dirichlet boundary condition imposed on the outer boundary. Next,

the outer grid was converged using a Neumann boundary condition on the inner boundary,

utilizing the solution information from the body solution. This information was then used to

converge the body fitted grid once again. This cycle continued until the solution approached

steady-state. This procedure required each grid (body and background) to have at least

one complete cell inside the domain of the other, with the inner grid having an extent of

between 1 and 3 chord lengths in all directions. Significant effort was needed to minimize

the overlapping region in order to achieve optimal performance. Atta later extended this

methodology to three-dimensions [14] as well as more complex configurations [15].

Steger et al. [153] developed a finite-difference chimera grid scheme that could han

dle a much larger variety of configurations compared to Atta's work. While limited to

two-dimensions, they presented results for an airfoil-flap, cascading blades, a non-lifting

bi-plane and an inlet with center body configuration. All of these configurations were

handled automatically by their solver with little changes to the standard finite-difference

formulations. State variables were exchanged between grids through interpolations which

can cause performance penalties in the initialization stages when the connectivity is being

constructed, but they addressed this by using the "stencil-walk" search pattern, where the

26

cells that are used for the interpolation of one cell are assumed to be close to the cells that

are needed for the interpolation of that cell's neighbors.

A direct extension to the work of Steger et al. was developed by Benek et al. [21],

named OVERFLOW, which applied chimera grid techniques to three dimensions and arbi

trary body configurations as well as complete aircraft configurations. Meakin [102, 103]

developed extensions that applied existing AMR techniques to the background meshes

in order to resolve the off-body aerodynamics effects for Euler and Navier-Stokes equa

tions. Additionally, Meakin developed techniques to apply AMR to unsteady, viscous,

three-dimensional flows. In handling the viscous terms efficiently, the body-oriented grids

were sized to capture the boundary layers, while the Cartesian grids were used for most of

the computational domain. This resulted in an operation count drop of 2.5-6.5 with respect

to the general curvilinear formulations (depending on whether the Euler, thin-layer Navier

Stokes or full Navier-Stokes equations were used). To further improve the handling of the

viscous terms, the thin-layer Navier-Stokes equations could be used on the body-oriented

grids since they were aligned with the dominant viscous stresses. This work provided

the potential for significant floating point operation count reductions which resulted in an

efficient solution technique. An excellent description of the modeling of a complex config

uration was performed by Pearce et al. [125] wher~ OVERFLOW was used to model the

complete Space Shuttle Launch Vehicle.

Other interesting applications of chimera gridding was the use of all Cartesian meshes

in the chimera grids by Mitcheltree et al. [109], and the use of multigridding techniques by

27

Epstein et al. [55, 56] as well as Kao et al. [78].

Hybrid Grid Schemes

Another approach that was related to the chimera grid approach was the use of un-

structured grids between the body surface and the background Cartesian mesh, as opposed

to the overlaying of these grids. These schemes were usually referred to as hybrid grid

techniques. Figure 7 demonstrates an example hybrid grid around a curved surface in two

dimensions.

......., c--- ,....--
_r--t- c.-rl

~
~--....... ,__ .,_ <SIS

-N :----! --1--

Figure 7: Example Hybrid Grid Near Curved Surface

One application of a hybrid scheme known as SPLITFLOW, by Karman [79] and en-

hanced by Domel and Karmen [52], used Cartesian grids for the majority of the computa-

tional domain, and prismatic grids to resolve the boundary layers. Standard Cartesian grid

cutting techniques were used at the interface between the prismatic grids and the Cartesian

28

grid. The prismatic cells were grown from the surface triangulation using a marching layers

technique [77]. Delanaye et al. [49] addressed significant difficulties that could arise in the

prismatic-Cartesian technique near convex regions, overlapping regions, and other regions

where the prismatic marching technique needed to be modified to create viable grids. An

other similar effort to SPLITFLOW was performed by Wang [180, 182] except that instead

of body oriented triangles or prismatic cells, body oriented quadrilateral cells were used to

better capture the anisotropic nature of the viscous boundary layer regions.

Other Related Method

Similar to the reconstruction method is the class of finite element solution techniques

called element-free Galerkin methods. Originally developed by Belytschko et al. [20] for

elasticity and heat conduction problems, it is currently being investigated for its applicabil

ity to fluid dynamics [192] because of its automated handling of grid generation. The basic

premise of this method is the use of polynomial curve fits to approximately represent the

data surrounding the node of interest. Typically, a least-squares error minimization is used

due to the larger number of data points surrounding the node than the number of unknowns

in the curve fit. Most implementations demonstrate oscillations near sharp gradients (espe

cially with higher-order interpolation functions) with more research needed to developing

effective limiters.

Another scheme related to the reconstruction method that is the gridless method origi

nally developed by Batina [18]. This method uses a cloud of points to reconstruct a poly

nomial curve fit (similar to the element-free Galerkin method) using a least-squares error

29

minimization. These curve fits are then used to calculate the derivatives required to solve

the Navier-Stokes equations in differential form. The number of calculations per node

is higher than for other techniques due to the large number of least-squares fits that are

required. Unfortunately, this scheme does is not conservative and requires numerical dis

sipation in order to obtain a solution. Other researchers have extended this work [91], but

without addressing the conservation problem.

Parallelization Efficiency Approaches

Parallelization efforts throughout the history of CFD have been strongly influenced by the

computational hardware available to the researchers. In the early years of CFD, the domi

nant hardware available to researchers was SIMD (Single Instruction Multiple Data) archi

tectures. These were also known as vector based architectures, and they used long vectors

of data (with the size depending on the size ofthe computer's pipeline) and performed the

same operation on each data item in the pipeline in a single CPU clock cycle. Different

operations could be chained together to create an assembly line of operations without hav

ing to use excess cycles to fill the pipeline caches on each arithmetic unit. Thus, it took

the same amount of time to perform 64 multiplies as it would 1 multiply on a vector ma

chine with a pipeline size of 64 or larger. While the SIMD architectures provided excellent

parallelization potential on problems with long vectors of data, they became of limited use

to current large CFD applications because of the expensive memory that was required for

these architectures as well as the rise of other less costly architectures [96].

30

The main parallelization architectures that took the place of the SIMD architectures was

the MIMD (Multiple Instruction Multiple Data) architectures. These architectures utilized

multiple processors to process the data in parallel using possibly different sets of computer

instructions on each piece. Thus, it was possible to perform two independent tasks concur

rently and not be restricted to the vector paradigm in the algorithm development as in the

SIMD architectures.

SIMD Parallelization

Most early CFD work on SIMD architectures, such as [23, 105, 152] focused on achiev

ing results quickly without quantitative analysis of the parallelization performance. Discus

sions typically provided wall clock results for the cases demonstrated, but no comparison

was usually offered between scalar and vector runs nor was there any comparison between

various sized pipelines. Heller [66] provided a table of selected timings for common op

erations on the CDC STAR SIMD architecture that provided useful timing information

for predicting performance characteristics for a given set of operations on a data vector.

References [132] and [175] provide additional information about vectorization and how to

prepare code for vectorization.

MIMD Parallelization

MIMD architectures are generally split into two classes depending on the connectivity

used between processors. The first is the shared memory based architectures where all of

the memory is available to each processor in one common address space. shared memory

31

architectures usually consist of a number of CPUs connected to a common block of mem

ory that was addressable to all processors. Each processor may also have its own separate

memory (such as on die caches or memory modules separate from the common banks), but

that memory was not part of the shared memory collective. Most current shared memory

architectures provide a hierarchy of physical memory locations the have varying access

timings such that there is a certain amount of locality associated with memory accesses.

These (trchitectures, known as cache-coherent Non-Uniform Memory Architectures or cc

NUMA, require the application to address this memory locality issue in order to obtain

maximum performance. Parallelization in these environments can efficiently be performed

using common programming techniques such as shared memory structures and light-weight

threads to perform the parallel tasks on separate processors with little overhead involved in

exchanging information between the parallel tasks.

The other MIMD architecture is the distributed memory based architecture where each

processor has its own local memory address space that is not shared with the other proces

sors. Distributed memory architectures consist of a collection of CPUs that each contain

their own memory modules with no direct connectivity to the other CPUs memory, and thus

the memory of another processor is not directly addressable across the processor boundary.

This architecture does not allow for simple, efficient implementations of the same parallel

programming techniques typical of shared memory architectures. Specifically, there is no

simple way of handling shared memory structures, nor is there a way of efficiently spawn

ing threads on separate processors and keeping all of the shared data synchronized between

32

each processor's memory. Thus, information to be shared between parallel tasks needs to

be explicitly exchanged between the tasks in a much more controlled and orderly fashion.

Frequently, this is handled by using standard client-server communication paradigms such

as message passing.

Heller [66] and Voigt [175] provided an excellent discussion of general paralleliza

tion schemes that could be utilized in MIMD architectures, while Venkatakrishnan [172]

provided an informative section on the parallelization issues associated with MIMD archi-

tectures and CFD. Wang [179] provided a comparison of the parallelization performances

of several systems including Cray T3D and T3E [43] shared memory architectures and

a Beowulf [157, 80] distributed memory system with results that indicated comparable

speedups for all architectures as long as the amount of communication was much less than

the amount of computation.

Parallelization Libraries

In recent years, three major standard libraries have been used extensively in the par

allelization of CFD applications on MIMD architectures, OpenMP [121, 122], MPI [106,

107] and PVM [61]. While all three libraries provide unique benefits, only a comparison

between OpenMP and MPI will be presented.

OpenMP is a parallelization library that was specifically designed for shared mem

ory architectures. It allows for incremental parallelization of existing applications and

utilizes many shared memory features to optimize its performance (such as shared mem

ory information exchange, light-weight threads, and operating system level signals and

33

semaphores). It provides coarse grain as well as fine grain parallelization mechanisms, and

it is compatible with FORTRAN, C, and C++ programming languages on a variety of hard

ware and operating system combinations. However, it currently can not efficiently utilize

distributed memory parallel hardware because of its intricate dependency on the shared

memory paradigm. Thus there is an entire class ~f parallel hardware that the OpenMP

based applications can not support easily.

MPI is a parallelization application programming interface (API) that is based on the

idea of parallel tasks communicating using either synchronous or asynchronous message

exchanges. MPI can be used in both shared and distributed memory architectures, and

supports FORTRAN, C, and C++ programming languages on a wide range of hardware

and operating system combinations. Additionally, MPI does not exclude the use of a het

erogeneous collection of hardware and operating systems, thus it allows for an extremely

diverse configuration to be utilized in a distributed memory parallel fashion. However,

the MPI API does not specifically handle such issues as byte-ordering, data representation

differences, or data sizes, this has to be handled by the application. In a shared memory

environment, the message passing paradigm creates an added overhead to the parallel task

communication process due to the need to pack, send, receive, and unpack all information

exchanges. Most MPI implementations optimize the communication on shared memory

nodes by replacing the send-receive portion of the message passing operation with the use

of a common shared memory cache. Additionally, MPI does not provide the same level of

incremental parallelization that OpenMP provided. Jespersen [76] provided an overview

34

of the message passing schemes needed for OVERFLOW (a large scale CFD application)

usingMPI.

Shared Memory Based Schemes

There are currently two main CPU-memory interconnection schemes that are used in

shared memory architectures, bus-based and switch-based. The bus-based architecture have

a relatively narrow bandwidth connection between the CPUs that could easily become sat

urated if too many memory access requests occur. Thus, this architecture is limited in its

scalability. The other type of interconnection is the switched-based architecture. This ar

chitecture provides more of a matrixed connectivity between the CPUs and the memory

modules, as well as provides multiple paths for memory accesses to travel and reduces

the bandwidth limitations seen in the bus-based approach. Reference [123] provides an

excellent review of these topics. With the increased connectivity speeds of networking

technologies, research into providing a shared memory interface on top of a distributed

memory architecture has been performed, see reference [139] for more details.

The high performance improvements that Aftosmis et al. [2, 3] developed for their

shared memory based CART3D solver, see page 7 for more information, mainly focused

on the preprocessing steps that were performed before the actual solution code was run.

In order to improve the parallelization speedup of their code, they developed a set of cell

reordering techniques that used a concept called space-filling curves [144] to minimize the

inter-process communication due to the domain decomposition. The space-filling curves

also provided an optimal ordering of the data on each node that maximized the on-board

35

cache usage on each processor and were utilized in every stage of the multigrid solution

cycle, which created slightly more communication overhead, but ensured load balancing

on all multigrid stages. The other major improvement made was a transformation of the

adaptive refinement techniques from floating point mathematics to integer based mathemat-

ics. This allowed them to utilize geometry calculation techniques from the field of com-

puter graphics [37, 176] to perform the surface intersection tests using only a few machine

clock-cycles per test. The overall parallelization of their code was done using OpenMP,

and its performance achieved a nearly linear speedup for up to 64 processors, with parallel

efficiencies (a measure of how efficiently the solver performed for n processors, defined

as En= TT.leroc) of approximately 0.9. An excellent summary of these performance im-
n nprocs

provements was in references [4] and [22].

Another shared memory based CFD solver was an unstructured, three-dimensional tur-

bulent Navier-Stokes solver developed by Mavriplis [99, 96] that used a Runge-Kutta ex-

plicit time solver in a multigrid algorithm. In addition, directional smoothing and coars-

ening techniques were used to address the stiffness associated with high aspect-ratio cells.

The computational domain was partitioned is such a way as to minimize the inter-grid

data dependencies in the tri-diagonal solver associated with the directional smoothing. Im-

pressive parallelization speedups were achieved for a variety of parallel architectures using

the single grid scheme, including parallel efficiencies of 0.9 for a Cray T3E using 1450

nodes and the ASCI Red machine, with lower efficiencies for V- and W-Cycle multigrid

cases due to the added communication overhead associated with the lower points per node

36

distribution of the coarser grid.

Sharov et al. [148] developed a shared memory based CFD solver that optimized the

performance on cached-based parallel computers by using a variety of grid partitioning

schemes. In addition to the space-filling curve reordering mentioned above, they also uti

lized a wavefront renumbering [92]. They also paid special attention to the parallelization

of the GMRES preconditioner in order to optimize performance. Their results indicated

that the space-filling curves provided the best grid reordering with a parallel efficiency of

0.5 for 20 nodes on an SGI Origin 2000.

Distributed Memory Based Schemes

The interconnection mechanisms for distributed memory architectures typically are

done by some type of high bandwidth networking, such as 10 Mb, 100 Mb, or gigabit ether

net. In addition to the connectivity bandwidth, there are several interconnection topologies

that can be employed. There are fully connected networks where every node could di

rectly communicate with every other node (which becomes difficult to maintain with large

numbers of nodes), as well as hypercubes and meshes where the nodes are conceptually dis

tributed in multiple dimensions and then connected to their nearest neighbors (which limits

the connectivity for each node, but can require a large number of hops to traverse the entire

network), and also there are rings and linear arrays where the connectivity to each node

is limited to 1 or 2 neighbors and traversing the network required sequential hops along

the nodes (which is a simple network topology, but created only 1 or 2 paths for com

munications to travel and easily leads to network saturation). References [123] and [68]

37

provide more information on these topologies and advances in the distributed memory ar-

chitectures. One final evolving technology is the idea of creating low-latency connectivity

by providing a near-fully connected network via multiple network interface cards at each

node [50]. This technique provides extremely high communication bandwidth, but required

a complicated wiring and network switching scheme.

Early distributed memory results were from Decker et al. [47]. They provided an excel-

lent discussion of various oarallelization schemes and their efficacy in implicit finite differ-
~ ~ -

ence schemes. They investigated several data distribution schemes for their parallelization

efforts and provided a timing estimation for each scheme. They also demonstrated paral-

lelization efficiencies of 0.9 for block tridiagonal cases and 0.8 for penta-diagonal cases

(both using 4, 9, and 16 processors).

Barth and Linton [17] provided another early distributed memory based parallelization

effort for an implicit, unstructured, turbulent Navier-Stokes solver in three-dimensions.

The computational domain used a variety of methods to perform an a priori partitioning

of the grid into subdomains that reside on each processor [173]. Their results showed that

the spectral partitioning method provided the best load-balancing, but it required the most

computational time. They used MPI as their parallelization scheme and provided results

for the IBM SP2 [151]. Barth and Linton reported acceptable scalability results up to 64

processors with parallel efficiencies around 0.8 and the total number of iterations required

for convergence slightly increasing as the number of processors increased.

More recent work was performed by Wang that utilized GMRES/multigrid schemes [181]

38

to improve convergence, accuracy and distributed memory parallelization speedup on an

IBM SP2 using MPI. Wang used two different domain decomposition techniques, Recur

sive Coordinate Bisection and Recursive Spectral Bisection [130, 150], and concluded that

the Recursive Coordinate Bisection method was superior due to its ability to create better

load-balanced domains quickly at the expense of producing slightly more interface cells

between domains. Additionally, domain decomposition occurred on the coarsest grid, so

all finer grids in the multigrid cycle were required to exist on the same processor as the

parent in order to eliminate the additional communication overhead mentioned above with

Aftosmis et al. on page 35. Wang's results showed good parallelization performance for

up to 16 processors (with the parallel efficiencies of 0.7), at which point each processor

had few computational cells, and the communication costs overwhelmed the paralleliza

tion improvements. Wang also provided a scheme for improving parallelization efficiency

by using a Communication and Computation Overlap procedure that reordered the com

putational cells such that the interior cells were being computed while the boundary cells

were being exchanged between processors. This resulted in a savings of 10% to 20%.

Wu and Zou [187] provided a distributed memory based parallelization scheme for

the two-dimensional steady and unsteady Euler equations using PVM as outlined in refer

ence [143]. Their work focused on the use of overlapping grids in order to independently

solve the equations on each grid. This required time-lagging of the overlapping grids, and

a discussion was presented for the use of various time-lagging schemes. The resulting

schemes produced reasonable parallelization efficiencies for most time-lagging schemes,

39

with the most consistent results occurring when the entire overlapping grid data was at the

previous time step, as opposed to it being two time steps back or only lagging the implicit

portions of their scheme.

Venkatakrishnan [170, 171] provided an excellent discussion on distributed memory

parallelization issues for solving the two-dimensional flow problems using explicit and

implicit formulations. Eidson and Erlebacher [54] presented a detailed description of the

implementation issues that resulted from solving a periodic tridiagonal linear system (a

common linear system in CFD) which provided significant implementation details that can

be of use for other linear system solvers.

Combined Approaches

One final MIMD parallelization effort worth noting was, a combination of the shared and

distributed memory based schemes. Mavriplis [97, 98] developed a combination OpenMP

and MPI unstructured grid solver [96, 99] based on his research discussed above on page 35.

This scheme utilized MPI communication techniques for distributed memory paralleliza

tion tasks and OpenMP communication techniques for shared memory parallelization tasks.

This was an effort to optimize performance on shared memory architectures that resided

in a distributed memory network. For the architectures that he evaluated, the MPI alone

and OpenMP alone versions produced similar parallelization results on shared memory ar

chitectures, and the MPI alone version performed better than the hybrid OpenMP and MPI

version for a cluster of shared memory machines.

40

Scope of Current Work

As has been mentioned above, the current approaches to modeling the N avier-Stokes equa

tions on Cartesian grids have difficulties near the cut cells. Additionally, the requirements

put on the numbers of grid cells needed near the solid surfaces in order to accurately resolve

the viscous effects make the use of traditional solid surface boundary condition treatments

inadequate to efficiently solve the Navier-Stokes equations on full aerodynamic configu

rations. The grid cell resolution issues also make the use of Cartesian grid schemes on a

single computer unrealistic for full aerodynamic configurations due to the large numbers

of computational cells (lO's of millions) and the long computational times (hours or even

days) required to achieve a practical solution. Thus a strategy must be developed that ad

dresses these major difficulties in Navier-Stokes Cartesian solvers if they are ever to gain

widespread use.

This thesis presents two extensions to Cartesian grid solution functionalities. First is

a scheme for modeling the compressible three-dimensional Navier-Stokes equations in a

Cartesian solver by using an interpolation based boundary condition for the surface cells in

order to avoid the non-smoothness associated with the schemes investigated by Coirier [38]

mentioned above. This technique has the added benefit of removing the cut cells from the

time step restriction associated with traditional schemes. The second enhancement is a

distributed memory parallelization port of an existing Cartesian solver in order to utilize

the solver on a larger variety of parallel processing environments.

41

Traditional boundary condition approaches use Taylor series based approximations of

one-sided differencing and no-slip boundary conditions for viscous and heat flux calcula

tions. The current research utilizes an interpolation based scheme which utilizes the exist

ing boundary conditions along with the governing equations to update the state vector for

the computational cells that are on the body surface. This removes the surface cells from

the finite volume formulation, and thus removes the time step restriction associated with

the arbitrarily small cut cells. It also provides an alternative to the cell merging techniques

that other Cartesian schemes use to address the cut cell time step restriction. This scheme is

implemented within an existing three-dimension finite volume Cartesian grid solver where

the traditional second order numerical differences are applied to the off-body terms, and

this new scheme is applied in the solid wall boundary cells.

To address the increased computational costs associated with Navier-Stokes Cartesian

grid solvers, Cartesian solvers need to be able to utilize the growing numbers of inexpen

sive commercial off-the-shelf distributed memory parallel computing environments. Using

standard networking components and techniques, a high-speed distributed memory com

putational environment can be created that competes with more expensive shared memory

architectures on certain tasks for a fraction of the costs. If implemented properly, Com

putational Fluid Dynamics can be one of those tasks, since interprocess communication

(IPC) in parallel CFD is a relatively low bandwidth task. The major effort associated with

utilizing this new parallel environment for existing CFD applications is to take the existing

shared memory parallel codes and convert them to distributed memory parallel codes. By

42

isolating the IPC tasks from the CFD tasks in the code, identifying similar parallel tasks in

each paradigm and eliminating the usage of techniques that are exclusive to shared or dis

tributed memory parallelization, an efficient solver has been created that can be utilized in

a shared or distributed memory environment with little impact on the overall parallelization

performance.

In the present thesis, Chapter IT provides a description of the Cartesian solvers that are

being investigated throughout this research. A detailed description of the newly created

Cartesian solver NASCART-GT is presented. This is followed by an overview of the exist

ing solver, CART3D, with descriptions of the important functionalities and capabilities.

Chapter Ill provides a description of the new solid boundary treatment for both inviscid

and viscous flows. It starts with a description of the limitations of the current procedures

for viscous flux reconstructions at the solid boundary. It then puts forward an alternative

treatment of the solid boundary cells that avoids the deficiencies associated with the current

solid boundary cell treatments.

The next chapter, Chapter N, describes the development of the parallelization enhance

ments made to CART3D. Specific details are given that describe the changes that were

made to the existing code as well as the code additions that were made.

Chapters V and VI provides the results due to these improvements. First, simple ge

ometry results are presented for inviscid cylinder and viscous flat plate flows in order to

examine the improvements for cases that have well known analytical solutions. Next, sim

ple aerodynamic geometries are presented for transonic inviscid as well as subsonic and

43

supersonic viscous flows around a NACA-0012 airfoil. These cases demonstrate the effec

tiveness of these schemes for aerodynamic configurations which have well studied experi

mental and numerical solutions. This is followed by an demonstration of the effectiveness

of the improvements for a transonic inviscid flow over an ONERA-M6 wing. Finally, re

sults are presented demonstrating the parallelization improvements compared to existing

shared memory results, as well as parallelization results for a distributed memory architec-

Finally, Chapter VII presents a summary of the conclusions obtained from this research

as well as some suggestions for future development.

44

CHAPTER II

EXISTING CARTESIAN GRID SOLVERS

A summary is presented of the current functionality of the Cartesian solvers that were mod-

ified in order to provide an understanding of the starling point for this research. CART3D

is a well established Cartesian solver used for a number of problems, see [4] and [124], and

provides capabilities of solving 3D, compressible, inviscid flows. CART-GT was devel

oped recently and provides capabilities of solving 3D, compressible inviscid flows as well

as viscous flows with traditional finite differencing of the viscous terms.

NASCART-GT

NASCART-GT is an unsteady, three-dimensional Cartesian grid solver of the full Navier

Stokes equations without body forces and a perfect gas thermodynamic model. The Navier

Stokes equations are solved using Roe's approximate Riemann solver coupled with a MUSCL

data reconstruction technique for the inviscid fluxes and traditional finite differencing of

the viscous terms. In all this creates a second order spatially accurate scheme. The time

integration is performed using a Hancock two-stage predictor-corrector scheme which is

second order accurate in time. In order to accurately capture high gradient regions, a solu

tion adaption scheme is used that is uses the velocity divergence as the coarsening/refining

45

metric.

Governing Equations

The three-dimensional Navier-Stokes equations are the governing equations solved in

NASCART-GT, shown in the integral form in equations (la)-(lc).

:t j j j p d"f/ + j j p (v · n) dA = 0 (la)

cv cs

:t Jff pv d"f/ + fj pv(v·n) dA =- jj p n dA+ ff [-r]n dA+ jjf p:: d"f/
cv cs cs cs cv

- jjj p [~:~ + dd~ ·r+.Ox(.Qxr)+2.0xv] d"f/
cv

(lb)

:t Jff pet dJ/ + ff pet (v·n) dA =-fj p (v ·n) dA
cv cs cs

+ jj vT [-r] ·n dA+ jj kVT ·n dA (lc)

cs cs

where
V·V

et = einternal + 2 +h · gEB

and ['t" J = 't"yx 't"yy 't"yz

46

With the components of the viscous stress tensor given by

'rxx = ~Jl (2 au- av- aw)
3 ax ay az

'r = ~Jl (2av- au- aw)
yy 3 ay ax az

'rzz = ~Jl (2 aw- au- av)
3 az ax dy (2)

and h being a height above an arbitrary datum. By allowing no body forces, assuming that

the elevation changes within the flow field are negligible and assuming the control volume

is stationary, equations (la)-(1~) become

;tjjj pd~+ jj p(v·n) dA=O (3a)

cv cs

;t]jj pvd~+ jj pv(v·n) dA=- jj pndA+ jj[-r]ndA (3b)

cv cs cs cs

:tJjj perd~+ jj per(v·n) dA=- jj p (v·n) dA
cv cs cs

where

+ jj vT [-r]·n dA+ jj kVT ·n dA (3c)

cs cs
V·V

et = einternal + 2

47

with equation set (2) still holding for the stress tensor elements. By defining the state vector

as

p

pu

U= pv (4)

pw

equations (3a)-(3c) can be rewritten as

:t jjj U d"Y + jj (~1 -~v) ·n dA = 0 (5)

cv cs

with the inviscid and viscous fluxes defined as

pv 0

puv+ pi 't'x

grl = pvv+ pi ~v= 't'y (6)

pwv+pk 't'z

p (et + p)v (U't'x + V't'y + W't'z) + kVT

In order to close the system of equations, a thermodynamic model needs to be used.

The thermodynamic model used in NASCART-GT is a calorically perfect gas model with

the standard equation of state given by equation (7).

p=pRT

For calorically perfect gas, the following relationships hold

R
Cv=--

y-1

48

C = yR
p y-1

(7)

(8)

Additionally, models need to be established for the transport properties. By assuming

a constant Prandtl number and Sutherland's formula for the viscosity model, the following

equations are used for the dynamic viscosity and thermal conductivity, respectively

T3/2

Jl = C1T+C2

k= CpJl
Pr

where cl and c2 are constants for a given gas.

(9a)

(9b)

To actually perform the calculations, the equations (4), (5), and (6) are non-dimensionalized

using a characteristic length, 1, and the freestream density, poo, velocity, Voo, and dynamic

viscosity, J.Loo. These can be combined to form the Reynolds number Reg = P~~t. The

following equations are the result of the non-dimensionalization

p*

p*u*

U= p*v* (10)

p*w*

p*e;

where
v* · v*

* * + et = einternal -2-

~* JJJ u* d)/*+ JJ (§t -ffJ)·n* dA* =O (11)

cv cs

49

pv* 0

puv* + p*i r* X

!7/ = pvv* + p*j :7J= r* y
(12)

pwv* + p*k r* z

p (e; + p*)v* (u*r* +v*r* +w*r*) + k*VT*
x y z Pr Ref M~

with the following non-dimensionalizations

* X "* = ~ * z t* =-
t .. *- u ··*- v ···* w

(13) X=- z =-e . u -- v - w
£ J £ Z/Voo Voo Voo Voo

p* = _E_ * p T* =
T * e J.L* = 1!:_ k* =

k
P = PooV~ Poo/ (pooR) e = V2 yRJ.Loo/Pr Poo 00 J.loo

with the viscous terms non-dimensionalized as

(14)

50

Inviscid Flux Calculations

The inviscid fluxes in NASCART-GT are calculated using the well known Roe's ap-

proximate Riemann solver coupled with a MUSCL data reconstruction technique. More

information about Roe's approximate Riemann solver can be found in references [141,

142, 159], and more information about the MUSCL data reconstruction technique can be

found in references [158, 159].

Roe's Approximate Riemann Solver

In order to accurately capture the physical effects modeled by the fluid dynamics equa-

tions, it is important to discretize the equations in the direction of information propaga-

tion. One method of capturing this phenomena is the Flux Difference Splitting technique

which models the flow phenomena as a collection of local wave propagation between con-

trol volumes, also known as the Godunov approach[62, 63]. Roe's approximate Riemann

solver belongs to this class of solution procedures, details of which can be found in refer-

ences [141, 142] with implementation details in [159, 177].

Roe's method provides a method of calculating the flux across a face of a control vol-

ume using the eigenvalues, Ai, the right eigenvectors, Ki, and the wave strengths, ai. Equa-

tions (15), (17), and (16) show how the flux is calculated for the an x-face.

(15)

where F L is the flux calculated using the left state vector and F R is the flux calculated using

51

the right state vector and

1 1 0

a-a a 0

KI= v j(2 = v j(3 = 1 j(4 =

ln:uaj l;J l:J
with

y2 -
- - p H= T+e+ pand y2 =u2+v2+w2

with the average state calculated as

P = .JPLPR

- .JPzPL + v'PJiuR u =:...._____;;:..__...;____
VPi +v'PR

- .JPzYL +v'PJivR v = --=---=-==----.:.._____:..:.......::..:
VPi +v'PR

- ViJiwL +v'PJiwR w = -=-----::::........::;.___:..______::.;;__;;:.;;.

VPi +v'PJi
H = ViJiHL +v'PJiHR

VPi +v'PJi

52

(16)

0 1

0 u+ii

0 Ks = v

l:J ln:uaj

(17)

Applying equations (15), (17) and (16) to a Cartesian control volume results in the follow-

ing formulation for the flux across a face

(18)

1 0

u ~u-nx~tf>

where B=-1¢1 (~p- ~_;) v +p ~v-ny~t/>

l l;J l fiw - n,fi~ j J
~ (i2)- ¢~cp

1

u+nxii

-I¢ +iii ~P ~~za~cp v+nyii

w+nzii

B+tPii

For the flux calculation in the x-direction: cp = u, ¢ = u, nx = 1, ny = nz = 0, fi: = Fx

and L/R vary in the x-direction. For the flux calculation in they-direction: cp = v, ¢ = v,

ny = 1, nx = nz = 0, § = Fy and L/R vary in they-direction. For the flux calculation in the

53

z-direction: </> = w, ~ = w, nz = 1, nx = ny = 0, § = Fz and L/R vary in the z-direction.

MUSCL Data Reconstruction

The MUSCL (Monotone Upstream-centered Scheme for Conservation Laws) data re-

construction scheme originated with van Leer [164, 165, 166] introducing a piece-wise

linear reconstruction of the primitive state variable instead of the piece-wise constant re-

construction used in lower order Godunov schemes. The reconstructed data can be plugged

into a flux reconstruction scheme, such as equations (17) and (18) to produce the inviscid

fluxes. Equations (19) and (20) shows a MUSCL reconstruction for the i + ! face of a

Cartesian control volume.

WL =W. 'k
'+I 'k l,j,
I 'J,),

+ E:i,j,k [(1- 7C) (w .. k- w._l . k) + (1 + 7C) (w.+l . k- w . . k)] (19) 4 l,j, I ,], l ,], l,j,

wR = wi+l ·k ·+I . k ,],
I '1,,),

- £i,j,k [(1 + 7C) (w.+l . k- w .. k) + (1- 7C) (w.+2 . k- w.+l . k)] (20) 4 l ,], 1,], l ,], l ,],

where

p

u

W= v (21)

w

H

54

and £ .. k = 0 is traditional first order piece-wise constant and ei . k = 1 is second or third
1,], ,],

order (depending on the value of K"). For the ei
1
. k = 1 cases, if K" = -1 use second order , ,

fully upwind biased scheme, if K = 1/3, then use third order upwind biased scheme, if K" =

0 then use second order upwind biased scheme and if K" = 1 then use second order central

difference scheme. Details about the population of the neighboring cells is discussed on

page 58. Reconstructing the other 5 faces follows in a similar fashion.

The Monotonicity of the scheme is introduced via a limiter that sets the data reconstruc-

tion to first order in regions of high pressure gradients using the following

{

·f A ~ ein 1 LJ.Pmax. · k < 2 l,j,

ei,j,k =
0 otherwise

(22)

dp.+=p.+1 .k-p .. k, dp._=p .. k-P·-1 'k I I ,], 1,], I 11] 1 I ,],

dp.+ = P· '+1 k- p .. k, dp ·_ = P· .k-P· ·-1 k J 1,] , 1,], J 1,], 1,] ,

dpk+ = P· · k+1 - p .. k' dpk- = P· · k- p .. k-1 1,], 1,], 1,], 1,],

To further enhance stability, £
1
.. k is set to zero on the cut cells. This has the effect of
,],

creating first order accurate flux calculations in the cut cells.

Solid Surface Treatment

One final issue related to the inviscid fluxes is establishing the wall boundary condi-

tions. In order to implement the surface tangency wall boundary conditions, the § 1 flux in

55

equation (6) (or the non-dimensionalized for of equation (12)) yields

0

nxp

§/= nyp (23)

nzp

0

since v wall · nwall = 0, with p being found by satisfying the non-curved wall boundary

d .. ~ 0 con 1t1on dn = .

Viscous Flux Calculations

The viscous flux calculations are split into two types, the simpler flow cell formulation

and the more complicated solid surface cell formulation. The viscous flux formulations are

simplified by the Cartesian nature of the control volumes, with more attention needing to

be paid to the surface treatment.

Flow Cells

The viscous flux calculations of the flow cells are performed using standard second

order finite difference approximations. The difference stencil is populated such that at

refinement boundaries the differencing still appears as a uniform sized grid, which results

in a less than second order accuracy for these regions. Page 58 provides more details on the

stencil population. Since all of the flow cell faces are coordinate aligned, a large number of

viscous terms do not need to be calculated in the §v · n term from equations (5) and (6).

56

Solid Surface Treatment

The solid surface treatment of the viscous flux calculations requires the decomposition

of the control volume velocities into surface oriented directions. To calculate the viscous

fluxes for the surface face, a local coordinate system is defined such that ry is normal to the

surface and ~ and s are perpendicular to each other and are along the surface in order to

form a right-handed orthogonal coordinate system (the actual directions of~ and s are not

important as will be shown later).

The transformation of the x-, y- and z-derivatives into ~ -, ry- and s -derivatives is

a a~ a a11 a as a -=--+--+--dx ax a~ ax dry ax ds
a a~ a a11 a as a -=--+---+--dy ay a~ ay ary ay as
a a~ a a11 a as a -=--+--+-dz dz a~ az dry ()z ds

(24)

For all quantities that do not vary on the surface (i.e. velocity, temperature in isothermal

wall conditions and thin-layer Navier-Stokes approximations to temperature field) the -J;
and J, terms are zero, and the transformation reduces to

a a
dx = nx dry
a a
--ndy- y ary
a a
dz = nzaTJ

(25)

noting that ~, ~ and Pz are just the slopes of the normal vector from the surface to the

cell center: nx, ny and nz.

57

To find the x-, y- and z-distances from the surface to the cell center, a standard formula

can be used that finds the shortest distance between a surface and a point, see [74], to get

the following values

a·Xc-d
nx = ao

a·a

a·xc-d
ny = a1 a·a

(26)

a·Xc-d
nz = a2

a·a

where a · x - d = 0 is the equation of the surface and Xc is the cell center. From equa-

tions (25) and (26), the viscous fluxes on the surface can be calculated.

Numerical Stencil Population

In order to calculate the inviscid and viscous fluxes, a numerical stencil must be con-

structed such that the necessary neighbor information can be determined. NASCART

firsts determines the state vectors on the same mesh as the local cell and then performs

a uniformly-spaced finite difference approximation to calculate the fluxes. With the possi-

bility of mesh refinement in the grid, there are three grid configuration possible, a locally

uniform grid, a local grid with fine neighbors and a local grid coarse neighbors.

The simplest case is that of a locally uniform grid, Figure 8. For this case no special

treatment is required and the state of the neighboring control volumes, can be used as is.

The label 'X' is used to denote the location of the needed state information.

For the case of the local grid having fine neighbors, Figure 9, the state information of the

fine neighbor, labeled as 'o', is averaged together to create the required state information.

58

u. 1 I-
u.

I

X X

flux face

X

u. 1 !-

X X

Figure 8: Uniform Stencil Population Exam
ple

Figure 9: Fine Stencil Population Exam
ple

The final case is where the local grid has coarse neighbors, Figure 10. For this case,

the state information for the coarse control volume is used as the state information at the

desired locations. This reduces the local accuracy of the scheme, but also provides more

dampening for any instabilities.

flux face

Figure 10: Coarse Stencil Population

Table 1 shows the stencil sizes for various schemes using this approach.

Table 1: Stencil Size for Each Face

Scheme 2D 3D

first order Euler 2 2
second order Euler 4 4

first order Navier-Stokes 6 10
second order Navier-Stokes 8 12

59

.Time Integration

The time integration within NASCART is performed using a standard 2-stage Hancock

integration scheme, with implementation details provided in reference [159]. Using the

semi-discretized form of equation (5) results in the following

n+
1 n 1 n j} (~n ~n) U .. 2 = u .. k- -& . . k .:r1 -._7"v ·n dA l,j,k Z,J, 2 . Z,J,

(27)

csi,j,k

U~~1 = u~:i-&'!. { { (§n+i- g:n+~). n dA
z,J,k z,J,k z,J,k j j I V

csi,j,k

where evaluation of the surface integrals will be discussed on page 61. Notice that the invis-

cid and viscous fluxes in the corrector steps are calculated using the state vectors generated

from the predictor steps, and that local time-stepping can be employed if the steady-state

solution is only desired.

Solution Adaption

The solution adaption methodology used in NASCART is similar to the velocity diver-

gence approach discussed by Tu [160] where for each control volume, the velocity diver-

gence is scaled by a characteristic length of the control volume to obtain a measure of the

changing flow properties from cell to cell via

3

rd =IV·v. ·kll'l .. k I,], i]. k
t,J, ' '

(28)

where l is the cube-root of the cell volume.

Next the root-mean-square is calculated over the entire computational domain to obtain

60

a reference value, CJd, using

(29)

Finally, cells are flagged for coarsening or refinement if the following conditions apply

(30)

where kc and k, are threshold values for coarsening and refining, respectively.

Putting It All Together

Finally, the surface integrals in the Hancock time integration scheme (27) can be re-

placed with

+(§ -§,)A 1wa/l vwal/ walli,j,k

where A 1 is the area of the xmax face, A2 is the area of the xmin face, A 3 is the area of the

ymax face, A 4 is the area of the ymin face, A 5 is the area of the zmax face, A 6 is the area

of the zmin face and Awall is the area of the wall face (if the cell has one). Combining all

of the above results in a scheme that is second order accurate in time and between first and

third order accurate in space.

61

CART3D

CART3D is an explicit, finite volume Cartesian grid solver of the three-dimensional Euler

equations that has been validated in a number of flow conditions and configurations [3,

4, 22]. CART3D originated from the research of Melton et al. [105]. Improvements to

the grid generation schemes, geometry representation and flow field refinement techniques

were later performed by Melton et al. [104]. An overhaul of the flow solver to include

multigridding, shared memory parallelization and CPU cache-based performance enhance

ments were performed by Aftosrnis et al. [3].

The solver portion of CART3D, called flowCart, uses a face-based data structure for the

spatial integration techniques. Within each control volume a piecewise linear distribution

is used for the state variable reconstruction for the flux calculations to produce a second

order scheme. A least-squares procedure provides the gradient estimations within each

cell which is based on the solution of the normal equations of the local mass matrix. Flux

quadrature is performed by a midpoint integration coupled with either a van Leer flux

vector splitting [9] or an approximate Riemann solver of Colella [42]. In order to suppress

the oscillations associated with higher order schemes, flowCart uses either the minmod flux

limiter [159] or Venkatakrishnan's flux limiter [169].

In handling the temporal discretization, flowCart employs a modified Runge-Kutta ex

plicit time-stepping scheme. It supports an arbitrary number of Runge-Kutta stages with the

62

number of stages and the coefficients user configurable, with the van Leer 3-stage and van

Leer 5-stage optimally dampened schemes [167] the typical schemes used to get second

order and third order temporal accuracy, respectively.

To further improve the convergence characteristics, flowCart uses a Full Approximation

Storage (FAS) multigrid scheme [26] based on the work of Jameson [75] to accelerate

the convergence of the solver using both V- and W-cycles as well as Full Multigrid V-

cycles. The intergrid transfer occurs by direct injection for the restfictiun phases and linear

interpolation for the prolongation. A local block Jacobi preconditioning on each control

volume is possible in order to further accelerate convergence. The combination of the

upwind spatial discretization and the preconditioning results in rapid convergence for the

FAS multigrid scheme.

Grid Creation and Partitioning

A major focus for CART3D was the issues related to grid creation and partitioning.

Efforts were made to improve the performance characteristics of the grid generation pro

cedures. Surface cells are constructed using techniques originating in the field of computer

graphics in order to quickly and efficiently process surface intersections with the Cartesian

grid. Additional techniques are employed in order to ensure the accurate representation of

the surface geometry in the grid. Also, efforts are made to increase the solver performance

by optimally ordering the control volumes as well as by finding acceptable distributions of

the control volumes over the parallel nodes to achieve excellent load-balancing. The result

63

is a grid generation performance of 1x106 cells/minute on a moderately powered desktop

workstation in 1997 [3].

In the grid generation process, the flow cells are stored as the cell centroid and re

finement level so that the complete geometry could easily be recreated with the additional

information of the initial grid distribution. For the cut and split cells, they are handled as

an arbitrarily shaped polyhedra with the centroid of the cell being stored as well as the

surface iriangulation of the cut surface. Additionally, each grid location is converted from

a floating point representation to an integer based representation by using a 64-bit integer

for storing all three coordinates. Thus each coordinate has to be represented in 21-bits, re

sulting in a maximum relative resolution of 2-21 ~ 4.8x1o-7 in each coordinate direction.

This integer based addressing allows for very fast geometry calculations during the grid

generation process.

Wnile the surface cells accounted for only tJ (N2) cells, and the flow cells account

for tJ (N3) cells, special attention is paid to efficiently addressing the surface cells in order

to optimize performance without sacrificing accuracy. By using the integer based coor

dinates, intersections of control volumes and surface triangles are determined using the

bitwise "and" (&) and "or" (j) operators. The coordinates of each cell is relative to the cell

that is being tested for the intersection. Each vertex in the triangle is given an index that

corresponds to the cell that it is in. If any of the sides of the triangle intersect an edge of the

cell, then the triangle is intersected. The intersection test for a cell is given in equation (32).

This results in an extremely fast algorithm since equation (32) typically takes 3 CPU clock

64

cycles (one for each bitwise operation) compared to the many CPU clock cycles required

for floating point arithmetic.

if (facecodej & (coordv
1
I coordv

2
I coordv

3
) =/=- 0) then intersect (32)

Figure 11 shows a example of the intersection test configuration in two-dimensions. Thus

for lituv' the coordinates for the vertices are coord1 = 0000, coordu = 0000 and coordv =

0100. The facecode parameter is the coordinate of the cell adjacent to each face, thus for

the face that intersects with lituv' the facecode is 0100. Plugging these values into 32

shows that only facecode of 0100 produces a non-zero result, and it is the only edge that

intersects the triangle. More details on this technique can be found in reference [3].

1001 I
0001 0101

1000 0000 v 0100

u

1010 0010 0110

Figure 11: Example Surface Triangle Intersection with Cartesian Cell

In handling the surface triangles that intersect the Cartesian cells, the surface normals

are used to determine if further grid refinement is needed. This is done by evaluating the

change in angle of the surface normals for the surface triangles that intersect a cell, if the

changes are above some threshold then more refinement will be required. Also, CART3D

could use all of the intersecting surface triangles during the solution, or it could agglomerate

65

all of the surfaces into one area weighted average normal with a surface area equal to the

sum of each triangles surface area. This functionality requires fewer calculations during

the solution, while not adversely impacting the results. Figure 12 shows an example of the

surface agglomeration. Notice that there are 3 sub-surfaces to the cut surface with normals

n1, n2 and n3 that get agglomerated into one surface normal nagg. while the surface areas

for all flow calculations and cell centroid determinations use the areas of the three original

surfaces.

nagg

Figure 12: Example of Surface Agglomeration

Another grid technique that aids the solution process is the use of space-filling curves [144],

or SFC, to generate the indexing of the cells. An effective SFC encourages better data

locality for neighboring cells which results in better cache-based performance. The two

orderings that Aftosrnis et al. used were the Peano-Hilbert (or U-ordering) and the Morton

(or N-ordering) schemes. Figures 13 and 14 show examples of Peano-Hilbert and Morton

SFCs. Aftosrnis et al. identified three characteristics that made these space-filling curve

useful as a re-ordering technique [3]:

1. Mapping !Ji!d - £ : Both ordering schemes provided unique mappings between

the f4d physical space and a one-dimensional hyperspace, £.

66

2. Locality : The U-ordering maintained adjacency of neighboring cells in the map

ping between gjjd and£, while theN-ordering mostly maintained the adjacency of

neighboring cells.

3. Compactness : The encoding and decoding of both orderings required only local

information to generate the hyperspace indexing from the physical space coordinate

and vice versa.

Figure 13: Example of Two-Dimensional Peano-Hilbert Curve

~
~

Figure 14: Example of Two-Dimensional Morton Curve

To generate the Peano-Hilbert curve in Figure 13, the template curve (the left curve) is

recursively applied to every line segment such that starting and ending segments have the

67

template curve applied to the inside and the two corner segments have the template curve

applied to the outside. The middle and right curves of Figure 13 show successive iterations

of the Peano-Hilbert curve. Extending this to three dimensions is done in a similar manner

using the template curve shown in Figure 15.

Figure 15: Example of Three-Dimensional Peano-Hilbert Curve

To generate the Morton curve in Figure 14, each quadrant is given a two-bit index

representing the x and y location. Thus the lower left quadrant is 00, the upper left is

01, the lower right is 10 and the upper right is 11. The Morton curve is generated by

traversing the quadrants in order of their two-bit index. Figure 14 shows three levels of

iterations of the Morton curve. Extending this to three dimensions is done similarly to the

two dimension case except that the octants are represented by a three-bit index representing

the x, y and z locations as shown in Figure 16.

Using the space-filling curves as the ordering mechanism, Figure 17 shows an example

mapping of a two-dimensional physical space domain with mixed levels of refinement to

a one-dimensional hyperspace using the Peano-Hilbert ordering and the integer based cell

location scheme.

68

~-----~~-------

100

Figure 16: Example of Three-Dimensional Morton Curve

Handling of the domain decomposition for the parallelization of CART3D is done by

simply splitting the SFC ordered cells evenly between the the processors, as shown in

Figure 17. With the use of the SFC ordering, Berger et al. demonstrated that the resulting

partitioning created roughly similar numbers of overlapping cells as did a perfectly uniform

Cartesian mesh with the same number of cells [22]. In order to maintain favorable load

balancing characteristics, extra weighting is applied to cut and split cells in order to account

for their higher computational cost. Thus partitions with a larger number of cut or split cells

will have a lower overall number of cells.

CART3D uses a single pass scheme to create the grids for the multigrid solver. The

procedure for coarsening the computational domains starts with the finest grid. This grid

is then indexed using one of the SFCs mentioned above. At this point, the coarser grid

levels of the multigrid solver can be created by a cell-by-cell traversal of the grid since the

finest grid is already reordered. This results in the coarse grids retaining the SFC ordering.

The grid coarsening procedure imposes a limit so that there is at most a refinement ratio

of 2: 1 on any grid. Thus some cells will not coarsen in the multi grid strategy until all of

69

2D Physical Space
partition 0 partition I

31 4 71 8 15 16 19 20

21 5 61 9 14 17 18 21

13 23 22
1 10 11

12 24 25

26
28 1--

27
0

29 30 partition 2

1D Hyperspace

partition 0 partiton 1 partition 2
~--~==========------------ ·-------------·------------------, I I I II •

Figure 17: Two-Dimensional Mapping from Physical Space to Hyperspace

its neighbors have been coarsened. Finally, each grid is partitioned out to each processor

using the SFC indexing in order to improve the overall load balancing characteristics of the

solver. Figure 18 shows an example of one stage of coarsening around an arbitrary surface.

Special attention is paid to coarsening cut cells and split cells in order to handle the

various coarsened grids that can result. Figures 19 and 20 show examples of the coarsening

that can result around cut and split cells. Figure 19 shows 4 cut cells that coarsen to 2 cut

cells, and Figure 20 shows 2 full cells and 4 split cells that coarsen to 2 cut cells. These are

just two examples of the many variations that could occur during the coarsening process

around cut and split cells.

The overall coarsening ratio, the ratio of fine cells to coarse cells in one coarsening

70

15 16 25 26 52 53

55
14 13 18 17 24,23 28,27 51,50

19 20 21-49
54

11 12

10 7 6 5 361 32 34::rtr4' 44
37j38 33!32 46,45

43
9 8 3 4

56

1 2 39 40 41 42

6 7 10 11 22 23

25

5 8 9 12 21 24

4 3 ~0 19
26

1 2 15 16 17 18

Figure 18: Grid Coarsening Around Arbitrary Surface

Figure 19: 4 Cut Cells Coarsen to 2 Cut Cells

step, for the CART3D coarsening procedures was shown to approach 7.25:1 for a vari-

ety of geometries [4] (noting that for a three-dimensional computational domain a perfect

coarsening ratio would be 8:1). Also, this coarsening procedure was shown to be extremely

fast, taking (J (NlogN) steps to complete due to the quick-sort that occurs after the SFC

indexing.

71

Figure 20: 2 Full Cells and 4 Split Cells Coarsen to 2 Cut Cells

Accuracy and Performance

CART3D was validated against buth known analytical solutions as well as existing ex-

perimental data. Using the Supersonic Vortex model problem [5], Aftosmis et al. demon

strated a global order of accuracy of 1.88 [4] which compared favorably with other com

putational models. Additional validation was performed comparing results for an ONERA

M6 wing in transonic flight conditions against experimental data with CART3D demon

strating all of the pertinent flow characteristics [4] as well as good agreement with pressure

cod.ficient data.

CART3D uses OpenMP for its parallelization functionality with its parallelization per

formance showing excellent speedup results for up to 64 processors, with speedup figures

of 28.4 and 52.3 for 32 and 64 processors, respectively [4, 22]. For all parallelization

results, the residual histories for any number of CPU cases all matched to within machine

accuracy due to the explicit nature of the time-stepping scheme and the lack of any iteration

lagging in the updating of the overlapping cells [3].

The performance of the multigrid functionality of CART3D demonstrated a 5-times

decrease in computation work to reduce the residual to machine zero for the test cases

72

mentioned above [4]. The parallelization performance of the multigrid functionality was

not as good as the single-grid solutions since the coarser grids had smaller ratios of flow

cells to overlapping cells.

73

CHAPTER III

SOLID BOUNDARY TREATMENT

The current schemes for calculating the solid-surface viscous boundary conditions all de

pend on calculating the wall shear stress and heat flux via numerical differences within the

numerical solver in order to accurately calculate the numerical differences. This has been

shown by Coirier [38] to produce extreme oscillations near the cut cells for even simple ge

ometries due to the non-positivity of the stencils used in several viscous flux reconstruction

techniques. In order to avoid these problems, the proposed approach uses special treatments

for the solid boundary cells to provide a method of solving the Navier-Stokes equations on

Cartesian grids. In addition, this scheme can be used to solve the Euler equations in order

to eliminate the cut cells from the integration scheme and thus removing them from the

time step restriction.

Existing Solid Boundary Treatment

The existing research into applying the Navier-Stokes equations to Cartesian grids, such as

Frymier [59] and Coirier [38, 39], have utilized techniques to reconstruct the solid boundary

fluxes in combination with the no slip wall boundary condition to model the solid boundary.

74

Frymier used simple extrapolation to obtain the wall pressure, with linear and quadratic

curve fits for the velocity profiles to obtain the stresses. To model the heat flux at the wall,

adiabatic wall boundary conditions were the only boundary conditions studied.

Like Frymier, Coirier used an extrapolation technique to obtain the wall pressure, but

used a flux reconstruction technique to obtain the wall stresses using the wall centroid and

the intersection points of the cell edge and the surface. For the wall heat flux boundary con

dition, an isothermai wail boundary condition was used with a one sided finite difference

based derivative.

As was discussed in Chapter IT, the Cartesian solver NASCART-GT originally de

termined the wall pressure by satisfying the normal momentum equation for a flat wall,

¥n = 0, as well as a one sided finite difference formulation for the wall stresses and heat

flux.

Unfortunately, all of these techniques produce unsatisfactory results when the result

ing computational domain contains cut cells. As an example, while Coirier demonstrated

excellent agreement with the Euler Cartesian grid solver, even simple flat plate Blasius

configurations proved difficult to accurately capture when there were cut cells in the com

putational domain. Coirier's results for a Blasius flat plate configuration, grid shown in

Figure 21, at Re = 10,000 with the plate at an angle of 30° with respect to the x-axis

show large oscillations in the skin friction coefficient, shown here in Figure 22. This non

smoothness problem was observed in Fryrnier's work as well as in NASCART-GT, and

it makes these solid surface boundary condition formulations of little use when general

75

bodies need to be modeled.

Figure 21: Grid from Coirier [38] for Ro
tated Blasius Flat Plate

1... ·· ~~~Level J

•'i .,

-3
10 o.o'--o--o-'-.20-~0-'--.40~-o.so.______o-'-.s-o ---'1.00

Re.,xlO -4

Figure 22: Skin Friction Results from
Coirier [38] for Rotated Blasius Flat Plate

In addition to the non-smoothness problems associated with the existing solid boundary

treatment, the cut cells generated by the solid surface intersecting with the Cartesian cells

require very small time steps to maintain the CFL restriction needed to ensure the stability

of the explicit time integration scheme. Thus to achieve solutions more efficiently, this time

step restriction needs to be eliminated so that the minimum time step is set by the size of

the smallest full cell.

New Solid Boundary Treatment

After reviewing the existing solid boundary treatments above, it becomes apparent that

there needs to be a new treatment for the solid boundary condition that addresses the non-

smoothness problems as well as the CFL restrictions associated with the cut cells. The new

76

approach presented addresses these problems by handling the solid body cells separately

from the rest of the computational domain.

Basic Model Development

The problems associated with the non-smoothness of Navier-Stokes using Cartesian

grids can be traced back to the non-positivity of the viscous flux stencil [38], thus a scheme

for updating the state of the surface cells without using tht: viscous flux stencils needs

to be used. One method of removing the dependence on the viscous flux stencils is to

remove the surface cells from the finite volume formulation, while still using them for the

flux reconstruction of its neighboring cells. The development of the state vectors for the

surface cells can be obtained by satisfying the known criteria for the surface cells. Thus

allowing the calculation of the majority of the control volumes in the computational domain

to remain unchanged and can be treated as was discussed in Chapter II.

Reference State Determination

The formulation of the surface cell properties utilizes the state at a point normal to the

surface which can be based on the surrounding cells, see figure 23. The state at point 'c' is

constructed either directly from the state of the cell containing point 'c' (in this case labeled

'5'), or by using a distance weighted interpolation of the of the surrounding cells (in this

case cells '1' through '9'). The distance weighted interpolation places a restriction on the

cells surrounding the surface cell such that all of the cells neighboring the reference cell

and the reference cell itself must be at the same refinement level as the surface cell.

77

Using the state at point 'c', the state at the centroid of the surface cell, labeled '9', (or

the wall location, labeled 'w') can be developed by using one-dimensional relationships

along the line Bw. The specifics of the state reconstruction depends on whether the flow is

inviscid or viscous.

2 3

• •

7

•
Figure 23: Example Configuration for Solid Boundary Treatment

Inviscid Formulation for Flat Wall

The inviscid formulation is separated into two cases, one if the flow at point 'c' is

subsonic and another if it is supersonic.

Subsonic Case The surface cell velocity is first determined by an interpolation procedure

along the line Bw from point 'c' to the wall utilizing the surface tangency wall boundary

condition. The resulting relationship is

(33)

78

where Oc and o9 are the distances from point 'w' to points 'c' and '9', respectively. This

has the effect of holding the tangential velocity constant and linearly decreasing the normal

velocity to zero at the wall.

With the velocity determined at point '9', the temperature can be found by using the

adiabatic relation

(
y-1 2\

T0 = Tc 1 +-
2
-Mc}

' /

and the pressure can be found by using the isentropic relation

(
y-1 2) ~

P9 =Po 1 +-
2
-M9

(34)

(35)

This has the effect of correcting the thermodynamic properties for the velocity changes

associated with the wail conditions.

Supersonic Case The supersonic case is split into two separate cases, one if the wall

angle produces a shock and the other if it produces an expansion (or is parallel to the

flow). If the wall produces a shock due to a positive wall angle, then the following standard

79

oblique shock relations are used, see [8] for the derivations

(r+ l)M~ c

Pg = Pc (y-l)M;,c~2

Pg=Pc[1+y~l (M~,c-1)]
2 M~,c+ /-1 M 9 - --::--___:_
n, - __LM2 -1

y-1 n,c

T = TcP9 Pc
n,g Pc P9

Mg = Mn gCSC (/3- e)
'

[
M; sin

2 f3 - 1 l
tan e = 2cotf3 ~ (/3) 2

c r+cos2 +

(36)

where f3 is the oblique shock angle and e is the wall angle. One additional correction is to

the velocity magnitude at '9'. The subsonic formulation from above is is used to calculate

the velocity direction at '9', and the velocity magnitude from the oblique shock relations is

used for the final velocity magnitude.

If the wall angle produces an expansion (or is parallel to the flow) then the same sub-

sonic velocity relations are used to calculate the velocity vector. To calculate the thermo-

dynamic properties, the standard Busemann surface pressure coefficient relation, see [25],

is used to determine the pressure by

C = 2 lJ+ (y+l)M;-4M;+4e2

p J~-1 2(~-1)2
(37)

PcU1
P9 = Pc + -

2
-Cp

where again 8 is the wall angle. From the isentropic relations, the temperature at '9' is

80

calculated from

(38)

Viscous Formulation for Flat Wall

As with the inviscid case, the viscous formulation is separated into two cases, one if the

flow at point 'c' is subsonic and another if it is supersonic.

Subsonic Case The surface cell velocity is first determined by an interpolation procedure

along the line Bw from point 'c' to the wall utilizing the no slip wall boundary condition.

The resulting relationship is

Un = r U,- (1 - ~9) (U~ · n l n l (09 \
7 L '"' \ De) ' l- I J \ Oc)

(':l.O\
\-'./)

where Oc and 89 are the distances from point 'w' to points' c' and '9', respectively. This has

the effect of linearly decreasing the tangential velocity to zero and quadratically decreasing

the normal velocity to zero at the wall.

Next, the pressure at point '9' can be determined by using the normal momentum equa-

tion for a fiat wall to get

dp =0
dn

which when used in a first order forward finite difference approximation yields

P9 = Pc

81

(40)

(41)

To close the thermodynamic system and enforce the final wall boundary condition, the

temperature for the surface cell is determined. For an adiabatic wall boundary condition, a

first order finite difference formulation for the wall heat flux yields the simple relation

(42)

While for the isothermal case, a simple linear interpolation along BW, similar to the veloc-

ity formulation shown above; yields

(43)

Supersonic Case The supersonic case should be a pathological case since the wall cell

must be in the boundary layer (thus subsonic), but it is applicable when the solution do-

main is initialized using the freestream values. If the wall angle produces a shock then the

subsonic viscous velocity formulation is used to determine the velocity dir<:!ction and the

oblique shock relations are used to calculate the velocity magnitude and the thermodynamic

conditions. Otherwise, the viscous subsonic formulations are used.

Curved Wall Model Development

While the basic model does address many of the problems that have been mentioned

above, some deficiencies of the basic model have been addressed with the updated model.

Specifically, utilizing the surface curvature to ease the grid refinement criteria around re-

gions of high curvature, and utilizing the governing equations to develop the interpola-

tion relationships. The surface curvature modification requires the governing equations

82

to be transformed into geodesic coordinates in order to incorporate the surface curvature

terms. Appendix A provides the derivation details associated with the full Navier-Stokes

equations, the boundary layer equations and the Euler equations in both two- and three

dimensions for geodesic coordinates.

Surface Curvature Determination

The geodesic coorrlinate directions, ; , TJ a..YJ.d ~, need to be defined for each surface cell

so that the transformed governing equations can be used. Next, the necessary curvatures

need to be calculated. Finally, the local velocity vectors need to be transformed from the

Cartesian coordinate system to the geodesic coordinate system and back. The following

sections provide the details for each of these steps.

Defining Geodesic Coordinate Directions In order to use the governing equations de

rived in Appendix A, the geodesic coordinate system for each panel must be determined.

Recall that the ; -and '-directions are along the surface, while the 77-direction is normal to

the surface. Further, recall that the surface is represented by a collection panels that can

each be described by their unit normal vector, n, and the location of the centroid panel, Xc

in the following equation

n·(X-Xc)=O (44)

Thus, the 77-direction is simply the surface normal. The definition of the ; -direction is

the freestream velocity vector,Uoo, projected onto the surface. This is done so that the;

direction is the primary flow direction for most of the surface panels. For the panels that

83

--- -

are perpendicular to the flow direction (i.e. n 1\ Uoo), then the ~-direction is taken to be

the direction of an edge of the panel (e0). The definition of the '-direction is such that

it is normal to the other two directions to form a right-handed system. Thus, the three

coordinate directions are defined as

Vol'

r71 = n (45)

Curvature Calculation Point Selection With the coordinate directions defined on the

surface panels, the local curvatures can now be calculated. Figure 24 shows a typical three-

dimensional surface configuration. For both the three dimensional Euler and boundary

Figure 24: Example Surface for Curvature Calculation

layer geodesic formulations of the momentum equation in the ry-direction, the required

curvatures are K
11
s and K

11
,. These correspond to the curvature of the surface in the~- and

'-directions, respectively (the arcs labeled K
11

;; and K
11

' in Figure 24).

84

In order to approximate the local surface curvature, the neighboring surface panels in

the direction of the ~- and '-coordinate axis are used to determine the local curvature by

fitting a circular arc onto 3 points on the local surface panels. In figure 24, the calculation

of the KTJ~ curvature uses panels 0, 1 and 3 to build the arc, while the calculation of the

KTJ' curvature uses panels 0, 2 and 4.

For most cases, the neighboring panels in the positive and negative coordinate direction

can be used to build the arc for the curvature cakulations, however two speciai cases need

to be addressed. The first is where the panel to be calculated is at a sharp edge, as shown

in Figure 25. In this case, it would not be appropriate to use the panel on the other side

of the edge in the calculation of the curvature because the curvature calculated would be

too large. Instead the sharp edge itself is used. The second special case is when both

neighboring panels form sharp edges, as shown in Figure 26. In this case, the same logic

used in the sharp edge case discussed above is used for this case for the determination of the

points to use in the calculation of the curvature. Thus, both directions use the edges in the

curvature calculation, however, since all three points lie on the same plane, the curvature

is zero. The determination of whether a comer is sharp is made by examining the angle

between the normal vectors for the panels. If the angle between the normal vectors is rc /2

or greater, then the two panels form a sharp edge.

Projecting Points onto Geodesic Coordinate System With the three points chosen to

calculate the curvature from, the next step is to transform the problem into a two-dimensional

85

Figure 25: Single Sharp Edge Degenerate
Surface

Figure 26: Double Sharp Edge Degenerate
Surface

problem so that the circular arc can be found. This is done by constructing a local coordi-

nate system centered at the center point (i.e. the point on the panel being evaluated) and

projecting the vectors to the other two points onto the c;- and s -coordinate direction vectors

obtained above. Thus, for each point,£, its local Cartesian coordinates, (xg,Yg,zg) map to a

geodesic coordinate, (c;£, 11.e, s.e). If the KTJ~ curvature is needed, then the c;.e and 77.e values

are used, and if the KTJ~ curvature is needed, then the 11.e and s.e values are used.

Curvature Determination The curvature for a panel on the surface given the three sur-

face points projected onto the local geodesic coordinate system is found by substituting the

three points, defined as (xa,Ya). (xb,yb) and (xc,Yc). into the following equations derived

in Appendix B

J [(xa -xb)
2 + (Ya -yb)

2
] [(xa -xc)

2 + (Ya- Yc)
2
] [(xc -xb)

2 + (Yc- Yb)
2
]

R=±~------------~~--~--------------~--~~------------
2 [xc (Ya- Yb) +xb (Yc- Ya) +xa (yb- Yc)]

(~ +y~) (Ya- Yb) + (~ +y~) (Yc- Ya) + (x~ +y~) (yb- Yc)
Xo = 2 [xc (Ya- yb) +xb (Yc- Ya) +xa (yb- Yc)]

(46)

(~ +y~) (xa -xb) + (xt +yt) (xc -xa) + (~ +y~) (xb -xc)
Yo=- 2 [xc (Ya- Yb) +xb (Yc- Ya) +xa (yb- Yc)]

86

where R is the radius of curvature, and x0 and y0 are the locations of the center of the circle.

There is an ambiguity in equation (46) associated with the sign of R. This can be resolved

by examining the distance from the centroid of the cell associated with the panel that is

being evaluated to the center of the arc. If this distance is larger than the circle radius,

then the surface is convex and the appropriate sign is positive. Otherwise the surface is

concave and the radius is taken to be negative. With this the surface curvature calculation

is complete.

Normal Momentum Equations

The normal momentum equations are the source of the curvature corrections to the

surface pressure values. For the inviscid formulation the three-dimensional curvature cor-

rection starts with the normal momentum equation in the geodesic coordinate system, de-

veloped in Appendix A and re-stated here

Applying equation (47) to the surface and utilizing the boundary conditions for the Euler

flows (i.e. u17 = 0, aaP = 0, ~ = 0 and aau2 = 0) yields

(48)

Notice that in equation (48) the sign of the curvatures (K
11

; and K
11

s) have a significance.

Recall that as discussed above a sign was assigned to the curvature such that a positive

curvature was generated by a convex surface, while a negative curvature was generated by

87

a concave surface. The sign of the curvature effects the direction of the pressure gradient.

To adapt this to two dimensions, simply set the s -direction surface curvature to zero to get

(49)

Notice that this formulation is different from Wang and Sun [183] by a factor of -1, but

their denominator for the radius, R, also differs by -1. Thus, curvatures that are positive

for their system are negative for this system, and the resulting pressure gradient is the same

sign.

The geodesic formulation of the boundary layer equations for the three-dimensional

geodesic coordinate system yields the expression for the normal pressure gradient that will

be required in this section. This equation, developed in Appendix A, is re-stated here

(50)

Notice that this is valid tr.roughout the boundary layer and not simply at the wali as was the

case for the inviscid formulation. The same sign convention for the curvature is used here

as for the inviscid formulation. A positive curvature is from a convex surface and a negative

curvature is from a concave surface. A two-dimensional adaptation of this is found from

setting the s -direction surface curvature to zero to get

(51)

Inviscid Wall Conditions for Curved Wall

The inviscid formulation is separated into two cases, one if the flow at point 'c' is

subsonic and another if it is supersonic.

88

Subsonic Case The surface cell state calculation starts with the assumption that the nor-

mal velocity decreases linearly and that the magnitude of the velocity does not change

between points 'c' and '9'. Further, it is assumed that the tangential velocity vector does

not change directions with respect to the surface coordinates between points 'c' and '9'.

The following expresses these criteria

(52)

where u~, u11 and u~ are the velocity components in the geodesic coordinate directions,

ut is the tangential velocity and A is the angle made by the tangential velocity and the

; -direction.

To develop the temperature relation, the adiabatic condition is used to get the following

(53)

Notice that this has the effect of holding the temperature constant since the velocity mag-

nitudes are the same between points 'c' and '9', thus Tw would also be equal to Tc.

With the temperature and velocity determined, the pressure relation can be developed

by assuming a linear profile for the pressure curve along Bw and using equation (48) for

89

the slope of the pressure curve at the wall. To start, the equation for the pressure curve can

be found to be

where p is the pressure at a point o distance away from the wall along Bw. Since the

conditions are 'c' as well as the temperature and velocity at the wall are known, the wall

pressure can be solved for to get

(55)

where Kw is the combined curvature effects in the ~ and t; directions. With the wall pressure

found, the pressure at '9' can be found to be

(56)

and the boundary condition development is complete.

Supersonic Case The supersonic case is again split into two separate cases, one for a

shock and the other for an expansion (or parallel flow). The shock case uses the oblique

shock relations developed above to determine the velocity direction and thermodynamic

conditions and the subsonic relations are used to determine the velocity direction. For the

expansion or parallel flow case, the Busemann relations from above are used to determine

the thermodynamic quantities while the subsonic relations are used to determine the veloc-

ity components.

90

Viscous Wall Conditions for Curved Wall

As with the inviscid case, the viscous fonnulation is separated into two cases, one if the

flow at point 'c' is subsonic and another if it is supersonic.

Subsonic Case The subsonic viscous wall conditions again start with an assumption of

the velocity profiles. As was the case for the inviscid wall conditions, the direction of the

tangential velocity is assumed constant, i.e. Ac = lt.9. Since there are only two conditions

available to build a velocity profile around, the velocity at point 'c' and the no-slip boundary

condition at the wall, the velocity profiles are limited to linear profiles defined as

0
UT) = Oc UTI ,c (57)

For the pressure boundary condition there are three conditions known, the pressure at point

'c' and~ at the wall and point 'c' from the boundary layer equations in geodesic coordi-

nates derived in Appendix A. Applying the normal momentum equation of the boundary

layer equation (50) to these conditions yields

(58)

where Kc is the same equation as the term Kw presented above, but applied at point 'c'

instead of at the wall. With three conditions a quadratic profile can be used to describe the

91

pressure distribution throughout the boundary layer to get

(59)

The development of the final condition, temperature, utilizes the compressible boundary

layer energy equation in geodesic coordinates, from Appendix A and restated here

If steady state is assumed and the equation is applied to the wall (where u = 0), then

equation (60) becomes

where all derivatives are taken at the wall. Converting this from stagnation enthalpy to

temperature, H = CpT + U2 /2, and recalling the constant specific heats assumption of

NASCART-GT yields as well as the boundary layer assumptions that u, >> u11 , the linear

velocity profile assumption yields

(62)

Finally, if the assumption of constant viscosity at the wall is used then the boundary layer

energy equation at the wall becomes

a 2~ I = _ Pr (aur I)
2

aTJ w cp aTJ w
(63)

92

This condition along with the temperature at point 'c' provides two of the three condi-

tions required for a quadratic curve fit. The third condition comes from the adiabatic or

isothermal wall boundary condition.

For the adiabatic wall boundary condition, the third condition is ~~ lw = 0 which results

in the following equation for the temperature profile

(64)

For the isothermal wall boundary condition, the third condition is given by the wall

temperature which results in the following equation for the temperature profile

(65)

93

Special Surface Cell Treatment

The original objective of this alternative boundary condition treatment was to handle

the arbitrarily small cut cells in a separate fashion so that they do not appear in the finite

volume formulations (either for non-smoothness or time-step reasons). Thus, the primary

focus is on cut cells that are much smaller than the flow cells that are at the same refinement

level, see figure 27. Notice that the distance between point 'wl' and 'cl' is much larger

1..2

L1

Figure 27: Large Cut Cell Example

than between 'w2' and 'c2'. This increased distance causes larger errors in the interpolation

procedures. Since these are not the cells that are of primary importance, these cells should

not be excluded from the finite volume integration. Including these cells in the finite volume

formulation has the advantages of further reducing the cells that are not included in the

finite volume integration and removing the cases where the largest interpolation errors will

occur. There is a trade-off between the non-smoothness of the finite volume scheme and the

accuracy of the interpolation procedures. If surface cells that are "too small" are included in

the integration scheme, then the viscous formulation will become unstable and the inviscid

94

scheme will have its time-step greatly restricted, however if no surface cells are included

in the integration scheme, then the interpolation inaccuracies will appear in these regions.

In practice, the criteria used to determine the how small of a surface cell to include in the

formulation is if the surface cells with volume 95% or more of the flow cell volume at the

same refinement level are included in the integration.

State Reconstruction

Once the velocity, pressure and temperature are determined for the surface cell, the state

vector can be reconstructed using the equation of state and the isentropic relation between

internal energy and density to get the density, momentum and energy values from

P9
Pg

RT9

PgUg PgUg

Ug= PgVg PgVg (66)

PgWg PgWg

Eg ~ + p9 (u 9·u9)
2

95

CHAPTER IV

PARALLELIZATION ENHANCEMENTS

Since the OpenMP code in fiowCart (the flow solver in CART3D) was written following

a domain decomposition strategy, each processor integrates only a sub-region of the entire

domain, and then exchanges data at the boundaries of its subdomain. While this strategy is

well suited for the the MPI parallelization of CART3D, there were several significant mod

ifications that needed to be accomplished in order for the MPI port to be completed for the

non-multigrid scheme. Most changes focused on handling the differences in the OpenMP

and MPI paradigm, such as ensuring all processes receive the results of serial tasks and

removing all dependencies on shared memory structures. All of these modifications were

made such that the temporary memory requirements did not drastically increase with the

storing of large amounts of configuration data. This chapter will discuss some of the more

important changes that needed to be accomplished.

Initialization Information Distribution

One of the key differences between the OpenMP parallelization and the MPI parallelization

is how the parallelization is accomplished. For OpenMP, threads are spawned for the paral

lelized regions of the code, leaving the rest of the code to be executed by a single instance

96

of the application. All data that exists for the serial portions of the code is automatically

available for the parallel threads. For MPI, everything is executed as parallel processes, so

any serial section must be delegated to one process while the others wait. Any data that

needs to be available to all processes must be explicitly passed to all processes since MPI

does not guarantee any data (including command line arguments) will be available to all

processes.

Th~ initialization process in the OpenMP version of tlowCart (ftowCart-OpenMP) con

sisted of parsing the command line arguments to get any initial configuration information,

reading in the configuration file, and finally re-parsing the command line arguments for any

configuration information that overrides the configuration file settings. All of this initial

ization was performed serially, and was followed by packing the configuration information

into global data structures. For the MPI version of flowCart (flowCart-MPI), this needed

to be changed such that the root process (the only process guaranteed to have access to

the command line arguments and configuration file) performed all of the serial tasks from

fiowCart-OpenMP and then distributed the configuration information to the rest of the pro

cesses, via the MPLBcast function.

Grid Information Distribution

Once the configuration information was distributed to all of the MPI processes, all of the

grid information needed to be distributed. This was done in fiowCart-OpenMP in a section

of serial code using two passes through the grid data file, with the first pass determining the

97

grid sizes for each process for appropriate load balancing and the second pass distributing

the grids. As before, this was delegated to the root process. The first pass required little

changes except for some extra internal buffers for the root process to store the grid sizes for

each process. At the end of first pass, the root process distributes the grid sizes using the

MPI call MPLSend, and each process receives their grid size using the MPI call MPLRecv,

which is the followed by the allocation of the memory for the grid data by each process.

The second pass truough the grid data file (where the grids are actually distributed to

each process) required more attention associated with the exchange of data between grids.

In addition to reading and distributing the grids, the information required to map partitions

that share one or more faces is also constructed. Figure 28 shows a simple example of two

partitions and the overlapping cells that each partition uses to store information about its

neighbor.

part.O part. I

I I
I I

part.O overlap cells part. I

_J
I
I ±

-i

f---+-"--+ - - - -I
I
I
I

1----'----+----~--- -,
I

'------'-- ------- -·

I

,--- _J_ --- +----J.--j
I

. --------- -'------'

Figure 28: Overlapping Cell Configuration for fiowCart

The indexing scheme that was used in the OpenMP parallelization to map the boundary

overlap control volumes for each process to the flow volumes in another process needed to

98

be changed. It was setup for each grid to know where its overlapping cells mapped and then

retrieve that data when needed. Thus for Figure 29, Table 2 shows the indexing scheme that

flowCart-OpenMP would have used. Under this indexing scheme, when partition 0 needed

to update overlap cell 1, corresponding to (0,1) in Table 2, the information was retrieved

from partition 1, cell 1, corresponding to (1,1), and partition 0 only needed to store the

integer pair (1,1) in order to update overlap cell 1. While this scheme worked well for

flo\vCart -Open~"1P, it Vv7ould be verj inefficient to try to implen1ent tliis using lv1PI due to

its strong dependence on direct access to physical memory locations.

part.O _, (overlap cells \ r _
3 I I 3
-J ~-

2: : 2

part. 1

2 * 6 * 7
4

----~ ~----

1 I

1 3 I : : 1 I 6
I I ---------1 ~---------

1 I
I I

I

0 0 : 0 0
I

Figure 29: Overlapping Cell Indexing for flowCart

Since MPI is a message based communication scheme, emulating the updating of in-

formation for the example above would require too much bi-directional communication

between processes. For partition 0 to update overlap cell 1, a message would first need to

be sent to process 1 requesting the data from cell 1, then process 1 would need to send a

message back to process 0 with the data. While this scheme could be improved by collect-

ing all of the requests for data going to each process and performing fewer, larger requests

and sends, this would still result in unnecessary overhead.

99

Table 2: Original Overlapping Cell Indexing for flowCart-OpenMP

Overlap Cell Internal Cell Stored Data
(part.,index) (part.,index) (part.,index)

(0,0) (1,0) (1,0)
(0,1) (1,1) (1, 1)
(0,2) (1,2) (1,2)
(0,3) (1,3) (1,3)
(1,0) (0,0) (0,0)
(1,1) (0,3) (0,3)
(1 ?) (0 fi) (Ofl)
,~.,-.~ '-'- /

,-,-.~

(1,3) (0,7) (0,7)

A more direct indexing scheme is to have each partition keep track of its cells that are

needed by a particular process. For Figure 29, this would result in Table 3. Now overlap

cell 1 in partition 0 is updated by partition 1 sending cell 1 to partition 0, and partition 1

only needs to store the index of its cell that needs to be sent, the partition to send the data,

and the overlap cell index. Using this scheme, the exchange of data between partitions

occurs in a uni-directional communication.

In addition to the overlap cell indexing change, significant efforts were made in order

to not drastically increase the transient memory requirement on the root process in order to

build all of the overlapping information. While there was an increase in the internal data

structures required for the grid distribution process, the increase was negligible and had no

overall impact on the memory usage.

State and Gradient Exchanges

100

Table 3: New Overlapping Cell Indexing for ftowCart-OpenMP

Internal Cell Overlap Cell Stored Data
(part.,index) (part.,index) (index,overlap part., overlap index)

(1,0) (0,0) (0,0,0)
(1,1) (0,1) (1,0,1)
(1,2) (0,2) (2,0,2)
(1,3) (0,3) (3,0,3)
(0,0) (1,0) (0,1,0)
(0,3) (1,1) (3,1,1)
(0,6) (1,2) (n 1 ?) ,- ,-,-/

(0,7) (1,3) (7,1,3)

In order for the solver to advance in time, the state and gradient information for the overlap-

ping cells mentioned above needed to be exchanged using MPI calls instead of the current

OpenMP functionality. This was easily accomplished by using the new overlap cell index-

ing scheme. Each process now loops over all of its cells that are overlap cells for other

processes and packs the state (and later the gradient) data into message buffers (one for

each process that is to receive data). Once the buffers are packed, they are sent using the

non-blocking MPI send function MPLisend. This allows each process the ability to send

all of its data so that it can be ready to receive its overlap cell data from other processes,

using the MPLRecv function. If the blocking form of the send function MPLSend were

used, then it is easy to see that dead-lock conditions could easily arise. Take a simple two

process parallel exchange where the two processes both call MPLSend, they will both be

stuck waiting because the call will not return until the receiving process receives the data,

but the receiving process is stuck waiting for its own send to complete. Thus, dead-lock

101

occurs.

While the use of the non-blocking send solves the dead-lock condition, using it as

described above does introduce a possible problem. Having all processes sending their

data at the same time can cause the memory connection bandwidth to become saturated,

but in practice this appears to have no adverse performance effects. For severely bandwidth

limited architectures, it is conceivable to create a communication scheduling algorithm so

that each process Vv'ould either send, receive, or wait for each step in the schedule. This

schedule could be optimized to minimize the number of steps in the schedule or to minimize

the total elapsed time in the schedule. However, since bandwidth saturation has not become

an issue, these schemes will not be studied further.

Solution Reporting Mechanisms

Two changes were needed to be made to the solution reporting mechanisms in order to

complete ftowCart-MPI. The first change was to the residual calculations that occur after

each solution iteration has been performed. For the residual calculations, there are two

residuals that are calculated, the Ll and infinity norms of the density values. Each process

continues to calculate its local residuals as before, but an additional step is added. At the

end of each residual calculation, each process uses the MPI function MPLAllreduce in or

der to determine the global residuals. The MPLAllreduce function performs a traditional

gather-scatter operation [123]. A gather-scatter operation is a communication operation

that collects and processes information from a number of sources and distributes the results

102

to all processes that supplied the information. For the L1 norm, the operation specified to

the MPI function is the sum operation (using MPLSUM), while for the infinity norm, the

operation specified is the max operation (using MPLMAX).

The second change that needed to occur was to the extraction of cutting planes and

surfaces that occurred during post-processing. As was the case for the residual calculations,

each process performs its extraction calculations as before, but an additional step is added.

After each process has performed its own extraction calculations and has crealeu ils uwn

portion of the resulting cutting plane or surface, the root process cycles through all of

the other processes and collects the plane or surface information and write~ the data out.

This data is not stored by the root node since doing so could cause a significant additional

memory requirement on the root node, especially if the cut plane or surface is larger than

the available memory. Thus, common sections between processes (i.e. overlap cells or

shared faces) cannot be eliminated as lhey would in fiowCart-OpenMP. This represents the

only performance characteristic difference between flowCart-OpenMP and flowCart-MPI

and in general is only a small portion of the overall extracted cutting plane or surface,

(< 0.1%).

103

~ --------------

CHAPTERV

SOLID BOUNDARY RESULTS

After implementing the modifications to NASCART-GT presented in Chapter ill, tests were

performed to determine the improvements made in the ability to model the solid boundaries

in both inviscid and viscous flows in Cartesian grid formulations. These new solid boundary

treatments remove the non-smoothness seen in the traditional viscous flux reconstruction

techniques as well as the time-step limitations present in all current Cartesian solvers that

include the surface cells in the integration procedure. This chapter presents a series of test

cases that demonstrates the ability of NASCART-GT to handle a variety of inviscid and

viscous flows.

Primitive Geometry Flows

The first set of cases are primitive geometry flows that have well studied solutions, either

analytically or computationally, which can be used as a first stage of validation. To validate

the inviscid wall boundary conditions, an incompressible cylinder flow and a compressible

cylinder flow are studied. To validate the viscous wall boundary conditions, an incompress

ible fiat plate flow and a supersonic fiat plate flow are studied.

104

Incompressible Inviscid Cylinder Flow

The incompressible inviscid cylinder test case is a circular cylinder with a radius of 0.5,

or a curvature of 2.0, in a Moo = 0.1 freestream flow. The computational boundaries are 10.5

diameters ahead and behind the cylinder and 10.5 diameters above and below the cylinder.

The finest level of cells were ensured to be 0.5 diameters around the cylinder. Solutions

are presented on two grids, one using a coarse grid of 84x84 root grid dimensions with 4

levels of refinement for a total of 10,056 cells and a fine grid with 5 levels of refinement

for a total of 18,216 cells. Figures 30 and 31 show the coarse and fine grids, respectively.

For this case the reference points for the wall boundary conditions are determined using the

interpolation procedure.

Figure 30: Coarse Computational Do
main for Incompressible Cylinder Flow

Figure 31: Refined Computational Do
main for Incompressible Cylinder Flow

The cylinder curvature, calculated by NASCART-GT using the methods described in

Chapter ill, is within 0.1% of the true value 2 for the cylinder.

105

To assess the accuracy of the surface boundary conditions, the surface pressure is com-

pared to the pressure obtained the incompressible potential flow solution

(67)

where B = 0° is the leading edge of the cylinder, B = 90° is the pressure minimum on the

upper half of the cylinder and B = 180° is the trailing edge of the cylinder. Figure 32 shows

a comparison between the fiat wall and curved wall boundary conditions for the 1st order

solution on the coarse grid. Both conditions accurately capture the front stagnation pressure

and under predict the rear stagnation pressure. The rear stagnation pressure under predic-

tions are most likely due to the numerical dissipation associated with the computational

schemes employed. The curved wall boundary condition does a better job of capturing

the pressure minimum with a 6.5% relative error compared to a 9.1% relative error for the

fiat wall boundary condition. Table 4 shows the front stagnation point, minimum pressure

point and rear stagnation point pressure values for the fiat wall and curved wall boundary

conditions compared to the theoretical incompressible solution.

Table 4: Incompressible Cylinder Surface Table 5: Incompressible Cylinder Surface
Pressure Values for 1st Order Solution Pressure Values for 3rd Order Solution

fiat curved exact fiat curved exact
P/Poo P/Poo P/Poo P/Poo P/Poo P/Poo

front stag. 1.0067 1.0067 1.0070 front stag. 1.0076 1.0057 1.0070

Pmin 0.9879 0.9854 0.9790 Pmin 0.9828 0.9791 0.9790
rear stag. 0.9988 0.9988 1.0070 rear stag. 1.0017 1.0047 1.0070

The curved wall boundary condition solution has a C1 of 0.0000 and a Cd of 0.8166

while the fiat wall boundary condition solution has a C1 of 0.0000 and a Cd of 0.8608. The

106

1.02 .---.-,---r--r--.---.--.----,

1.01

0.99

0.98

incomp.
flat 1st ---+--

curv. 1st ···~···

0.97 L----l---'----l.-~-'----'---'-----'
0 45 90 135 180 225 270 315 360

9

Figure 32: Incompressible Cylinder Sur
face Pressure 1st Order Solution with In
terpolated Reference Points

1.02 r----r-,---r-..,--.---,--.----,
incomp.
flat3rd ---+--

curv. 3rd ····><···

1.01

0.99

0.98

0.97 ~____.__....._____._~-'----'--.J...----'
0 45 90 135 180 225 270 315 360

9

Figure 33: Incompressible Cylinder Sur
face Pressure 3rd Order Solution with In
terpolated Reference Points

non-zero drag calculations are a result of the separation caused by the numerical dissipation

discussed above. Table 7 shows the lift and drag coefficients for this case along with the

other cases for the incompressible cylinder.

Figure 33 shows the results for the same configuration as above except using the 3rd

order solver. For this case both solutions slightly under-predict the front stagnation pressure

and under predict the rear stagnation pressure. Again, the numerical dissipation causes a

separation region in the rear of the cylinder, but the separation point is moved much further

back compared to the first order solution. The separation point for the first order solution

is ate~ 156.0 while for the third order solution it is ate~ 167°. While both boundary

condition schemes are better able to capture the pressure minimum using the 3rd order

scheme, the curved wall boundary condition is again much better with a -0.01% relative

error compared to a 0.2% relative error for the flat wall boundary condition.

107

' .e-a.

1.02 r---r-.----r--.---r-----r--.------,
incomp.-

1.01

0.99

0.98

4 l.o.r. ---+---
51.o.r. ···~···

0.97 .___,__....____._--1-_,___.__...._____.
0 45 90 135 180 225 270 315 360

;;

Figure 34: Fine Grid Incompressible
Cylinder Surface Pressure Flat Wall with
Interpolated Reference Points

I

~

1.02 ,.---,--.--.---r--..----r--...----.

1.01

0.99

0.98

incomp. --
4 l.o.r. ---+---
51.o.r. ···~···

0.97 .___.__......._---~. _ _.__.____.__...._____.

0 45 90 135 180 225 270 315 360

!.1

Figure 35: Fine Grid Incompressible
Cylinder Surface Pressure Curved Wall
with Interpolated Reference Points

Table 6: Incompressible Cylinder Surface Pressure Values for Fine Grid Solution

fiat curved exact
p/poo P/Poo pjpoo

front stag. 1.0067 1.0067 1.0070

Pmin 0.9815 0.9796 0.9790
rear stag. 1.0027 1.0037 1.0070

Table 6 shows the front stagnation point, minimum pressure point and rear stagnation

point pressure values for the flat wall and curved wall boundary conditions compared to

the theoretical incompressible solution. From table 7, the curved wall boundary condition

solution using the third order solver has a C1 of -0.1001 and a Cd of -0.05578 while the

flat wall boundary condition solution has a C1 of -0.00987 and a Cd of 0.2250. Again, the

non-zero drag calculations are due to the separation caused by the numerical dissipation.

108

A comparison of the coarse grid and fine grid solutions are given in figures 34 and 35.

Both figures show slight improvements to the surface pressure values around the entire sur-

face. Table 6 shows the front stagnation pressure, pressure minimum and rear stagnation

pressure results for both cases. For the fine grid, the curved wall boundary condition solu-

tion has a C1 of -0.0423 and a C d of 0.1037 while the fiat wall boundary condition solution

has a C1 of -0.0409 and a Cd of 0.1134, see table 7.

Table 7: Incompressible Cylinder Lift and Drag Results

first order coarse
flat wall curved wall

C1 0.0000
cd o.8608

0.0000
0.8166

third order coarse third order fine
flat wall curved wall flat wall curved wall

-0.00987
0.2250

109

-0.1001
-0.05578

-0.0409
0.1134

-0.0423
0.1037

Finally, figure 36 shows the grid convergence for the front stagnation point pressure

error for the fine grid solution, the coarse grid solution, and one coarser grid not shown.

The x-axis of this figure corresponds to the number of cells along the cylinder diameter in a

coordinate direction. For coarser grids the order of accuracy is not quite second order, with

the actual order of 1.31, while for the finer grids the order of accuracy is just above second

order, with the actual order of 2.15.

~

0.01--------.---------,

0.001

curve p stag --+-
flat p stag ---><---

0.0001__ _____ ..J..._ _____J

16 32
1/a,

64

Figure 36: Incompressible Cylinder Grid Convergence with Interpolated Reference Points

110

Compressible Inviscid Cylinder Flow

The compressible inviscid cylinder test case is a circular cylinder with a radius of 0.5,

or a curvature of 2.0, in a Moo = 0.38 freestream flow. The computational boundaries are 10

diameters ahead and behind the cylinder and 10 diameters above and below the cylinder.

The finest level of cells were ensured to be 0.5 diameters around the cylinder. Solutions are

presented on two grids, one using a coarse grid of 42x42 root grid dimensions with 5 levels

of refinement for a total of 4884 cells and a refined grid with 6levels of refinement for a total

of 13,052 cells. Figures 37 and 38 show the coarse and fine grids, respectively. For this case

the reference points for the wall boundary conditions are determined using the interpolation

procedure. Comparisons are made with results from Dadone and Grossman[44] for their

structured grid solutions on a 128x32 (4096) cell domain, both with and without curvature

corrections.

Figure 37: Original Computational Do
main for Compressible Cylinder Flow

111

Figure 38: Fine Computational Domain
for Compressible Cylinder Flow

Table 8 shows a comparison between the pressure at the front and rear stagnation loca-

tions and the pressure minimum location values for the flat wall and curved wall boundary

conditions with the results from Dadone and Grossman. For the coarse grid solution, both

boundary conditions are very close to the reference results for the front stagnation point.

For the rear stagnation point, the same numerical dissipation effects discussed previously

are apparent here with little difference between the two results. At the pressure minimum,

the curved wall solution is significantly better with a relative error of 0.9% compared to

9.2% for the flat wall boundary condition solution. The curved wall boundary condition

solution has a C1 of -5.857 X 10-4 and a Cd of 0.01905 while the flat wall boundary con-

dition solution has a cl of -5.760 X w-3 and a cd of 0.2221. The curved wall boundary

condition significantly improved the lift and drag coefficients as well. Table 9 shows the

lift and drag coefficients for this case along with the fine grid case for comparisons.

Table 8: Compressible Cylinder Surface Pressure Values

Flat Wall Curved Wall
coarse fine coarse fine Dadone

P/Po P/Po P/Po P/Po P/Po
front stag. 1.001 1.005 0.999 1.004 1.001

Pmin 0.630 0.616 0.582 0.578 0.577
rear stag. 0.943 0.962 0.953 0.966 1.001

A comparison between the pressure values for the original and curvature boundary

conditions for the fine grid from table 8 shows that the curved wall solution changed much

less than the flat wall solution, with the flat wall solution substantially improving. The most

112

pronounced improvement is in the pressure minimum value with a relative error of 6.8%

(compared to 9.2% for the coarse grid). The curved wall pressure minimum value improved

to a relative error of 0.2% (compared to 0.9% for the coarse grid). The front stagnation

point is slightly off (around 0.4%) and the rear stagnation point has improved, but is still

showing the effects of numerical diffusion. The curved wall boundary condition solution

has a C1 of -2.050 x w-3 and a Cd of 0.0644 while the flat wall boundary condition

solution has a C, of -6.932 x w-3 and a C. of 0.1803, Again, the curved wall bounda1·y • u

condition significantly improved the lift and drag coefficients compared to the flat wall

boundary condition, while both fine grid solutions result in a slight increase in lift and drag

coefficients.

Table 9: Compressible Cylinder Lift and Drag Results

third order coarse third order fine
flat wall

c1 -5.760 x w-3 -5.857 x w-4 -6.932 x w-3

cd 0.2221 0.01905 0.1803

113

curved wali

-2.050 x w-3

0.06444

Finally, figures 39 and 40 show the Mach contours for the solutions on the fine grid

with the flat wall boundary condition and the curved wall boundary condition, respectively.

Figures 41 and 42 show the Mach contours from Dadone and Grossman for their flat wall

boundary condition and curvature corrected boundary condition, respectively. Both sets of

figures have tiM= 0.1 for the contours. Comparing the reference figures to the figures from

NASCART-GT shows that both NASCART-GT boundary conditions perform quite well

at capturing the flow features everywhere except near the rear stagnation point. Sirnilar

stagnation pressure losses that are present in the NASCART-GT cases can be seen in other

results from Dadone and Grossman for less accurate wall boundary conditions.

114

Figure 39: Mach Contours for Compress
ible Cylinder Flow Flat Wall with Inter
polated Reference Points

·\ . 5

t::\). .

Figure 41: Compressible Cylinder Mach
Contours No Curvature from [44]

115

Figure 40: Mach Contours for Compress
ible Cylinder Flow Curved Wall with In
terpolated Reference Points

/.

Figure 42: Compressible Cylinder Mach
Contours with Curvature from [44]

Incompressible Viscous Flat Plate Flow

The incompressible flat plate case is a standard test case where the results can be com

pared to a known Blasius analytical solution, see [186] for details of the derivation. The

flat plate is one unit long and oriented along the x-axis in a Moo = 0.2 freestream flow and a

freestream Reynolds number of Reoo = 10,000. The computational boundaries extend 0.25

units in front of the leading edge and behind the trailing edge and 0.25 units above the flat

plate. The solution is presented on a computational domain with a root grid dimension of

60x10 and 6levels of refinement. In addition, the finest level of cells are within 0.008 units

of the flat plate. The solution converged in approximately 40,000 iterations. The final grid

consists of 52,926 cells. Figure 43 shows the final grid. For this case the reference points

for the wall boundary conditions are determined using the interpolation procedure.

Figure 43: Final Computational Domain for Incompressible Flat Plate Flow

Figure 44 shows the skin friction coefficient for this case compared against the Blasius

solution and the results from Coirier [38]. Generally, there is excellent agreement between

the Blasius solution and the NASCART-GT solution. There are some differences at the

leading edge of the flat plate that are caused by inadequate cell resolution for the very

116

small boundarY layer region associated with the leading edge region. There is also a slight

acceleration at the trailing edge due to the fact that the plate is not infinite that causes the

skin friction coefficient to rise. Figure 45 shows the u-velocity profile through the boundary

layer at the quarter-point and mid-point of the flat plate. Here excellent agreement is shown

between the Blasius solution and the computed solution, and the computed solution shows

the self-similarity that is expected.

<5"

0.141

0.12

0.1

0.08

0.06

0.04

0.02

Bla~us -
1

-
nascart ---+---

Coirier 1993 --------

OL-~--~~--~~--~~--~

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
xiL

Figure 44: Incompressible Flat Plate
Skin Friction Coefficient with Interpo
lated Reference Points

0.8

-§'" 0.6

0.4

0.2 Blasius
nascart 0.25 ---+--
nascart 0.50 --·><--
Coirier 1993 -·············

2 3 4 5 6 7 8

l1

Figure 45: Incompressible Flat Plate Ve
locity Profiles with Interpolated Refer
ence Points

Non-Grid Aligned Incompressible Viscous Flat Plate Flow

The non-grid aligned incompressible fiat plate case is the same flow conditions as the

incompressible fiat plate flow case above. The difference is that for this case the fiat plate

and freestream velocity vector are at a 30° angle to the x-axis. The solution is still a Blasius

solution, however now there are cut cells along the surface. The grid used for this solution

is a 18x12 root grid dimension with 6 levels of refinement. The solution converged in

117

approximately 20,000 iterations. The final grid consists of approximately 13,152 cells.

Figure 46 shows the final grid. For this case the reference points for the wall boundary

conditions are determined without using the interpolation procedure.

Figure 46: Final Computational Domain for Incompressible Non-Grid Aligned Flat Plate
Flow

Figure 4 7 shows the skin friction coefficient for this case. Once the leading edge grid

resolution problem is passed, at xj L ~ 0.5, there is good agreement between NASCART-

GT and the Blasius solution. However, at the leading edge, the Blasius solution is not

reliable due to the low local Reynolds number there, and the computed solution requires

more grid points to adequately resolve this region. As in the above case, acceleration at

the trailing edge caused by the finite length of the flat plate causes an increase in the skin

friction coefficient.

The skin friction coefficient for this solution should follow the following curve

(68)

where for the actual Blasius solution of this flow, the values for a and b are 0.00664 and

-0.500, respectively. Using a standard nonlinear least-squares algorithm to minimize the

errors between equation (68) and the NASCART-GT data results in the values of a and b of

118

0.14
Blasius-
nascart ---+---

0.12

0.1

0.08

<..)

0.06

0.04

0.02 -~ \...--...: /'''
0

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

x/c

Figure 47: Incompressible Flat Plate Skin Friction Coefficient on Non-Grid Aligned Flat
Plate without Interpolated Reference Points

0.00629 and -0.427 for the NASCART-GT results, respectively. Thus, in the region where

the leading edge resolution and the trailing edge acceleration are not adversely effecting

flow, the NASCART-GT solution maps quite closely to the Blasius solution.

119

Supersonic Viscous Flat Plate Flow

The supersonic flat plate case is another standard test case that has been extensively

studied. The flat plate is one unit long and oriented along the x-axis in a Moo = 3.0

freestream flow and a freestream Reynolds number of Reoo = 1000. The computational

boundaries extend 0.2 units in front of the leading edge and 0.8 units behind the trailing

edge and 0.8 units above the flat plate. The solution is presented on a computational domain

with a root grid dimension of 20x 16 and 6 levels of refinement. In addition, solution adap

tion is performed every 1000 iterations. The solution converged in approximately 40,000

iterations with the CFL number at 0.10. The final grid consists of 15,337 cells. Figure 48

shows the final grid. For this case the reference points for the wall boundary conditions are

determined without using the interpolation procedure.

The results from this case are compared with Arminjon and Madrane [11], Satya Sai et

al. as well as the standard reference for the computational solution for an infinitely long

flat plate, Carter [29]. The Satya Sai et al. results are for an infinitely long flat plate and are

validated against Carter, and the Arminjon and Madrane results are for a finite length flat

plate and are validated against Satya Sai et al.

Figure 49 shows the skin friction coefficient for this case. There is excellent agreement

between the Carter results and NASCART-GT solution until the effects of the finite flat

plate are seen around x/ L = 0.5 in the NASCART-GT solution. The fact that the plate is

finite causes the flow to accelerate as it approaches the trailing edge, thus the skin friction

coefficient increases. Figure 50 shows the surface pressure for this case. Again there is

120

Figure 48: Final Computational Domain for Supersonic Flat Plate Flow

excellent agreement between the Satya Sai et al. results and the NASCART-GT solution

until the trailing edge acceleration effects dominate. Notice that these effects appear further

down the flat plate, x/L = 0.75, since the boundary layer pressure is less sensitive to the

acceleration effects. Figure 51 shows the Mach contours for this case, and figure 52 shows

0.5

0.4

cS 0.3

0.2

0.1

Carter 1972 -
nascart ---+---

o~~--~~~~--~~--~~

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
x/L

Figure 49: Supersonic Flat Plate Skin
Friction Coefficient without Interpolated
Reference Points

0.5

o~~--~-~~--~~~~~

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
x/L

Figure 50: Supersonic Flat Plate Pressure
without Interpolated Reference Points

the reference Mach contours from Arminjon and Madrane. There is excellent agreement

121

Figure 51: Mach Contours for Supersonic Flat Plate without Interpolated Reference Points

Figure 52: Supersonic Flat Plate Mach Contours from [11]

122

between the two contour plots with NASCART-GT crisply capturing the boundary layer

induced shock as well as the boundary layer growth.

Two-Dimensional Airfoil Flows

The next set of cases are two-dimensional airfoil flows that have well studied computa

tional solutions which can be used to further validate the code. The inviscid wall boundary

conditions are compared to a transonic NACA-0012 airfoil flow, while the viscous wall

boundary conditions are compared to a subsonic and supersonic NACA-0012 airfoil flow.

Transonic Inviscid NACA-0012 Airfoil Flow

This test case is a NACA-0012 airfoil in a Moo= 0.85 flow at an angle-of-attack of

a = 1.00°. The computational boundaries are 5 chords ahead and behind the airfoil and 5

chords above and below the airfoil centerline. Solutions are presented on a computational

domain with a root grid dimension of 44x42 and 7 levels of refinement. In addition, solu

tion adaption is performed every 200 iterations starting after 1000 iterations. Both solutions

converged in approximately 20,000 iterations using local time-stepping. The final grids for

the flat wall solution consists of 7981 cells and 7963 cells for the curved wall solution.

Also, a curvature maximum of 40.0 is imposed in order to limit the large pressure gradients

that can result near the leading edge. Figure 53 shows the final grid for the curved wall

solution. Notice that the solution adaption has refined cells near the leading edge where

the flow is going through rapid accelerations and near the shocks. The results from this

123

case are compared with the AGARD Advisory Report results [119] which presents general

results from several researchers as well as detailed results for a 320x64 (20,480) cell struc-

tured grid solution. For this case the reference points for the wall boundary conditions are

determined using the interpolation procedure.

To further validate the curvature calculations of NASCART-GT, the exact curvature for

the NACA-0012 airfoil, see [85] and Appendix C for details, is compared to the values

obtained from NASCART-GT. Figure 54 shows the plot of the curvature and generally

excellent agreement can be seen. There are slight differences between the the actual and

computed curvatures at the leading edge, but these are due to using the minimum curvature

for each computational cell that has multiple geometric intersections.

Figure 53: Final Computational Domain
for Transonic Inviscid NACA-0012 Flow

exact
calc. -------

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

xiL

Figure 54: NACA-0012 Curvature Calcu
lated from NASCART-GT

Figures 55 and 56 show the surface pressure coefficient comparison between the NASCART-

GT solutions and the AGARD solution for the upper and lower surfaces, respectively. The

curved wall solution does a better job of capturing the rapid accelerations with only slight

124

differences at the leading edge. The upper surface shock locations are missed by approx-

imately 0.023 chords fore and 0.014 chords aft for the curved wall and fiat wall solutions

respectively. For the lower surface the curved wall solution is very close to the reference

data, while the fiat wall solution is approximately 0.028 chords aft.

a.
u

-1

-0.5

0

0.5

~\
l:
:ic,
i!

\\
~:
l I

AGARD1985-
flat 3rd ---+--

curv. 3rd ···>< ...
1.5 L..--...1..--L----L.-1-'--...1..--L----L.-1----l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/L

Figure 55: Transonic Inviscid NACA-
0012 Upper Surface Pressure Coefficient
with Interpolated Reference Points

a. u

-·r~1
-o.5 \ t

0

0.5

: j
~t

AGARD1985-
flat 3rd ---+--

curv. 3rd x ...

I
1.5 ..__......___.___.____,__....___._....L...__.____,____,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/L

Figure 56: Transonic Inviscid NACA-
00 12 Lower Surface Pressure Coefficient
with Interpolated Reference Points

Figures 57 and 58 show the Mach contours for the fiat wall and curved wall solutions,

respectively. Figure 59 shows the Mach contours from the AGARD reference. All three

figures use a J..M = 0.05 for the contours. Both wall boundary conditions do an excellent

job of capturing the flow features throughout the computational domain.

Finally, table 10 shows the lift and drag coefficients for the fiat wall and curved wall

cases as well as the AGARD committee results. In addition, the scatter associated with

the various computed results by the AGARD researchers is also provided. The fiat wall

125

boundary condition solution performs slightly better than the curved wall boundary con-

dition solution for the lift coefficient with a 6.8% under-prediction versus 10.7% for the

curved wall solution, however each result is within the scatter of the AGARD data. The

curved wall boundary condition does a much better job at predicting the drag coefficient

and is under the AGARD data by 7.4%. However, the flat wall boundary condition over-

predicts the drag by 23%, but is close to the AGARD range. This is due to the inability of

the flat wall to capture the leading edge suction peaks. Given the fact that NASCART-GT

used only approximately 40% of the cells that the AGARD reference used, the curved wall

results are quite reasonable.

Table 10: Transonic Inviscid NACA-0012 Lift and Drag Results

flat wall curved wall

c1 o.3341
cd o.07150

0.3201
0.05371

126

AGARD [119] (scatter)

0.3584 (0.0589)
0.0580 (0.0126)

Figure 57: Mach Contours for Transonic
Inviscid NACA-0012 Flat Wall

Figure 58: Mach Contours for Transonic
Inviscid NACA-0012 Flow Curved Wall

Figure 59: Inviscid Transonic NACA-0012 Mach Contours from [119]

127

Subsonic Viscous NACA-0012 Airfoil Flow

This test case is a NACA-0012 airfoil in a Moo = 0.8 flow at an angle-of-attack of

a = 1 oo and a freestream Reynolds number of Reoo = 500. The computational bound

aries are 5 chords ahead of the airfoil, behind the airfoil, above the airfoil centerline and

below the airfoil centerline. Solutions are presented on a computational domain with a

root grid dimension of 33x30 and 6 levels of refinement. In addition, solution adaption is

performed every 500 iterations starting after 1000 iterations. Both solutions converged in

approximately 40,000 iterations. The final grids for the flat wall solution consists of 57,100

cells and 56,947 cells for the curved wall solution. Also, a curvature maximum of 40.0

is imposed. Figure 60 shows the final grid for the curved wall solution. For this case the

reference points for the wall boundary conditions are determined using the interpolation

procedure.

Figure 60: Final Computational Domain for Subsonic Viscous NACA-0012 Flow

128

The results from this case are compared with the results from Casalini and Dadone [32],

whose results compare quite well to a collection of results from Bristeau et al. [27] others

from an international workshop on compressible Navier-Stokes solvers. The Casalini and

Dadone results are from a structured grid solution with 256x64 (16,384) cells.

Figure 61 shows the surface pressure coefficient comparison between the NASCART

GT solutions and the results from Casalini and Dadone. The flat wall and curved wall

solutions show little differences between each other. They both capture the suction peak

near the leading edge reasonably well, and slightly over-predict the lower surface pressure.

In general, the agreement between the reference solution and the NASCART-GT surface

pressure coefficient distributions is good.

Figure 62 shows the skin friction coefficient comparison between the NASCART-GT

solutions and the results from Casalini and Dadone. Here, the leading edge skin friction

coefficient is not well resolved until xjL of 0.1 on the upper surface and 0.15 on the lower

surface. This is simply a grid resolution problem that would require multiple levels of grid

cells along the body to reasonably capture the leading edge effects, which is currently not

an option in NASCART-GT. Adding this functionality would require careful examination

of the viscous stencil positivity criteria discussed by Coirier [38] in order to ensure that

non-smoothness is not introduced into the solution. Notice that there are no large oscilla

tions in the skin friction coefficient as was shown by other cut cell Cartesian approaches.

Generally, after the leading edge resolution problem, there is excellent agreement between

the reference skin friction coefficient and the NASCART-GT solutions.

129

·1.-T-~-r~--.-.-.--.-.-.

-0.5

0.5

Casalini 1999 -
flat ··-+-··

curv x ...

1.5 L_..J.._....L...--L---L--'--..J.._-'---L---1---l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
xiL

Figure 61: Subsonic Viscous NACA-
0012 Surface Pressure Coefficient with
Interpolated Reference Points

0.6

0.5

0.4

0.3

cS 0.2

0.1

0

-0.1

Casalini 1999 -
flat ---+--

curv. ···':)(···

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/t.

Figure 62: Subsonic Viscous NACA-
00 12 Skin Friction Coefficient Interpo
lated Reference Points

Figures 63 and 64 show the Mach contours for the flat wall and curved wall solutions,

respectively. Figure 65 shows the Mach contours from the Casalini and Dadone reference.

All three figures use a flM = 0.05 for the contours. Both wall boundary conditions do

an excellent job of capturing the flow features throughout the computational domain. In

particular the recirculation region is clearly evident in both solutions. An examination

of the skin friction coefficients for both solutions shows that the separation point occurs

around x/ L of 0.41 for the flat wall solution, which is 0.08 chords off of the location from

Casalini and Dadone of 0.33, and 0.42 for the curved wall solution, which is 0.09 chords

off.

Finally, table 11 shows the lift and drag coefficients for the flat wall and curved wall

cases. These results are again compared to the Casalini and Dadone references mentioned

above. The flat wall boundary condition over predicts the lift coefficient by 7.4% and

130

slightly under predicts the drag coefficient by 0.4%. The curved wall boundary condition

also over predicts the the lift coefficient by 6.9% and slightly over predicts the drag coeffi-

cient by 0.4%.

Table 11: Subsonic Viscous NACA-0012 Lift and Drag Results

Casalini and
flat wall curved wall Dadone [32]

ct 0.422 0.420 0.393

cd 0.252 0.254 0.253

131

Figure 63: Mach Contours for Subsonic
Viscous NACA-0012 Flow Flat Wall with
Interpolated Reference Points

Figure 64: Mach Contours for Subsonic
Viscous NACA-0012 Flow Curved Wall
with Interpolated Reference Points

Figure 65: Viscous Subsonic NACA-0012 Mach Contours from [32]

132

Supersonic Viscous NACA-0012 Airfoil Flow

This test case is a NACA-0012 airfoil in a Moo = 2.0 flow at an angle-of-attack of

a = 10° and a freestream Reynolds number of Reoo = 1000. The computational boundaries

are 1 chord ahead of the airfoil, 6 chords behind the airfoil and 5 chords above and 3 chords

below the airfoil centerline. Solutions are presented on a computational domain with a

root grid dimension of 24x24 and 6 levels of refinement. In addition, solution adaption is

performed every 200 iterations starting after 1000 iterations. Both solutions converged in

approximately 20,000 iterations. The final grids for the flat wall solution consists of 47,741

cells and 48,088 cells for the curved wall solution. Also, a curvature maximum of 40.0

is imposed. Figure 66 shows the final grid for the curved wall solution. For this case the

reference points for the wall boundary conditions are determined using the interpolation

procedure.

Figure 66: Final Computational Domain for Supersonic Viscous NACA-0012 Flow

133

The results from this case are compared with the results from Arminjon and Mad-

rane [11], whose results compare quite well to a collection of results from Cambier [28] and

Miiller et al. [113] from an international workshop on compressible Navier-Stokes solvers.

The Arminjon and Madrane results are from an unstructured grid solution with 7962 ver-

tices. The Cambier results are from a structured grid solution with 193x72 (13,896) cells,

and the Miiller results are from a structured grid solution with 257x257 (66,049) cells.

Figure 67 shows the surface pressure coefficient comparison between the NASCART-

GT solutions and the results from Arminjon and Madrane. Both solutions generally show

excellent agreement with the reference data with slight differences on the upper and lower

surfaces after about 0.1 chords for about 0.1 chords. In general, there is nice agreement

between both solutions and the reference data and no significant differences between the

curved wall or fiat wall solutions.

Q.
(.)

-0.2

0

0.2

0.4

0.6

0.8

1.2

1.4 Arminjon 1999 -
orig. ---+--
curv *···

1.6 '----'----'----'---'----'----'---'-.1.-...1.-.....J
-0.1 -0.6 -o.s -o.4 -o.3 -0.2 -0.1 o 0.1 0.2 o.3

x/C

Figure 67: Supersonic Viscous NACA-0012 Surface Pressure Coefficient

134

Figures 68 and 69 show the Mach contours for the flat wall and curved wall solutions,

respectively. Figure 70 shows the Mach contours from the Arminjon and Madrane refer-

ence. All three figures use a~= 0.1 for the contours. Both wall boundary condition cases

do an excellent job of capturing the flow features throughout the computational domain.

The bow shock is crisply captured in both solutions without any noticeable oscillations.

Finally, table 12 shows the lift and drag coefficients for the flat wall and curved wall

cases. These results are compared to the Cambier and Mii!!er references mentioned above.

The flat wall boundary condition slightly under-predicts the lift coefficient by 1.8% com-

pared to Cambier and by 0. 7% compared to Muller. For the drag coefficient, the flat wall

over-predicts both results, by 1.8% and 2.7%. The curved wall boundary condition is be-

tween the results of Cam bier and Muller with a relative difference of 0.4% and 0.8% respec-

tively. For the drag coefficient, the curved wall boundary condition slightly over-predicted

by 0.7% and 1.7%.

Table 12: Supersonic Viscous NACA-0012 Lift and Drag Results

flat wall curved wall

0.3364
0.2583

0.3415
0.2554

Cambier [28]

135

0.3427
0.2535

Muller [113]

0.3388
0.2515

Figure 68: Mach Contours for Supersonic
Viscous NACA-0012 Flat Wall with In
terpolated Reference Points

Figure 69: Mach Contours for Supersonic
Viscous NACA-0012 Flow Curved Wall
with Interpolated Reference Points

Figure 70: Viscous Supersonic NACA-0012 Mach Contours from [11]

136

Transonic lnviscid ONERA M6 Wing

This test case is an inviscid flow around an ONERA M6 wing in a Moo = 0.84 flow at an

angle-of-attack of a= 3.06°. The computational boundaries are 4 root chord lengths away

in the x-, y- and z-directions. The solution is presented on a computational domain with a

root grid dimension of 34x34x34 and 6 levels of refinement. In addition, solution adaption

is performed every 500 iterations starting after 1000 iterations. The solution presented is

after approximately 5300 iterations. The final grid for this case consists of 404,400 cells

with 21,556 surface cells. As in the NACA-0012 cases, a curvature maximum of 40.0 is

imposed in order to limit the pressure gradients caused by the highly curved regions of the

leading edge. Figure 71 shows the final grid for this case. For this case the reference points

for the wall boundary conditions are determined without using the interpolation procedure.

Figure 71: Final Computational Domain for Transonic Inviscid ONERA M6 Flow

137

The results from this case are compared with the results from AGARD Advisory Re

port (AGARD-AR-138) results [146] and AGARD Advisory Report (AGARD-AR-211)

results [119]. The AGARD-AR-138 data is experimental data performed for a very high

Reynolds number, 11.72x106, in order to minimize the displacement thickness effects

caused by the boundary layer. The AGARD-AR-211 data is a collection of computational

results from several researchers for an inviscid solution to this problem. The AGARD-AR-

211 computational results have significantly more resolution ai ihe ieading edge compared

to the NASCART-GT geometry with approximately 4 cells from the AGARD fine grid so

lution fitting into the leading edge cell of the NASCART-GT geometry. However, once

the leading edge section is passed, the cell sizes between the fine AGARD computational

results and the NASCART-GT geometry are nearly equal. Thus, it is reasonable to expect

that the leading edge resolution of the NASCART-GT results will not be as accurate as the

AGARD computational results.

Figures 72 through 77 show the surface pressure values at several span-wise locations

for the NASCART-GT solution and the AGARD-AR-138 results. As with many of the

other cases presented above, more leading edge resolution is needed in order to accurately

capture the rapid suction peaks, especially near the root of the wing on the upper surface.

As is typical in inviscid solutions [3], the upper surface shock locations are slightly aft of

the experimental results due to the neglect of the boundary layer effects. For the inboard

sections, figures 72 through 75, there are two separate shocks on the upper surface that

are present in the experimental results, however the inadequate leading edge resolution

138

prevents the capturing of the first. After the first shock, there is better agreement. The

lower surface shows excellent agreement throughout all of the figures.

A direction comparison of the NASCART-GT results with other inviscid solutions is

difficult because other solution techniques are not limited to a single cell size throughout the

entire solid surface as is NASCART-GT in order to property handle the modeling of viscous

flows. However, other inviscid solutions also predict the stronger shock location aft of the

experimental location, for example [3] as well as the AGARD-AR-211 computational

results, with generally good agreement with the NASCART-GT locations.

Figures 78 and 79 show the Mach contours on the upper surface of the wing for NASCART

GT and the AGARD-AR-211 results, respectively. Both figures use a !l.M = 0.05 for the

contours. In these figures it is apparent that there is a lambda-shock structure on the upper

surface with NASCART-GT only capturing the second shock and the top of the lambda. It

appears that the first shock, the weaker of the two, is close to forming in the NASCART-GT

solution.

Figures 80 and 81 show the Mach contours on the lower surface of the wing for NASCART

GT and the AGARD-AR-211 results, respectively. Both figures use a !l.M = 0.05 for the

contours. Here there is nice agreement between the two results with only slight differences

in the center of the mid-span region where there is some discontinuity in the NASCART-GT

contours.

139

-1.5

-1 •

-0.5

()0.

0.5

AGARD 1979 >-+-t
curv.-

0.2 0.4 0.6 0.8
x/L

Figure 72: Transonic Inviscid ONERA M6
Surface Pressure Coefficient at z/ L = 0.2
'.Vithout Interpolated Reference Points

-1.5 ,----.---.----r---r-----,

-1

-0.5

0

0.5

AGARD 1979 >-+-t
curv.-

0.2 0.4 0.6 0.8
x/L

Figure 74: Transonic Inviscid ONERA M6
Surface Pressure Coefficient at z/L = 0.65
without Interpolated Reference Points

-1.5 r---..---r---r---r-----,

0.5

AGARD 1979 >-+--1
curv.-1'---'---....___....___.....___,

0 0.2 0.4 0.6 0.8
x/L

Figure 76: Transonic Inviscid ONERA M6
Surface Pressure Coefficient at z/L = 0.9
without Interpolated Reference Points

-1.5

'"* -1
!I •

-0.5

()0.

0

0.5

AGARD 1979 >-+-t
curv.-

0.2 0.4 0.6 0.8
x/L

Figure 73: Transonic Inviscid ONERA M6
Surface Pressure Coefficient at z/ L = 0.44
without Interpolated Reference Points

-1.5 r---.----r--.,..--.,..----,

-1

-o.5

0.5

AGARD 1979 >-+-t
curv.-

0.2 0.4 0.6 0.8
x/L

Figure 75: Transonic Inviscid ONERA M6
Surface Pressure Coefficient at z/ L = 0.8
without Interpolated Reference Points

-1.5 ,.---.---..---r--.,..-----,

-1

-0.5

0

0.5

AGARD 1979 >-+--~
curv.-

0.2 0.4 0.6 0.8
x/L

Figure 77: Transonic Inviscid ONERA M6
Surface Pressure Coefficient at z/L = 0.95
without Interpolated Reference Points

140

Figure 78: Transonic Inviscid ONERA M6 Upper Surface Mach Contours without Inter
polated Reference Points

Figure 79: Transonic Inviscid ONERA M6 Upper Surface Mach Contours from [119]

141

Figure 80: Transonic Inviscid ONERA M6 Lower Surface Mach Contours without Inter
polated Reference Points

Figure 81: Transonic Inviscid ONERA M6 Lower Surface Mach Contours from [119]

142

CHAPTER VI

PARALLELIZATION RESULTS

With the modifications made to ftowCart (the flow solver part of CART3D) mentioned in

Chapier iv, tests were performed to demonstrate the parallelization characteristics of the

MPI version of ftowCart. This chapter discusses the parallelization performance of the

MPI version of ftowCart and compares the results to the OpenMP version as well as other

published results for similar configurations.

Test Hardware Description

There were two separate hardware configurations used to test the MPI parallelization en

hancements, the first was an Origin 2000 for the shared memory tests, and the second was a

heterogeneous cluster of SGI workstations connected by Gigabit ethernet for the distributed

memory tests.

Shared Memory System Configuration

The shared memory hardware used for these tests was part of NASA Ames Research

Center's NAS (NASA Advanced Supercomputing) Division CoSMO/NAS/HPCCP clus

ters. The machine, Lomax [117, 118], was a 256 node Origin 2000 with 2 400 MHz R12000

143

CPUs per node for a total of 512 available processors. Each node contained 768MB of

memory (with approximately 700MB available for application use) for a total of 192GB

of memory. Each node also contained 32 KB of on-chip Ll cache and 8MB of external L2

cache. The memory hierarchy was as follows:

• CPU registers

• L1 instruction cache and data cache

• L2 unified (instruction and data) cache

• Local main memory

• Remote main memory

• Hard disk

with the latency associated with memory accesses increasing down the list.

The operating system on Lomax was SGI Irix v6.5 .1 Of. The executables were compiled

with SGI MIPS Pro FORTRAN 77 and C compilers v7 .3 .1.1 m using the -Of ast optimiza

tion flag in 64-bit mode. The OpenMP and MPI parallelization libraries used were the

libraries supplied by SGI Message Passing Toolkit v1.4.0.0.

Distributed Memory System Configuration

The distributed memory hardware used for these test was a cluster of SGI workstations

at NASA Ames Research Center. The cluster, Cluster T27B [116], was composed of 19

144

SGI workstations, 14 Octane and 5 Octane2 machines, with processor speeds varying from

250 MHz to 400 MHz and available memory between 896MB to 3584MB (see Table 13

for the configuration of the specific machines). The cluster was connected using gigabit

ethernet.

Table 13: Distributed Memory Cluster Information

Machine Processor Type. Processor Speed Memory OS
fl\KU-\
VYH.lL) (l'viB)

Octane 1 X R10000 250 1280 IRIX v6.5.13m
Octane 2 X R10000 250 2048 IRIX v6.5.13m
Octane 2 X RlOOOO 250 2048 IRIX v6.5.13m
Octane 1 X R12000 300 896 IRIX v6.5.13m
Octane 1 X R12000 300 1024 IRIX v6.5.13m
Octane 1 X R12000 300 2048 IRIX v6.5.13m
Octane 1 X R12000 300 2048 IRIX v6.5.13m
Octane 2 X R12000 300 2048 IRIX v6.5.13m
Octane 2 x R12000 300 2048 IRIX v6.5.13m
Octane 2 X R12000 300 2048 IRIX v6.5.13m
Octane 2 X R12000 300 2048 IRIX v6.5.13m
Octane 2 X R12000 300 2048 IRIX v6.5.13m
Octane 2 X R12000 300 2048 IRIX v6.5.13m
Octane 2 x R12000 300 2048 IRIX v6.5.13m

Octane2 2 X R12000 360 2304 IRIX v6.5.13m
Octane2 2 X R12000 360 2304 IRIX v6.5.13m
Octane2 2 X R12000 360 2304 IRIX v6.5.13m
Octane2 2 X R12000 360 3584 IRIX v6.5.13m
Octane2 2 X R12000 400 2304 IRIX v6.5.14m

The operating system on each of the machines was SGI IRIX v6.5.13m (except for one

Octane2 machine which had SGI IRIX v6.5.14m, see Figure 13). The executables were

compiled with SGI MIPSPro FORTRAN 77 and C compilers v7.3.1.2m using the -Ofast

145

optimization flag in 64-bit mode. The MPI parallelization library used was the MPICH [65]

library vl.2.1.

Parallelization Quantization Methodology

In order to provide an accurate assessment of the peak performance of ftowCart in a parallel

processing environment, the following procedures were used to create the results. In order

to objectively compare the parallelization results, the same processors needed to be used

for the entire range of speedup cases. Thus, the maximum number of processors to be used

was allocated at the beginning of the tests and each speedup case used a subset of these

processors. Since there was no guarantee that the optimal processor allocation would be

obtained for any particular run, three runs of 20 iterations were performed for each set of

processors and the best timing was taken. This also minimized the effects of any memory

bandwidth and CPU contention caused by other users on the systems. Finally, to remove

any one-time initialization costs, the reported time for each run was taken to be the time for

the 1st iteration subtracted from the 20th iteration. The elapsed time for each iteration was

recorded using the standard UNIX function getrusage to get the elapsed user time for the

process with microsecond resolution.

Shared Memory Results

Since some of the modifications made to ftowCart were to the core functionality (such as

the overlap control volume exchange data structures discussed on page 97), a comparison

146

between the new OpenMP functionality and existing parallelization results was performed.

Figure 83 shows the speedup for the new tlowCart-OpenMP code using up to 64 processors

compared to Berger et al. [22] results (labeled Berger-2000), Mavriplis [98] results (labeled

Mavriplis-2000) and the ideal speedup (labeled Ideal). The tlowCart-OpenMP and Berger-

2000 cases used approximately 1.0 million control volumes, while the Mavriplis case used

approximately 3.1 million control volumes. As can be seen in Figure 83, there is excellent

agreement between all three cases with a slight decrease in performance for the 32 node

case which is most likely cased by a poor distribution of the allocated nodes over the pro-

cessors. Analyzing the run times for the 32 node tlowCart-OpenMP result shows a wide

variety between the slowest run (66.669 s) and the fastest run (51.463 s), which results

in a 30% difference between the these two cases, while the other runs typically had a 7%

difference between their slowest and fastest time.

Figure 82: Sample Solution of ONERA M6
Wing Parallelization Case

64

32

c. 16

1 8

4

flowCart-OpenMP --+
Berger-2000 ---><--

Mavriplis-2000 ··· ·
Ideal-

2._~--~--~~---W

2 4 8 16 32 64
num. processors

Figure 83: OpenMP Speedup Results Com
pared to Published Data

Figure 84 shows a comparison between flowCart-OpenMP and tlowCart-MPI using the

same 1.0 million control volume grid used above. For up to 16 processors, the speedup

147

curves are quite similar. For the 32 processor case, both sets of results begin to deteriorate

due to the poor distribution of processors mentioned above, with flowCart-MPI showing

less degradation in performance. For the 64 processor case, both speedup curves show im

provements compared to the 32 processor case, with flowCart-MPI showing super-linear

speedup. This is caused by the fact that the partition sizes are very small (approximately

16,000 control volumes/processor). Thus, most of the data can exist in the processor's

cache, resulting in significantly less time required io access data than if the data resided in

the nodes local memory. This super-linear speedup has also been demonstrated by other re

searchers [98] as shown in Figure 86. This effect is less pronounced for flowCart-OpenMP

since it utilizes pointers for the IPC and not shared memory buffers as MPI. This also ex

plains why flowCart-MPI does not show as drastic a penalty as flowCart-OpenMP does for

the 32 processor case.

One final comparison of interest between flowCart-OpenMP and flowCart-MPI is the

timing results, Figure 85. Overall flowCart-MPI is within 5% of the flowCart-OpenMP

times except for the 64 processor case where the cache benefits discussed above result in

flowCart-MPI being 15% quicker than flowCart-OpenMP, see Table 14. This result seems

counter-intuitive since flowCart-MPI is at the very least having to perform a buffer fill

and empty (assuming that the buffer exchange occurs as a shared-memory operation) while

flowCart-OpenMP does not. The most likely cause is that as the number of control volumes

per processor decreases, there is going to be many short requests for memory addresses in

148

the ftowCart-OpenMP due to the way that information is exchanged, while the ftowCart-

MPI information exchange occurs as a few large blocks of data. Thus memory contention

might become more of bottleneck for flowCart-OpenMP when a relatively large fraction of

the control volumes are on processor boundaries.

Table 14 also demonstrates the improvements due to the cache benefits that have been

observed in other figures.

R4 r-"" -.-,_.•j ... -_ ~-~-. ..--•. -. ,_---.-. --.---.....
IIVn'VdiL•VVt:tiiMt" ~

flowCart-MPI ---><--
Ideal-

32

c. 16

i 8

4

2~~--L-J--L---U

2 4 8 16 32 64
num. processotS

Figure 84: Shared Memory OpenMP and
MPI Speedup Results

$
"' E ...
'iil
~

1~Q~~-~-~--~
flowCart-OpenMP ~

flowCart-MPI ---><---

100

',

10
2 4 8 16 32

num. processotS

',
' ',

64

Figure 85: Shared Memory OpenMP and
MPI Timing Results

Table 14: Shared Memory Timing Improvements for ftowCart-MPI

num. proc. % Improvement

2 -1.9
4 -2.1
8 +4.1
16 +4.1
32 +4.9
64 +15.0

Finally, Figure 86 shows a comparison between a 3.1 million control volume case from

149

Mavriplis [98] using MPI and a 1.0 million control volume case from ftowCart-MPI. Again,

there is good agreement between the two cases with the performance from Mavriplis show-

ing slightly better speedup due to the larger grid and the additional computations that are

being performed (viscous terms, GMRES, etc.). For the 64 processor case both curves

show the same super-linear speedup caused by the cache benefits.

64 flowCart·MPI -+--

32

4

Mavriplis·2000 ---x--
ldeal-

8 16 32 64
num. processors

Figure 86: Shared Memory MPI Speedup Results Compared to Published Data

Distributed Memory Results

The distributed memory configuration results here are compared with the shared memory

results obtained from flowCart-MPI for the same 1.0 million control discussed above. Fig-

ure 87 shows the speedup results. Acceptable parallelization performance is demonstrated

up to 8 processors. After that point, the communication costs begin to overwhelm the

computational benefits for 16 processors. Figure 88 shows that there is only a 15% per-

formance penalty for using the distributed memory architecture until 8 processors. After

150

that, the communication costs again overwhelm the computations. Luecke et al. [94] as

well as Kremenetsky et al. [83] have demonstrated that there is a significant performance

penalty using the MPICH MPI library compared to using the SGI MPI library for both

performance benchmarking applications as well as similarly sized CFD simulations. This

seems to explain the relatively poorer distributed memory performance results compared to

the shared memory results since the MPI version performs well in the SGI shared memory

architecture.

16

0. 8

1
4

DMEM flowCart-MPI -+
SMEM flowCart-MPI ---x--

ldeal-

2~--~----_.----~~

2 4 8 16
num. processors

Figure 87: Distributed Memory MPI
Speedup Results

151

~ 100

;

10~----~----~----~

2 4 8 16
num. processors

Figure 88: Distributed Memory MPI Tim
ing Results

CHAPTER VII

CONCLUSIONS

This research has provided insight into ways of extending the functionalities of Cartesian

grid soivers into viscous effects modeling via novel boundary condition treatments and

MPI parallelization. The non-smoothness associated with the non-positivity of the viscous

flux stencil for the surface cells have been minimized in NASCART-GT by separating the

surface cells from the finite volume formulation that is used to solve the rest of the compu

tational domain. While the surface cells are not part of the finite volume formulation, their

state is still determined by applying physically based conditions that are consistent with

the boundary conditions associated with the surface. Additionally, the parallelization func

tionality of CART3D has been extended to use MPI as its parallelization library without

significant impact to the parallelization speedup or total run time.

Solid Boundary Treatment

The new viscous solid boundary treatment developed for NASCART-GT removes the sur

face cells from the finite volume formulation in order to address the non-smoothness and

small time steps associated with the cut cell treatment. The state at the surface cells in deter

mined by applying interpolation functions and the solid surface boundary conditions with

152

either flat or curved wall approximations. This new treatment shows significant progress

towards utilizing cut cell Cartesian grid methods for general bodies in viscous flows. In

all cases presented, the interpolation formulations produce reasonable results without the

non-smoothness problems associated with the stencil positivity in the viscous cases. The

integrated quantities of lift and drag are well predicted with both the flat wall and curved

wall boundary conditions, with the curved wall boundary conditions typically producing

slightly better results. The solid surface quantities compare well to cxisiing results, with

some cases showing difficulties near the leading edge. This difficulty is caused by the

uniform surface cell size limitation imposed by the viscous scheme in order to avoid the

viscous stencil positivity problem. Even when the leading edge region is not captured ac

curately, the curved wall boundary condition does a better job of predicting the surface

features.

In terms of capturing the overall flow field characteristics, both schemes performed well

in all cases. In general, the curved wall boundary condition formulations have improved

the ability to capture the surface quantities in the highly curved regions of the surface for

the inviscid cases and produced only marginal improvements in the viscous results. The

fluctuations in the pressure and skin friction coefficients have been nearly eliminated by the

use of the interpolated reference points in the boundary condition formulations.

These results indicate that the original algorithmic problem of solving the Navier

Stokes equations on Cartesian grids due to the viscous stencil positivity has been converted

into a computational problem of being able to allocate enough memory and CPU time to

153

adequately resolve the entire surface. At the same time, the inviscid formulations on Carte

sian grids can take advantage of the less stringent time step restrictions by removing the

small cut cells from the finite volume formulation.

Parallelization Enhancements

The parallelization enhancements performed on CART3D demonstrate a conversion of a

domain-decomposition flow solver implemented with OpenMP to a strict MPI message

passing structure. In all cases the MPI version performed as well as, or better than the

already good performance of the OpenMP implementation. Moreover, the MPI paralleliza

tion performance also compares well to other published results. Near linear speedup has

been demonstrated for up to 64 processors with a 1.0 million control volume grid using the

MPI parallelization without adversely affecting the wall-clock timings for shared memory

architectures, while reasonable speedups have been demonstrated for similar solutions on a

distributed memory architecture. Using MPI for the parallelization library allows CART3D

to be used in a shared memory environment without any performance penalties compared

to OpenMP, as well as in a distributed memory environment where the OpenMP version

was not able to be used.

Three-Dimensional Viscous Modeling

The final question in this research is how feasible is it to solve the Navier-Stokes

equations for three-dimensional bodies using this new surface cell treatment. In order

154

to answer this question a quick analysis of the current performance of NASCART-GT is

needed. Using similar techniques to check the timing of NASCART-GT that were used

in the parallelization performance study of CART3D, the compute time for NASCART

GT is approximately 4.0x10-4 s/cell/iteration on a 500 MHz AMD-K6® processor (ig

noring grid generation and file input/output times). This value scales linearly with the

number of cells and the number of iterations. Assuming that the compute timings can

be halved by upgrading to higher quality components (such as fasier memory as well as

faster and more up-to-date CPU) and a factor of five improvement from performance ac

celeration techniques (such as multigrid, GMRES and higher order temporal integration),

then the amount of time needed for NASCART-GT to compute one cell in one iteration

is approximately 4.0x10-5 s/cell/iteration. Assuming that a reasonable geometry can be

modeled using 10 million cells (a conservative number in general, but certainly appro

priate for low Reynolds number, Re ~ 1000, simple three-dimensional geometry flows)

and that 50,000 iterations are required, then the amount of time it would take to solve the

case is approximately 240 cpu-days. Now, taking the parallelization speedup results that a

1 million cell case can scale near linearly up to 64 processors and extrapolate that out to a

10 million cell case that has more computations per iteration, then it is reasonable to ex

pect near linear speedups for 640 processors for this case (ignoring bandwidth limitations

and other hardware related issues). Using these numbers, then an efficient, parallelized

NASCART-GT solving a 10 million cell problem on a computational environment using

current state-of-the-art hardware is projected to be possible in approximately 9 cpu-hours.

155

This is a reasonable tum-around time for full three-dimensional viscous flows. However, to

model a complete flight vehicle at a reasonable Reynolds number, Re ~ 107, might require

as much as 40 million cells or more. This means that a complete flight vehicle could take

2 cpu-days to complete, a less reasonable but still manageable amount of time. Thus, it is

imperative that parallelization be utilized along side the new surface cell methodology in

three-dimensional Navier-Stokes Cartesian solver along with aggressive acceleration tech-

niques in order to solve a three-dimensional viscous flow.

Future Work

This research has shown that the two most common current limitations in Cartesian grid

solvers have been addressed, however there are more improvements in both areas that can

be accomplished in future work.

Extending the Current Surface Cell Modeling

While, these results show significant improvements in the handling of viscous solutions

on Cartesian grids, there are several areas of research that need to be examined further. In

order to address the accuracy problems in the leading edge regions of the surface, the

functionality of having multiple levels of refinement on the surface needs to be added to

NASCART-GT. This needs to be carefully studied since Coirier showed non-smoothness

problems can arise even in regions where the cell sizes change is comparable to the changes

at a refinement boundary. One possible approach to these surface refinement regions is to

156

use a viscous flux reconstruction stencil based on the modified diamond-path Green-Gauss

developed by Delanaye et al. [49].

In an effort to improve the accuracy of the interpolation formulations, more sophisti

cated wall modeling techniques should be investigated. Specifically, modeling the states

along the interpolation line with analytical solutions, such as analytical boundary layer

modeling, should be studied. In addition, extending the applicable range of solutions from

laminar to turbulent boundary layers should also be investigated.

Finally, a larger class of test cases should be studied to find any deficiencies in the wall

boundary formulations. Cases that focus on phenomena such as shock wave/boundary layer

interactions will further validate the ability of NASCART-GT to model these processes.

Larger Parallelization Problems

As for the parallelization enhancements made to CART3D, a study into the paralleliza

tion performance for datasets comparable to the sizes expected for viscous calculations,

tens of millions of cells, should be performed. This will further validate the practicality of

solving the Navier-Stokes equations on Cartesian grids. Also, investigations into ways of

addressing the bandwidth limitations found in the distributed memory results might prove

useful. In particular, a method of scheduling the IPC steps in order to not saturate the

available bandwidth might eliminate the performance penalty associated with network col

lisions on an ethemet based distributed memory architecture. This research might prove

useful even on shared memory architectures when very large numbers of processors are

157

required (say more than 2000) to solve extremely large problems that could arise with the

addition of turbulence modeling in high Reynolds number three-dimensional flows.

158

APPENDIX A

GOVERNING EQUATIONS IN GEODESIC

COORDINATES

This appendix develops the fluid dynamics equations in general curvilinear and geodesic

coordinate systems. The geodesic coordinate system is first developed and is followed by a

brief presentation of the governing equations in vector form. Finally, the full Navier-Stokes

equations, the boundary layer equations and the Euler equations are then presented in two

and three-dimensions.

Coordinate System Basics

This section presents the basic definitions and descriptions required to develop the geodesic

coordinate systems. It starts with a description of the more general curvilinear coordinate

system and is followed by the geodesic coordinate system definition. Next the length ele

ments and various curvatures are defined. Finally, all of the required vector operations are

presented.

159

Curvilinear Coordinate System

The curvilinear coordinate system used here is simply a three-dimensional space with

coordinate directions (;, 1J and ') that form a vector basis in the !!l3. There is no orthogo-

nality requirement on the coordinate directions, just the following mapping requirement

; =; (x,y,z)

(69)

'= '(x,y,z)

and the equivalent reverse mapping which holds when ; , 1J and ' form a vector basis

(70)

Geodesic Coordinate System

The geodesic coordinate system used here consists of a surface with coordinates, ;

and ', and the surface normal creating the third coordinate, 1J, orthogonal to ; and ', see

Figure 89. Notice that in general ; , 1J and s are all functions of the Cartesian coordinate

160

z

Figure 89: Example Geodesic Coordinate System

directions, x, y and z, i.e.

; = ;(x,y,z)

11 = 11 (x,y,z) (71)

'= '(x,y,z)

As long as the geodesic coordinate system forms a vector basis of the Cartesian coordinate

system (which it will as long as ; and ' are not collinear) then the following also holds

x=x(~,7J,O

(72)

Differential Length Elements

A differential arc length element in the Cartesian coordinates is defined as

(73)

161

which is can also be defined in the geodesic coordinates by substituting (71) into (73) to

get

(74)

where

with h;, hTJ and h' being the differential length elements in the ~ -, 11- and '-directions,

respectively.

For the curvilinear coordinate system, the differential length elements are described as

h; =h~(~,11,,)

hT) = h11 (~' 11, ')

h,=h,(~,11,,)

(75)

In the geodesic coordinate system, 11 is orthogonal to ~ and ', and hTI is only a function of

1J. Without loss of generality, hTJ can be assumed to be unity. Thus, the differential length

elements can be described as

h,., = 1 (76)

162

Further, if the curvilinear coordinate system is only two-dimensional, then the differential

length elements simplify to

h~=h~(~,1J)

hTJ = hTJ (~ ' 11) (77)

and for the two-dimensional geodesic coordinate system, then the differential length ele-

ments simplify to

hTJ = 1 (78)

Curvature Definitions

Three-dimensional geodesic coordinate systems have 6 curvatures that can be defined

related to the differential length elements. They are expressed as Kab with a being the

constant coordinate for the surface and b is the coordinate direction of the curvature. For a

general curvilinear coordinate system, the curvatures are defined as

(79)

163

For the geodesic coordinate system, the curvatures become

(80)

For example, the first curvature in (80), K~1J, is the curvature on the constant ~-surface

in the 1]-direction. Notice that for this curvature, since 1J is independent of~ (and ') in

the geodesic coordinate system, this curvature is identically zero. Thus, of the six possible

curvatures, only four are pertinent to this particular coordinate system.

The two-dimensional form of the curvatures is found by using (77) for the curvilinear

coordinate system to get

1 ()h1j

K~TI = h
11

()~

1 ()h~
K ----

11~ - h~ dTJ

K'~ =0

and (78) for the geodesic coordinate system to get

K~ 11 = 0

1 ()h~
K ----

11~ - h~ dTJ

K'~ =0

resulting in only the K11~ curvature as non-zero.

164

(81)

K,
11

= 0

(82)

Vector Operations

For a general curvilinear coordinate system, several vector operations take slightly dif-

ferent forms. Since the curvilinear coordinate directions may not be linearly independent,

they must be included in any derivative calculation. Thus, all of the formulations utilize the

following expressions for the derivative of the coordinate directions for the ~-direction

the 7}-direction

(84)

and the '-direction

(85)

Gradient Operation

The gradient operation for a scalar, a, becomes

(86)

which in two dimensions becomes

(87)

For the geodesic coordinate system, the gradient operation becomes

1 aa aa 1 aa
Va= h~a~r~+a1Jr1J+h,a'r' (88)

165

which in two dimensions becomes

(89)

Divergence Operation

The divergence operation for a vector, a, is found by starting with

(90)

which, when the derivatives of the unit vectors are used, becomes

Which can be rewritten as

1 aa~ 1 aaTJ 1 aa, ()
V ·a= h~ a~ + hry aTJ + h;; as + K~TJ +K~;; a~ (92)

+ (KTJ~ +KTJ;;) aTJ + (K;;~ +K;;TJ) at;

The two-dimensional formulation for this is

(93)

166

For the geodesic coordinate system, the divergence operation becomes

The two-dimensional formulation for this is

(95)

Curl Operator

The curl operator for a vector, a, is found by starting with

which, when the derivatives of the unit vectors are used, becomes

167

Which can be rewritten as

(98)

In two dimensions this is

(99)

For the geodesic coordinate system, the curl operation becomes

(100)

For the two-dimensional geodesic coordinate system, this becomes

(101)

168

Laplacian Operator

The Laplacian operation for a scalar, a, is combination of the gradient and divergence

operators from above. Applying these operators yields

Which can be rewritten as

(103)

In two dimensions this is

169

For the geodesic coordinate system, the Laplacian becomes

In two dimensions this is

(106)

Governing Equations in Vector Form

The most general expression of the governing equations that is independent of any co-

ordinate system is the vector form of the governing equations. This section presents the

governing equations in the vector form.

Continuity Equation

The continuity equation is simply a statement of the conservation of mass for a control

volume in space. There is a balance between the density change inside the control volume

and the mass flux through the control volume surfaces. In differential form this is expressed

as

dp
-+V·(pu)=O
dt

170

(107)

Momentum Equations

The momentum equations are a statement of Newton's Second Law of Motion for a

control volume in space. This balances the momentum change within the control volume,

the momentum convected through the control volume surfaces, the body forces being ex-

erted on the control volume, the pressure gradient across the control volume and the viscous

stresses applied to the control volume surfaces. In differential form this is expressed as

au
Par+ pu · Vu = pfbody- Vp+ V. [-r] (108)

where [-r] is the second order stress tensor which can be represented as

't"1 r1 1 , 't"1 2 , 't"1 3 ,

[-r] = r2 !2 1 !2 2 't"2 3
(109)

, ,
'

!3 !3 1
'

!3,2 !3,3

Energy Equations

The energy equation is an expression of the First Law of Thermodynamics for a control

volume is space. This balances the energy change within the control volume, the energy

convected through the control volume surfaces, the temporal change in the pressure, the

temporal change in the heat production of the control volume caused by external processes,

the conductive heat loss through the control volume surfaces, the work done by the body

forces on the control volume, and the work done by the viscous forces. In differential form

this is expressed as

aH ap aQ
Pat +pu · VH =at+ at+ V · (kVT) +pfbody ·u+ V · ([-r] ·u) (110)

171

Governing Equations in Geodesic Coordinates

While many researchers have developed several variations of the fluid dynamics equations

in either geodesic or curvilinear coordinate systems, most have focused on the incompress

ible boundary layer equations in two- or three-dimensions [72, 163] with others focused on

the Euler equations [140, 174] and little effort beyond [69].

Navier-Stokes Equations in Geodesic Coordinates

This section will develop the Navier-Stokes equations starting with the vector form of

the Navier-Stokes equations. They will be transformed into the general curvilinear coordi

nate system and then the simplifications for the geodesic coordinate system will be applied

to get the final form of the Navier-Stokes equations in geodesic coordinates.

Fundamental Relations

In order to simplify the derivations to follow, some fundamental relations will be devel

oped first that will be used throughout the Navier-Stokes equation derivation.

172

Momentum Convection The momentum convection term starts out as

Utilizing the derivatives of the general curvilinear coordinate system found in equations (83)-

(85) this becomes

173

Substituting the curvature definitions this becomes

u· Vu = [(:J u~ ~"£ + (:J "" ~; + (:J "c ~u~ b
+ [K11;u;u11 +Ks;u;us-K; 11 u~ -K;su~] f;

+ [UJ "" ~"t + UJ "" ~"; + (:J "' ~"2 J '" (l13)

+ [K; 11 u;u11 +Ks11 u11 u,-K11 ;u~ -K11 su~] z11

r I 1 \ au, I 1 \ au, I 1)\ dUS lJ -
+ l \ h;) u; ar + (hl]) u1J a7i + \ h s us a[l s

Applying the geodesic coordinate system simplification yields

u · Vu = [(:<) "< ~"£ + "" ~; + (:,) "c ~u~] '<

+ [K11;u;u11 +Ks;usus -K;su~] r;

+ [(:<) "< ~~" +•n ~~ + (h~) "c ~"2] '"
- [K11 ; u~ + K11 su~ J i"TJ (114)

+ [UJ "< ~"{ +•n ~~ + UJ"c ~"f] 'c
+ [K;,u;us +K11 su1Jus -K,;u~] r,

Finally, in two. dimensions this becomes

(115)

174

Stress Tensor The strain expressions in the general curvilinear coordinate system is

Applying the curvature definitions the strain expressions become

(117)

175

Applying the strain relations to the stress tensor formulation results in

·~~ =~Jl [z(:J ~~~- (:J ~~- (:J ~"f]
+ ~ .u [2 (K11 .; u11 + Ks.; us) - K.; 11 u.; - K, 17 u,- K.;,u.; - K17 ,u17 J

'"" = ~11 Hh~) ~~"- (hJ ~i- UJ ~"t l
+ ~J.L [2 (K.; 11 u.; + Ks 17 u,)- K11 .;u11 - Kssus- K.;,u.;- K17 ,u17]

_ 2 lr l/ 1 J\ au, l/ 1 J' au.; (- 1)- au11 j, r"- 3J.L 2 h' a, - h.; a~ - hry dTJ (llS)

+ ~J.l [2 (K.;,u.; + K17 ,u11) - K11 .;u11 - Kssus- K.; 11 u.; - K, 11 us)

·~" = 11 [UJ ~s" + (:J ~~ -K~""" -K"~"~]
<~> = J1 [(:J ~"£ + (hJ ~i -K,~u~ -K~>">]
'"' = J1 [(h~) ~:; + UJ ~"2 -K'""" -K"'"'l

176

Utilizing the geodesic coordinate system simplifications results in

'<< = ~ }l [2 (~<) ~u£ -~~ -(:,) ~ut l
+ ~Jl [2 (K1J~u1J +K;~us)- K;su~- K1Jsu1J]

'"" = ~ }l [2 ~~ - (:J ~i -(h1J ~ut l
- ~Jl [K1J~u1J +Ks~us +K~;u~ +K1Jsu1J]

'cc = ~!l [2 UJ ~"t -(hJ ~i -~~ l (119)

+ ~Jl [2 (K~;u~ + K1J;u11)- K1J~u1J- Ks~u;]

'<" =Jl [(h~) ~ug" + ~; -K"<"<]

'<• = }l [UJ ~i + (h~) ~u{ -K><u< -Kgu, l
'"' =}l [~~ + UJ ~"2 -K"'"'l

Finally, in two dimensions this becomes

(120)

Throughout the equation development in the rest of this section, the stress tensor compo-

nents will take one of the above forms, depending on whether the curvilinear or geodesic

formulations are being developed.

177

Stress Tensor Divergence The stress tensor divergence development starts with the ap-

plication of the divergence operation onto the stress tensor, noting that the coordinate di-

rections are not independent, to get

In the stress tensor divergence expression, the first term is the divergence of the three stress

tensor vectors, and the second term is the divergence of the stress tensor coordinate direc-

tions. Expanding the -r' term yields and collecting terms yields

- [1 a-r~~ 1 a-r~1J 1 a-r~']- [] _·
V · [-r) - h~ -ar + h1J ---a:iJ + hr; a(z~- K~ 11 -r1111 + K~t;'rt;t; z~

[
1 a-r~1] 1 a-r1]1J 1 arT)s]- [] -

+ h~ ----ar + h1J aTJ + ht; --ar- z11 - K11 ; -r;; + KTJt;'rt;t; z11

[
1 a-r;t; 1 a-rTJt; 1 arTJs]- [] _

+ hs --ar- + hTJ a:TJ + ht; ~ zt;- Kt;~ -r~~ + Kt;11 -r1111 zr; (122)

+ [(K~ 11 + Kgt;) 'rg; + (2K11 ; t K11 t;) -r; 11 + (2Kt;~ + Kt; 11) -r~t;] f~

+ [(2K; 11 +K;t;) -r/; 11 + (KTJ~ +K11 t;) -r7J1J + (Kt;~ +2Kt;11) -r11 t;] r11

+ [(K~ 11 + 2K~;t;) -r~t; + (K11~ t 2K1Js) -r11 r; + (Kr;; + Kt; 11) -rt; d f;

178

For the geodesic coordinate system, this becomes

+ [K.;s--r-.; 11 + (K11 .; + K11 s) -r-1111 + Ks-.; -r-11 s- K11 .; -r.;.; - K11 s-rs s-] f17

+ [2K.;s-'t"ss + (K11 .; +2K11 s-) -r11s +Ks-.;'t"S"s -Ks-.;'t".;.;] fs

For the two-dimensional geodesic coordinate system, this becomes

[
1 a-r.;.; a-r.;TI] - [1 a-r-.;11 a-r-1111 J -

v. [-r] = h.; ar-+aT! l.; + h.;~+ ----ail l1l

+ [2K11 .;-r.; 11] f.;+ [K11 ~-r1111 -K11 .;-r.;.;] f17

(123)

(124)

Stress Tensor Energy Dissipation The stress tensor energy dissipation relation develop-

ment starts with the expansion of the dot product inside the divergence operator to get

u. 'f.;

v . (['t"] . u) = v . u . 't"11 (125)

179

which, after using the divergence relation for curvilinear coordinate systems, results in

V. ([<]· u) = :~ :~ (u~<« +un<~n +u'<")

+ :11 :TJ (u~r~11 +u11r1111 +usr11s)

+ :, :; (u~<~(+un<n(+u'<")

+ (K~ 11 + K~s-) (u~r~~ + u11 r~ 11 + us'r~s)

+ (K11~ +K1Js) (u~r~11 +u11r1111 +usr11s)

+ (Ks-~ +Ks-11) (u~'t'~s + U71't'1JS + us't'ss)

Applying the geodesic coordinate system conditions, this becomes

V · ([<]·u) = :~ :~ (u~<« +un<~" +u(<~,)

+ :TJ (u~r~11 +u1Jr1111 +us't'Tis)

+ :, :; (u'<"+un<n(+u'<")

+K~s (u~'t'~~ +u1J't'~ 11 +us-'t'~s-)
+ (K11~ +K11s) (u~r~11 +u11r1111 +usr11s)

+Ks-~ (u~'t';; +u1Jr11 ; + u;'t';;)

Finally, for the two-dimensional coordinate system, this becomes

(126)

(127)

V·([<]·u)= :~:~ (u~<<(+un<~n)+ :TI (u~<~"+un<nn) (128)

+K1Jl; (u;'t'; 11 +u11 r1111)

180

Three-Dimensional Formulation

With all of the pieces of the three-dimensional Navier-Stokes equations developed

above, they now can be assembled to complete the derivation. First, the general curvilinear

coordinate system formulation will be presented, then the geodesic coordinate system will

be presented for each conservation equation set.

Continuity The continuity equation uses (1 07) and the divergence operator equation to

get

ap + (.2..) a (pu~) + (.2..) a (pu11) + (.2..) a (pu~)
at h~ a~ h11 an h~ as

(129)

+ (K~ 11 +K~~) pu~ + (K11 z; +K11 ~) pu11 + (K~~ +K~11) pu~ = 0

In the geodesic coordinate system this becomes

ap + (_!_) a (pu~) +a (pu1]) + (_!_) a (pu~)
at hz; a~ a11 h~ as

(130)

+Kz;~Pu~ + (K11 ~ +K11 ~) pu11 +K~z;pu~ = 0

Momentum The momentum equations use (108), as well as the momentum convection

and the stress tensor divergence to obtain the~-, 71- and s-momentum equations. For the

curvilinear coordinate formulation, the stress tensors from (118) are the appropriate ones

181

to be used. The ~-momentum equation becomes

p a;t< +p [(h
1J "< ~i + (h~) uij ~:; + (h~) "' ~z l

+ p [x1J~u~u1J + Kt;~ u~ut;- K~1Ju~- K~t;u~]

=rfbOOyr (:J ~~ + (:J a;~<+ (h~) a;~ij + (:J a;!' (131)

+ (K~TJ + K~t;) 't'~~ + (2K1J~ + K1Js) 't'.;TJ + (2K;.; + K;11) 'l'.;t;

The 7J-momentum equation becomes

ra;lij +p [UJ "" ~? + (h~) "" ~~ + UJ "' ~"; l
+ p [K.;TJ u~ u1J + Ks1Ju1lut;- KTJ~u~ - K1Jsu~]

= P J,,dy,ij - (~) ;~ + UJ a;~" + (:J a;~ij + UJ a;"/ (132)

+ (2K.;1J + K.;t;) 't'.;TJ + (KTJ.; + K1Js) 't'TJTI + (K;.; + 2Kt;11) 't'TJs

- KTJ~ 't'~~ - KTJ t; 't' t; t;

182

The t; -momentum equation becomes

P a;ts + P [(:~) "~ ~i + (:") ""~; + (:,) "s ~"i]
+ p [K;~u;u~ + KTJ~uTJu~- K~;u~- K~TJu~]

= P f,ooy,,- (:J ~~ + (:J a;~s + (h~) a;~s + (:J a;i' (133)

+ (K;TJ + 2K;~) -r;~ + (KTJ; + 2K1J~) -rTJ~ + (K~; + K~1J) -r~s

Applying the geodesic coordinate system simplifications and utilizing the geodesic stress

tensor formulations (119) yields for the ;-momentum equation

P a;/ + P [(:<) "~ ~"£ + "" ~; + (:,) "s ~i]
+ p [K1J;u;uTJ + K~;u;u~- K;~u~] (134)

(
1) ap (1) a-r;; a-rsTJ (1) a-r;~

= pfbody,;- h; a;+ h; --ar- + ~ + h~ ~

+ K;~'t;; + (2KTJ; + KTJ~) r;TJ + 2K~; -r;~- K;~'t~~

with the T}-momentum equation becoming

P a;t" + P [(:,) "< ~~" + "" ~~ + (h
1
,) "s ~"£]

- p [K1J;u~ + KTJ~u~] (135)

(1) ap (1) a-r;1) a-r11 1) (1) a-r1)~
= Pfbody,T)- h1J (}7J + h; --ar- + aTJ + ht; ~

+ K;~ -rsTJ + (K,1; + KTJ~) 't"rm + K~; -r7J~- KTJ; -r;; - K11 t; -r~ ~

183

and the t; -momentum equation becoming

P a;,' +P [(:() "< aau{ +u" ~"; + (:,) "> ~u~]
p [Kssusus + K11 suTJus- Kssu~ J (136)

(1) ap (1) arss ar71 s (1) arss
= Pfbody,s- h' at;+ hs ~ + --ai7 + hs ~

+ 2K~srsl: + (K11s + 2K11 s) rTJs + Kss rss- Kss rc;c;- Ks 11 r7171

Energy The energy equation uses (110), the curvilinear vector operations and the stress

tensor energy dissipation to become

P aa~ + P [(:<) "< ~~ + (:") "" ~~ + (:,) "> ~~]
ap aQ [J =at+ at + p uc;fbody,s + u1]fbody,1] + u,fbody,s

+ (:J :~ [UJ k~~ +u<<« +u"<<" +u><<>]

+ (:J :1) [(:J k ~~ +u<'<" +u"<"" +u> <"' 1 (137)

+ UJ :, [UJ k~~ +u<'<> +u"<"' +u'<"]

+ (K<" +K<>) [UJ k~~ +u<<« +u"'<" +">'<>]

+ (K"< +K"') [(~) k~~ +u<'<" +u"<"" +u'<"' 1
+ (K>< +K,") [UJ k ~~ +"<'<> +u"<"' +u'<"]

184

Applying the geodesic coordinate system conditions, this becomes

P a;: + P [UJ "< ~~ + "~ ~~ + UJ "c ~~ l
ap aQ []

=at+ at + p u~fbody,~ + u11fbody,11 + ut;fbody,t;

+ UJ :; [UJk~~ +u<~«+""~<"+u,~g]
a r aT l + dTJ '-k dTJ +u~r~11 +utJr1111 +ut;r11t;_ (138)

+ UJ :, [UJ k~~ +u<~<,+""~"'+u,~--]
+ K" [(:J k ~~ +"<'« + ""~<" +uc~<C]
+ (K11~ +K11s) [k~~ +u~r~11 +u11r1111 +ut;r11s]

+K,< [(:J k~~ +"<'<'+""'"'+"c'"]

Two-Dimensional Formulation

With all of the pieces of the two-dimensional N a vier -Stokes equations developed above,

they now can be assembled to complete the derivation. First, the general curvilinear coor-

dinate system formulation will be presented, then the geodesic coordinate system will be

presented for each conservation equation set.

Continuity The continuity equation uses (107) and the divergence operator equation to

get

(139)

185

In the geodesic coordinate system this becomes

(140)

Momentum The momentum equations use (108), as well as the momentum convection

and the stress tensor divergence to obtain the ~- and 1J -momentum equations. For the

curvilinear coordinate formulation, the stress tensors from (118) are the appropriate ones

to be used with the two-dimensional simplifications applied. The ~-momentum equation

becomes

The 1}-momentum equation becomes

/;t" + p [UJ "< ~? + (;J u, ~; +K"" """" - K"" ·~ l
= Pfbod""- (~) ~~ + (:J a;i" + (h~) a;~" (142)

+ 2K~1J '!~ 17 + K17~ ('!77 1J - r~~)

186

Applying the geodesic coordinate system simplifications yields for the ~-momentum equa-

tion

with the 1]-momentum equation becoming

Energy The energy equation uses (11 0), the curvilinear vector operations and the stress

tensor energy dissipation to become

(145)

187

Applying the geodesic coordinate system conditions and utilizing the geodesic stress tensor

formulations (119) with the two-dimensional simplifications applied, this becomes

P aa~ + P [(h~) "< ~~ +"" ~~]
ap aQ []

=at+ at + p ut;fbody,l; + uTifbody,TI

+ (:J ;S [(h~) k~~ +u<T« +u"T'"l
+ aaTJ [k ~~ +us -rsTI +uTI -rTITI]

+ KTIS (k ~~ +us 't"S1J +UTI 't"TITI)

Boundary Layer Equations in Geodesic Coordinates

(146)

The boundary layer equation will be developed from the Navier-Stokes equations and

applying the standard boundary layer assumptions to the general curvilinear and geodesic

formulations. In each formulation, the general curvilinear coordinate system formulations

will be presented followed by the geodesic coordinate system formulations.

Assumptions

The boundary layer equations start off with the following assumptions:

1. Boundary layer thickness is small, i.e. Re » 1

2. Buoyancy effects are negligible, i.e. Fr » 1

188

Using these assumptions the following can be said about mathematical relations in the

Navier-Stokes equations

u1J « u~
() ()

() 11 ::?> () ;

u11 << u,

() ()

a11 » as (147)

where the first and second conditions result from assumption 1 and the third condition

results from assumption 2.

In developing the boundary layer equations, an order of magnitude analysis will be done

on each equation in the Navier-Stokes equation and all of the smaller terms with respect to

the rest of the terms in each equation will be removed. In doing this process, the following

189

magnitudes are used for each group of terms in the governing equations

where£« 1.

u11 rv {j' (£)

prvtf(l)

a
at"-' tf(l)

a
a;; rvtf(l)

a
d1J "-' tf(lj£)

a
at; rv tf(l)

hi,j "-' tf(l) {i,j} E {/;, 1J, t;}

Ki,j""'tf(l) {i,j}E{/;,TJ,t;}

(148)

In preparation for the momentum and energy equation development, the shear stress

components can be analyzed separately with the lowest ordered terms removed. While

other terms might be removed later, it is assured that the lowest ordered terms will not re-

main. The stress tensor components (118) are reproduced here with the order of magnitudes

190

under-set each term.

(149)

191

It is clear that all terms of order {j (e) can be ignored, which results in

'«=~I' H:J ~~- (~) ~~- UJ ~"i l
+~,U [2K~;~us-K~11 u~-Ks1Jus-K~su~] rv fi(l)

'"" =~Jl H~) ~~- UJ ~-:- UJ ~"f l
+~,U [2(K~ 11 u~ +K~;11 u~;) -K~;~us -K~su~J rv fi(l)

'"=~I' [z UJ ~"i- UJ ~-:- (h~) ~~ l (150)

+~,U [2K~su~ -Kl;~us -K~11 u~ -Kl;11 us] rv 6(1)

''" = Jl [(h~) ~:; -K"'"'] ~ (j (1/ e)

<"=Jl [(:J ~u~ + UJ ~7 -K,,u,-K"u'] ~(f(l)
'"' = Jl [(h~) ~; -K"'"'] ~ (f(lfe)

Three-Dimensional Formulation

The three-dimensional formulation of the boundary layer equations starts with the

Navier-Stokes equations and then applies the boundary layer assumptions described above.

Each conservation equation set will first develop the curvilinear boundary layer equations

and then the geodesic coordinate system equations will be developed.

192

Continuity The continuity equation starts with the Navier-Stokes continuity equation (129)

reproduced here with the order of magnitudes under-set each term.

Thus, ihe tenns of order tf (c) can be e!irrdnated which results in the following

ap + (2_) a (Puc;) +(__!_)a (puTJ) + (2_) a (pus) (152)
at he; a~ h11 a11 hs at;

+ (Kc; 11 + Kc;s) puc; + (Ksc; + Ks 11) pus = 0

In the geodesic coordinate system this becomes

Momentum In order to simplify the order of magnitude analysis, all shear stress com-

ponents are first assumed to be the order developed above and then each remaining shear

stress component will be included into the equations and any further eliminations needed

can then be done. The shear stress terms will be evaluated separately from the rest of

the terms in the momentum equations in order to retain both the shear stress and convec-

tive contributions. The ~-momentum equation (131) is reproduced here with the order of

193

magnitudes under-set each term.

- K~1J r1111 - K~~'t'~~
[hl] [hl]

For the shear stress terms, terms below order {j (1lt:2) can be ignored, while for the rest of

the terms, terms below order {j (1) can be eliminated. Notice that the 't' ~ 1J term is the only

remaining shear stress term, and recall that the only {j (1 I£) term in that shear stress term

is the au~ I d1J term. Thus the ~-momentum equation for the curvilinear coordinate system

becomes

P d;; + P [(:J u; ~~; + (h~) u" ~; + (hlJ u> ~u£ l
+p [K~~u~u~ -K~~u~] (155)

=- (hJ ;~ + (h~) dan [~ (h~) ~;]

194

which, when incorporating the geodesic coordinate system simplifications, becomes

/;< +P [(:J "< ~i +u" ~~< + UJ u(~u~ +K(<"<"(-K<("~] (156)

= - (:<) ~~ + :~ (Jl ~;)
The T]-momentum equation (132) is reproduced here with the order of magnitudes under-

set each term.

p a;tTJ +p l" u)u< ~~" + (h~)u" ~~" + u)u, ;;jl
[I/I] [I1 [he/I] [I] [e*efe] [I1 [he/I]

+p [K;TJu;uTJ +K,TJu1Ju, -KTJSu~ -KTJ,u~]
[hhe] [he*I] (hi2] [hi2]

=pf•oo""-(Z);~+(:)a;~"+(:)a;~"+(:) a;;'
[O] [I1 [I/e] [l1 [(Ije)/I] [I1 [I/e] [I1 [(I/e)/I]

(157)

+ (2K;TJ +K;,) -r;TJ + (KTJ; +K11 ,) -rTJTJ + (K,; +2K'1J) -rTJ,
[I] [I] [I/e] [I] [1] [I] [I] [I] [I/e]

- KTJ; r;; - KTJ'-r"
[hl] [hl]

To maintain consistency with the ~-direction momentum development above, the shear

stress terms below order 0' (1/£2) are ignored, while for the rest of the terms in the T]-

momentum equation, terms below order tJ (1) can be eliminated. What results is

(158)

and the formulation for the geodesic coordinate system is

(159)

195

The s-momentum equation (133) is reproduced here with the order of magnitudes under-

set each term.

- K,;'r;;- K, 11 T1111
[hl] [hl]

To maintain consistency with the ~-direction momentum development above, the shear

stress terms below order c6' (1/t:2) are ignored, while for the rest of the terms in the T]-

momentum equation, terms below order c6' (1) can be eliminated. Notice, as above, that

the 'r
17

' term is the only remaining shear stress term, and recall that the only .6'(1/t:) term

in that shear stress term is the au,/CJTJ term. Thus the s-momentum equation for the

curvilinear coordinate system becomes

P a;ts + P [(~J "(~7 + (:J ~ ~; + (h
1J "s ~"f]

p [K;,ul;u' -K,l;u~] (161)

= - UJ ~~ + (~) :ij [I' (~) ~; l
196

which, when incorporating the geodesic coordinate system simplifications, becomes

p ii;c + p [(:J "< ~~(+ uij ~; + (:J "~; ~ut +K<C"< "~; - Kl;< ~] (162)

=- (:J ;~ + :n (~ ~:;)
Energy Similar to the momentum development, all shear stress components are first as-

sumed to be the order developed above and then each remaining shear stress component

will be included into the equations and any further eliminations needed can then be done.

The energy equation (137) is reproduced here with the order of magnitudes under-set each

197

term.

(163)

For the shear stress and thermal conductivity terms, terms below order 0' (1 I e2), can be

ignored, while for the rest of the terms, terms below order 0' (1) can be eliminated. Notice

that the '!STJ and '!t;TJ terms are the only remaining shear stress terms, and recall that the only

0' (1 I e) terms in these shear stress terms are the a I d1J terms. Thus the energy equation

198

for the curvilinear coordinate system becomes

(164)

To proceed, the conductivity term is converted to terms of the stagnation enthalpy and

velocities to get (after an order of magnitude analysis eliminates the u11 term)

(165)

Also, the shear stress components can be manipulated to get the following if the viscosity

gradient is assumed to be tf (e)

(166)

Combining these two results with the curvilinear energy equation formulation results in

199

which, when incorporating the geodesic coordinate system simplifications, becomes

Two-Dimensional Formulation

The development of the two-dimensional formulations of the boundary layer equations

follows the same path as the three-dimensional formulation, with the removal of the third

coordinate direction.

Continuity The boundary layer continuity equation in the general curvilinear coordinate

system becomes

In the geodesic coordinate system this becomes

(170)

Momentum The boundary layer ~-momentum equation in the general curvilinear coor-

dinate system becomes

(171)

200

In the geodesic coordinate system this becomes

The boundary layer 71-momentum equation in the general curvilinear coordinate system

becomes

(173)

In the geodesic coordinate system this becomes

(174)

Energy The boundary layer energy equation in the general curvilinear coordinate system

becomes

In the geodesic coordinate system this becomes

(176)

Euler Equations in Geodesic Coordinates

This section will develop the Euler equations from the vector of the Navier-Stokes

equations from above applying the requisite assumptions. First the general curvilinear

201

coordinate system form will be presented, followed by the geodesic coordinate system

form.

Assumptions

The primary differences between the Navier-Stokes and the Euler equations are the as-

sumptions of an inviscid and adiabatic flow. The first results in the viscosity, J.l, to approach

zero, and the second results in the thermal conductivity, k, to approach zero and no heat

production caused by external processes, aQj at~ 0.

Three-Dimensional Formulation

The three-dimensional formulations of the Euler equations follow a similar develop-

ment as the Navier-Stokes equations developed above. The major difference is the added

simplifications that can be made with respect to the inviscid and adiabatic assumptions.

First, the general curvilinear coordinate system formulation will be presented, then the

geodesic coordinate system formulation will be presented for each conservation equation

set.

Continuity The continuity equation uses (107) and the divergence operator equation to

get

ap + (]__) a (Pu;) + (]__) a (puT!) + (]__) CJ (pus)
CJt h; a~ hTl a11 hs CJ{

(177)

+ (K/;Tl +K~;s) pul; + (KTI/; +KTI~J puT!+ (Ksl; +K~Tl) pu~ = 0

202

In the geodesic coordinate system this becomes

ap + (]__) a (pu~) +a (pu11) + (]__) a (Pu;)
ar hs a~ an h; as

(178)

+ K;;PU; + (K11 ; + K11 s) pu11 + K(,~pu(, = 0

Momentum The momentum equations use (108), as well as the momentum convection

to obtain the~-, 11- and s -momentum equations. Notice that the stress tensor divergence is

not needed since it only contains viscous terms. The ~-momentum equation becomes

P a;t< + P [(:J "< ~~< + (~) "" ~; + UJ "' ~u~]
+ p [K11 ;u~u11 + K;~u~us- K; 11 u~-K;;u'] (179)

=rfbodyr (:J ;~
The 71-momentum equation becomes

P a;t" + P [(h~) "< ~";" + (~) "" ~~ + (:,) "' ~?]
+ p [K; 11 u;u11 + K; 11 u11 us- K11 ~ u~ - K11 (,u'] (180)

= Pfbody,1J- (h~) ;~
The s -momentum equation becomes

P a;,, + P [(hJ "< ~i + (:J "" ~:; + (:J "' ~"f]
+p [K~su~us +K11 (,uTiu(, -Ks~u~ -K;11 u~] (181)

= pjbody,,- UJ ;~
203

Applying the geodesic coordinate system simplifications yields for the ~-momentum equa-

tion

/;,< +p [UJ "< ~·: +u, ~; + UJ "' ~ud l
+ p [K11 ~u~u17 + Kt;~u~ut;- K~t;u~] (182)

=pfbodyr (:J ~~
with the T}-momentum equation becoming

p a;; + p [(;J u < ~~· + "• ~~· + (;J u, ~"£]
- p [K17 ~ u~ + K17 t; u~] (183)

= P fbody,1J - (h~) ~~
and the s -momentum equation becoming

P a;t' + P [(:,) "< ~{ +u, ~; + (hl') ., ~!]
+ p [K~t;u~ut; + K17 t;u17 ut;- Kt;~u~] (184)

= pfbody,,- (hl') ;~
Energy The energy equation uses (110) and the curvilinear vector operations, notice that

the stress tensor energy dissipation as well as the heat production and conduction terms

disappear due to the assumptions of inviscid and adiabatic, to become

204

Applying the geodesic coordinate system conditions, this becomes

(186)

Two-Dimensional Formulation

The two-dimensional formuiations of the Euler equations follm.v a similar development

as the Navier-Stokes equations developed above. The major difference is the added sim-

plifications that can be made with respect to the inviscid and adiabatic assumptions. First,

the general curvilinear coordinate system formulation will be presented, then the geodesic

coordinate system formulation will be presented for each conservation equation set.

Continuity The continuity equation uses (107) and the divergence operator equation to

get

(187)

In the geodesic coordinate system this becomes

(188)

Momentum The momentum equations use (1 08), as well as the momentum convection

to obtain the ~- and 1J -momentum equations. Notice that the stress tensor divergence is not

205

needed since it only contains viscous terms. The ~-momentum equation becomes

p ();< + p [(h~) "< ~i + (~) "" ~",; + K"<"<""- K;""~] (189)

= Pf>roy,;- UJ ~~
The T}-momentum equation becomes

(190)

(1) dp
= Pfbody,T/- hTI d1J

Applying the geodesic coordinate system simplifications yields for the ~-momentum equa-

tion

and the T}-momentum equation becoming

Energy The energy equation uses (11 0) and the curvilinear vector operations, notice that

the stress tensor energy dissipation as well as the heat production and conduction terms

disappear due to the assumptions of inviscid and adiabatic, to become

(193)

206

Applying the geodesic coordinate system conditions, this becomes

/a~ +p [(:J "< ~~ +un ~~] = i; + ~; +p [u(fbody,(+unfbody,n] (194)

207

APPENDIXB

THREE POINT ARC FORMULATION

This appendix develops a closed form solution for the equation described by three points

in !%2 .

Given three non-collinear points, {xa,xb,Xc }, in !%2 then they form a circle of radius R

with the center of the circle at x0. Thus, each point solves the following equation

(195)

Substituting the three points into (195) and multiplying out the squared terms yields

X a Ya 1 2xo x2+y2 a a

xb Yb 1 2yo ~+y~ (196)

Xc Yc 1 R2 ,;d y2 - o- o x~+y~

Since (196) is a simple linear algebra equation, Kramer's rule (see for example [1 0] for

208

more information on Kramer's rule) can be used to solve (196) and get

~+y~ Ya 1

xt+Y~ Yb 1

~+y~ Yc 1

xo= (197a)

X a Ya 1

2x
b Yb 1

Xc Yc 1

X a ~+y~ 1

xb ~+y~ 1

Xc ~+y~ 1

Yo= (197b)

X a Ya 1

2 xb Yb 1

Xc Yc 1

X a Ya ~+y~

xb Yb ~+y~

Xc Yc ~+y~
R2 ~ 2_ - o-Yo- (197c)

X a Ya 1

xb Yb 1

Xc Yc 1

The location of the center of the circle is given by (197a) and (197b). In order to find the

209

radius of the circle, (197a) and (197b) are substituted into (197c) to get

2 2

~+y~ Ya 1 X a ~+y~ 1 X a Ya 1 X a Ya ~+y~

~+y~ Yb 1 + xb ~+y~ 1 +4 xb Yb 1 xb Yb ~+y~

~+y~ Yc 1 Xc ~+y~ 1 Xc Yc 1 Xc Yc ~+y~
R2=

2
(198)

X a Ya 1

4 x,_ Vz. 1 u • u

Xc Yc 1

When (198) is multiplied out and simplified, it becomes

2
[(xa-xb)

2
+(Ya-Yb)

2
] [(xa-Xc)

2
+(ya-Yc)

2
] [(xc-xb)

2
+(Yc-Yb)

2
]

(199) R -
- 4 [xc (Ya- Yb) +xb (Yc -ya) +xa (Yb- Yc)] 2

R can now be found by taking the square root of (199) to get

(200)

Finding x0 and y0 requires expanding the determinates in (197a) and (197b) to get

210

APPENDIXC

NACA 4-DIGIT AIRFOIL CURVATURE

This appendix develops the curvature equation for the NACA 4-digit airfoil for both the

cambered and symmetric airfoils. First, the equations describing the airfoil surface is pre-

sented. This is followed by the development of the equations required in the curvature

calculation for the general cambered airfoil. Finally, the relatively simpler curvature equa-

tion is developed for the non-cambered (i.e. symmetric) 4-digit airfoil.

Airfoil Description

The standard equation for the NACA 4-digit-series airfoil is represented by a four-digit

number, qnxx, where q and n represent the camber specification and xx represents the

thickness-chord ratio, tc = x.x/100. The standard equation for the airfoil can be obtained

from several references such as [1] and is defined by starting with symmetric airfoil repre-

sentation

(202)

211

and the description of the camber line as

q
p= 100

n
q=-

10

~ (2px-x2)
Yc=

ifx < p;

(
m)2 [(1- 2p) +2px-_x2] if X~ p.

1-p

(203)

Next, the airfoil surface coordinates can be represented by a combination of the symmetric

airfoil equation (202) and the camber line equation (203) as the following set of equations

e Yc tan =-
X

x-yssine, upper surface;
.X= (204)

x+yssine, lower surface.

Yc+Yscose, upper surface;
y=

Yc-YsCose, lower surface.

where .X andy are the non-dimensionalized airfoil coordinates. The a coefficients in the

symmetric airfoil equation are defined by the following boundary conditions for a thickness

ratio 0.20 symmetric airfoil, NACA-0020:

1. Maximum Ordinate - The maximum ordinate occurs at .X = 0. 30 and is y = 0.10

2. Trailing Edge Ordinate- The trailing edge ordinate is y = 0.002 at .X= 1.0

3. Trailing Edge Slope- The trailing edge slope is Jdy / dxJ = 0.234

212

4. Nose Shape- The shape of the nose is defined as i = 0.1 andy= 0.078

Applying these constraints, the coefficients are

a0 = 0.2969 a 1 = -0.1260 a2 = -0.3516 (205)

a3 = 0.2843 a4 = -0.1015

Cambered Airfoil Curvature

To start developing the cambered airfoil curvature equation, the standard definition of the

radius of curvature, see [74], is presented here

(206)

where K is the curvature and R is the radius of curvature. To find the first and second

derivatives of the airfoil curve that are required in the curvature equation, it is convenient

to use the chain rule to obtain the following relations

dy dyjdx
dx dxjdx

(207)

d2y (d2yjd~) (dxjdx)- (d2xjd~) (dyjdx)

dx2 (difdx) 3

Combining equations (207) and (206) yields the following

K _1 = [(dxf dx)
2 + (dy; dx)

2f12

(~) (d2yjdx2) (dxjdx)- (d2xjdx2) (dyjdx)
(208)

213

Now the curvature equation is in terms of the independent coordinate x. Using equa-

tions (204) to develop the derivatives needed for equation (208) yields

(209)

where the upper sign in ± and =F refers to the upper surface and the lower sign refers

to the lower surface. Applying these to the numerator and denominator of the curvature

equation (208) yields

K(~)-1 = N
D

where N = 1 + (dYe)z + (dYs)z +i (de)z
dx dx s dx

[
dYs (dye .) de (dye .)] ±2 dx dx cose-sme -ys dx dx sme+cose

and D-d
2
ye 2 (dys)

2
de dysd

2
e_ d

2
ysde 2 (de)

3

- dx2 + dx dx +Ys dx dx2 Ys dx2 dx +Ys dx

{ [
d

2
ys (de)

2
] (dye .) ± dx2 -ys dx cose + dx sme

214

(210)

Using the definition of 8, the following derivatives can be found

cos2 e~- sin 8cos e dx

X
(211)

cos2 e (d
1Yx- dye) +cos e sine (t- 2dB ~x) + (sin2 e- cos2 e) dB X dx dx dx dx dx

Finally, the first and second derivatives of the symmetric airfoil equation is

(212)

and for the camber line equation

~ (p-x) p if X< p;
(213)

(1 ~;) 2 (p- x) if x 2: p.

ifx < p;

- (1 ~~)2 if X 2: p.

Combining equations (202), (203), (211), (212) and (213) with equation (210) yields the

curvature equation for the NACA 4-digit airfoil.

Symmetric Airfoil Curvature

Developing the symmetric airfoil curvature starts with simplifying the general curvature

equations developed above for the case where Yc = 0. The following is equations (202), (203),

215

(211), (212) and (213) with the symmetric limitation applied

(214)

Also, notice that i andy simply become x and Ys. respectively. Applying these simplified

equations to the curvature equation (210) yields

[
2] 3/2 l+('Y;).

K(~)-1 = 2

±~ dx

(215)

which is just the curvature equation for the symmetric airfoil with the ± signifying the

upper or lower surface. This can be simplified further by substituting the equations for the

y s terms to get

(216)

216

APPENDIXD

NUMERICAL CONSERVATION

This appendix demonstrates the conservation properties of the numerical scheme with and

without the solid surface treatment.

Since the original NASCART-GT solver is based on a finite volume scheme solving the

Euler and Navier-Stokes equations in conservation form, it is a conservative scheme (see

Chapter II for details). The solid boundary treatment discussed in Chapter ill removes the

surface cells from the finite volume scheme, and there is no assurance that the surface cell

treatment remains conservative. Therefore, the use of the solid boundary treatment makes

the overall scheme non-conservative.

In order to address how much impact the non-conservative solid boundary treatment

has on the overall conservation of the scheme, the incompressible, inviscid cylinder case

discussed on page 105 was used to determine this impact. To determine the degree to which

this scheme is non-conservative, a control volume is place around the entire computational

domain, and the net flux through the control volume is calculated. Figure 90 shows a

schematic of the control used to calculate the net fluxes of the conserved quantities.

A complete finite volume solution to this case, i.e. using the finite volume formulation

for the surface cells instead of the solid boundary treatment, is used establish the numerical

217

Figure 90: Incompressible Cylinder Control Volume

conservation properties of this scheme. While the net flux should be zero for this case,

numerical errors will cause it to be non-zero. Table 15 shows the results for this. The mass

net flux is about 0.6% of the flux into the control volume and the energy net flux is about

0.3%. The same net flux calculation for the curved wall boundary condition solution is

also shown in table 15. The mass net flux for this case is again about 0.6% and the energy

net flux is about 0.3%. Also, there is virtually no difference between the 0.2% relative

difference between the net mass fluxes and 0.2% relative difference for the net energy flux.

Table 15: Net Fluxes for Incompressible Cylinder

mass 0.132954
energy 47.6208

Finite-Volume Curved Wall

7 .87867E-04 7 .85989E-04
0.148208 0.147871

218

While the solid boundary treatment makes this scheme formally non-conservative, the

net flux differences between the conservative finite volume scheme and the solid boundary

treatment are negligible.

219

Bibliography

[1] I. H. Abbott and A. E. von Doenhoff. Theory ofWing Sections. Dover Publications,
Inc., New York, 1959.

[2] M. J. Aftosmis. Solution Adaptive Cartesian Grid Methods for Aerodynamic Flows
with Complex Geometries. In Lecture Notes for 28th Computational Fluid Dynam
ics Lecture Series. von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese,
Beigium, March 1997.

[3] M. J. Aftosmis, M. J. Berger, and G. Adomavicius. A Parallel Cartesian Approach
for External Aerodynamics of Vehicles with Complex Geometry. In Thermal and
Fluids Analysis Workshop, September 1999.

[4] M. J. Aftosmis, M. J. Berger, and G. Adomavicius. A Parallel Multilevel Method for
Adaptively Refined Cartesian Grids with Embedded Boundaries. In 38th Aerospace
Sciences Meeting and Exhibit, Reno, NV, January 2000. AIAA. AIAA-2000-0808.

[5] M. J. Aftosmis, D. Gaitonde, and T. S. Tavares. Behavior of Linear Reconstruction
Techniques on Unstructured Meshes. AIAA Journal, 33(11):2038-2049, November
1995.

[6] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome. A Conser
vative Adaptive Projection Method for the Variable Density Incompressible Navier
Stokes Equations. Journal of Computational Physics, 142(1):1-46, 1998.

[7] D. A. Anderson, J. C. Tannehill, and R. H. Pletcher. Computational Fluid Mechanics
and Heat Transfer. Series in Computational Methods in Mechanics and Thermal
Sciences. Hemisphere Pub. Corp., McGraw-Hill, New York, 2nd edition, 1984.

[8] J. D. Anderson, Jr. Modem Compressible Flow with Historical Perspective.
McGraw-Hill, Inc., New York, 2nd edition, 1990.

[9] W. K. Anderson, J. L. Thomas, and B. van Leer. A Comparison of Finite Volume
Flux Vector Splitting for the Euler Equations. In AIAA 23st Aerospace Sciences
Meeting, Reno, NV, January 1985. AlAA-85-0122.

[10] H. Anton and C. Rorres. Elementary Linear Algebra, Applications Version. John
Wiley & Sons, Inc., New York, 6th edition, 1991.

[11] P. Arminjon and A. Madrane. Staggered Mixed Finite Volume/Finite Element
Method for the Navier-Stokes Equations. AIAA Journal, 37(12): 1558-1571, De
cember 1999.

220

[12] N. Ashgriz and J.Y. Poo. FLAIR: Flux Line-segment Model for Advection and
Interface Reconstruction. Journal of Computational Physics, 92(2):449-468, 1991.

[13] E. Atta. Component-Adaptive Grid Interfacing. In 19th Aerospace Sciences Meeting,
St. Louis, MO, January 1981. AIAA-81-0382.

[14] E. H. Atta and J. Vadyak. A Grid Interfacing Zonal Algorithm for Three Dimen
sional Transonic Flows About Aircraft Configurations. In AIAAIASME 3rd Joint
Thermophysics, Fluids, Plasma and Heat Transfer Conference, St. Louis, MO, June
1982. AIAA-82-1017.

[15] E. H. Atta and J. Vadyak. Numerical Simulation of the Transonic Flow:field for
Wing/1--hcelle Configurations. ln AlAAIAHS!ASEE Aircraft Design Systems and Op
erations Meeting, San Diego, CA, October 1984. AIAA-84-2430.

[16] B.S. Baldwin and H. Lomax. Thin Layer Approximation and Algebraic Model for
Separated Turbulent Flows. In AIAA 16th Aerospace Science Meeting, Huntsville,
AL, January 1978. AIAA-78-257.

[17] T. J. Barth and S. W. Linton. An Unstructured Mesh Newton Solver for Compress
ible Fluid Flow and Its Parallel Implementation. In 33rd Aerospace Sciences Meeting
and Exhibit, Reno, NV, January 1995. AIAA. AIAA-95-0221.

[18] J. T. Batina. A Gridless Euler/Navier-Stokes Solution Algorithm for Complex
Aircraft Applications. In AIAA 31th Aerospace Sciences Meeting, Reno, NV, January
1993. AIAA-93-0333.

[19] S. A. Bayyuk, K. G. Powell, and B. van Leer. A Simulation Technique for 2-D Un
steady Inviscid Flows Around Arbitrarily Moving and Deforming Bodies of Arbi
trary Geometry. In llthAIAA Computational Fluid Dynamics Conference, Orlando,
FL, July 1993. AIAA-93-3391-CP.

[20] T. Belytschko, Y. Y. Lu, and L. Gu. Element-Free Galerkin Methods. International
Journal for Numerical Methods in Engineering, 37(2):229-256, January 1994.

[21] J. A. Benek, P. G. Buning, and J. L. Steger. A 3-D Chimera Grid Embedding Tech
nique. In 7th Computational Fluid Dynamics Conference, Cincinnati, OH, July
1985. AIAA. AIAA-85-1523.

[22] M. J. Berger, M. J. Aftosrnis, and G. Adomavicius. Parallel Multigrid on Cartesian
Meshes with Complex Geometry. In 8th International Conference on Parallel CFD,
Trondheim, Norway, 2000.

[23] M. J. Berger and R. J. LeVeque. An Adaptive Cartesian Mesh Algorithm for the Eu
ler Equations in Arbitrary Geometries. In 9th AIAA Computational Fluid Dynamics
Conference, Buffalo, NY, June 1989. AIAA-89-1930-CP.

221

[24] M. J. Berger and J. Oliger. Adaptive Mesh Refinement for Hyperbolic Partial Dif
ferential Equations. Journal of Computational Physics, 53(1):484-512, 1984.

[25] J. J. Berten and M. L. Smith. Aerodynamics for Engineers. Prentice Hall, Inc.,

Englewood Cliffs, NJ, 1989.

[26] W. L. Briggs. A Multi grid Tutorial. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1987.

[27] M. 0. Bristeau, R. Glowinski, J. Periaux, and H. Viviand. Presentation of Problems
and Discussion of Results. In M. 0. Bristeau, R. Glowinski, J. Periaux, and H. Vi
viand, editors, Numerical Simulations of Compressible Navier-Stokes Flows, Notes
on Numerical Fluid Mechanics, pages 1-40. Friedr. Vieweg & Sohn, 1987.

[28] L. Cambier. Computation of Viscous Transonic Flows Using an Unsteady Type
Method and a Zonal Grid Refinement Technique. In M. 0. Bristeau, R. Glowinski,
J. Periaux, and H. Viviand, editors, Numerical Simulations of Compressible Navier
Stokes Flows, Notes on Numerical Fluid Mechanics, pages 105-122. Friedr. Vieweg
& Sohn, 1987.

[29] J. E. Carter. Numerical Solutions of the Navier-Stokes Equations for the Supersonic
Laminar Flow Over a Two-Dimensional Compression Corner. NASA Technical Re
port NASA-TR-R-385, NASA Langley Research Center, Hampton, VA, July 1972.

[30] J. E. Carter. A New Boundary-Layer Interaction Technique for Separated Flows.
NASA TM-78690, June 1978.

[31] J. E. Carter. A New Boundary-Layer Inviscid Interaction Technique for Separated
Flow. In 4th AIAA Computational Fluid Dynamics Conference, Williamsburg, VA,
July 1979. AIAA-79-1450.

[32] F. Casalini and A. Dadone. Computations of Viscous Flows Using a Multigrid Finite
Volume Lamda Formulation. Engineering Computations, 16(7):767-786, 1999.

[33] T. Cebeci, R. W. Clark, K. C. Chang, N. D. Halsey, and K. Lee. Airfoils with
Separation and the Resulting Wakes. Journal of Fluid Mechanics, 163:323-347,
February 1986.

[34] L. T. Chen and M. N. Bui. An Interactive Scheme for Transonic Wing/Body Flows
Based on Euler and Inverse Boundary-Layer Equations. In AIAA 21st Fluid Dynam
ics, Plasma Dynamics and Lasers Conference, Seattle, WA, June 1990. AIAA-90-
1586.

[35] Y.-L. Chiang, B. van Leer, and K. G. Powell. Simulation of Unsteady Inviscid Flow
on an Adaptively Refined Cartesian Grid. In 30th Aerospace Sciences Meeting &
Exhibit, Reno, NV, January 1992. AIAA. AIAA-92-0443.

222

[36] D. K. Clarke, M.D. Salas, and H. A. Hassan. Euler Calculations for Multielement
Airfoils Using Cartesian Grids. AIAA Journal, 24(3):353-358, March 1986.

[37] E. Cohen. Some Mathematical Tools for a Modeler's Workbench. IEEE Computer
Graphics and Applications, 3(7):63-66, October 1983.

[38] W. J. Coirier. An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler
and Navier-Stokes Equations. PhD thesis, University of Michigan, Ann Arbor, MI,
1993.

[39] W. J. Coirier. An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Eu
ler and Navier-Stokes Equations. NASA Technical Memorandum 106754, NASA
Lewis Research Center, Cleveland, OH, October 1994.

[40] W. J. Coirier and K. G. Powell. A Cartesian, Cell-Based Approach for Adaptively
Refined Solutions of the Euler and Navier-Stokes Equations. In 33rd Aerospace
Sciences Meeting & Exhibit, Reno, NV, January 1995. AIAA. AIAA-95-0556.

[41] W. J. Coirier and K. G. Powell. Solution-Adaptive Cartesian Cell Approach for
Viscous and Inviscid Flows. AIAA Journal, 34(5):938-945, May 1996.

[42] P. Colella, R. Ferguson, and H. Glaz. Multifluid Algorithms for Eulerian Finite
Difference Methods. Preprint, 1996.

[43] Cray Research, Inc., Eagan, MN. CRAYT3D System Architecture Overview, March
1994. HR-04033.

[44] A. Dadone and B. Grossman. Surface Boundary Conditions for the Numerical So
lution of the Euler Equations. AIAA Journal, 32(2):285-293, February 1994.

[45] D. De Zeeuw and K. G. Powell. An Adaptively-Refined Cartesian Mesh Solver
for the Euler Equations. In lOth AIAA Computational Fluid Dynamics Conference,
Honolulu, HI, June 1991. AIAA-91-1542-CP.

[46] D. L. De Zeeuw. A Quadtree-Based Adaptively-Refined Cartesian-Grid Algorithm
For Solution Of The Euler Equations. PhD thesis, University of Michigan, Ann
Arbor, MI, 1993.

[47] N. H. Decker, V. K. Naik, and M. Nicoules. Parallelization of Implicit Finite Dif
ference Schemes in Computational Fluid Dynamics. ICASE Report 90-53, ICASE,
Hampton, VA, August 1990. NASA/CR-182081.

[48] F. Deister and E. H. Hirschel. Self-Organizing Hybrid Cartesian Grid/Solution Sys
tem with Multigrid. In 40th Aerospace Sciences Meeting and Exhibit, Reno, NV,
January 2002. AIAA. AIAA-2002-0112.

223

[49] M. Delanaye, M. J. Aftosmis, M. J. Berger, Y. Liu, and T. H. Pulliam. Automatic
Hybrid-Cartesian Grid Generation for High-Reynolds Number Flows around Com
plex Geometries. In AIAA 37th Aerospace Sciences Meeting & Exhibit, Reno, NV,
January 1999. AIAA-99-0777.

[50] H. G. Dietz and T. I. Mattox. KLAT2's Flat Neighborhood Network. In 4th Annual
Linux Showcase & Conference, pages 91-100, Atlanta, GA, October 2000.

[51] W. Dietz, M. Fan, J. Steinhoff, andY. Wenren. Application of Vorticity Confinement
to the Predicition of the Flow Over Complex Bodies. In AIAA 15th CFD Conference,
Anaheim, CA, June 2001. AIAA. AIAA-2001-2642.

[52] N. D. Domel and S, T-. Karman, Jr. Splitfow: Progress in 3D CFD with Cartesian
Omni-tree Grids for Complex Geometries. In AIAA 38th Aerospace Sciences Meet
ing & Exhibit, Reno, NV, January 2000. AIAA-2000-1006.

[53] M. Drela and M. B. Giles. Viscous-Inviscid Analysis of Transonic and Low
Reynolds Number Airfoils. AIAA Journal, 25(10):1347-1354, October 1987.

[54] T. M. Eidson and G. Erlebacher. Implementation of a Fully-Balanced Periodic Tridi
agonal Solver on a Parallel Distributed Memory Architecture. ICASE Report 94-37,
ICASE, Hampton, VA, May 1994. NASA/CR-194919.

[55] B. Epstein, A. L. Luntz, and A. Nachshon. Multigrid Transonic Computations About
Arbitrary Aircraft Configurations. Journal of Aircraft, 26(8):751-759, August 1989.

[56] B. Epstein, A. L. Luntz, and A. Nachshon. Cartesian Euler Method for Arbitrary
Aircraft Configurations. AIAA Journal, 30(3):679-687, March 1992.

[57] E. A Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined Immersed
Boundary Finite-Difference Methods for Three-Dimensional Complex. Journal of
Computational Physics, 161(1):35-60, 2000.

[58] M. Fan, W. Dietz, Y. Wenren, and J. Steinhoff. Computing Complex Flows on
Coarse Grids Using Vorticity Confinement. In 40th AIAA Aerospace Sciences Meet
ing and Exhibit, Reno, NV, January 2002. AIAA. AIAA-2002-0135.

[59] P. D. Fryrnier, Jr., H. A. Hassan, and M.D. Salas. Navier-Stokes Calculations Using
Cartesian Grids: I. Laminar Flows. AIAA Journal, 26(10):1181-1188, October 1988.

[60] R. L. Gaffney, H. A. Hassan, and M.D. Salas. Euler Calculations for Wings Using
Cartesian Grids. In AIAA 25th Aerospace Sciences Meeting, Reno, NV, January
1987. AIAA-87-0356.

[61] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM
3 User's Guide and Reference Manual. Oak Ridge National Labs, Oak Ridge, TN,
September 1994. ORNL/TM-12187.

224

[62] S. K. Godunov. A Finite Difference Method for the Computation of Discontinuous
Solutions of the Equations of Fluid Dynamics. Matematicheskii sbornik, 47:357-
393, 1959.

[63] S. K. Godunov. Reminiscences about Difference Schemes. Journal of Computa
tional Physics, 153(1):6-25, 1999.

[64] D. Goldstein, R. Handler, and L. Sirovich. Modeling a No-Slip Flow Boundary with
an External Force Field. Journal of Computational Physics, 105(2):354-366, 1993.

[65] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Im
plementation of the MPI Message Passing Interface Standard. Parallel Computing,
22(6):789-828, September 1996.

[66] D. Heller. A Survey of Parallel Algorithms in Numerical Linear Algebra. SIAM
Review, 20(4):740-777, October 1978.

[67] L. F. Henderson, P. Colella, and E. G. Pucket. On the Refraction of Shock Waves at
a Slow-Fast Gas Interface. Journal of Fluid Mechanics, 224:1-27, March 1991.

[68] G. Hipper and D. Tavangarian. Advanced Workstation Cluster Architectures for
Parallel Computing. Journal of System Architecture, 44:207-226, 1998.

[69] E. H. Hirschel and W. Kordulla. Shear Flow in Suiface-Oriented Coordinate. Friedr.
Vieweg & Sohn, Braunschweig, Germany, 1981.

[70] C. W. Hirt and B. D. Nichols. Volume of Fluid (VOF) Method for Dynamics of Free
Boundaries. Journal of Computational Physics, 39(1):201-221, 1981.

[71] D. G. Holmes and S.D. Connell. Solution of the 2D Navier-Stokes Equations on Un
structured Adaptive Grids. In 9th AIAA Computational Fluid Dyamics Conference,
Buffalo, NY, June 1989. AIAA-89-1932-CP.

[72] L. Howarth. The Boundary Layer in Three Dimensional Flow. -Part I. Derivation of
the Equations for Flow along a General Curved Surface. Philosophical Magazine,
42:239-243, March 1951. No. 326.

[73] G. Hu, B. Grossman, and J. Steinhoff. A Numerical Method for Vortex Confine
ment in Compressible Flow. In AIAA 38th Aerospace Sciences Meeting, Reno, NV,
January 2000. AIAA-2000-0281.

[74] J. F. Hurley. Calculus. Wadsworth Publishing, Belmont, CA, 1987.

[75] A. Jameson. Solution of the Euler Equations for Two Dimensional Transonic Flow
by a Multigrid Method. Applied Mathematics and Computation, 13(3-4):327-356,
November 1983.

225

[76] D. C. Jespersen. Parallelism and OVERFLOW. NAS Technical Report NAS-98-013,
NASA Ames Research Center, Moffett Field, CA, October 1998.

[77] Y. Kallinderis and S. Ward. Prismatic Grid Generation with an Efficient Algebraic
Method for Aircraft Configurations. In 1Oth Applied Aerodynamics Conference, Palo
Alto, CA, June 1992. AIAA-92-2721-CP.

[78] K.-H. Kao, M.-S. Liou, and C.-Y. Chow. Grid Adaption Using Chimera Composite
Overlapping Meshes. In 11th AJAA Computational Fluid Dynamics Conference,
Orlando, FL, July 1993. AIAA-93-3389-CP.

[79] S. L. Karman, Jr. SPLITFLOW: A 3D Unstructured Cartesian/Prismatic Grid CFD
Code for Complex Geometries. In 33rd Aerospace Sciences Meeting and Exhibit,
Reno, NV, January 1995. AIAA. AIAA-95-0343.

[80] D. S. Katz, T. Cwik, B. H. Kwan, J. Z. Lou, P. L. Springer, T. L. Sterling, and
P. Wang. An Assessment of a Beowulf System for a Wide Class of Analysis and
Design Software. Advances in Engineering Software, 29(3-6):451-561, 1998.

[81] K. Kaups and T. Cebeci. Compressible Laminar Boundary Layers with Suction on
Swept and Tapered Wings. Journal of Aircraft, 14(7):661-667, July 1977.

[82] J. Kim, K. Kim, and H. Choi. An Immersed-Boundary Finite-Volume Method for
Simulations of Flow in Complex Geometries. Journal of Computational Physics,
171(1):132-150, 2001.

[83] M. Kremenetsky, T. Tysinger, and S. Posey. Considerations for Parallel CFD En
hancements on SGI ccNUMA and Cluster Architectures. In lOth Copper Mountain
Conference on MultigridMethods, Copper Mountain, CO, April2001.

[84] K. A. Kurbatskii and C. K. W. Tam. Cartesian Boundary Treatment of Curved Walls
for High-Order Computational Aeroacoustics Schemes. AIAA Journal, 35(1):133-
140, January 1997.

[85] C. L. Ladson, C. W. Brooks, Jr., A. S. Hill, and D. W. Sproles. Computer Program To
Obtain Ordinates for NACA Airfoils. NASA Technical Memorandum 4 7 41, NASA
Langley Research Center, Hampton, VA, December 1996.

[86] P. R. Lahur and Y. Nakamura. Simulation of Flow Around Moving 3D Body on
Unstructured Cartesian Body. In 15thAIAA Computational Fluid Dynamics Confer
ence, Anaheim, CA, June 2001. AIAA-2001-2605.

[87] M.-C. Lai and C. S. Peskin. An Immersed Boundary Method with Formal Second
Order Accuracy and Reduced Numerical Viscosity. Journal of Computational
Physics, 160(12):705-719, 2000.

226

[88] M. Lesionne and C. Farhat. Geometric Conservation Laws for Flow Problems with
Moving Boundaries and Deformable Meshes, and Their Impact on Aeroelastic Com
putations. Computer Methods in Applied Mechanics and Engineering, 134:71-90,
1996.

[89] R. J. LeVeque. A Large Time Step Generalization of Godunov's Method for Systems
of Conservation Laws. SIAM Journal on Numerical Analysis, 22(5):1051-1073,
December 1985.

[90] L. Lijewski and N. Subs. Chimera-Eagle Store Separation. In AIAA Atmospheric
Flight Mechanics Conference, Hilton Head, SC, August 1992. AIAA-94-1925-CP.

[91] J.-L. Liu and S.-J. Su. A Potentially Gridless Solution Method for the Compress
ible Euler/Navier-Stokes Equations. In 34th Aerospace Sciences lv!eeting & Exhibit,
Reno, NV, January 1996. AIAA. AIAA-96-0526.

[92] R. Lohner. Some Useful Renumbering Stategies for Unstructured Grids. Interna
tional Journal for Numerical Methods in Engineering, 36(19):3259-3270, October
1993.

[93] R. Lohner and M. Galle. Minimization of Indirect Addressing for Edge-Based Field
Solvers. In 40th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2002.
AIAA. AIAA-2002-0967.

[94] G. R. Luecke, M. Kraeva, and L. Ju. Comparing the Performance of MPICH with
Cray's MPI and with SGI's MPI. Concurrency and Computation: Practice and
Experience, 2002. Accepted April 10, 2002.

[95] S. Majumdar, G. Iaccarino, and P. Durbin. RANS Solvers with Adaptive Structured
Boundary Non-Conforming Grids. Annual Research Briefs 208782, Center for Tur
bulence Research, Stanford University, Stanford, CA, 2001.

[96] D. J. Mavriplis. Large-Scale Parallel Viscous Flow Computations using an Unstruc
tured Multigrid Algorithm. I CASE Report 99-44, I CASE, Hampton, VA, November
1999. NASNCR-1999-209724.

[97] D. J. Mavriplis. Parallel Performance Investigations of an Unstructured Mesh
Navier-Stokes Solver. ICASE Report 2000-13, ICASE, Hampton, VA, March 2000.
NASNCR-2000-210088.

[98] D. J. Mavriplis. Parallel Unstructured Mesh Analysis of High-Lift Configurations. In
AIM 38th Aerospace Sciences Meeting & Exhibit, Reno, NV, January 2000. AIAA-
2000-0923.

[99] D. J. Mavriplis and S. Pirzadeh. Large-Scale Parallel Unstructured Mesh Compu
tations for 3D High-Lift Analysis. ICASE Report 99-09, ICASE, Hampton, VA,
February 1999. NASNCR-1999-208999.

227

[1 00] R. Meakin. Moving Body Overset Grid Methods for Complete Aircraft Tiltrotor
Simulations. In lith AJAA Computational Fluid Dynamics Conference, Orlando,
FL, July 1993. AIAA-93-3350-CP.

[101] R. Meakin. On the Spatial and Temporal Accuracy of Overset Grid Methods for
Moving Body Problems. In 12th Applied Aerodynamics Conference, Colorado
Springs, CO, June 1994. AIAA-94-1925-CP.

[102] R. L. Meakin. An Efficient Means of Adaptive Refinement Within Systems of Over
set Grids. In 12th AJAA Computational Fluid Dynamics Conference, San Diego,
CA, June 1995. AIAA-95-1722-CP.

[1 03] R. L. Meakin. On Adaptive Refinement and Overset Structured Grids. In 13th AIAA
Computational Fluid Dynamics Conference, Snowmass Village, CO, june 1997.
AIAA-97-1858-CP.

[104] J. E. Melton, M. J. Berger, M. J. Aftosrnis, and M.D. Wong. 3D Applications of
a Cartesian Grid Euler Method. In 33rd Aerospace Sciences Meeting and Exhibit,
Reno, NV, January 1995. AIAA. AIAA-95-0853.

[105] J. E. Melton, F. Y. Enomoto, and M. J. Berger. 3D Automatic Cartesian Grid Gen
eration for Euler Flows. In lith AJAA Computational Fluid Dynamics Conference,
Orlando, FL, July 1993. AIAA-93-3386-CP.

[106] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard
(Version 1.1), June 1995. http://www.mpi-forum.org.

[107] Message Passing Interface Forum. MPI-2: Extension to the Message-Passing Inter
face, July 1997. http://www.mpi-forum.org.

[108] G. H. Miller and E. G. Puckett. A High-order Godunov Method for Multiple Con
densed Phases. Journal of Computational Physics, 128(1):134-164, 1996.

[109] R. A. Mitcheltree, M.D. Salas, and H. A. Hassan. Grid Embedding Technique Using
Cartesian Grids for Euler Solutions. AIAA Journal, 26(6):754-756, June 1988.

[110] J. Mohd-Yosuf. Combined Immersed-Boundary/B-spline Methods for Simulations
of Flow in Complex Geometries. Annual research briefs, Center for Turbulence
Research, Stanford University, Stanford, CA, 1997.

[111] J. Mohd-Yosuf. Development oflmmersed Boundary Methods for Complex Geome
tries. Annual research briefs, Center for Turbulence Research, Stanford University,
Stanford, CA, 1998.

[112] M. Moultin and J. Steinhoff. A Technique for the Simulation of Stall with Coarse
Grid CFD Methods. In AIAA 38th Aerospace Sciences Meeting, Reno, NV, January
2000. AIAA-2000-0277.

228

[113] B. Muller, T. Berglind, and A. Rizzi. Implicit Central Difference Simulation of
Compressible Navier-Stokes Flow Over a NACA0012 Airfoil. In M. 0. Bristeau,
R. Glowinski, J. Periaux, and H. Viviand, editors, Numerical Simulations of Com
pressible Navier-Stokes Flows, Notes on Numerical Fluid Mechanics, pages 183-
200. Friedr. Vieweg & Sohn, 1987.

[114] M. Murayama and K. Nakahashi. Numerical Simulation of Vortical Flows Using
Vorticity Confinement Coupled with Unstructured Grid. In 39th AIAA Aerospace
Sciences Meeting and Exhibit, Reno, NV, January 2001. AIAA-2001-0606.

[115] S. M. Murman, M . .IT. Aftosmis, and M. J. Berger. Numerical Simulation of Rolling
Airframes Using a Multi-Level Cartesian Method. In 20th AIAA Applied Aerody
namics Cor.ference, St. Louis, MO, June 2002. AlAA. ATAA-2002-2798.

[116] NASA Ames Research Center. Cluster T27B Existing Configuration. Internal NASA
Ames System Documentation, 29 November 2001.

[117] NASA Ames Research Center. NAS 02K Cluster
ware Information. On-Line Documentation, 7 December

I

http://www.nas.nasa.gov/Groups/SciCon102K/Hardware/index.html.
i

[118] NASA Ames Research Center. NAS 02K Cluster
ware Information. On-Line Documentation, 7 December
http://www.nas.nasa.gov/Groups/SciConi02K/Software/index.html.

Hard-
2001.

Soft-
2001.

[119] North Atlantic Treaty Organization. Test Cases for Inviscid Flow Field Methods.
Technical Report 1\:GARD-AR-211, North Atlantic Treaty Organization Advisory
Group for Aerospace Research and Development, 1985. Report of Fluid Dynamics

I

Panel Working Group 07.

[120] E. Oktay, N. Alemdaroglu, E. Tarhan, P. Champigny, and P. d'Espiney. Euler and
Navier-Stokes Solutions for Missiles at High Angle of Attack. Journal of Spacecraft
and Rockets, 36(6):850-858, November 1999.

[121] OpenMP Architecture Review Board. OpenMP C and C++ Application Program
Interface: Version 1.0, October 1998. http://www.openmp.org.

[122] OpenMP Architect~re Review Board. OpenMP FORTRAN Application Program
Interface: Version 2.0, November 2000. http://www.openmp.org.

i
i

[123] P. S. Pacheco. Parallel Computing with MPI. Morgan Kaufmann Publishers, Inc.,
San Francisco, 1991.

[124] S. A. Pandya and M. J. Aftosmis. Computation of External Aerodynamics for a
Canard Rotor/Wing Aircraft. In 39th AIAA Aerospace Sciences Meeting and Exhibit,
Reno, NV, January 2001. AIAA-2001-0997.

229

[125] D. G. Pearce, S. A. Stanley, F. W. Martin, Jr., R. J. Gomez, G. J. LeBeau, P. G.
Buning, W. M. Chan, 1.-T. Chiu, A. Wulf, and V. Akdag. Development of a Large
Scale Chimera Grid System for the Space Shuttle Launch Vehicle. In 31st Aerospace
Sciences Meeting & Exhibit, Reno, NV, January 1993. AIAA. AIAA-93-0533.

[126] R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield, and M. L. Welcome. An
Adaptive Cartesian Grid Method for Unsteady Compressible Flow in Irregular Re
gions. http://citeseer.nj.nec.com/pember93adaptive.html, 1993.

[127] R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield, and M. L. Welcome. Adaptive
Cartesian Grid Methods for Representing Geometry in Inviscid Compressible Flow.
In 11th AIAA Computational Fluid Dynamics Conference, Orlando, FL, July 1993.
ALA_!\ -93-3 385-CP.

[128] C. S. Peskin. Numerical Analysis of Blood Flow in the Heart. Journal of Computa
tional Physics, 25:220-252, 1977.

[129] C. S. Peskin. The Fluid Dynamics of Heart Valves: Experimental, Theoretical, and
Computational Methods. Annual Review of Fluid Mechanics, 14:235-259, 1982.

[130] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning Sparse Matrices with Eigenvec
tors of Graphs. SIAM Journal on Matrix Analysis & Applications, 11(3):430-452,
July 1990.

[131] M. A. Potsdam. An Unstructured Mesh Euler and Interactive Boundary Layer
Method for Complex Configurations. In AIAA 12th Applied Aerodynamics Con
ference, Colorado Springs, CO, June 1994. AIAA-94-1844.

[132] T. H. Pulliam. Euler and Thin layer Navier Stokes Codes: ARC2D, ARC3D. In K.
C. Reddy and J. S. Steinhoff, editors, Computational Fluid Dynamics, A workshop
Held at The University of Tennessee Space Institute, pages 15.1-15.85. University
of Tennessee Space Institute, Tullahoma, TN, March 1984. UTSI Publication No
E02-4005-023-84.

[133] T. H. Pulliam and J. T. Barton. Euler Computations of AGARD Working Group 07
Airfoil Test Cases. In AIAA 23rd Aerospace Sciences Meeting, Reno, NV, January
1985. AIAA-85-0018.

[134] T. H. Pulliam and J. L. Steger. On Implicit Finite-Difference Simulations of Three
Dimensional Flow. In AIAA 16th Aerospace Sciences Meeting, Huntsville, AL, Jan
uary 1978. AIAA-78-10.

[135] J. W. Purvis and J. E. Burkhalter. Prediction of Critical Mach Number for Store
Configurations. AIAA Journal, 17(11):1170-1177, November 1979.

230

[136] J. J. Quirk. An Adaptive GridAlgorithmfor Computational Shock Hydrodynamics.
PhD thesis, Cranfield Institute of Technology, Wiltshire, UK, January 1991.

[137] J. J. Quirk. AMRITA- A Computational Facility (for CFD Modelling). In Lecture
Notes for 29th Computational Fluid Dynamics Lecture Series. von Karman Institute
for Fluid Dynamics, Rhode-Saint-Genese, Belgium, February 1998.

[138] S. A. Ragab. Euler/Boundary Layer Solutions for Vortex Separation from Smooth
Surfaces. In AIAA 23rd Aerospace Sciences Meeting, Reno, NV, January 1985.
AIAA-85-0016.

[139] M. Rangarajan and L. Iftode. Software Distributed Shared Memory over Virtual In
terface Architecture: Implementation and Performance. In 4th Annual Lima Show
case & Conference, pages 341-352, Atlanta, GA, October 2000.

[140] A. Rizzi. Numerical Implementation of Solid-Body Boundary Conditions for the
Euler Equations. Zeitschriftfur angewandte Mathematik und Mechanik, 58:T301-
T304, 1978.

[141] P. L. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference
Schemes. Journal of Computational Physics, 43:357-372, 1981.

[142] P. L. Roe and J. Pike. Efficient Construction and Utilisation of Approximate Rie
mann Solutions. In Computing Methods in Applied Science and Engineering. North
Holland, 1994.

[143] D. Roose and R. Van Driessche. Parallel Computers and Parallel Algorithms for
CFD: An Introduction. In Special Coarse on Parallel Computing in CFD, Rhode
Saint-Genese, Belgium and NASA Ames, Moffett Field, CA, October 1995. North
Atlantic Treaty Organization. AGARD Report-807.

[144] J. K. Salmon, M. S. Warren, and G. S. Winkelmans. Fast Parallel Tree Codes for
Gravitational and Fluid Dynamical N-Body Problems. International Journal of Su
percomputer Applications and High Peiformance Computing, 8(2):129-142, 1994.

[145] R. Scardovelli and S. Zaleski. Direct Numerical Simulation of Free-Surface and
Interfacial Flow. Annual Review of Fluid Mechanics, 31:567-603, 1999.

[146] V. Schmitt and F. Charpin. Pressure Distributions on the ONERA-M6-Wing at Tran
sonic Mach Numbers. In Experimental Data Base for Computer Program Assess
ment. North Atlantic Treaty Organization, May 1979. AGARD Advisory Report
138.

[147] M.S. Selig and J. J. Guglielmo. High-Lift Low Reynolds Number Airfoil Design.
Journal of Aircraft, 34(1):72-79, January 1997.

231

[148] D. Sharov, H. Luo, J. D. Baum, and R. Lohner. Implementation of Unstructured
Grid GMRES+LU-SGS Method on Shared-Memory, Cache-Based Parallel Com
puters. In AIAA 38th Aerospace Sciences Meeting & Exhibit, Reno, NV, January
2000. AIAA-2000-0927.

[149] S. T. Shaw and N. Qin. Unsteady Flow Around Helicopter Rotor Blade Sections in
Forward Flight. Aeronautical Journal, 103:35-44, 1999.

[150] H. D. Simon. Partitioning of Unstructured Problems for Parallel Processing. In
Symposium on Parallel Methods on Large-Scale Structural Analysis and Physics
Applications, Hampton, VA, February 1991.

[151] M. Snir, P. Hochschild, D. D. Frye, and K. J. Gildea. The Communication Software
and Parallel Environment of the IBM SP2. IBM Systems Journal on Scalable Parallel
Computing, 34(2):205-221, 1995.

[152] J. L. Steger. Implicit Finite Difference Simulation of Flow About Arbitrary Ge
ometries With Application to Airfoils. In AIAA lOth Fluid & Plasma Dynamics
Conference, Albuquerque, NM, June 1977. AIAA-77-665.

[153] J. L. Steger, F. C. Dougherty, and J. A. Benek. A Chimera Grid Scheme. InK. N.
Ghia and U. Ghia, editors, Advances in Grid Generation: Presented at the Applied
Mechanics, Bioengineering, and Fluids Engineering Conference, volume 5, pages
59-69. The Fluid Engineering Division, ASME, Houston, TX, June 1983.

[154] J. L. Steger and W. R. Van Dalsem. Developments in the Simulation of Separated
Flows Using Finite Difference Methods. In AIAA 3rd Symposium on Numerical
and Physical Aspects of Aerodynamic Flows, pages 1-20, Long Beach, CA, January
1985.

[155] J. Steinhoff and D. Underhill. Modification of the Euler Equations for "Vorticity
Confinement": Application to the Computation oflnteracting Vortex Rings. Physics
of Fluids, 6(8):2378-2744, August 1994.

[156] J. Steinhoff, W. Yonghu, and W. Lesong. Efficient Computation of Separating High
Reynolds Number Incompressible Flows Using Vorticity Confinement. In AIAA
37th Aerospace Sciences Meeting, Reno, NV, January 1999. AIAA-99-3316.

[157] T. Sterling, D. Savarese, D. J. Becker, B. Fryxell, and K. Olson. Communication
Overhead for Space Science Applications on the Beowulf Parallel Workstation. In
Fourth IEEE International Symposium on High Peiformance Distributed Comput
ing, pages 23-30, Washington, DC, August 1995.

[158] J. C. Tannehill, D. A. Anderson, and R. H. Pletcher. Computational Fluid Mechan
ics and Heat Transfer. Series in Computational and Physical Processes in Fluid

232

Mechanics and Thermal Sciences. Hemisphere Pub. Corp., Taylor & Francis, Wash
ington, DC, 2nd edition, 1997.

[159] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practi
cal Introduction. Springer-Verlag, New York, 2nd edition, 1999.

[160] S. Tu. Development of a Solution Adaptive Cartesian-Grid Solver for 2-D Ther
mochemical Nonequilibrium Flows. PhD thesis, Georgia Institute of Technology,
Atlanta, GA, November 2001.

[161] H. S. Udaykumar, R. Mittal, P. Rampunggoon, and A. Khanna. A Sharp Interface
Cartesian Grid Method for Simulating Flows with Complex Moving Boundaries.
Journal of Computational Physics, 174(1):345-380, 2001.

[162] W. R. Van Dalsem and J. L. Steger. Finite-Difference Simulation of Transonic Sep
arated Flow Using a Full Potential-Boundary Layer Interaction Approach. In AIAA
16th Fluid and Plasma Dynamics Conference, Danvers, MA, July 1983. AIAA-83-
1689.

[163] M. Van Dyke. Higher-Order Boundary-Layer Theory. In W. R. Sears and
M. Van Dyke, editors, Annual Review of Fluid Mechanics, volume 1, pages 265-
292. Annual Reviews, Inc., Palo Alto, CA, 1969.

[164] B. van Leer. Towards the Ultimate Conservative Difference Scheme III: Upstream
Centered Finite Difference Schemes for Ideal Compressible Flow. Journal of Com
putational Physics, 23:263-275, 1977.

[165] B. van Leer. Towards the Ultimate Conservative Difference Scheme N: A New
Approach to Numerical Convection. Journal of Computational Physics, 23:276-
299, 1977.

[166] B. van Leer. Towards the Ultimate Conservative Difference Scheme V: A Second
Order Sequel to Godunov's Method. Journal of Computational Physics, 32:101-
136, 1979.

[167] B. van Leer, C. H. Tai, and K. G. Powell. Design of Optimally-Smoothing Multi
Stage Schemes for the Euler Equations. In 9th AIAA Computational Fluid Dynamics
Conference, Washington, DC, July 1989. AIAA-89-1933-CP.

[168] V. N. Vatsa and J. E. Carter. Analysis of Airfoil Leading Edge Separation Bubbles. In
AIAA 21st Aerospace Sciences Meeting, Reno, NV, January 1983. AIAA-83-0300.

[169] V. Venkatakrishnan. On the Accuracy of Limiters and Convergence to Steady State
Solutions. In AIAA 31st Aerospace Sciences Meeting, Reno, NV, January 1993.
AIAA-93-0880.

233

[170] V. Venkatakrishnan. Parallel Implicit Unstructured Grid Euler Solvers. ICASE Re
port 94-04, ICASE, Hampton, VA, January 1994. NASNCR-191594.

[171] V. Venkatakrishnan. Implicit Schemes and Parallel Computing in Unstructured Grid
CFD. ICASE Report 95-28, ICASE, Hampton, VA, April1995. NASNCR-195071.

[172] V. Venkatakrishnan. A Perspective on Unstructured Grid Flow Solvers. ICASE
Report 95-03, ICASE, Hampton, VA, January 1995. NASNCR-195025.

[173] V. Venkatakrishnan and H. D. Simon. A MIMD Implementation of a Parallel Euler
Solver for Unstructured Grids. The Journal of Supercomputing, 6(2): 117-137, June
1992.

[174] tv1. \'inokur. ConscrvTation Equations of Gasd)lnamics in Curvilinear Coordinate
Systems. Journal of Computational Physics, 14(1):105-125, 1974.

[175] R. G. Voigt. Where are the Parallel Algorithms? ICASE Report 85-02, ICASE,
Hampton, VA, January 1985. NASNCR-172516.

[176] D. Voorhies. Space-Filling Curves and a Measure of Coherence. In J. Arvo, editor,
Graphic Gems II, The Graphic Gem Series, pages 26-30. Academic Press, Inc., New
York, NY, 1991.

[177] R. W. Walters and J. L. Thomas. Advances in upwind relaxation methods. In A. K.
Noor and J. T. Oden, editors, State-of-the-Art Surveys on Computational Mechanics,
pages 145-183. The American Society of Mechanical Engineers, 1989.

[178] G. Wang, L. N. Sankar, and H. Tadghaghi. Prediction of Rotorcraft Noise with
a Low-Dispersion Finite Volume Scheme. AIAA Journal, 38(3):395--401, March
2000.

[179] P. Wang. Massively Parallel Finite Volume Computation of Three-Dimensional
Thermal Convective Flows. Advances in Engineering Software, 29(3-6):307-315,
1998.

[180] Z. J. Wang. A Fast Nested Multi-Grid Viscous Flow Solver for Adaptive Carte
sian/Quad Grids. In 27th AIAA Fluid Dynamics Conference, New Orleans, LA, June
1996. AIAA-96-2091.

[181] Z. J. Wang. A Global BMRES/Multi-Grid Scheme for an Adaptive Cartesian/Quad
Grid Flow Solver On Distributed Memory Machines. In 13th AIAA Computational
Fluid Dynamics Conference, Snowmass Village, CO, June 1997. AIAA-96-2091.

[182] Z. J. Wang. A Quadtree-Based Adaptive Cartesian/Quad Grid Flow Solver for
Navier-Stokes Equations. Computers & Fluids, 27(4):529-549, 1998.

234

[183] z. J. Wang andY. Sun. A Curvature-Based Wall Boundary Condition for the Euler
Equations on Unstructured Grids. In 40th Aerospace Sciences Meeting and Exhibit,
Reno, NV, January 2002. AIAA. AIAA-2002-0966.

[184] B. Wedan and J. C. South, Jr. A Method for Solving the Transonic Full-Potential
Equation for General Configurations. In AIAA 6th Computational Fluid Dynamics
Conference, Danvers, MA, July 1983. AIAA-83-1889.

[185] Y. Wenren, M. Fan, W. Dietz, G. Hu, C. Braun, and J. Steinhoff. Efficient Eulerian
Computation of Realistic Rotorcraft Flows Using Vorticity Confinement- A Survey
of Recent Results. In AIAA 39th Aerospace Sciences Meeting, Reno, NV, January
2001. AIAA-2001-0996.

[186] F. M. White. Viscous Fluid Flow. McGraw-Hill Series in Mechanical Engineering.
McGraw-Hill, New York, 2nd edition, 1991.

[187] Z.-N. Wu and H. Zou. Grid Overlapping for Implicit Parallel Computation of Com
pressible Flows. Journal of Computational Physics, 157(1):2-43, 2000.

[188] G. Yang, D. M. Causon, D. M. Ingram, R. Saunders, and P. Batten. A Cartesian Cut
Cell Method for Compressible Flows Part A: Static Body Problems. The Aeronauti
cal Journal, 101(2):47-56, February 1997.

[189] G. Yang, D. M. Causon, D. M. Ingram, R. Saunders, and P. Batten. A Cartesian
Cut Cell Method for Compressible Flows Part B: Moving Body Problems. The
Aeronautical Journal, 101(2):57-65, February 1997.

[190] T. Ye, R. Mittal, H. S. Udaykumar, and W. Shyy. An Accurate Cartesian Grid
Method for Viscous Incompressible Flows with Complex Immersed Boundaries.
Journal of Computational Physics, 156(2):209-240, 1999.

[191] T. Ye, R. R. Mittal, H. S. Udaykumar, and W. Shyy. A Cartesian Grid Method for
Viscous Incompressible Flows with Complex Immersed Boundaries. In AIAA 3rd
Weakly Ionized Gases Workshop, Norfolk, VA, November 1999. AIAA. AIAA-99-
3312.

[192] H. Y. Yoon, S. Koshizuka, andY. Oka. Particle-Gridless Hybrid Method for Incom
pressible Flows. International Journal for Numerical Methods in Fluids, 30(4):407-
424, 1999.

[193] H. Youngren and M. Drela. Viscous/Inviscid Method for Preliminary Pesign of Tran
sonic Cascades. In 27thAIAA, SAE, ASME, andASEE, Joint Propulsion Conference,
Sacramento, CA, June 1991. AIAA-91-2364.

[194] H. Zhang, M. Reggio, J. Y. Trepanier, and R. Camarero. Discrete Form of the GCL
for Moving Meshes and Its Implementation in CFD Schemes. Computers & Fluids,
22(1):9-23, 1993.

235

VITA

David D. Marshall was born in , , on . He re

ceived his B.S. degree in Mechanical Engineering with Aerospace Interests from Worcester

Polytechnic Institute, Worcester, 1v1assachusetts, USA ln F~bruary 1994. He then entered

the School of Aerospace Engineering at Georgia Institute of Technology in Atlanta, Geor

gia, USA and received his M.S. degree in Aerospace Engineering in August of 1995. After

leaving Georgia Tech, he spent four years working, first at Lockheed-Martin Management

& Data Systems in Springfield, Virginia, USA for one year and then at Avtec Systems in

Fairfax, Virginia until returning to Georgia Tech in September 1999 to enter the Aerospace

Engineering doctoral program.

236

