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Modeling primary breakup: A three-dimensional
Eulerian level set/vortex sheet method for

two-phase interface dynamics

By M. Herrmann

1. Motivation and objectives

Atomization processes play an important role in a wide variety of technical applications
and natural phenomena, ranging from inkjet printers, gas turbines, direct injection IC-
engines, and cryogenic rocket engines to ocean wave breaking and hydrothermal features.
The atomization process of liquid jets and sheets is usually divided into two consecutive
steps: the primary and the secondary breakup. During primary breakup, the liquid jet or
sheet exhibits large scale coherent structures that interact with the gas-phase and break
up into both large and small scale drops. During secondary breakup, these drops break
up into ever smaller drops that finally may evaporate.
Usually, the atomization process occurs in a turbulent environment, involving a wide

range of time and length scales. Given today’s computational resources, the direct nu-
merical simulation (DNS) of the turbulent breakup process as a whole, resolving all
physical processes, is impossible, except for some very simple configurations. Instead,
models describing the physics of the atomization process have to be employed.
Various models have already been developed for the secondary breakup process. There,

it can be assumed that the characteristic length scale ` of the drops is much smaller than
the available grid resolution ∆x and that the liquid volume fraction in each grid cell Θl

is small, see Fig. 1. Furthermore, assuming simple geometrical shapes of the individual
drops, like spheres or ellipsoids, the interaction between these drops and the surrounding
fluid can be taken into account. Statistical models describing the secondary breakup
process in turbulent environments can thus be derived (O’Rourke 1981; O’Rourke &
Amsden 1987; Reitz 1987; Reitz & Diwakar 1987; Tanner 1997).
However, the above assumptions do not hold true for the primary breakup process.

Here, the turbulent liquid fluid interacts with the surrounding turbulent gas-phase on
scales larger than ∆x, resulting in highly complex interface dynamics and individual grid
cells that can be fully immersed in the liquid phase, compare Fig. 1. An explicit treatment
of the phase interface and its dynamics is therefore required. To this end, we propose to
follow in essence a Large Eddy Simulation (LES) type approach: all interface dynamics
and physical processes occurring on scales larger than the available grid resolution ∆x
shall be fully resolved and all dynamics and processes occurring on subgrid scales shall
be modeled. The resulting approach is called Large Surface Structure (LSS) model.
In order to develop such a LSS model for the turbulent primary breakup process,

one potential approach is to start off from a fully resolved description of the interface
dynamics using the Navier-Stokes equations and include an additional source term in the
momentum equation due to surface tension forces (Brackbill et al. 1992). In order to track
the location, motion, and topology of the phase interface, the Navier-Stokes equations are
then coupled to one of various possible tracking methods, for example marker particles
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Figure 1. Breakup of a liquid jet.

(Brackbill et al. 1988; Rider & Kothe 1995; Unverdi & Tryggvason 1992), the Volume-of-
Fluid method (Noh & Woodward 1976; Kothe & Rider 1994; Gueyffier et al. 1999), or the
level set method (Osher & Sethian 1988; Sussman et al. 1994, 1998). Then, introducing
ensemble averaging or spatial filtering results in unclosed terms that require modeling
(Brocchini & Peregrine 2001a,b). Unfortunately, the derivation of such closure models is
not straightforward and, hence, has not been achieved yet. This is in part due to the fact
that, with the exception of the surface tension term, all other physical processes occurring
at the phase interface itself, like for example stretching, are not described by explicit
source terms. Instead, they are hidden within the interdependence between the Navier-
Stokes equations and the respective interface tracking equation. Thus, a formulation
containing the source terms explicitly could greatly facilitate any attempt to derive the
appropriate closure models.
To this end, a novel three-dimensional Eulerian level set/vortex sheet method is pro-

posed. Its advantage is the fact that it contains explicit source terms for each individual
physical process that occurs at the phase interface. It thus constitutes a promising frame-
work for the derivation of the LSS subgrid closure models.
This paper is divided into four parts. First, the level set/vortex sheet method for three-

dimensional two-phase interface dynamics is presented. Second, the LSS model for the
primary breakup of turbulent liquid jets and sheets is outlined and all terms requiring
subgrid modeling are identified. Then, preliminary three-dimensional results of the level
set/vortex sheet method are presented and discussed. Finally, conclusions are drawn and
an outlook to future work is given.

2. The level set/vortex sheet method

The aim of the level set/vortex sheet method is to describe the dynamics of the phase
interface Γ between two inviscid, incompressible fluids 1 and 2, as shown in Fig. 2. In this
case, the velocity ui on either side i of the interface Γ is determined by the incompressible
Euler equations, given here in dimensionless form,

∇ · ui = 0 , (2.1)

∂ui
∂t
+ (ui · ∇)ui = −

1

ρi
∇p , (2.2)
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Figure 2. Phase interface definition.

subjected to the boundary conditions at the interface Γ,

[(u1 − u2) · n]
∣∣∣
Γ
= 0 (2.3)

[n× (u2 − u1)]
∣∣∣
Γ
= η (2.4)

[p2 − p1]
∣∣∣
Γ
=
1

We
κ (2.5)

and at infinity,

lim
y→±∞

ui = ±u∞ . (2.6)

Here, n is the interface normal vector, η is the vortex sheet strength, and κ is the local
curvature of Γ. The Weber number is defined as

We = ρrefu
2
ref/ΣLref , (2.7)

where Σ is the surface tension coefficient and ρref , uref , and Lref are the reference den-
sity, velocity, and length, respectively. An interface subjected to the above boundary
conditions is called a vortex sheet (Saffman & Baker 1979).
The partial differential equation describing the evolution of the vortex sheet strength η

can be derived by combining the Euler equations, Eqs. (2.1) and (2.2), with the boundary
conditions at the interface, Eqs. (2.3)-(2.5), resulting in (Pozrikidis 2000)

∂η

∂t
+ u · ∇η = −n× [(η × n) · ∇u] + n [(∇u · n) · η]

+
2(A+ 1)

We
(n×∇κ) + 2An× a . (2.8)

Here, A = (ρ1 − ρ2)/(ρ1 + ρ2) is the Atwood number and a is the average acceleration
of fluid 1 and fluid 2 at the interface. The major advantage of Eq. (2.8), as compared to
a formulation based on the Euler equations, is the fact that Eq. (2.8) contains explicit
local individual source terms on the right-hand side describing the physical processes at
the interface. These are, from left to right, two stretching terms, a surface tension term
T σ, and a density difference term.
In addition to the evolution of the local vortex sheet strength, Eq. (2.8), the location

and motion of the phase interface itself has to be known. To this end, vortex sheets are
typically solved by a boundary integral method within a Lagrangian framework where
the phase interface is tracked by marker particles (Baker et al. 1982; Pullin 1982; Hou
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et al. 1997, 2001; Rangel & Sirignano 1988). Marker particles allow for highly accurate
tracking of the phase interface motion in a DNS. However, the introduction of ensemble
averaging and spatial filtering of the interface topology is not straightforward and hence
a strategy for the derivation of appropriate LSS subgrid closure models is not directly
apparent.
Level sets, on the other hand, have been successfully applied to the derivation of closure

models in the field of premixed turbulent combustion (Peters 1999, 2000). Thus, instead
of using marker particles to describe the location and motion of the phase interface, here,
the interface is represented by an iso-surface of the level set scalar field G(x, t), as shown
in Fig. 2. Setting

G(x, t)|Γ = G0 = const , (2.9)

G(x, t) > G0 in fluid 1, and G(x, t) < G0 in fluid 2, an evolution equation for the scalar
G can be derived by simply differentiating Eq. (2.9) with respect to time,

∂G

∂t
+ u · ∇G = 0 . (2.10)

This equation is called the level set equation (Osher & Sethian 1988). Using the level set
scalar, geometrical properties of the interface, like its normal vector and curvature, can
be easily expressed as

n =
∇G

|∇G|
, κ = ∇ · n . (2.11)

Strictly speaking, Eqs. (2.8) and (2.10) are valid only at the location of the inter-
face itself. However, to facilitate the numerical solution of both equations in the whole
computational domain, η is set constant in the interface normal direction,

∇η · ∇G = 0 , (2.12)

and G is chosen to be a distance function away from the interface,

|∇G|
∣∣∣
G6=G0

= 1 . (2.13)

Equations (2.8) and (2.10) are coupled by the self-induced velocity u of the vortex
sheet. To calculate u, the vector potential ψ is introduced,

∆ψ = ω . (2.14)

Here, the vorticity vector ω is calculated following a vortex-in-cell type approach (Chris-
tiansen 1973; Cottet & Koumoutsakos 2000)

ω(x) =

∫

V

η(x′)δ(x− x′)δ (G(x′)−G0) |∇G(x
′)|dx′ , (2.15)

where δ is the delta-function. Then, u can be calculated from

u(x) =

∫

V

δ(x− x′) (∇×ψ) dx′ . (2.16)

In summary, Eqs. (2.8), (2.10), and (2.14) - (2.16) describe the three-dimensional two-
phase interface dynamics and constitute the level set/vortex sheet method.

2.1. Numerical methods

Numerically, Eqs. (2.8) and (2.10) are solved in a narrow band (Peng et al. 1999) by
a third-order WENO scheme (Jiang & Peng 2000) using a third-order TVD Runge-
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Figure 3. LSS interface definitions.

Kutta time discretization (Shu & Osher 1989). The redistribution of η (2.12) is solved
by a Fast Marching Method (Sethian 1996; Adalsteinsson & Sethian 1999), whereas the
reinitialization of G (2.13) is solved by an iterative procedure (Sussman et al. 1994;
Peng et al. 1999). The interested reader is referred to Herrmann (2002) for a detailed
description of the numerical methods employed in the level set/vortex sheet method.

3. The LSS model for turbulent primary breakup

The basic idea of the LSS model is to split the treatment of the primary breakup
process into two parts. All phase interface dynamics occurring on scales larger than
the local grid size are explicitly resolved and tracked by a level set approach, whereas
interface dynamics occurring on subgrid scales are described by an appropriate subgrid
model. Furthermore, the LSS subgrid model has to separate out all broken off subgrid
scale liquid drops and transfer them to a secondary breakup model.

The level set equation describing the interface location and motion on the resolved
scales can be derived by first introducing appropriate interface based filters (Oberlack
et al. 2001) into the level set equation (2.10), see Fig. 3,

∂Ĝ

∂t
+ û · ∇Ĝ = 0 . (3.1)

Here, ·̂ denotes quantities on the resolved (filter) scale. Furthermore, the mass transfer
rate ṁp into the secondary breakup model has to be taken into account,

ṁp = ρ1spÂG0
=
4

3
πρ1

∂

∂t

∫ ∆x

0

P (D)D3dD , (3.2)

where sp is the subgrid primary breakup velocity, ÂG0
is the local surface area of the

resolved interface, and P (D) is the droplet diameter number distribution,
∫ ∞

0

P (D) = N , (3.3)

where N is the total number of drops. Then, the resolved scale level set equation reads

∂Ĝ

∂t
+ (û+ spn̂) · ∇Ĝ = 0 , (3.4)
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where n̂ is the normal vector of the resolved scale interface,

n̂ =
∇Ĝ

|∇Ĝ|
. (3.5)

To describe the phase interface dynamics on the resolved scale, their effect on the flow
field has to be taken into account by an additional source term T in the momentum
equation,

T = Σκ̂δ(Ĝ−G0)n̂+ T SGS . (3.6)

Here, the first term on the right-hand side describes the effect of surface tension forces
due to the local curvature κ̂ of the resolved scale interface, whereas the second term,
T SGS, accounts for the effect of the subgrid scale surface tension forces on the resolved
scale flow field.
Thus, the yet unclosed subgrid terms of the LSS model requiring modeling are the

subgrid primary breakup velocity sp, the droplet diameter number distribution P (D),
and the subgrid scale surface tension effect T SGS. As previously indicated, these subgrid
terms are to be derived from the level set/vortex sheet method. Performing DNS of
the primary breakup of liquid surfaces and sheets in turbulent environments will help
to identify characteristic regimes of the turbulent primary breakup and their dominant
physical processes. These can then be quantified using the explicit source terms in the
η-equation (2.8), thus providing guidelines for the derivation of appropriate LSS subgrid
models.

4. Results

In order to both validate the three-dimensional level set/vortex sheet method and to
demonstrate its ability to perform DNS of the primary breakup process, the results of two
different cases are presented. First, the calculated oscillation periods of liquid columns
and spheres are compared to theoretical results. Then, the breakups of a randomly per-
turbed liquid surface and sheet are presented.

4.1. Oscillating columns and spheres

To validate the proposed level set/vortex sheet method, the calculated oscillation periods
T of liquid columns and spheres of mean radius R = 0.25, center xc = (0.5, 0.5, 0.5),
amplitude ε = 0.05R, and Atwood number A = 0 are compared to theoretical results
(Lamb 1945). The initial vortex sheet strength in both cases is set to

η(x, t = 0) = 0 . (4.1)

All calculations are performed in a unit sized box resolved by an equidistant cartesian
grid of 128× 128 and 128× 128× 128 nodes, respectively.
Figure 4 shows the distribution of the surface tension term T σ of the η-equation (2.8)

in the x-, y-, and z-direction,

T σ =
2(A+ 1)

We
(n×∇κ) , (4.2)

for the oscillating sphere of mode number n = 5 and Weber number We = 10 calculated
at t = 0. As the shape of the sphere indicates, T σ in the x-direction is a factor of roughly
four higher than T σ in the other two directions, leading to the predominant oscillation
in the y-z-plane.
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Figure 4. Distribution of the surface tension term T σ in the x-direction (top), y-direction
(left), and z-direction (right) for the mode n = 5 oscillating sphere at t = 0 and We = 10.

Figure 5 depicts the comparison of the oscillation period for the oscillating columns
on the left-hand side and the oscillating spheres on the right-hand side for two different
Weber numbers. As can be clearly seen, agreement between simulation and theory is very
good.

4.2. Liquid surface and sheet breakup

To demonstrate the capability of the proposed level set/vortex sheet method to simulate
the primary breakup process, the temporal evolution of both a randomly perturbed
liquid surface and sheet are simulated. In the case of the liquid surface, the on average
flat interface located at z = 0 is perturbed in the z-direction by a Fourier series of 64
sinusoidal waves in both the x- and y-direction with random amplitude 0 < ε < 0.01 and
random phase shift. In the case of the liquid sheet, the two on average flat interfaces are
located at z = −B/2 and z = +B/2 and are again perturbed by two Fourier series of 64
sinusoidal waves. The thickness of the liquid sheet is set to B = 0.1.
The initial vortex sheet strength for the liquid surface is set to

η(x, t = 0) = (−1, 0, 0) (4.3)

and to

η(x, t = 0) =

{
(−1, 0, 0) : z > 0
( 1, 0, 0) : z ≤ 0 ,

(4.4)
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Figure 5. Oscillation period T of liquid columns (left) and spheres (right) as a function of mode
number n for varying Weber numbers We. Lines denote theoretical and symbols computational
results.

in the liquid sheet case. Both, the surface and the sheet simulation were performed in a
x- and y-direction periodic box of size [0, 1]× [0, 1]× [−1, 1] resolved by a cartesian grid
of 64 × 64 × 128 equidistant nodes. In both simulations, the Atwood number is A = 0.
The Weber number in the surface simulation is We = 500 and the Weber number in the
sheet simulation based on the sheet thickness is WeB = 100.
As depicted in Fig. 6, the surface shows an initial growth of two-dimensional Kelvin-

Helmholtz instabilities (t = 1). These continue to grow (t = 3) and form three-dimensional
structures (t = 5) resulting in elongated fingers (t = 6.5) that finally initiate breakup
(t = 8.0).
The liquid sheet, depicted in Fig. 7, also exhibits the initial formation of two-dimensional

Kelvin-Helmholtz instabilities (t = 1) that continue to grow (t = 3) until the liquid film
gets too thin and ruptures (t = 5). Individual fingers are formed that extend mostly in
the transverse direction (t = 8) and continue to break up into individual drops of varying
sizes (t = 12).

5. Conclusions and future work

A Eulerian level set/vortex sheet method has been presented that allows for the three-
dimensional calculation of the phase interface dynamics between two inviscid and in-
compressible fluids. Results obtained with the proposed method for oscillating columns
and spheres show very good agreement with theoretical predictions. Furthermore, the
applicability of the method to the primary breakup process has been demonstrated by
simulations of the breakup of both a liquid surface and a liquid sheet.
In addition, the LSS model for turbulent primary breakup has been outlined, and all

terms requiring subgrid modeling have been identified. The proposed level set/vortex
sheet method has the advantage that it allows for the detailed study of each individual
physical process occurring at the phase interface. It thus provides a promising framework
for the derivation of the LSS subgrid models.
Future work will focus on including the effect of non-zero Atwood numbers and on

coupling of the level set/vortex sheet method to an outside turbulent flow field. Also, the
level set/vortex sheet method will be parallelized making use of the new domain decom-
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Figure 6. Temporal evolution of the three-dimensional liquid surface breakup, A = 0,
We = 500.

position parallelization of the Fast Marching Method presented in Herrmann (2003). This
will allow for efficient DNS of the primary breakup process to help identify the different
regimes of turbulent primary breakup and their dominant physical processes, facilitating
the derivation of the LSS subgrid models. Finally, combining the LSS model to spray
models describing the secondary breakup will allow for the first LES of the turbulent
atomization process as a whole.
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Figure 7. Temporal evolution of the three-dimensional liquid sheet breakup, A = 0,
WeB = 100.
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