C/SIC LIFE PREDICTION FOR PROPULSION APPLICATIONS

Stanley R. Levine, Michael J. Verrilli, Elizabeth J. Opila,
Michael C. Halbig*, Anthony M. Calomino, and David J. Thomas”

NASA Glenn Research Center, Cleveland, OH
* Army Research Laboratory, Cleveland, OH
A Ohio Aerospace Institute, Brookpark, OH

ABSTRACT

Accurate life prediction is critical to successful use of ceramic matrix composites (CMC). The
tools to accomplish this are immature and not oriented toward the behavior of carbon fiber reinforced
silicon carbide (C/SiC), the primary system of interest for many reusable and single mission launch
vehicle propulsion and airframe applications. This paper describes an approach and progress made to
satisfy the need to develop an integrated life prediction system that addresses mechanical durability and
environmental degradation of C/SiC. Issues such as oxidation, steam and hydrogen effects on material
behavior are discussed. Preliminary tests indicate that steam wiil aggressively remove SiC seal coat and
matrix in line with past experience. The kinetics of water vapor reaction with carbon fibers is negligible at
600°C, but comparable to air attack at 1200°C. The mitigating effect of steam observed in fiber oxidation
studies has also been observed in stress rupture tests. Detailed microscopy of oxidized specimens is
being carried out to develop the oxidation model. Carbon oxidation kinetics are reaction controlled at
intermediate temperatures and diffusion controlled at high temperatures (~1000°C). Activation energies
for T-300 and interface pyrolytic carbon were determined as key inputs to the oxidation model. Crack
opening as a function of temperature and stress was calculated. Mechanical property tests to develop
and verify the probabilistic life model are very encouraging except for residual strength prediction. Gage
width is a key variable governing edge oxidation of seal coated specimens. Future efforts will include
architectural effects, enhanced coatings, biaxial tests, and LCF. Modeling will need to account for
combined effects.
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Demanding Environments Push CMC Materials Limits

PROPULSION

+ High temperatures (~ 3500R)
« Low and intermediate temperatures
can also be a problem

+ High pressures (e.g. to ~ 6000psi)
+ Severe chemical environments
+ Steam
« Oxygen rich or fuel rich
« Hydrogen
+ High velocity
+ Exposure cycles from minutes in
rockets to ~ hours in some
combined cycle approaches
+ Severe thermal transients and
gradients
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¢+ Primary goal:
e Develop and verify a robust methodology for confident
determination of the reusable life capability of C/SiC
space propulsion hardware.

¢+ Secondary goals:

 To ground the methodology with mechanism-based
descriptions of mechanically and environmentally

induced damage.

e To expand the database for C/SiC.

e To directly support flight experiments which use CMC
propulsion components.
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+ Plain weave C/SiC with seal coat
¢+ Enhanced with seal coat

e plain weave

e 5 harness satin weave

 w/wo CBS coating



Z C/SiC Life Controlled by Complex,
NG 3 Interactive Mechanisms
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¢ Environmental
¢ surface recession due to moisture
e interface and fiber oxidation

¢+ Mechanical
e strains due to thermal and mechanical loads
e cycling of loads (LCF, HCF)
e Creep



Crack Opening Determined by Load
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Temperature Dependent Carbon Fiber
Oxidation Mechanism
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FY'03 effort:
+ Activation energy and a pre-exponential constant for the Arrhenius reaction rate
equation were obtained.

« Thermogravimetric analysis (TGA) tests were conducted for T-300 carbon
fiber in flowing oxygen focusing on 6 temperatures in the reaction controlled
regime (450°C - 600°C).

« Values are used as inputs into the model.

+ Strength reduction correlated with a quantified loss of carbon.

« 12 C/SiC tensile coupons were exposed to furnace oxidation exposures in
air at temperatures of 600°C and 800°C.

« Coupons were allowed to oxidize until 4-20% composite weight loss.
+ Residual tensile strength tests were conducted.

+ Oxidation Model has been optimized.
« More accurate inputs: geometry and tortuosity factors to match tensile
coupons, to allow for different edge effects, and oxygen ingress into
individual carbon fiber tows.

« Current efforts focus on matching the model to the experimental results.
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Residual Composite Properties and Weight Loss

Due to Ox_idatinn
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Z Summary of Mechanical Testing of C/SiC
N G T in Suppur_t of Life Model D_evelupment
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Tests performed to date on plain weave C/SiC
+ Stress-rupture tests under various environments (steam, air, vacuum).
+ Rupture and tensile tests at 800 and 1200°C:

« Twenty tensile tests at in a reduced partial pressure of oxygen.
Twenty-six stress-rupture tests in a reduced partial pressure of oxygen.
Twenty stress-rupture tests at a single stress.

Twenty interrupted stress-rupture tests to measure residual strength.
Stress-rupture testing of wide specimens to assess dependency of
specimen area on life.
Testing under way or completed in CY 2003
+ Test thick specimens under rupture conditions

Quantify specimen volume effects in material that is 2X thicker than material

tested to date.
¢+ Testing of Enhanced C/SiC and CBS coated materials and 5 HS weave

Enhanced C/SiC.
« Compare to standard C/SiC.

Determine rupture behavior of Enhanced C/SiC and CBS-coated materials in
different environments (air, steam, 1000ppm O/Ar).




Stress Rupture Life Is a Function of Specimen Width

NGLT for C/SiC
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+ Material volume effects need to be incorporated in life prediction
models.

+ Average life at 800°C is about 1.5 times longer than at 1200°C.

+ 17.8 mm wide specimens resulted in about a 2.5 increase in life
compared to 10.1 mm wide specimens.




NGZT C/SiC Oxidation Damage Rates
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NG _Z ] Edge Damage Effects Insignificant for Large Panels
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350 4

300 -

250 -

200

150

100 -

Stress Rupture Lives of Various C/SiC Materials

(stress = 207 MPa (30 ksi), 1000 ppm O,/Ar)

m 800 °C
B 1200 °C

65.41

© 318.99

113.18

13.68

standard C/SiC

enhanced C/SiC enhanced C/SiC with
CBS
Material Type



NG Z | Effect of Environment on Stress Rupture of CfSlC
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NG LT  T-300 Carbon Fiber Oxidation Kinetics
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At 600°C in steam, weight loss is negligible, while in air, rapid
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Z Probabilistic Residual Strength (PRS)
NGLT Modeling Approach
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Nc;ZT PRS Model Predicts Behavior at 1200°C
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PRS Model Predictions at 800°C
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NG 17- Status of Steam Environment Model

BT G (L s T CHOUCG Y

+ Objective: Determine SiC recession rate as a function of P, T,
gas velocity, gas chemistry
e 3 O/F's between 1 and 2
e 3 pressures: 100, 500, 1000 psi
e Thin film thermocoupled samples
e Gas velocity ~ 180 m/s (600 ft/s)
» Weight, recession measured at intervals for a total
exposure time of up to 1 hour at each condition.
¢+ FY’03: Studied recession of SiC coated C/SiC under simulated
rocket engine environments.
¢ FY'04:
» Complete recession study
« Compare results to SiC recession model predictions
developed for aircraft engine applications



Subsonic High-pressure Coupon Test Configuration
Used for Determination Of SiC Recession
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Z SiC Coated C/SiC After Exposure
NGLT to H, / O, Combustion
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0.625 mm (25 mil) thick SiC seal coat
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SiC Coated C/SiC Recession Measured As Thickness at Leading Edge
N G : T After Specimen Exposure to Products of H, / O, Combustion
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NGZT Concluding Remarks

BT EENMERATOR LN TOOHMNOLOG ¥

¢+ Fiber oxidation dominates C/SiC behavior

+ Stress makes fibers accessible

¢ Edge effects diminish as specimen width increases
¢ Coatings and inhibitors greatly extend life

+ Water vapor oxidizes carbon like air at high temperature,
but is less aggressive at low temperature

+ Water vapor strips protective silica scale rapidly at high
temperature and water vapor partial pressure.
Environmental barrier coating is required.

+ Much more effort will be required to develop a physics
based life prediction model, and the physics will be
unique to a given set of fiber coating, matrix, and external
coating constituents
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