PSEUDO LINEAR ATTITUDE DETERMINATION OF SPINNING SPACECRAFT

Richard R. Harman† and Itzhack Y. Bar-Itzhack*

This paper presents the overall mathematical model and results from pseudo linear recursive estimators of attitude and rate for a spinning spacecraft. The measurements considered are vector measurements obtained by sun-sensors, fixed head star trackers, horizon sensors, and three axis magnetometers. Two filters are proposed for estimating the attitude as well as the angular rate vector. One filter, called the \(q \)-Filter, yields the attitude estimate as a quaternion estimate, and the other filter, called the \(D \)-Filter, yields the estimated direction cosine matrix. Because the spacecraft is gyro-less, Euler's equation of angular motion of rigid bodies is used to enable the estimation of the angular velocity. A simpler Markov model is suggested as a replacement for Euler's equation in the case where the vector measurements are obtained at high rates relative to the spacecraft angular rate.

Extended Abstract

\(q \)-Filter Dynamics

The first dynamics equation we consider is the following Euler's equation for the angular motion of a spacecraft (SC). It is [1, pp. 522, 523]

\[
\dot{\omega} = I^{-1}[(I\omega + h) \times \omega] + I^{-1}(T - \dot{h})
\]

(1)

where \(I \) is the SC inertia matrix, \(\omega \) is the angular velocity vector, \(h \) is the angular momentum of the momentum wheels, and \(T \) is the external torque acting on the SC. The symbol \([a \times] \) denotes the cross product matrix of the general vector \(a \). Attitude is represented by the attitude quaternion whose kinematic equation is [1, p. 512]

† Aerospace Engineer, Tel: 301-286-5125, Fax: 301-286-0369
Flight Dynamics Analysis Branch, Code 595
Mission Engineering and Systems Analysis Division
NASA-GSFC Greenbelt, MD 20771
Email: richard.r.harman@nasa.gov

* Sophie and William Shamban Professor of Aerospace Engineering
Technion-Israel Institute of Technology. Asher Space Research Institute
Haifa 32000, Israel. Tel: 972-4-829-3196, Fax: 972-4-829-2030.
Email: ibaritz@technion.ac.il
\[\dot{q} = \frac{1}{2} Q \omega \]

(2)

where

\[
Q = \begin{bmatrix}
q_4 & -q_3 & q_2 \\
q_3 & q_4 & -q_1 \\
-q_2 & q_1 & q_4 \\
-q_1 & -q_2 & -q_3
\end{bmatrix}
\]

(3)

In the q-filter we augment Eqs. (1) and (2) to form the following dynamics equation, which includes the noise terms

\[
\begin{bmatrix}
\dot{\omega} \\
\dot{q}
\end{bmatrix} = \begin{bmatrix}
\mathbf{I}^{-1}[(I\omega + h) \times] & 0 \\
\frac{1}{2} Q & 0
\end{bmatrix} \begin{bmatrix}
\omega \\
q
\end{bmatrix} + \begin{bmatrix}
\mathbf{I}^{-1}(T - \dot{h}) \\
0
\end{bmatrix} \begin{bmatrix}
w_\omega \\
w_q
\end{bmatrix}
\]

(4.a)

The unbiased white-noise vector \(w_\omega \) accounts for the inaccuracies in the modeling of the SC angular dynamics, and \(w_q \) is an unbiased white-noise vector that accounts for modeling errors in the quaternion kinematics.

When the measurements come at a relatively high frequency we may be able to replace the SC angular dynamics model in Eq. (4.a) with a simpler Markov model [2]. Consequently, Eq. (4.a) is replaced by the model

\[
\begin{bmatrix}
\dot{\omega} \\
\dot{q}
\end{bmatrix} = \begin{bmatrix}
-\tau & 0 \\
\frac{1}{2} Q & 0
\end{bmatrix} \begin{bmatrix}
\omega \\
q
\end{bmatrix} + \begin{bmatrix}
w_\omega \\
w_q
\end{bmatrix}
\]

(4.b)

where \(\tau \) is a diagonal matrix whose elements are the inverse of suitable time constants.

\textbf{q-Filter Measurement Model}

\[b_{jm} = \begin{bmatrix} 0_3 & H_j(r, q) \end{bmatrix} \begin{bmatrix} \omega \\ q \end{bmatrix} + v_{jb} \]

(5)

where
is the reference vector corresponding to vector sensor \(j \), and \(v_{j}\) is white noise.

D-Filter Dynamics

Using Euler’s equation and assuming the spacecraft attitude is represented as a direction cosine matrix, the dynamics take on the following form:

\[
\begin{bmatrix}
\dot{\mathbf{\omega}} \\
\dot{d}
\end{bmatrix} = \begin{bmatrix}
I^{-1}[(J\omega + h)\times] & 0 \\
D & 0
\end{bmatrix} \begin{bmatrix}
\mathbf{\omega} \\
d
\end{bmatrix} + \begin{bmatrix}
I^{-1}(T - \dot{h}) \\
0
\end{bmatrix} + \begin{bmatrix}
w_{\omega} \\
w_{d}
\end{bmatrix}
\] \tag{6}

where \(d^T = [d_1^T \quad d_2^T \quad d_3^T] \), \(d_j^T \) is the transpose of the \(j \)th column of the direction cosine matrix, and \(D = \begin{bmatrix}
[d_1 \times] \\
[d_2 \times] \\
[d_3 \times]
\end{bmatrix} \) where \([d_j \times]\) is the skew symmetric matrix for \(j \)th column of the direction cosine matrix.

The D-Filter Measurement Model

For vector measurements, \(b_{jm} = [d_1r_j \mid d_2r_j \mid d_3r_j] + v_{j,b} \) where \(r \) is the corresponding reference vector for the observation and \(d_i \) is the \(i \)th column of the direction cosine matrix. This equation can be rearranged to form the measurement model:
Conclusion

Both the q-Filter and the D-Filter will be tested against simulated data and a comparison will be made of the relative performance of each.

References
