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THE INERTTAS AND NATURAL FREQUENCIES OF FUEL
SLOSHING IN CIRCULAR CYLINDRICAL TANKS

By Robert W. Warner and John T. Caldwell
SUMMARY

A correlation is presented of experimental measurement and analytical
prediction of free, planar oscillations of a tank of mercury hung on a
pendulum. Measured frequencies are presented for the slosh mode and the
pendulum-tank mode, and time-history wave forms are included for qualita-
tive comparisons. The sloshing is represented analytically by a single
pendulum or a spring-bob, and the slze and location of theilr inertias are
determined by matching forces and moments on the tank surface with line-
arized hydrodynamic theory for inviscid fluids. It is concluded that such
analytical models are identical for small displacements in the present
application (as they are in simpler applications) and that they provide
excellent simulation of the stiffness and inertia terms for fuel sloshing.

INTRODUCTION

A severe aero-servo-elastic stability problem can occur for vehicles
which have a flexible structure and a swivelling rocket motor with high-
gain control response. In an analytical study of such a problem fuel
sloshing can be important as long as appreciable liquid fuel remains
unburned. It is then necessary to determine whether the sloshing has a
direct effect on stabillity, an indirect effect by modification of a defor-
mation pattern, or no effect at all. Such an analytical study is often
facilitated when the fuel sloshing is incorporated in terms of analytical
models, specifically pendulums or spring-bobs. Hence the main purpose of
the present report is to evaluate experimentally the accuracy of these
analytical models for a portion of the fuel sloshing problem, namely, the
stiffness and inertia terms for sloshing in circular cylindrical tanks
undergoing oscillations in a plane. A secondary purpose i1s to compare the
pendulum and spring-bob models.

A great deal of work has been done on sloshing of fluids in containers,
and reference 1 is an excellent survey with an extensive biblicgraphy.
Guthrie (ref. 2) and Rayleigh (ref. 3) provided one of the earliest corre-
lations between experiment and theory, showing excellent agreement as to
fluid natural frequency. These results, however, are for stationary tanks.



An extensive correlation on the frequency response of the fluld force

on the wall of an oscillating tank can be found in references 4 to 7.
Among these references there are comparisons of experiment and theory for
high-damping tank configurations with baffles and low-damping configura-
tions with bare tank walls. It is worthwhile to focus attention on the
off-resonance correlations and the natural frequencies for the low-damping
frequency responses (appearing in refs. 5-7) in order to evaluate errors
in the stiffness and inertla simulation with minimum effect of the errors
in the damping simulation. On that basls, references 5 to 7 indicate
generally satisfactory stiffness and inertia simulation for the fluid
force on the tank wall. Unfortunately, there are no moments measured on
the surface of the tanks in references 5 to 7.

The present experimental evaluation is based on low-amplitude, free,
planar oscillations of a small, smooth-walled tank of mercury hung on a
pendulum (the weight ratio of the mercury to the present rigid tank being
representative of actual missiles, in which the fuel can be massive enough
to have a significant effect). This test setup is simulated mathematically
by linearized equations of motion for an undamped two-degree-of-freedom
system, with fuel sloshing represented by a single penduwlum or a spring-
bob. Solutions are compared with the experimental oscillations in terms
of frequencies and wave forms. These measured and predicted quantities
should be significantly affected by the fluld moments on the tank surface.
Small amplitudes and linearized equations are used throughout for simplic-
ity since oscillations universally begin at low amplitude unless an
artificial inltial condition 1s applied.

Simple analytical models for fuel sloshing have also recelved a great
deal of attention. Reference 8 shows that a system with spring-bobs and
a fixed mass and rotary inertla exactly duplicates the tank-surface forces
and moments given by linearized hydrodynamic theory for a rectangular tank
oscillating in lateral translation, pitch, and yaw. References 6 and 9
present similar exact systems for a cylindrical tank.

The historical development of the pendulum model has not been as free
of error as that of the spring-bob model. Reference 3 gives the correct
lengths for pendulums which match the experimental and theoretical fluld
natural frequencies. Reference 10, however, presents pendulum masses
based on duplicating the fluid force given by hydrodynamic theory on the
wall of a rectangular tank restricted to zero motion. Unfortunately, the
case of a statlonary tank is not sultable for determining the pendulum
masses, belng useful only for finding the relative magnitudes of initial
conditions for a fluid mode and its pendulum model after the masses have
already been determined by another method. The correct pendulum masses
and pivot-point locations for a cylindrical tank, plus the magnitude and
location of a fixed mass and the magnitude of its rotary inertia, can be
found among references 11 to 13, as derived on the basis of forces and

moments on the surface of a tank undergoing forced lateral and pitching
oscillations.




As a result of the history just cited for the pendulum model, it
appeared useful to compare the relationship of the pendulum model to the
spring-bob model. For completeness, a brief development of the two models
is given in the appendix prior to their comparison.

NOTATION
A infinite summation defined in equation (A5)
a interior radius of tank
b effective gravity
cg center of gravity
e Naperian base
Fy total fluid force on the wall of & tank undergoing forced lateral
Fxp oscillations, as determined by hydrodynamic theory and the
pendulum model, respectively; positive right
Fxnp that part of the fluid force on the wall of a tank undergoing
Fons forced lateral oscillations which 1s contributed by the nth

pendulum and the nth spring-bob, respectively; positive
right, n=1, 2, . « ., N

X0

xog forced lateral oscillations which 1s contributed by the fixed
mass in the pendulum model and the spring-bob model,
respectively; positive right

F }_ that part of the fluld force on the wall of a tank undergoing

pitching oscillations (about the center of gravity of the
undisturbed fluid), as determined by hydrodynamic theory and
the pendulum model, respectilvely; positive right

Fg }» total fluild forece on the wall of a tank undergoing forced
1Y

forced pitching oscillations (about the center of gravity of
the undisturbed fluid) which is contributed by the nth
pendulum and the nth spring-bob, respectively; positive
right, n=1, 2, . . «, N

anp}_ that part of the fluld force on the wall of a tank undergoing

Foos forced pitching oscillations (about the center of gravity of

the undisturbed fluid) which 1s contributed by the fixed mass

dateil Lo UVILUL LW

Feop}_ that part of the fluid force on the wall of a tank undergoing

in the pendulum model and the spring-bob model, respectively;
positive right
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fluild height

mass moment of inertia of the empty pendulum tank about its
pivot point ‘

mass moment of inertia of the fixed mass about its own center
of gravity in the pendulum model and the spring-bob model,
respectively

common symbol for Iop and I, after they are proved equal

total spring stiffness acting on the nth mass in the spring-
bob model, n =1, 2, . . ., N

length of the nth simple pendulum in the pendulum model,
n=1,2, « « «, N

shortest distance from the hinge line to the center of gravity
of the empty pendulum tank

shortest distance from the hinge line of the pendulum tank to
the center of gravity of the undlsturbed fluid

shortest distance, positive downward, from the hinge line of the
pendulum tank to the hinge line of the pendulum in the single-
pendulum model and the attachment line of the spring in the
single-spring-bob model, respectively

shortest distance, positive downward, from the hinge line of
the pendulum tank to the center of gravity of the fixed mass
in either the single pendulum or the single-spring-bob model

shortest distance, positive downward, from the center of gravity
of the undisturbed fluid to the hinge line of the nth
pendulum in the pendulum model and the attachment line of the
nth spring in the spring-bob model, respectively,
n=1,2, . « ., X

shortest distance, positive downward, from the center of gravity
of the undisturbed fluid to the attachment line of the fixed
mass In the pendulum model and the spring-bob model,
respectively -

common symbol for Ipp and log after they are proved equal

mass of the empty pendulum tank

total fluid moment (about the center of gravity of the
undisturbed fluid) on the surface of a tank undergoing forced

lateral oscillations, as determined by hydrodynamic theory and
the pendulum model, respectlvely; positive clockwise
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that part of the fluld moment (about the center of gravity of
the undisturbed fluid) on the surface of a tank undergoing
forced lateral oscillatlons which 1s contributed by the
nth pendulum and the nth spring-bob, respectively; positive
clockwise, n=1, 2, . « ., N

that part of the fluld moment (gbout the center of gravity of
the undisturbed fluid) on the surface of a tank undergoing
forced lateral oscillatlons which 1s contributed by the fixed
mass in the pendulum model and the spring-bob model,
respectively; positive clockwise

total fluid moment (about the center of gravity of the
undisturbed fluid) on the surface of a tank undergoing forced
pitching oscillations (about the same axis) as determined by
hydrodynamic theory and the pendulum model, respectively;
positive clockwise

that part of the fluid moment (about the center of gravity of
the undisturbed fluid) on the surface of a tank undergoing
forced pitching oscillations (about the same axis) which is
contributed by the nth pendulum and the nth spring-bob,
respectively; positive clockwise, n=1, 2, . « ., N

that part of the fluid moment (about the center of gravity of
the undisturbed fluid) on the surface of a tank undergoing
forced pitching oscillations (about the same axis) which is
contributed by the fixed mass with rotary inertia in the
pendulun model and the spring-bob model, respectively;
positive clockwise

total mass of the fluid

mass of the nth pendulum and the nth spring-bob,
respectively, n=1, 2, . . ., N

common symbol for Inp and mpy after they are proved equal,
n=1,2, . . ., N

mass of the fixed fluid mass in the pendulum model and the
spring-bob model, respectively

common symbol for Top and m,e after they are proved equal
total number of pendulums or spring-bobs

index indicating a specific mode or pendulum or spring-bob,
n=1,2, «. s+ ., Nor o
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natural frequency of the slosh mode, that is, the mode which is
mostly fuel motion, cps

natural frequency of the pendulum-tank mode, that is, the mode
which is mostly tank motion, cps

lateral displacement of the mass of the nth spring bob
relative to the tank axis, positive right, n=1, 2, . . ., N

the s, type motion which results from lateral oscillations
of the tank, n=1, 2, « « », N

the 8y type motion which results from pitching oscillations
of the tank about the center of gravity of the undisturbed
fluld, n=1, 2, . . ., N

time, sec

lateral displacement of the tank in lateral translation;
positive right

amplitude of x in harmonic oscillation

nth zero of J1'(e), where Ji(€) is the first-order Bessel
function of the first kind and the prime indicates differen-
tiation with respect to the argument, n =1, 2, . . ., ®

pitching displacement of the pendulum tank about its hinge line,
or of the tank alone about the center of gravity of the
undisturbed fluid

amplitude of 6 1in harmonic oscillation

pltching displacement of the nth pendulum relative to the
tank axis, positive clockwise, n =1, 2, . . ., N

the @, type motion which results from lateral oscillations of
the tank, n=1, 2, . . ., N

the @, type motion which results from pitching oscillations
of the tank gbout the center of gravity of the undisturbed
fivid, n=1, 2, « « «, N

cilrcular frequency of forced harmonic oscillation, radians/sec
natural circular frequency of the nth fluld mode, the nth

pendulum, or the nth spring-bob, radians/sec, n=1, 2,
e « o, N Or o
3




EXPERIMENTAL AND ANALYTICAL METHODS

Apparatus and Test Technique

The experimental data were obtained with the model shown in figure 1.
Basically it consisted of a 3.89-inch-inside-diameter tank mounted in a
rigid frame and pivoted about a horizontal axis. The support arms could
be moved along the longitudinal tank axls to vary the distance from the
pivot point to the center of gravity of the empty tank. Mercury was used
as the sloshing liquid.

Fluid surface displacement at the tank wall was measured with a
cylindrical capacitive probe partially submerged in the liquid, and with
an accompanylng external bridge circuit. This measurement gave a time
history of the fluld motion relative to the tank motion. Data for the
tank motion were obtalned with a noncontacting optical system. In this
system a light beam 1s focused at a fixed point on the tank and through
a servo control remains locked on the point for smsall tank displacements.
The displacement of the light beam, whlch was proportional to the tank
displacement, then activated a photoelectric cell and the output from the
latter was recorded on an oscillograph. Similarly, the capacitive bridge
circult output, which was proportioned to the relative fluid motion, was
recorded on an oscillograph.

In general, oscillations were inltiated by pulling the tank to one
side, allowing all fluid motion to cease, and then releasing the tank.
For accuracy 1n determining the slosh mode frequency, the mode was exclted
by manually forcing the tank at a frequency near that of the slosh mode.
After excitation had been achieved, forcing was stopped and the subsequent
free oscillation motion of the fluid was recorded. Under these conditions
the fluid motion was almost entirely that of the slosh mode and thereby
could be used to determine the slosh mode fregquency. To eliminate system
noise error for thls case the bridge output was subjected to a frequency
filter before it was recorded.

For both the slosh mode and the pendulum-tank mode, the frequency for
each pivot-pecint location and fluld helght was determined three times.
Repeatability was within 1 percent or better. Since an average of the
three readings was used, the experimental error is estimated to be 1/2
percent or better.

Range of Data and Sources of Error

To check the effect of fluid helght on experimental-analytical
correlation, tests were performed over an h/a (ratio of fluid height
to tank radius)range of 0.50 to 2.00. For each h/a value an 1
(distance from pivot point to empty-tank cg) range of roughly 0.6 to 2.5
inches was tested to Indicate the relative effects of rotation and



translation upon the correlation. For the smallest ! and largest h/a
values tested (1 = 0.594 in., h/a = 2.00), a 1/10-inch transverse dis-
placement of the undisturbed fluid center of gravity corresponded to an
angular rotation of 3.770. For the largest 1 and smallest h/a value
tested (1 = 2.469 in., h/a = 0.50) the same transverse displacement
corresponded to an angular deviation of 0.900- Free oscillations were
started from an initial pendulum-tank angle of around 10 , which was small
enough to prevent splashing.

The possible sources of error pertain, of course, to the quantities
used to correlate experimental and analytical results, namely, the fre-
quencies of the slosh mode (mostly fuel motion) and the pendulum—tank mode
(mostly tank motion), together with the wave form of the two measured
coordinates.

One source of error arises from the fact that damping was neglected
in the analysis. Hence only gqualitative wave form correlation would be
expected on the time histories. On the other hand, in analogy tc a linear
one-degree-of-freedom system, slight damping would not change the modal
natural frequencies appreciably. A computation using the observed damping
factor indicated a natural frequency change of less than 1 part in 10%,
well within the estimated maximum experimental error of 1/2 percent.

The capacitive probe contributed two possible errors in the
determination of the fluid motion, namely noise and the tendency of the
fluid to stick to the probe. These effects increased the difficulty
experienced in wave-form correlation for the fluid motion but had no
effect on the frequency determination.

The possible frequency error from recorder paper speed was checked
by a precision frequency generator. Indicated error from this source was
less than 1 part in 2000. This check was made for both the analog
computer and experimental data recorders. Possible frequency error from
filtered traces was determined by comparison with nonfiltered traces where
possible. All such checks indicated deviations within the estimated maxi-~
mum experimental error. In a similar fashion manually excited slosh mode
frequencies were checked against the same frequencies as determined from
quiescent inltial conditions. Again deviations were within the outer
limit of 1/2 percent arrived at from the repeatability check and the
averaging procedure.

Analytical Models and Methods

In the appendix it is shown that both the pendulum model and the
spring-bob model can be made to duplicate exactly the tank-surface forces
and moments due to forced lateral translation and pitching of a partially
filled cylindrical tank (shown in fig. 2) as predicted by linearized
hydrodynamic theory. These models (pictured in figs. 3(a) and 3(b)) can,




of course, be used to determine parameters for the analytical simulation

of free vibrations of the pendulum tank considered in the present report.
Figure 4(a) shows this tank simulation for the case where a single
pendulum of length L; and mass m;, and a fixed mass m, with rotary
inertia Iy, are used as a fuel model. The remainder of figure 4(a) is
self-explanatory except for the fact that the figure utilizes the following
identities between the pendulum and spring-bob models taken from equations
(A19), (A20), (A22), and (A23) of the appendix for n = N = 1:

Mg = Myp E My los = lop = Io

Tog = Hop = Mg Los = Top = Io

where the symbols are defined under Notation. It should be noted that
¢y 1s proporticnal to the relative fluid motion in the first meode.

With b for effective gravity, and M and I denoting the mass and
hinge-line moment of inertia of the pendulum tank without fuel, the
following two linearized equations of motion can be derived for the system
of figure U(a) by Lagrange's equations or direct application of force
balance:

Ll'cbl+(lfp +L1)5+b(@1 +08) =0 (1)
(I + I, +mglt? + mlzfpg)'é +my ZepLa (G + 9) + b(ML + Moly + M lep)6 = O
(2)

Figure 4(b) shows the case where a single spring-bob of stiffness
ky and mass my; replaces the pendulum in the fuel model. The two
linearized equations of motion are as follows:

»e hod k
Sl—elfs+£sl—b9=o (3)

(I +I5+my2® +m2p2)0 - mylp By + (ML + myly + myleg)6 - mbsy = O
()
where s3i is the relative displacement shown in figure 4(b).

Since the pendulum and spring-bob models must produce the same tank
surface forces and moments on a mode-by-mode basis in order to duplicate
the same hydrodynamic theory, 1t is expected that the linearized equations
(3) and (4) can be converted to equations (1) and (2) by a simple linear
transformation between s; and ¢;. This expectation is borne out when
the substitution

s1 = -L1¢y (5)
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is made in equations (3) and (4), together with the identities (A21),
(a8), (Alk), and (A19) from the appendix for n = N = 1. Hence equations
(1) and (2) were used interchangeably with equations (3) and (4) for the
analysls. Occasionally both sets were used as a check on the analytical
frequencies and wave forms.

After the parameters for equations (1) and (2) or equations (3) and
(4) were specified numerically as described in the next subsection,
analytical frequencies were determined by extracting roots from the
characteristic determinant of these equations. For convenience in plotting
the time histories, the equations were also set up on an analog computing
machine and subjected to an initial displacement in 6, with a correspond-
ing inltial ¢y or s; determined by static equilibrium. These initial
displacements, together with zero initial velocities, correspond to the
experimental initlal conditions described in a previous subsection.

Numerical Determination of Analytical Parameters

The numerical parameters of table I were used for equations (1) and
(2) (and various identities from the appendix for n = N = 1 would give
immediate conversion if parameters for equations (3) and (4) were desired).

The value given in table I for the fixed mass M of the empty
pendulum tank was measured directly, of course, and b was taken as the
sea-level acceleratlon due to gravity. Different fluid heights h and
various pivot-point locations were selected to determine the two
parameters, h/a and 1, which are considered independent variables in table
I. The tank radius a was measured directly, and 1 was determined Dby
balancing the empty pendulum tank horizontally on a knife edge for each
pivot-point location and measuring the distance from the pivot point to.
the knife edge. For each value of h/a, the corresponding value of 1,
was determined from equation (A8) in the appendix with ey = 1.84119
(ref. 14). Also for each h/a, the total fluid mass m was measured,
and this permitted the determination of my, my, and I, by equations
(A9), (A7), and (A13), respectively. For each value of I, the hinge-line
moment of inertia I of the empty pendulum tank was determined by its
measured natural frequency. Finally, for each combination of 1 and h/a,
the distance 1; from the hinge line of the pendulum tank to the center
of gravity of the undisturbed fluid was measured, and this was used with
equations (A10) and (Al1l) and the length 1dentities indicated in figure
L(a) to determine the values of lp, and L given in table I.
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RESULTS AND DISCUSSICON

Comparison of Freguencies

A total of 28 combinations of 1 and h/a were used in this
investigation. The slosh-mode and pendulum-tank-mode experimental and
analytical frequencies are presented In table II. For this set the maxi-
mum deviation of an analytical from experimental modal frequency was 2.9
percent. Ninety percent of the frequencies had deviations of 1 percent
or less; 70 percent had deviations of 0.5 percent or less; and 40 percent
had deviations of 0.2 percent or less.

It should be noted that the frequencies discussed above are for the
normal (combined) modes of a two-degree-of -freedom system in which coupling
between the pristine modes (as designated herein) occurs. For the present
system the latter consists of one mode in which the tank is held fixed
while the fluid is in motion and a second mode in which the tank moves
with the fluid frozen inside. What has been called the slosh mode is
actually a combination of the two pristine modes in which the moving fluid
component is predominant. Similarly, the pendulum-tank mode is a combil-
nation in which the tank plus frozen fluid component predominates.

Since the pristine modes are independent of all the fuel model
parameters except those giving fluid natural frequenciles, any free oscill-
lation test of all the parameters requires that the coupling (resulting
from fluld-tank force and moment interactions) described above be present.
Furthermore for the test to be adequate the coupling effects must be
sizable. The simplest measure of coupling in a system 1s the change in
coupled modal frequency from pristine modal frequency. Computations
revealed that for the present test such frequency changes ranged from 0.5
to 44 percent, with a roughly linear distribution for intermediate states.
This indicates that enough data points with sizable coupling effects have
been included to make the test significant; and the test then has the
special advantage of determining how the analytical sloshing parameters
perform when a combination of modes ig present, as in an actual missile.

Comparison of Time-History Wave Forms

For a qualitative comparison of time-history wave forms, three sets
of unfiltered analytical-experimental traces are shown in figure 5. These
are representative of the various qualitative features used in the corre-
lation. In figure 5(a) the 6 +trace exhibits beating, with experimental
and analytical beat frequencies nearly equal. The corresponding traces
for ¢ and fluid height do not exhihit features as outstanding as the
smooth beating just described. The wave-form correlation here is poor.

It should be noted that the experimental traces for fluid height required
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larger amplitudes of tank motion than did the corresponding * 6 traces.

It 1s possible that these amplitudes introduced nonlinearities which, with
the damping of the system and the limitations of the capacitive probe,
made wave form correlation poor or indecisive for all fluid traces except
the most outstanding.

An example of outstanding wave-form correlation between sy (note in
eq. (5) that s; = -L1®;) and fluid height is shown in Ffigure 5(b). Here
the easily correlated feature of one frequency component visibly super-
posed on the second is present. The result is a serles of irregular peaks
and valleys that can be followed on both the analytical and experimental
traces for several cyecles. The observable nolse has been discussed
earlier. The accompanying 6 coordinate 1s featureless in thls instance.

Figure 5(c) represents a state of the system intermediate between the
preceding two. Here the 6 +trace exhibits "snaking," or more precisely,
a low-frequency oscillation of the mean llne for the most immediately
apparent sinusoldal wave. The wave form agreement here is quite good.

The corresponding ¢; and fluid height traces are not particularly
distinguishable, but both do display the same general peak-to-peak
variastions.

On the average, an analytical time history duplicated the
corresponding experimental coordinate time history for 4 cycles, with
general agreement continulng indefinitely.

CONCLUSTIONS

An experimental evaluation has been presented for specific
analytical models for the stiffness and inertia terms of fuel sloshing in
circular cylindrical tanks. The evaluation 1s based on two-degree—of-
freedom analytical predictions, with sloshing represented by a single
pendulum or spring-bob, of the experimental frequencies and wave forms for
small, free oscillations of a smooth-walled pendulum tank containing
mercury. The following conclusions are indicated:

1. In view of the maximum error between experiment and analysis of
2.9 percent for all slosh and pendulum tank frequencies, the maximum error
of 0.5 percent for TO percent of those frequencies, and the surprisingly
good correlation of the time-history wave forms despite the damping of the
physical system, it is concluded that either the pendulum or the spring-bob
model provides excellent simulation of the stiffness and inertia terms for
fuel sloshing.
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2. The well-known identity between pendulums and spring-bobs for
small oscillations is maintained in their rather complicated simulation
of tank-surface forces and moments given by linearized hydrodynamic
theory for a partially filled cylindrical tank undergoing small lateral
and pitching oscillations, and this simulation is exact.

Ames Research Center
National Aeronautics and Space Administration

Moffett Fileld, Calif., Feb. 16, 1961
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APPENDIX A

DEVELOFMENT AND COMPARISON OF ANALYTICAL, MODELS FOR
FORCED LATERAI. AND PITCHING OSCILLATTIONS OF A

PARTTALLY FILLED CYLINDRICAL TANK
FORCES AND MOMENTS ON TANK SURFACE

The method for developing analytical models for forced lateral
translation and piltching of a partially filled cylindrical fuel tank is
to determine masses and locations of pendulums or spring-bobs so as to
match forces and moments on the tank surface, which are known from exact
linearized hydrocdynamlc theory for inviscid fluids. The exact results,
which can be derived by application of linearized boundary conditions to
the Laplace equation as in reference 14, are presented below, with symbols
defined under Notation and in figure 2:

-
tmm<§19>
1wty 2 &

Fx = Q}axoe 1 +T > (Al)

VAL IC S -t >

n=1
o
( tmm<§1%>+ 4 -
(en %> cosh (en §> €n %
My = Px elVtng L, (A2)
‘3 (e - 1) (2 )
a €n\€n~ - ? -
L s
A [ = ]< n) ]
‘ t 2
2 o1, %‘3>
h h h 2
€n 7 cosh <en E) €n 7
Fg = mbeoei“’t + 2m260e1‘*’tma Lh + > (A3)
83 en(en? - 1) <% - l>
| n=1 _J
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o0

2
1 2
M, = mab 5 6gelvt + wPoelvtma® { L (B) -1 4a 42
(°] N n ©° o 12 \a 2 wp2 h
E — En(gnz - l) —u—é' - > GnCOSh <€n E)

h
e e e v o Lo ()
€n &/ \e2l 4 h n 2y h h
€n. a (€n2) a sinh(en §> (En ) a ta.nh(en a>
where
oo L 1_1
-4 + 5 coshlep a
A =% 2 (85)
a n=1 €52(€y2 -~ 1)sinh <.an g)
and the pristine slosh frequencies w, are given by
wn2=£-entanh<—:n%>, n=1,2, « ¢, ® (46)

These particular arrangements of the exact hydrodynamic results are
lmportant for matching wilth pendulums or spring-bobs. For that purpose
w should enter within a summation only in modal coefficients of
1/[(wn2/w2) - 1], and everything which 1s not such a coefficient should
be taken out of the summation and regarded as a summed number. Then the
modal coefficients can be compared with those of the pendulums or spring-
bobs on a mode-by-mode basis.

PENDUIUM MODEL

The pendulum model is shown in figure 3(a). For a total of N
pendulums, giving N fluid modes, the following requirement is imposed:

N
m = Iy *‘}jmnp (AT)

=1
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Determination of the model requires solution for the unknowns Ip, mpp,
Mops lnp, lop, and Igp. With the well-known formula for the natural
frequency of a simple pendulum, equation (A6) yilelds immediately

a
Ip = > n
eytanh <€n §>

The first major step in solving for the remaining unknowns is to
match Fy and My for forced lateral motion of the tank of figure 3(a)
at x = xoei‘*’t, positive right. The linearized equation of motion for
myp 1s (with @, defined In the Notation)

=1,2, « « «, N (48)

mnp(ImCPm + wPxoelt) + mppbe =0

and solution for @ __ gilves Fy,,, the contribution of the nth pendulum
xn
to the wall force Fxp , by

F}mp:“mnpbq’xn: n=1,2, « «. «, N
It is evident that for the fixed mass the force on the tank wall i1s
- jwt
Fyop = mop‘*)zxoe
and after a little algebra Fxp is given by
N

- 2
Fap = Fyop +2Fmp = mw eri‘*’JC 1+

N
mnp_ 1

m 2
n=1 — _ 1

W2

n=1
with F, of equation (Al) gives

Tnp = - Gn %> (A9)

h
en(e® - 1) -

A mode-by-mode comparison of Fxp
2m

and equation (A7) can be used to solve for Mo *

It is apparent from figure 3(a) that for forced translation the
tank-surface moment Mxp must have the following components:

Mynp = ~ InpFxnp

Myop = ~lop¥Fxop
Then
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Myp = qup-+EZN&np
n=i
and when the algebra 1s worked out, a mode-by-mode comparison of Mkp
with My of equation (A2) yilelds

Ip _
h

+ : - - (410)
o) R tam(s B)

Comparison of the 1/[4(h/a)] term of equation (A2) with the corresponding
term of Mkp yields

N[

(A11)

It is of some interest to note the sense in which equation (All)
preserves the center of gravity of the fluid. If L, from equation (A8)

is put in (mp/mop) (Ln/h) and this quentity is added and subtracted
n=ix

on the right-hand side of equation (All), some algebraic menipulation
yields

N N

2

mOp 2O'_p + Z mnp(znp + Ln) = =
n=1 h en2(ep® ~ 1) y B
a n=1i a

1 1

Tf N -, it can be shown that Z-——-—L— =L, and thus in figure

]_']_=:|_€l2 ( €l2 - l)
3(a) the pendulums preserve the center of gravity of the fluid. Even for
a single pendulum (N 1) the center of gravity is virtually maintalned
since the value of &, for n =N =1 ylelds 1/[e;2(e32 - 1)] = 1/8.1.

The second and final major step In developing the pendulum model of
figure 3(a) is to match Fg and My for forced pitching of the tank about

the center of gravity of the undisturbed fluid at 6 = 6, etWl  positive
clockwise. The linearized eguation of motion for mnp 18 \With g,

defined in Notation)
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mnp[Lnﬁén - wZ(LHp + Ln)eoeium] + bmy, (Pgn + Goeiwt) =0 (a12)

Again solutlon for Qg gives Fenpf the contribution of the nth pendulum
to the wall force Fgp, by

Fonp = ~TnpbPgn n=1,2,... N

A conbination of d'Alembert and gravity forces gives the force on the
tank wall for the fixed mass as-

— iwt 2 iwt
Faop = mopbeoe — mopzopw eoe
Then N
Fep = Feop 4 E:F@np
: n=1

and substitution of equations (A9), (ALO), and (All) gives an exact check
of Fg 1in equation (A3) for all terms outside the modal summation and

an exact mode-by-mode check within the summation. This result is strictly
a check, of course, since no new unknowns are involved.

Figure 3(a) indicates that for forced pitching the tank-surface
moment Mep must have the following components:

Menp = ‘anFenp

= 2 lwt
Meop = —ZopFeop + W Iopeoe
The use of equations (A9), (10), and (All) in
N

M&p = Meop +ZM9np
n=1

then gives an exact mode-by-mode check within the modal summation of
Mg, equation (AL), and also checks the term mab{l/[h(h/a)]}eoelwt. The
remaining terms are matched by the following solution for Iop:

2 2 v
Iop = mh= Q.i_ - op logt 'Zmnpznpz + ma2< - % (A13)

where A 1is the infinite summation of equation (A5). It should be noted
that the first two terms of Top give the moment of inertia of the

fluid as if 1t were frozen. The solution for Top, in terms of the
quantities myp, NMop, Ipp, and ZOP found earlier, completes the determi-
nation of the penduEum.model of figure 3(a). These results agree with
previous results found among references 11 to 13 when the latter are
extended beyond N = 1.
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SPRING-BOB MODEL

The spring-bob model is shown in figure 3(b), and equation (A7) with
subseripts s instead of p, is imposed as for the pendulum model.
Determination of the spring-bob model requires solution for the unknowns
kXn, mpns, mos, Ins, log, and Ipgg. When the formula for the natural fre-
quency of a spring-bob 1s combined with equation (A6), k, can be found
immediately in terms of mpg as follows

b h
kn = g = enta.nh<€n -5>, n=1,2, ..., 0N (A1k)

The procedure in solving for the remaining unknowns is identical to
that for the pendulum model. The following key equations in the develop-
ment of the spring model replace corresponding equations in the pendulum
development (see Notation and fig. 3(b) for definitions of symbols):

. 2
(8 - W xoeiwt) + kpsyn = O

Fins = EnSxn

Fxos = MogWPxoelWt

It

Ms = - IngFsms + WngbSym
Myos = ~losFxos
g (Bgn + 0% 1n50,e19%) + ks = my b6
FGns = knSOn

2
mosbeoej'wt - My log® eoeiwt

If

FGos
Mgns = = lngFons + MsPSen

= _ 2 iwt
Pos ZosFeos +w Iosaoe

From these equations the procedure followed for the pendulum model yields
the following results to supplement equation (A7), with subscripts s
instead of p, and equation (All4) for the spring-bob model:

2m tanh <€n -2->

En(€n2 - 1) g

Mns
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1
2s. | L. 2 - 2 (a16)
h h h h h
€n a sinh €n a €n a tanh €n Y
N
A l = N T
o8 . Zzs ne 2w z — 1)"% (A17)
s < > n—l en -
=71 =
mh2 maz
Tos = o T Mog los® - mnsznsg +ma® | A~ %
n=1

N h
N L -3 cosh.én ;)
- 22 L -— (A18)

2
2(e. 2 — h
n= en®(6n® - 1) a en3(ep® - l)sinh<%n %>
n=1

where A 1is given in equation (A5)

As in the case of the pendulum model, the foregoing results for the
spring—bob model duplicate the exact hydrodynamic forces and moments on
the tank surface even for those terms whose duplication requires the use
only of previously determined unknowns. When N - o, the spring-bob
results are identical to those of references 6 and 9. By the argument
immediately following equation (All), it is apparent that equation (ALT)
automatically preserves the fluid center of gravity as N -« and very
nearly does so for a single spring (N = 1).

RELATIONS BETWEEN PENDULUM AND SPRING-BOB MODELS

Comparison of equations (A9) and (A15) shows
g = MWpp EMp, 07 1,2, «« o, N (A19)

where mp is the symbol to be used for both models. Hence, by equation
(A7) with subscripts p or s,

Doy = Mop = Og (420)
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Comparison of equations (A10) and (A16), and use of equation (A8), yields

Ing = Ipp +1Ip (A21)

When equations (A21), (A8), and (A15) are introduced in equation (ALT),
it is found that

los = lop = b (A22)

where 15 1s the new symbol for both models. A similar operstion on
equation (A18), which involves lengthier algebra, yields

Tog = Iop = I, (A23)
None of the above exact comparisons requires N - . In fact the
n =1 term of all sumations not involving the modal coefficient
1/[(w,2/w3) - 1] is completely dominant except as h/a = 0. As h/a >0,
the spring-bob forms in equations (A16) through (A18) are better for
computational purposes than the corresponding pendulum forms since the
hyperbolic sines and tangents in the denominator combine to give a half
angle hyperbolic tangent in the numerator. For equation (Al8) this
combination requires N -« since A of equation (A5) is an infinite
summation. These computational matters are not too vital, however, since
as h/a -+ 0 +the fuel sloshing effect on stability disappears.
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TABLE I.- ANATYTICAL PARAMETERS

M

b

I

0.01167 1b sec2/in.

386 in./sec?

[Symbols are defined in the section on Notation]

Ll; my , ] I s Z: I;
n/a in. |1b sec2/in. | 1b seﬁg/in. Tb-in. sec? in. |1b-in. sec2
1/2 |1.454% | 0.00971 0.00499 0.0068k 0.59k 0.117k
1 [1.110 01271 .01668 00654 .969 1264
3/2 | 1.06% .01325 .03085 .00952 1.219 .1256
2 11.058 01334 Ohsko .02202 1.469 .1285
1.8%4 1473
2.219 .1668
2.469 .1813
n/a 1/2 1 3/2 2
1, legs | L zfp, I, Lo | % Lo | U
1in. in. in. in. in. in. in. 111 . in.
0.504 | 2. 448 | 2.664 | 2. 447 | 2.569 | 1.849 | 2.337 { 1.027 | 2.006
.969 | 2.948 | 3.16L | 2.9471 3.069 | 2.349 | 2.837 | 1.527 | 2.506
1.219 | 3.448 | 3.664 | 3.447 ] 3.569 | 2.849 | 3.337 | 2.027 | 3.006
1.469 1 3.948 | b6k | 3.947 | 4.069 [ 3.349 | 3.837 {2.527 | 3.506
1840 | LLL8 | h.660 | b kb7 | ko560 | 3.849 ) 4.337 | 3.027 | 4.006
2.219 | 4.948 | 5.16L | h.ok7 | 5.069 | k.34g | 4.837 | 3.527 | L.506
2.469 | 5.448 | 5.664 | 5.447 | 5.569 | 4.849 | 5.337 | 4.027 | 5.006
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Figure 1l.- Apparatus.
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Center of gravity of
~~ undisturbed fluid
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Mip # I

Lo L,
Ma2p be ‘s

mOp

Lop

\ \\_ Support rod

fe——— @

—_—

; for nth pendulum
\Supporf

(a) Pendulum model.

rod for Mop

Figure 3.- Analytical models for forced translation and pitching of a
partially filled cylindrical tank.
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(b) Spring-bob model.

Figure 3.~ Concluded.
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Center of gravity /

of main pendulum 7

without my or mg
Center of gravity of /
undisturbed fluid

<

Support rod
for pendulum
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rod for mg

l
LOV\/

Y

8

lm

lfp

Lt

(a) Pendulum model for fuel.

Figure 4.- Analytical simulation for pendulum tank.
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without mj or mo

Center of gravity of
undisturbed fluid
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rod for mg Lis

(b) Spring-bob model for fuel.

Figure 4.- Concluded.
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MMA/V\A/\M/\/\/\/W\/\/\MM/\NWMNWM ey
exp

— t

¥ 1

anal
[ )

Ordinates are fluid height change at tank wall relative

to tank bottom for the experiment and ¢, for
the analysis.

exp

IV
V' ana

Ordinates are 8 for experiment and analysis.

(a) h/a =1.00, | = 2.219 inches

Figure 5.- Sample experimental and analytical wave forms.



Ordinates are fluid height change ot tank wall relative
to tank bottom for the experiment ond s, for
the analysis.

exp

anal
Ordinotes are 8 for experiment and analysis.

(b) h/a =0.50, Z = 0.594 inch

Figure 5.- Continued.
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Ao Ao

exp

AL t
VTVUvTvY
anal
Ordinates are fluid height change ot tank wall relative
to tank bottom for the experiment and ¢, for

the analysis.

exp

AN
JUVUY

anal
Ordinates are 6 for experiment and analysis.

(c) h/a =150, [ =0.969 inch

Figure 5.~ Concluded.
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