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Abstract 

Recent Antarctic climate variability on month-to-month to interannual time scales is 
assessed through joint analysis of surface temperatures from satellite thermal infrared 
observations (TIR) and passive microwave brightness temperatures (TB). Although Tw 
data are limited to clear-sky conditions and TB data are a product of the temperature and 
emissivity of the upper - lm  of snow, the two data sets share significant covariance. This 
covariance is largely explained by three empirical modes, which illustrate the spatial and 
temporal variability of Antarctic surface temperatures. TB variations are damped 
compared to TIR variations, as determined by the period of the temperature forcing and 
the microwave emission depth; however, microwave emissivity does not vary 
significantly in time. Comparison of the temperature modes with Southern Hemisphere 
(SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature 
anomalies are predominantly controlled by the principal patterns of SH atmospheric 
circulation. The leading surface temperature mode strongly correlates with the Southern 
Annular Mode (SAM) in geopotential height. The second temperature mode reflects the 
combined influences of the zonal wavenumber-3 and Pacific South American (PSA) 
patterns in 500-hPa height on month-to-month timescales. ENS0 variability projects onto 
this mode on interannual timescales, but is not by itself a good predictor of Antarctic 
temperature anomalies. The third temperature mode explains winter warming trends, 
which may be caused by blocking events, over a large region of the East Antarctic 
plateau. These results help to place recent climate changes in the context of Antarctica's 
background climate variability and will aid in the interpretation of ice core paleoclimate 
records. 



Popular Science Summary 

The Antarctic region is known to be an anomalous region since cooling is observed in the 
eastern high latitude regions while the western region show predominant warming, 
especially in the Antarctic Peninsula. The variability of the climate in the region is 
studied on month-to-month to interannual time scales through joint analysis of surface 
temperatures from satellite thermal infraredobservations (TIR) and passive microwave 
brightness temperatures (TB). Although TIR data are limited to clear-sky conditions and 
TB data are a product of the temperature and emissivity of the upper - l m  of snow, the 
two data sets share significant covariance. This covariance is largely explained by three 
empirical modes, which illustrate the spatial and temporal variability of Antarctic surface 
temperatures. TB variations are damped compared to TIR variations, as determined by the 
period of the temperature forcing and the microwave emission depth; however, 
microwave emissivity does not vary significantly in time. Comparison of the temperature 
modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies 
demonstrates that Antarctic temperature anomalies are predominantly controlled by the 
principal patterns of SH atmospheric circulation. The leading surface temperature mode 
strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The 
second temperature mode reflects the combined influences of the zonal wavenumber-3 
and Pacific South American (PSA) patterns in 500-hPa height on month-to-month 
timescales. ENS0 variability projects onto this mode on interannual timescales, but is not 
by itself a good predictor of Antarctic temperature anomalies. The third temperature 
mode explains winter warming trends, which may be caused by blocking events, over a 
large region of the East Antarctic plateau. These results help to place recent climate 
changes in the context of Antarctica’s background climate variability and will aid in the 
interpretation of ice core paleoclimate records. 
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ABSTRACT 

Recent Antarctic climate variability on month-to-month to interannual time scales is 

assessed through joint analysis of surfice temperatures from satellite thermal infrared 

observations (TE) and passive microwave brightness temperatures (TB). Although TR data are 

limited to clear-sky conditions and TB data are a product of the temperature and emissivity of the 

upper - l m  of snow, the two data sets share significant covariance. This covariance is largely 

explained by three empirical modes, which illustrate the spatial and temporal variability of 

Antarctic surface temperatures. TB variations are damped compared to TR variations, as 

determined by the period of the temperature forcing and the microwave emission depth; 

however, microwave emissivity does not vary significantly in time. Comparison of the 

temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies 

demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal 

patterns of SH atmospheric circulation. The leading surface temperature mode strongly 

correlates with the Southern Annular Mode (SAM) in geopotential height. The second 

temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific South 

American (PSA) patterns in 500-hPa height on month-to-month timescales. ENS0 variability 

projects onto this mode on interannual timescales, but is not by itself a good predictor of 

Antarctic temperature anomalies. The third temperature mode explains winter warming trends, 

which may be caused by blocking events, over a large region of the East Antarctic plateau. 

These results help to place recent climate changes in the context of Antarctica’s background 

climate variability and will aid in the interpretation of ice core paleoclimate records. 
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1. Introduction 

A number of studies have shown considerable interest in identifllng and explaining 

Antarctic temperature trends over recent decades (Doran et al. 2002; Marshall 2002a; Thompson 

and Solomon 2002; Vaughan et al. 2001; van den Broeke 2000a). However, because the 

interannual variability of Antarctic climate is large, it is difficult to establish the significance of 

surface temperature trends from sparsely distributed weather stations on the continent @ng 

1994). Furthermore, relatively little is known about the spatial structure of surface temperature 

variations across Antarctica. Such knowledge would, for example, improve the interpretation of 

ice core paleoclimate records, which are usually obtained from locations that are remote from 

weather stations. 

Two important influences on Antarctica’s climate variability, the Southern Annular Mode 

( S A M )  and the El Niiio-Southern Oscillation (ENSO), have been discussed by several studies, 

and increased tendency for these circulation patterns to stay in a particular phase may be driving 

surface temperature trends in the Antarctic (Gillett and Thompson 2003; Bromwich et al. 2003; 

Ribera and Mann 2003; Thompson and Solomon 2002; Kwok and Comiso 2002). We are 

therefore motivated to pay particular attention to the influence of these atmospheric patterns on 

Antarctic surface temperature anomalies, which, in this study, are derived from passive 

microwave brightness temperature (TB) and thermal infrared satellite observations (TIR). 

In previous work with these data, Schneider and Steig (2002; hereafter SS02) presented a 

principal component analysis of TB data and showed evidence for the S A M  and ENSO-related 

signals in Antarctica. However, the TB data, taken alone, can be complicated to interpret because 

of the effects of non-stationary microwave emissivity variations due to variations in snow 
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characteristics, and occasional surface melt events. Kwok and Comiso (2002) examined newly 

available TR data, and also linked their variability to the SAM and ENSO. That study assumed, 

apriori, that indices of the SAM and ENS0 would have skill in describing surface temperature 

anomalies, but it found mixed results. For example, the Southern Oscillation Index does explain 

SST and sea-ice anomalies well over the Southern Ocean, but it does not have good skill at 

describing temperature anomalies on the Antarctic continent. Also, as Comiso (2000) and 

Shuman and Comiso (2002) discuss, the TR data set is biased by the absence of data for days 

with cloud cover. Shuman and Comiso (2002) was the first study to directly compare TIR and TB 

data, and generally found good agreement, but it only made comparisons at a few isolated 

locations with weather stations. Given the sparse distribution of Antarctic weather stations, it is 

desirable to further examine Antarctic climate with these satellite data. Other gridded products, 

such as the NCEP-NCAR Reanalysis data, are significantly less reliable for Antarctic climate 

studies, especially for surface conditions (Marshall 2002b; Hines et al. 2000). 

In this paper, we analyze the Tm and TB data in order to reduce uncertainties in 

interpreting either satellite data set alone. First, we evaluate the TR data with methods that 

optimize the amount of variance that can be explained, in parallel to SS02. Secondly, we use the 

two types of data to estimate the magnitude of microwave emissivity fluctuations. Finally, the 

data are evaluated jointly using Maximum Covariance Analysis (von Storch and Zweirs 1999). 

The results of this analysis increase confidence in the interpretation of both data sets in terms of 

surface temperature variability. We examine the relationship between surface temperature 

variability and atmospheric circulation through comparison of the empirical modes of the 

satellite data sets with NCEP-NCAR geopotential height data. We conclude that, overall, the 

S A M  explains the greatest variance in Antarctic temperatures. However, the second most 

4 



important influence is not simply described by ENSO, but rather, reflects a combination of 

patterns previously referred to as the Pacific South American and wavenumber-3 patterns. We 

also suggest that blocking may be responsible for driving strong temperature trends in a little- 

studied region (0"-90"E) of East Antarctica. 

2. Data 

Surface temperature (TR) fields, at monthly resolution from January 1982 to December 

1999, were derived for the Antarctic continent from thermal infrared channels of the Advanced 

Very High Resolution Radiometer (AVHRR) satellite as originally discussed by Comiso (2000). 

Comparison with available ground-based observations shows that TIR data provide good 

estimates of the near-surface air temperature (Ta), although they may be cooler than the actual T, 

under strong surface inversion conditions (Comiso 2000). In addition, monthly means of TR 

data have a clear-sky bias because infrared surface temperature estimates cannot be made in 

cloudy conditions. Since the net effect of clouds on surface temperature in the Antarctic is 

warming (e.g. King and Turner 1997), monthly cloud-free averages from the infrared 

observations tend to be cooler than in situ station observations by -0.5 K (Comiso 2000). 

Originally constructed on a 6.25 x 6.25 km polar stereographic grid, the TR data are averaged to 

a 25 x 25 km grid, so that they are co-registered with the passive microwave data. Anomalies are 

computed by subtracting the monthly climatology at each grid point. 

Passive microwave brightness temperature (TB) data used in this study are from the 37 

GHz vertically polarized channel on the Scanning Multichannel Microwave Radiometer 

(SMMR) and Special Sensor Microwave Imager (SSMA) instruments on satellites from the same 

time period as the TR data. An important advantage of Tg data over TR data is that they can be 

obtained in all weather conditions. As discussed by SS02, TB data cannot be interpreted as a 
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pure surface temperature signal, because the variability in microwave emissivity is not known. 

Attenuation of surface temperature changes through the penetration depth of the microwave 

emission-typically a few centimeters to a meter-means that amplitude is generally smaller for 

TB variations than T, variations. Surdyk (2002) emphasizes that changes in the snow 

temperature over the penetration depth have a much stronger influence on TB variability than do 

emissivity changes. Surface melting, because of enhanced absorption of microwaves by liquid 

water during the melting event, and enhanced scattering after the snow re-freezes (Zwally and 

Fiegles 1994), accounts for the largest emissivity-forced component of Tg. This was evaluated 

by SS02, and found to be important primarily along the coast and on the ice shelves. A melt- 

masked, monthly anomaly dataset of TB on the Antarctic continent is derived in the same manner 

as described by SS02 except where noted below. 

Previous site-specific studies have found good agreement between Tm, TB, and T, 

measurements made in-situ by Automatic Weather Stations (AWS). On monthly time scales, 

differences among the data have been found to be less than 1 K at most locations, if TB data are 

corrected for emissivity (Shuman and Comiso 2002). However, these reported differences do 

not take into account the clear-sky bias, as AWS temperatures were compared to TIR data only on 

days when both observations were available. Shuman and Comiso (2002) also found evidence 

for consistent offsets between Ta and TR data, notably a -4 K difference across all temperatures 

at the South Pole. This offset, which m2y be due to covering the South Pole at scan angles off of 

nadir (Shuman and Comiso 2002), is not significant in our analysis because the mean TR values 

are subtracted fiom each grid point. Also, the TB data are limited to areas north of 85"S, so the 

data sets are not directly compared in the South Pole region. 

To examine the connections between the variability in Antarctic TIR and TB data and 
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larger-scale SH atmospheric circulation variability, 1982-1999 500-Ha geopotential height 

anomalies (Z500) poleward of 20°S, on a 2.5" x 2.5" latitude-longitude grid, are used fiom the 

NCEP-NCAR Reanalysis (NRA) (Kalnay et al. 1996; Kistler et al. 2001). Various biases, most 

importantly spurious multi-annual trends, have been reported in these data (Hines et al. 2000; 

Marshall 2002b) but should be of little consequence to the purposes of this study. The 500-hPa 

level is the lowest standard pressure surface entirely above the surface of the ice sheet and the 

stable inversion layer, and NRA 500-hPa data compare more favorably to Antarctic station 

observations than do 850-hPa geopotential height or surface pressure fields (Marshall 2002b, 

Hines et al. 2000). 

3. Methods 

In Section 4, principal component analysis (PCA) of Tm anomaly data is performed. 

Empirical orthogonal h c t i o n  (EOF, spatial) patterns and principal components (PC, temporal 

variations) are computed for data fiom all months of the year and broken down by season, 

December-January-February (DJF), March-April-May (MAM), June-July-August (JJA), and 

September-October-November (SON). In Section 5,  the data sets are compared qualitatively, 

and in Section 6, spatially and temporally varying microwave emissivity (E)  is estimated using 

the Rayleigh-Jeans approximation. Comparison of the TR and TB fields through Maximum 

Covariance Analysis (MCA) is used in Section 7 to diagnose the common spatial-temporal 

signals in the two data sets. Heterogeneous regression maps are shown to illustrate the spatial 

patterns of the MCA modes, while expansion coefficients show temporal variations of the 

modes. Next, the leading Tw and TB expansion coefficients are compared through spectral 

analysis. In Section 8, PCA is used to determine the leading patterns of variability in the 
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atmospheric circulation at 500-hPa. Finally, regression analysis is performed among the various 

fields to show associated patterns. 

4. Tm data 

a. PCA of TIR data 

Applying PCA to the covariance matrix of monthly TR anomalies covering the Antarctic 

continent results in two modes with distinct eigenvalues that meet the separation criteria of North 

et al. (1 982). The leading mode explains 52% of the variance in Tm, while the second mode 

accounts for 9% of the variance. The first EOF, shown in Fig. l a  as a regression of TIR anomaly 

data onto the first normalized principal component (TR -PCl, Fig. lb) is associated most 

strongly with the high plateau of East Antarctica. Locally, high correlations in East Antarctica 

indicate that up to 80% of the variance in TR can be explained by this first mode, as determined 

by I? values. More moderate correlation of the same sign OCCUTS over West Antarctica. 

Moderate correlation of opposite sign occurs on the northern reaches of the Antarctic Peninsula. 

The second EOF (Fig. IC) is centered on the Ross Ice Shelf and on the Marie Byrd Land 

region of the continent. Most of West Antarctica is of the same sign, but the pattern changes 

sign over the Ronne-Filchner ice shelf (at 60"W) and most of East Antarctica. Some coastal 

areas near 120"E have the same sign as West Antarctica. Over the central and eastern sections of 

the Ross Ice Shelf and Marie Byrd Land, high correlation coefficients (not shown) indicate that 

40-60% of the TR variance is explained by mode 2. This is in contrast to the 10-1 6% of variance 

in this region explained by mode 1. Only a small fraction of the variance in East Antarctic 

temperatures can be explained by mode 2. The time-varying component of this structure is given 

by the normalized principal component (TR -PC2, Fig. Id). 

b. Seasonality of TIR modes 
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While the leading patterns of tropospheric circulation variability, including the SAM, 

exist year-round in the SH middle and high latitudes (Cai and Watterson 2002; Gong and Wang 

1999; Thompson and Wallace, 2000), the range of Antarctic temperature variability is much 

larger in winter months than summer months (King and Tumer 1997; Shuman and Steams, 

2001). In TR, the standard deviation of July monthly means is about twice that of January 

monthly means, averaged over the continent. In winter, longwave radiation terms dominate the 

surface energy budget and strong surface inversions develop during clear and calm weather. 

Therefore, the surface temperature in winter is very sensitive to factors that disturb the inversion, 

particularly changes in cloudiness and winds (van den Broeke 2000b; Warren 1996). Since PCA 

modes are designed to maximize variance explained, the leading TIR modes may be more 

characteristic of winter than of summer temperature variability. 

PCA is performed on seasonal subsets of the data: Summer (DE), Autumn (MAM), 

Winter (JJA), and Spring (SON). The short time series diminish the statistical significance of the 

modes compared to the full data set; however, the following results can be supported. Mode 1 in 

every season dominates explained variance compared to the subsequent modes (Table l), but 

explains slightly more variance in the transition seasons than the solstitial seasons. Compared to 

the full data set, the mode 1 EOF pattern is most similar in spring and summer, rather than the 

winter, as might be expected due to the larger variance in winter months. In spring and summer, 

a large part of the variance is explained over a broad region of East Antarctica, and most of the 

continent has the same sign. In autumn and winter, EOF 1 has considerably less coherent large- 

scale spatial structure (i.e, the patterns appear to be more random). However, for all seasons, the 

correlation of the leading PC and the seasonal SAM index is about 0.5 - 0.6, as shown in Table 
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properties, while the TR data vary on much larger length scales, reflecting more closely the 

surface temperature. 

6. Emissivity variability at microwave wavelengths 

The emissivity parameterization helps to quantify the effects of the physical properties of 

the snow layer from which the TB signal emanates. TB is the physical temperature of the snow 

times its emissivity (E), integrated over the penetration depth (Zwally 1977; Surdyk 2002). This 

is the Rayleigh-Jeans approximation, allowing a calculation of 37 GHz E through the relation E = 

TB x TR-'. On annual mean or longer timescales, using TR data in place of the physical 

temperature of the snow is valid, as mean emissivity changes little and the mean annual surface 

temperature approximates the mean physical temperature of the snow (Zwally 1977, Surdyk 

2002). Co-registration of TR and Tg data enables a map of E to be calculated based on the 1982- 

1999 means (Fig. 2a). The pattern shows a spatial variation in E of 0.25. This includes the melt 

areas, which have not been excluded from the TB data in this section of our study. Although the 

average spatial variations in E were removed from the analysis of SS02 by the use of anomalies 

and the masking of melt zones, the influences of spatially varying E do affect the appearance of 

EOF-regression maps in some areas, especially near the margins of the ice sheet. Melting can 

temporarily make the magnitude of Tg anomalies greater than that of TIR anomalies due to the 

high - -..- absorp&on of the liquid water. _- 
T;$ ? E 1, [., 

Temporally, E is negatively correlated with the annual cycles of TR and TB when 

averaged over the continent, and the apparent magnitude of the seasonal change in E is about 0.02 

(Fig. 2b). However, this magnitude is partly artifact, as the TB annual amplitude (1 9 K) is 30% 

less than the TR annual amplitude (27 K). This -30% attenuation is indicative of an average 

penetration depth of less than 1 m (Surdyk 2002). Thus, the true seasonal variation in E must be 
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less than the apparent magnitude obtained when the attenuation is ignored (Surdyk 2002). An 

attenuation map can be produced by dividing the average magnitude of the TB annual cycle by 

the magnitude of the TR annual cycle (not shown). By inference, the more damped the annual 

cycle, the deeper the penetration depth (Surdyk 2002). The spatial pattern in attenuation is 

highly correlated with the emissivity map, showing that low emissivity corresponds to shallow 

penetration depth and vice versa, consistent with the theory that grain size is the dominant factor 

affecting both parameters (Surdyk 2002). Annual mean time series of Tm and TB are positively 

correlated, while the calculated emissivity is anti-correlated with TB and TIR (Fig. 2c). The 

calculated interannual range in the value of E is on the order of 0.01 with a standard deviation of 

0.0034. This calculated value of 0.01 is likely close to the real range in E over the penetration 

depth because the annual mean surface temperature (from TR) approximates the annual mean 

temperature at depth. Thus, given the mean annual TR value of 239 K and the mean E of 0.86, 

the interannual standard deviation in E accounts for only -0.8 K of (microwave brightness) 

temperature difference, well within the uncertainties of both data sets (Shuman and Comiso 

2002) and well below the magnitude of temperature anomalies that are explained by our modes 

in Section 7, 

7. Maximum Covariance Analysis of the data sets 

Maximum Covariance Analysis (MCA) optimizes the covariance explained by pairs of 

structures in two data sets. Bretherton et al. (1992) and Wallace et al. (1992) provide a detailed 

discussion of the methodology, which is adhered to below. The name singular value 

decomposition (SVD) is often applied to the entire method; here it is only used in reference to 

the algorithm used in extracting empirical structures via cross-covariance matrix decomposition. 

First, the cross-covariance matrix of TR and TB anomaly fields is computed (with melting 
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pixels masked as in SS02). The expansion coefficients of the Tm and TB fields are found by 

projecting the singular vectors from SVD onto the original gridpoint data of the respective field. 

These expansion coefficients are then normalized, and either field can be regressed upon them to 

display spatial structure. In the case that the Ta (TB) field is regressed upon a TIR (TB) 

expansion coefficient, the map is known as a homogeneous regression map, and in the case that 

the Tm (TB) field is regressed upon a TB (TR ) expansion coefficient, the map is referred to as a 

heterogeneous regression map. 

No formal method has been developed for determining the significance of MCA modes, 

but some tests apply. The squared covariance fraction (SCF) of each mode is an indication of the 

fit between the two data sets. Another indication is the correlation coefficient between each 

mode’s pair of expansion coefficients. Additionally, the cross-covariance matrix can be tested 

for relatedness (before applying MCA) with root mean squared covariance (RMSC, square root 

of the squared covariance (SC) after dividing by the product of the variance of the two data sets). 

The high TR-TB RMSC of 0.22 implies strongly coupled fields that are suitable for MCA, as 

RMSC of 0.1 or greater is a typical guideline for strong correlation (Wallace et al. 1992). 

MCA applied to Tm and TB fields yields three significant modes, with a SCF of 77%, 

11%, and 5%, respectively. The modes’ three pairs of expansion coefficients (Tmxl and T B X ~ ;  

T ~ x 2  and TBX~; T ~ x 3  and T ~ x 3 )  are correlated at 0.70,0.61, and 0.78, respectively (Table 2). 

In both TIR and TB, the set of homogeneous regression maps for the leading two modes are 

almost identical to the leading spatial patterns from PCA of the data sets considered separately. 

These maps (not shown) are essentially the same as Fig. la  and IC for the TR field and SS02 Fig. 

2a and 2c for the TB field, a further indication that the two data sets are well correlated. 
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The set of heterogeneous regression maps, displayed in Fig. 3, are similar to cross- 

regressions and show the anomaly in the field on the map associated with one standard deviation 

of the opposite field's expansion coefficient. For mode 1, the TR field regressed onto T B X ~  (Fig. 

3a) is similar to the first EOF of TR anomalies, although less variance in TIR is explained (23%). 

The TB field regressed onto TRxl (Fig. 3b) produces a pattern that is more smoothly varying 

than the first EOF of TB (see SS02, Fig. 2a), and explains 11% of the variance. The amplitudes 

in Fig. 3b are smaller than those in Fig. 3a, implying attenuation of the surface temperature 

signal through the penetration depth. Also, where the covariance in Fig. 3b is the greatest in East 

Antarctica, notably between 75"s and 80°S, the emissivity is lowest, as shown in Fig. 2a, 

consistent with shallow microwave penetration depths and little attenuation. In Fig. 3c, the TR 

field is regressed onto T ~ x 2 ,  explaining 3% of the variance in Tm, and the resulting pattern is 

similar to the second EOF of Tm. Likewise, regression of the TB field onto T ~ x 2  (Fig. 3d), 

explains 4% of the variance, and produces a heterogeneous map similar to the second EOF of TB. 

In this pair of maps, the amplitudes are comparable in magnitude, consistent with little 

attenuation, a shallow penetration depth, and low emissivity in the Ross Sea sector of Antarctica 

(Fig. 2a). 

A third mode is diagnosed with MCA that was not prominent in the PCA results for the 

data sets when considered separately (although this third MCA mode correlates well with the 

fourth mode in TR data alone and the fifth mode in TB data alone). It is retained for discussion 

because it projects onto the linear trends in the TR and TB data sets and is reproducible, as 

discussed below. Because the T ~ x 3  and T ~ x 3  expansion coefficient time series have upward 

trends (see Fig. 4c, below), these time series and the TR and TB gridpoint data are both detrended 

prior to the construction of the heterogeneous regression maps in order to avoid spurious 
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correlations. If the trends are retained in the time series, the heterogeneous maps of mode 3 look 

very similar to annual mean trends in the TR and TB data sets (see Kwok and Comiso 2002, Fig. 

2, for trends in TR ). Therefore, care must be taken not to include spurious correlations of 

unrelated trends in the maps. The map with Tm data regressed onto T ~ x 3  explains 4% of Tw 

variance and shows positive anomalies in TR throughout much of East Antarctica (Fig. 3e). The 

anomalies of greatest magnitude occur from 0" to 60"E. Similarly, the map Of Tg data regressed 

onto Tmx3, explains 4% of TB variance and shows positive TB anomalies, but of weaker 

magnitude, in the same area of East Antarctica. 

The results outlined above strongly imply that there is meaningful covariance between 

Tm and TB data sets (Table 3). However, it must be established with confidence that the 

correlations have not arisen by chance. As a first test of reproducibility, TR and TB anomaly 

data are detrended prior to MCA. In this case, the same three modes are produced, but without 

the trend in the third mode. Second, as a test of the statistical robustness of the MCA results, the 

TR and TB data sets are divided into subsets. Data for odd months only are used, and then, data 

for even months only. Odd and even month RMSC, SC, SCF, and correlation coefficients 

between expansion coefficient pairs are comparable in magnitude to the statistics for the full data 

sets for each of the first three modes (Table 3), indicating that the first three modes meet 

reproducibility criteria. 

Another test of statistical robustness, based on the following Monte Carlo procedure, 

further demonstrates the strong relationships between Tm and TB anomaly data. Following the 

method of Wallace et al. (1992), the temporal order of the TR field is scrambled randomly while 

the order of the TB field remains unchanged. RMSC, SC, SCF and correlation coefficients are 

computed for each of 1000 random runs (Table 3). The significance of the observed runs and the 
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subsets clearly stands out above the random runs. The observed squared covariance is an order 

of magnitude larger than the mean SC of the scrambled runs, the SCF of the observed first mode 

is about two standard deviations above the mean of the scrambled runs, and the correlation 

coefficients among expansion coefficient pairs for the first three modes are well above the mean 

of the scrambled runs. Finally, the RMSC values of the random data sets are smaller than the 

value of 0.1 that would indicate strong correlation. This leaves little doubt as to the significance, 

above the 99% confidence level, of the leading MCA modes and the strong relationship between 

the TIR and TB fields. 

The three pairs of normalized expansion coefficients show the time variability of the 

three surface temperature modes from MCA (Fig. 4). The expansion coefficients of the first two 

modes are well correlated with the original PCs from each data set considered separately, as can 

be seen in Table 2. For instance, TR-PC~ correlates with T ~ x 2  at r = 0.96 and similarly high 

correlations exist for the other matches. Therefore, the time series that explain the most 

covariance between the TR and T g  data sets also explain the most variance in the individual data 

sets. 

Because TB time series correspond to temperature signals over some depth of the snow 

and firn, it is expected that they should be damped compared to the surface temperature, as 

determined by the period of the temperature forcing and the depth of the microwave emission 

(see Fig. 10 of Surdyk 2002). The MCA procedure is unable to completely remove this effect, 

but it does show that the TB and TR have a common forcing-the surface temperature. The 

strong covariance also suggests that effects of the clear sky bias in TIR data and snow emissivity 

influences on TB data do not mask the underlying leading modes of surface temperature 

variability. 
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The power spectra of each expansion coefficient time series are estimated with a Hanning 

window providing 13 degrees of freedom (Fig. 5). Also shown in Fig. 5 is the theoretical 

spectrum, with 95% confidence limits, for the first order red noise autoregressive process 

(AR(1)) that provides the best fit to each time series (von Storch and Zweirs 1999). There are no 

significant spectral peaks at the 99% confidence level. Each time series is consistent with red 

noise, but with different degrees of “redness,” which can be quantified by comparing the AR( 1) 

coefficients from the best-fit theoretical spectrum. 

If it is assumed apriori that TR spectra provide a direct measure of the variability in the 

surface tempeiature, then TB spectra should reflect the attenuation of that variability at depth. 

Because both the penetration depth and the surface forcing are spatially variable, the degree of 

attenuation will also be spatially variable, and this is reflected in differences among the pairs of 

AR( 1) coefficients. For Mode 1 (Fig. 5a), the distributions of spectral power in both TIR and TB 

are nearly identical, consistent with a shallow microwave penetration depth and low emissivity in 

the region of greatest covariance in Mode 1. In Modes 2 and 3, the TB spectra (Fig. 5b, 5c) show 

significant enhancement at low frequencies compared with the TIR spectra. That is, the TB time 

series are “redder” and have greater AR(1) coefficients than do the TR time series. In Mode 3, 

this is consistent with the relatively high emissivity (see Fig. 2a) and deep penetration depth in 

the East Antarctic region associated with Mode 3. For Mode 2, the “redness” of the T ~ x 2  

spectrum is enhanced by the relatively flat spectrum of the surface forcing. As suggested by the 

TR spectra and expansion coefficient time series for Mode 2, high frequency, month-to-month 

variability dominates the overall variability in the area of the ice sheet (West Antarctica) that 

contributes most of the variance to Mode 2. Note that while the region where Mode 2 is most 

dominant (Siple Coast area of West Antarctica) is actually characterized by relatively low 
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emissivity, high emissivity and deep penetration depth is found elsewhere in West Antarctica, 

especially along the coasts of the Amundsen and Bellinghausen Seas. These spectral analysis 

results are thus generally consistent with the physical relationship expected between the two 

types of data. 

8. Influence of atmospheric circulation on Antarctic temperatures 

a. Principal Component Analysis of 500-hPa geopotential height anomalies 

To define the leading patterns of SH atmospheric circulation during the time period of 

this study, PCA is applied to monthly 2500 anomaly data poleward of 20"s. For equal-area 

weighting, the data are weighted by the square root of the cosine of their latitude prior to 

analysis. The original unweighted 2500 data are regressed against each normalized PC, showing 

anomalies corresponding to one standard deviation of the corresponding PC. Three patterns of 

interest are resolved, explaining 24%, 12%, and 10% of the (weighted) variance respectively. 

The latter two patterns are not well separated under the criteria of North et al. (1982). However, 

they have been reported by a number of studies and found in many different data sets (Carleton 

2003; Cai and Watterson 2002; Mo and White 1985). Our results are consistent with the 

definition of the first 2500 pattern as the SAM (Fig. 6a), the second 2500 pattern as the Pacific 

South American (PSA) pattern (Fig.6b), and the third pattern as the zonal wavenumber-3 pattern 

(Fig. 6c) as named by other studies (Cai and Watterson 2002 and references therein). The signs 

are displayed for consistency with the modes in TIR and TB and the regression patterns discussed 

below. 

b. Correlations and regression patterns 

Associations between Antarctic temperatures and patterns of atmospheric circulation can 

be illustrated with a variety of methods. The temporal correlations among the PCs of 2500, the 



expansion coefficient pairs from MCA, and the Southern Oscillation Index (SOI) are 

summarized in Table 4. The first PC of 2500 forms a representative S A M  index (Thompson and 

Solomon 2002), and it has strong correlation with the first MCA mode (r(TR xl,  SAM) = 0.58 

and r(TBX1, SAM) = 0.61) and weak correlation with the other modes. 2500 PC2 correlates well 

with the SO1 (r = 0.43), and has moderate correlation with both modes 1 and 2 in Tm and TB. 

2500 PC3 has a weak correlation with the SO1 (r = 0.18) and the best correlation with mode 2 in 

Tm and TB ( r(Tm ~2,2500 PC2) = 0.39 and r(T~x2,2500 PC2) = 0.32). Mode 3 from MCA has 

only weak correlation with the 2500 patterns, as r(Tm x3, SAM) = 0.15 is the strongest value. 

Regression patterns reinforce the connections implied by the various correlation 

coefficients. Since TR and TB data are highly correlated, regressions involving 2500 data 

discussed here are made only with Tm data for illustration. Regressions of TR data onto the 

normalized PCs of the three leading 2500 patterns are shown in Fig. 7. The SAM explains 17% 

of the variance in TR anomalies (Fig. 7a), the PSA pattern explains 6% of the variance (Fig. 7b), 

and the zonal wavenumber-3 pattern explains 3% of the variance. (Fig. 7c). The first regression 

pattern is quite similar to the first TR EOF (Fig. 1 a). During the positive phase of the SAM, 

relatively strong westerlies encircle Antarctica near 60°S, which tends to enhance warm air 

advection over the northern Peninsula, while the cool anomalies on the rest of the continent are 

indicative of adiabatic cooling (Thompson and Wallace 2000). 

As seen in Fig. 7b, in East Antarctica, the PSA pattern explains much less variance in 

surface temperature than does the SAM, but the spatial structures of temperature anomalies are 

generally similar. In the Peninsula and most of West Antarctica, the PSA pattern explains 

variability of the same sign as in East Antarctica. However, the PSA pattern is associated with 
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temperature anomalies of opposite sign near 150°W, 75"S, consistent with the anticyclonic 500- 

hPa height anomaly centered near 60°S, 125"W (Fig. 6b). 

The PSA regression pattern resembles the regression of TIR data upon the SO1 that was 

shown in Fig. 3b of Kwok and Comiso (2002). For comparison to the PSA pattern in 

geopotential height, we show the pattern in 2500 associated with the Southern Oscillation, 

formed by regressing 2500 data onto the negative SO1 to illustrate anomalies typical of El Nifio 

years (Fig. 8). The zonally elongate north-south dipole structure over the far southern Pacific 

closely resembles the ENSO warm minus cold year mean 500-Wa height difference of Renwick 

and Revel1 (1 999 Fig. 5 )  and the ENSO-associated patterns of other studies (e.g. Mo and Higgins 

1998, Kidson 1999; Bromwich et al. 2003). In contrast to the 6% of TR variance explained by 

the PSA pattern, our calculations indicate that only 0.5% of the variance in Tm anomalies on the 

Antarctic continent is explained by the regression of TR data upon the SOI. However, 

circulation indices such as the SO1 may not adequately capture the variability that is truly 

associated with ENSO (Carleton 2003; Kidson and Renwick 2002). ENSO-related forcing in the 

tropics is thought to project primarily onto the PSA pattern of variability on interannual to 

interdecadal timescales in middle to high latitude SH geopotential height field (Cai and 

Watterson 2002, Garreaud and Battisti 1999). 

It is interesting that the pattern in Antarctic TIR explained by the PSA pattern also 

resembles the regression (although of opposite sign) of winter temperatures at Faraday station 

upon the TR gridpoint data (King and Comiso 2003, Fig. 1). Although King and Comiso (2003) 

suggested that the climate variability of the Antarctic Peninsula is unrelated to the rest of 

Antarctica, our results show a connection through the PSA pattern. As illustrated in Fig. 6b, the 

strong anticyclonic anomaly in the far southeastern Pacific is accompanied by low geopotential 
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height over most of Antarctica. Thus there is a connection between the anomalous meridional 

advection along the western Peninsula implied by the southeastern Pacific center of action and 

contemporaneous decreases in geopotential height over most of the continent. 

As shown in Fig. 7c., the wavenumber-3 pattern explains positive temperature anomalies 

over the same area of West Antarctica associated with the second surface temperature mode, 

consistent with the strong positive and negative height anomalies centered along 60"s near 90"W 

and 1 S O W ,  respectively. The wavenumber-3 pattern also explains weak temperature anomalies 

of the same sign in East Antarctica, unlike the second temperature mode, in which West and East 

Antarctica are out of phase. This is likely due to the additional influence of the PSA pattern on 

the second surface temperature mode. While the PSA pattern in 2500 is associated with 

geopotential height fluctuations over East Antarctica, the wavenumber-3 pattern has very little 

correlation with heights over this region. 

As a consistency check, 2500 data are now regressed upon TIR expansion coefficients 

from the leading MCA modes. As above, the time series of mode 3 are detrended prior to 

regression. Although Tm expansion coeficients are used here for illustration, regressions 

involving Tg expansion coefficients are very similar. The first 2500 regression pattern (Fig. Sa) 

closely resembles the SAM pattern in 2500 (Fig. Sa), especially in the Eastern Hemisphere. In 

the west, the PSA (Fig. 6b) pattern appears to have an influence on both the first and second 

regression patterns (Fig. 9a and 9b). However, the second regression pattern (Fig. 9b) most 

strongly correlates with the 2500 wavenumber-3 pattern (Fig. 6c). The third regression pattern 

(Fig. 9c) resembles the S A M ,  but has anomalies of much weaker magnitude. The positive 

anomalies in East Antarctica near 45"E are suggestive of a ridge in the mid-troposphere 

extending inland through East Antarctica. Hirasawa et al. (2000) and Enomoto et al. (1998) 
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show that this condition is a blocking high that pumps warm, moist air from the north all the way 

to the polar plateau. The positive temperature anomalies associated with the third mode (Fig. 3e) 

correspond to the “strip” of annual mean warming on the East Antarctic ridge observed by Kwok 

and Comiso (2002). Inspection of monthly trends shows that in winter months, warming trends 

in TR occur over a much broader area than this strip, and Comiso (2000) described several 

anomalously warm July episodes in East Antarctica. Since the winter months account for most 

of the trend in the mode 3 expansion coefficients, it is likely that the events explained by mode 3 

and these warm episodes are part of the same phenomenon. 

9. Discussion and Conclusions 

Previous studies have shown that Antarctic 37 GHz TB data and TIR data are both well 

correlated with surface air temperatures (Shuman and Comiso 2002; Surdyk 2002; Shuman and 

Stems 2001; Comiso 2000), but this is the first to hlly examine the consistency of these 

relationships across the continent. The PCA and MCA results demonstrate that the most 

important empirical modes in the TR and Tg data sets are well correlated with each other. The 

strength of the connection between TIR and TB increases confidence in the quality of both data 

sets. A general difference between the data sets is that the TB data are more spatially varying and 

more temporally autocorrelated than the TR data because of the dependence of Tg on both 

emissivity and temperature integrated over a layer of snow and firn. The most prominent 

differences betireen corresponding time series of Tm and TB modes are attributable to 

attenuation of surface temperature signals through the snow. The degree of dampening depends 

on the period of the forcing and the penetration depth of the microwave emission. Lower 

emissivity regions indicate a shallow penetration depth and relatively high-amplitude TB 

fluctuations, which results in the highest TIR and TB covariance. The calculated spatial pattern in 
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emissivity apparently changes very little in time, and most likely represents spatially differing 

snow and firn structures. 

Spatial and temporal patterns of TIR and Tg variability, and more generally, surface 

temperature variability, in Antarctica are consistent with well-documented patterns of variability 

in extratropical SH atmospheric circulation. It is clear that the most important influence on 

Antarctic temperature anomalies from month-to-month to interannual timescales is the S A M .  

The SAM is well separated fiom other modes in both 2500 data and the satellite data sets. 

Looking at data fiom all months, strong temperature trends associated with this mode are not 

seen. However, inspection of trends by month over the length of the record shows that TIR 

observations are consistent with a late spring and summer cooling trend, possibly driven by an 

increasing tendency of the SAM to stay in its positive phase during these seasons (Thompson 

and Solomon 2002). 

The PSA pattern has an influence on the first two surface temperature modes. The 

wavenumber-3 pattern of variability, however, has a relatively stronger influence on the second 

surface temperature mode, shown by its association with large temperature anomalies in the 

West Antarctic sector inland of the Ross and Amundsen seas. Anomalies of opposite sign in 

East Antarctica imply that the PSA pattern exerts a stronger influence there. Since ENSO- 

related variability projects primarily onto the PSA and the wavenumber-3 patterns, Antarctic 

climate records show ENSO-like spectra (SS02; Ichiyanagi et al. 2002; Bromwich and Rogers 

2001; White et al. 1999). 

Some persistent trends in the available satellite record are associated with the third mode, 

which cannot, within the scope of this study, be clearly linked to the principal patterns of 

atmospheric circulation variability. However, blocking events over inland East Antarctica have 
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been documented with station data (Hirasawa et al. 2000; Enomoto et al. 1998) and provide a 

plausible explanation for the trends in temperature and the pattern seen in 2500 on our regression 

map (Fig. 9c). During these episodes, rises of -40 K can occur in two days or less at remote 

interior stations such as Dome Fuji and Plateau, and Ta can take more than a month to return to 

its value before the rise (Enomoto et al. 1998; Kuhn et al. 1973). The upward trend in the TIR 

and TB expansion coefficients comes primarily from the winter months, when the blocking 

episodes most often occur and the surface temperature is extremely sensitive to circulation 

changes. In addition, changes in cloud cover and winds associated with blocking will destroy the 

surface inversion, adding to the magnitude of the surface temperature anomalies (Hirasawa et al. 

2000). At present, however, the satellite record is too short to establish the long-term 

significance of the trends, and the monthly temporal resolution of this study limits our ability to 

further characterize the causes of variability in the third temperature mode. 

The results of this study show that the surface temperature variability of Antarctica is 

well represented by both the Tm and T g  data sets. Nonetheless, it is important to note that biases 

in the TR data associated with cloud cover, and in the TB data associated with attenuation and 

possible emissivity changes, have not been completely removed. Ongoing improvements to the 

data include a technique for filling in cloud gaps in infrared observations with emissivity- 

corrected TB observations (Shuman, personal communication 2002) and a method suggested by 

Winebrenner et al. (submitted to Ann. Gl=uiol., 2003) that models TB data on the basis of Ta 

variations and which could lead to an improved parameterization of snow properties and their 

influence on TB. Analyses of updated data sets may result in minor changes to the empirical 

modes we have calculated. 
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Currently, a gap exists between our understanding of Antarctica’s short instrumental and 

satellite records, and deep ice cores from Antarctica (e.g. Petit et al., 1999; Morgan et al. 2002). 

Future work will include testing the stability of the temperature and circulation modes discussed 

here on longer timescales. Some prior work suggests that our results will apply. For instance, 

long ice core paleoclimate records from locations spread thousands of kilometers apart in East 

Antarctica are well correlated with each other, consistent with our first mode, while records from 

West Antarctica and some East Antarctic cores appear to reflect local climate, consistent with 

our second mode (Watanabe et al. 2003; Steig et al. 2000). East Antarctic isotopic records from 

the ice cores may be tied to the SAM over a large area (Noone and Simmonds 2003), while West 

Antarctic ice core records would be expected to be strongly linked to circulation variability in the 

Southern Pacific, which in turn is teleconnected to the tropical Pacific during strong El Niiio and 

La Niiia events (Bromwich et al. 2003). Century-scale reconstructions of the major modes of SH 

atmospheric circulation from tree rings (Jones and Widmann 2003) and a network of 

intermediate-depth Antarctic ice cores (Mayewski 2003) will help to fill in the gap between our 

understanding of modern climate variability and our theories of past climate variations. 
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Table Headings 

TABLE 1. Variance explained by first two 

PCA modes of Tm and correlation with the 

SAM index by season. 

TABLE 2, Correlation coefficients among PCs of TB and Tm considered separately and 

expansion coefficients from MCA. Sign is ignored. 

TABLE 3. Summary of MCA reproducibility tests and Monte Carlo results. 

TABLE 4. Summary of correlation coefficients iimong macles in 2500 and MCA expmsion 

coefficients. Sign is ignored. 



Figure CaDtions 

Fig. 1. Results from PCA of monthly 1982-1999 TR anomaly data. (a) EOF-1 shown as a 

regression coefficient between each grid point and the first normalized PC. (b) The first 

normalized PC corresponding to the EOF pattern above. (c) As in a but for the second EOF. (d) 

As in b but for the second PC. Color scale is in K, corresponding to a typical anomaly associated 

with each mode, that is, the value of one positive standard deviation of the respective PC. 

Fig. 2. (a) Mean microwave emissivity at 37 GHz vertical polarization of the Antarctic ice sheet 

based on 1982-1999 mean values of TR and Tg. (b) Continent-averaged annual cycles of 

emissivity, TB, and TR based on 1 8 9  means of each month. (c) Continent-averaged interannual 

variations of emissivity, Tg, and TR. 

Fig. 3. Heterogeneous regression maps from MCA of TR and TB fields. The top panels (a,c,e) 

are covariances from the TR field regressed upon the first, second, and third normalized TB 

expansion coefficients, respectively. The bottom panels (b,d,f) are covariances from the TB field 

regressed upon the first, second, and third normalized Tm expansion coefficients, respectively. 

Color is in units of K, corresponding to one standard deviation of the respective expansion 

coefficient. 

Fig. 4. Expansion coefficients of the first three MCA modes (a-c, respectively) corresponding to 

the heterogeneous maps in Fig. 3. 
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Fig. 5.  Power spectra (heavy solid lines) of the MCA expansion coefficients shown in Fig. 4. for 

(a) first, (b) second, and (c) third modes. Also shown (thin solid lines) are the theoretical spectra 

of the AR(1) (red noise) process that best fits the original time series. 5% and 95% confidence 

levels are indicated by dashed lines; 99% confidence level by dotted lines. The coefficients a1 of 

the best-fit spectra are also indicated inside the plots. 

Fig. 6.  The leading modes in monthly 500-hPa geopotential height, 1982- 1999. The (a) first, (b) 

second, and (c) third EOFs, shown as the Z500 data regressed upon the leading normalized PCs. 

Percentage of variance explained indicated at lower left. Contour interval 5m, zero contour 

heavy solid line, negative contours dotted, positive contours solid. 

Fig. 7. Regressions of TIR gridpoint data upon the first three 2500 normalized PCs (a-c, 

respectively). Percentage of variance explained indicated in lower left. Color scale is in K, 

corresponding to one standard deviation of the respective PC time series. 

Fig. 8. Regression of 1982-1999 monthly 2500 data upon the SO1 with sign reversed to show 

anomalies typical of the ENS0 warm phase. Units, contours as in Fig. 6 .  

Fig. 9. Regression of 2500 data upon the (a) first, (b) second, and (c) third normalized TIR 

expansion coefficients shown in Fig. 4. Units, contours as in Fig. 6.  



TABLE 1. Variance explained by first two 

PCA modes of TR and correlation with the 

SAM index by season. 

Season Mode 1 Mode 2 r(SAM index*,Tm-PCl) 

DJF 49% 14% 0.63 

MAM 50% 9% 0.49 

JJA 49% 13% 0.68 

SON 57% 7% 0.50 

Full Year 52% 9% 0.57 

* The SAM index is the first principal component of 500-hPa geopotential height as discussed in 

the text. 
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TABLE 2. Correlation coefficients among PCs of TB and TR considered separately and 

expansion coefficients from MCA. Sign is ignored. 

TB-PC~ TIR-PC~ TB-PC~ TIR-PC~ T B X ~  Tmx1 TgX2 TBX~ T I R X ~  

TB-PC~ 1 .46 0 .ll .81 .47 .21 .05 .01 .04 

TIR-PC~ 1 .05 0 .68 .99 .01 .ll .OO .02 

Tg-PC2 1 .48 .03 .04 .96 .56 .I4 .02 

TIR-PC~ 1 .09 .02 .54 .96 .13 .36 

1 .70 .07 .OO -07 .OO 

1 .oo .09 .oo .oo 

1 .61 .ll .OO 

1 .OO .15 

1 .78 

1 
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TABLE 3. Summary of MCA reproducibility tests and Monte Carlo results. 

Run sc RMSC sCF(%) r(TBX,TIRX) 

1000 Scrambled Runs 

Highest 6 . 3 ~ 1 0 ~  

Lowest 1 .6~1 O4 

Mean 3 . 1 ~ 1 0 ~  

Std. Dev. 7 . 2 ~ 1 0 ~  

Observations 

modes(l,2,3) modes(1,2,3) 

.098 (82,3 1,18) (.34,.39,.38) 

.050 (29,04,03) (. 14,. 16,.16) 

.068 (55,14,09) (.23,.28,.28) 

.008 (10,04,02) (.03,.04,.04) 

3 . 2 8 ~  1 O5 .223 (77,11,05) (.70,.61,.78) 

Odd Months Only 

3 . 2 7 ~ 1 0 ~  .241 (77,11,05) (.74,.54,.80) 

Even Months Only 

3 . 3 2 ~  1 O5 .222 (70,16,06) (.69, .67,.75) 

35 



TABLE 4. Summary of correlation coefficients among modes in 2500, SOI, and MCA 

expansion coefficients. Sign is ignored. 

so1 T B X ~  Tmxl TBX~ T R X ~  TBX~ TIRX~ 

Z500-PC1 .16 .61 .58 .06 .05 .06 .15 

Z500-PC2 .43 .25 .31 .24 .17 .06 .06 

Z500-PC3 .18 .09 .16 .32 .39 .02 .OO 

so1 .02 .04 .19 .14 .06 .ll 
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Fig. 1. Results from PCA of monthly 1982-1999 TR anomaly data. (a) EOF-1 shown as a 
regression coefficient between each grid point and the first normalized PC. (b) The first 
normalized PC corresponding to the EOF pattern above. (c) As in a but for the second EOF. (d) 
As in b but for the second PC. Color scale is in K, corresponding to a typical anomaly associated 
with each mode, that is, the value of one positive standard deviation of the respective PC. 
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Fig. 2. (a) Mean microwave emissivity at 37 GHz vertical polarization of the Antarctic ice sheet 
based on 1982-1999 mean values of TR and Tg. (b) Continent-averaged annual cycles of 
emissivity, TB, and TR based on 18-yr means of each month. (c) Continent-averaged interannual 
variations of emissivity, TB, and Tm. 
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Fig. 3. Heterogeneous regression maps from MCA of TR and Tg fields. The top panels (a,c,e) 
are covariances from the TR field regressed upon the first, second, and third normalized TB 
expansion coefficients, respectively. The bottom panels (b,d,f) are covariances from the TB field 
regressed upon the first, second, and third normalized TR expansion coefficients, respectively. 
Color is in units of K, corresponding to one standard deviation of the respective expansion 
coefficient. 
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a) Mode 1 expansion coefficients b) Mode 2 expansion coefficients c) Mode 3 expansion coefficients 
4, I I I I I I I I 1  

Year Year Year 
Fig. 4. Expansion coefficients of the first three MCA modes (a-c, respectively) corresponding to 
the heterogeneous maps in Fig. 3. 

40 



Fig. 5. Power spectra (heavy solid lines) of the MCA expansion coefficients shown in Fig. 4. for 
(a) first, (b) second, and (c) third modes. Also shown (thin solid lines) are the theoretical spectra 
of the AR( 1) (red noise) process that best fits the original time series. 5% and 95% confidence 
levels are indicated by dashed lines; 99% confidence level by dotted lines. The coefficients a1 of 
the best-fit spectra are also indicated inside the plots. 



Fig. 6. The leading modes in monthly 500-hPa geopotential height, 1982-1999. The (a) first, (b) 
second, and (c) third EOFs, shown as the 2500 data regressed upon the leading normalized PCs. 
Percentage of variance explained indicated at lower left. Contour interval 5m, zero contour 
heavy solid line, negative contours dotted, positive contours solid. 
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Fig. 7. Regressions of Tm gridpoint data upon the first three 2500 normalized PCs (a-c, 
respectively). Percentage of variance explained indicated in lower left. Color scale is in K, 
corresponding to one standard deviation of the respective PC time series. 
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Fig. 8. Regression of 1982-1999 monthly 2500 data upon the SO1 with sign reversed to show 
anomalies typical of the ENS0 wann phase. Units, contours as in Fig. 6. 
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Fig. 9. Regression of 2500 data upon the (a) first,.(b) second, and (c) third normalized Tm 
expansion coefficients shown in Fig. 4. Units, contours as in Fig. 6.  
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