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Abstract 

The absence of a globally nonsingular three-parameter representation of rotations 
forces attitude Kalman filters to estimate either a singular or a redundant attitude 
representation. We compare two filtering strategies using simplified kinematics and 
measurement models. Our favored strategy estimates a three-parameter 
representation of attitude deviations from a reference attitude specified by a higher- 
dimensional nonsingular parameterization. The deviations from the reference are 
assumed to be small enough to avoid any singularity or discontinuity of the three- 
dimensional parameterization. We point out some disadvantages of the other 
strategy, which directly estimates the four-parameter quaternion representation. 

Introduction 

Real-time spacecraft attitude estimation generally employs an Extended Kalman 
Filter (EKF') [I, 21. Although the 3x3 orthogonal attitude matrix is the fundamental 
representation of the spacecraft's attitude, the orthogonality requirement imposes 
six constraints on its nine elements, reflecting the fact that the special orthogonal 
group SO(3) of rotation matrices has dimension three. Therefore, most EKFs use 
lower-dimensional parameterizations of S0(3), with the earliest using a minimal 
three-dimensional parameterization [3]; but higher-dimensional parameterizations 
can avoid the singularities or discontinuities present in all three-parameter 
representations [4]. The four-component quaternion has the lowest dimensionality 
possible for a globally non-singular representation of S0(3), but it still has one 
superfluous degree of freedom. Thus we face the dilemma of using an attitude 
representation that is either singular or redundant. Our preferred strategy for 
evading this dilemma uses a nonsingular representation for a reference attitude and 
a three-component representation for the deviations from this reference. This 
method, which we refer to as the Multiplicative EKF (MEW), was implicit in some 
early spacecraft attitude estimators [5-81 and has been discussed in detail in 
Reference 9. An alternative strategy, the Additive EKF (AEKF), treats the four 
components of the quaternion as independent parameters [lo]. 

We begin with a brief overview of quaternion estimation, emphasizing the 
conceptual difficulties. The MEKF is then discussed in a model with simplified 
kinematics and measurements. This is followed by an analysis of two versions of 
the AEKF, using the same model as the MEKF, and by a summary of our 
conclusions. Reference 11 is an extended version of this paper. 



Quaternion Estimation 

The attitude matrix is generally written as a homogeneous quadratic function of the 
quaternion [12], 

where I denotes the 3 x 3 identity matrix, and the cross product matrix is 
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We use the quaternion product convention of References 8 and 12 so that 
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A conventional "additive" quaternion filter defines the estimate ;T and error A? by - - 45 E{q}  and AT=?-;, 
where E{.} denotes the expectation. This means that that 

(4) 

Equation (1) gives an orthogonal matrix only if the quaternion has unit norm. 
Equation ( 5 )  shows that if the random variable 7 has unit norm, the norm of its 
expectation must be less than unity. Although the unity norm constraint violation 
will be on the order of the variance of the attitude errors, we regard this as a serious 
conceptual problem with additive quaternion EKFs, so we turn first to the MEW. 

Multiplicative EKF 

The MEKF represents the attitude as the quaternion product 
- 
4 = m a >  0 Ktf 9 

where Gref is some unit reference quaternion and the rotation @(a) from qref to the 
true attitude ;5 is parameterized by a three-component vector a. Although several 
choices for a are possible [9], it is only important for this paper that for small 
rotations 

(7) bij(a) = i + i~ + orderdaf), 

where i denotes the identity quaternion and H denotes a quaternion with vector 
part a and scalar part 0. The two attitude representations S;i and zr> in Eq. (6) are 
clearly redundant. The basic idea of the MEKF is to compute an unconstrained 
estimate of the three-component a while using the correctly normalized four- 
component to provide a globally nonsingular attitude representation. Given an 



estimate i = E{a}  of a, Eq. (6) says that S; i (s )  0 Zre, is the corresponding estimate 
of the true attitude quaternion 7 .  We remove the redundancy in the attitude 
representation by choosing the reference quaternion qre, so that 5 is identically 
zero, which means that Sq(0) is the identity quaternion and the reference 
quaternion is the estimate of the true quaternion. The identification of qref as the 
attitude estimate means in turn that a is a three-component representation of the 
attitude error. This provides a consistent treatment of the attitude error statistics, 
with the covariance of the attitude error in the body frame represented by the 
covariance of a. The fundamental conceptual advantage of the MEKF is that qref is 
a unit quaternion by definition. 

Kinematics 

The quaternion kinematic equation is 

(8)  A L - o - ,  4 = z o x q  

where o is the angular velocity vector in the body frame. Since qmf is also a unit 
quaternion, it must obey 

(9) 
- 
4ref = +G ref 8 Tre f  9 

where o r e f ,  the angular velocity of the reference attitude, must be determined by 
the requirement that i be identically zero. Note that qrCf and o re, are not random 
variables. Computing the time derivative of Eq. (6), using Eqs. (8) and (9), gives 

6;ji=+(W’O~-6qOE,g), (10) 

after right-multiplying the entire equation by the inverse of qref and rearranging. 

We now assume the simple kinematic model 

o(t) =& (t) + n,( t ) ,  (1 1) 

where 6 (t)  is the nominal angular velocity, and the zero-mean Gaussian process 
noise n, ( t )  obeys 

E { n , ( t ) d ( t ’ ) }  = 6 (t - t’)Q = 6 ( t  -t ’)o:Z, (12) 

with 6( t - t’) denoting the Dirac delta function. Substituting Eq. (10) into the time 
derivative of Eq. (7) and linearizing in a and n,  gives 

a=&-oref+Faa+Gan,  
with 

Measurements 
Fa E-+[(; +wrCf )x ]  and Go= I. 

We model the measurement of a vector v B  in the body coordinate frame by 

z = v g  = h(a) + n ,  = A m v ,  +nz, (15) 



where vr  is the corresponding vector in the inertial frame, and the zero-mean 
Gaussian measurement noise nz is assumed to be isotropic, 

( 1 6 )  

h( a) = i + H a  a , (1 7 )  

6, E A(Gref)vr 9 (18) 

R = E(n,n:} = o:I . 
Substituting Eqs. (l), (3), (6), and (7) into Eq. (15) and linearizing in a gives 

where iB is the predicted measurement in the body frame, 

and the measurement sensitivity matrix is - 
Ha e [ i B x ] .  ( 1 9 )  

The attitude error estimate 5 is propagated by the expectation of Eq. (13) with 
6 = 0, conditioned on the measurements [ 1 1 ,  

(20) 
, . *  T a = w - w ,@ + P,H, R-’ [Z - h(O)] = G - o - i ,  x v B ,  

where P ,  is the covariance of the error vector a. This is propagated using the 
approximation wref ==& , which neglects only terms of higher order than are 
customarily retained in an EKF and gives 

P, = F,P, + P , F , ~  + G,QG: - P,H; R-’H,P, 
(21 )  

= - [ 6 x ] P n  - P,[&x]‘ +o;z -az-’Pa[fBx]T[?BX]Pn.  

0 ref =; + O;’P, (VB x i B ) .  

Since the MEKF requires that i be identically zero, Eq. (20) gives w ,g as 

(22) 

The first term embodies the assumed kinematics, while the second incorporates the 
measurement updates. Equations (9) and (22) preserve the unity norm of the 
reference quaternion. No reset operation is needed with continuous measurements, 
in contrast to the discrete measurement case [9]. We emphasize that the MEKF does 
not require integration of Eq. (20), which is only used to derive Eq. (22). 

Additive EKF 

The AEKF relaxes the quaternion normalization condition and treats the four 
components of the quaternion as independent parameters, with the quaternion 
estimate and error given by Eq. (4). Linearizing Eqs. (8) and ( 1 1 )  gives the error 
vector kinematics 

- , .  ~++(ii+ii , , , )o($+~ij)-+~o~= F , A T + G , ~ , ,  ( 2 3 )  

with 



The quaternion in an AEKF has uncertainties in both angle and norm. Angle 
uncertainties have the form given by Eq. (6) ,  except that that the role of in the 
MEKF is taken by z in an AEKF. Norm errors are parallel to 4,  so we can write 

The approximate equality follows from the product rule and Eq. (7). Note that the 
norm error /3 is a relative error (multiplying the norm of $ by 1+/3) rather than an 
absolute error (adding B to the norm of z). Then the 4x4 quaternion covariance is 

where Pa is the 3 x 3  attitude covariance, pn is the quaternion norm variance, and pc 
is the vector of attitudehorm covariances. This factorization is not used in 
unconstrained quaternion estimators, which directly estimate the four-component 
AT and the 4x4 P,. 

Measurements 

The AEKF measurement model is very similar to the model in the MEW, given by 
Eq. (15). The AEKF uses a different parameterization of the attitude matrix A @ ) ,  
however, and h is regarded as a function of the quaternion rather than of the 
attitude error vector a. We will consider two different implementations of the 
AEKF. The first, which we call the quadratic AEKF, uses Eq. (1) for A @ ) .  We 
have seen that this attitude matrix is not orthogonal unless the quaternion has unit 
norm, but we will show that these measurements drive the norm to unity in the 
quadratic AEKF. The second implementation uses the orthogonal attitude matrix 
formed by using the normalized quaternion in Q. (1) 

A, 0 - A(Zj/kl) = kl-ka. (27) 
We refer to this as the ray representation AEXF because any non-zero quaternion 
along a ray in quaternion space (a straight line through the origin) represents the 
same attitude. The twofold ambiguity of the unit quaternion representation 
corresponds to the two points where the ray pierces the unit sphere. After a good 
deal of algebra, we find the measurement sensitivity matrix 

where i ,  is the predicted measurement given by Q. (18) with Grer replaced by $ , 
and where k = 1 for the quadratic AEKF and k = 0 for ray representation AEKF. 
The form of the measurement sensitivity matrix implies that quaternion norm 
errors, which are parallel to 4, are observable in the quadratic AEKF, but not in the 
ray representation AEKF. 



The expectation of Eq. (8) conditioned on the measurements is 

$si$@$+ PqH:R-’[z-h($)] 
(29) 

= $Ecf @ $ +  a;2[(?, x pc + 2kp,is).(v, -?,)I$, 
where 

W e f E ( ; )  + a ; 2 ( P , ( v , x ? , ) + 2 k [ i , ’ ( v , ’ - C , ) ] p c ) .  (30) 

The term parallel to $ on the right side of Eq. (29) modifies the norm of the 
quaternion estimate, but it is not difficult to show that 

Since acf in the ray representation AEKF ( k = 0) is the same as o in the MEW, 
and since the ray representation AEKF uses the normalized quaternion to compute 
the attitude via Eq. (27), it gives the same attitude estimate as the MEKF. The ray 
representation AEKF was used to estimate the attitude of the ALEXIS and CAPER 
spacecraft [13, 141. 

The quadratic AEKF ( k = 1) is different. Since the attitude matrix depends on the 
quaternion norm in this representation, the term parallel to $ on the right side of 
Eq. (29) is significant. If 4 is not a unit quaternion and p ,  is not zero, v, - ?, will 
have an error along ?, that drives the norm of toward unity. The angular update 
given by Eq. (30) is the same as for the ray representation AEKF and MEW if pc 
is zero, but is different if p, is not zero. It is difficult to avoid the conclusion that 
the quadratic representation AEKF gives incorrect estimates in the latter case. 

Substituting Eqs. (26) and (28) into the covariance propagation equation 

,. 

P, a F?, + P,F,~ + G,QG,’ - P,H: R-’HF,. (32) 

gives, after some algebra, 

io = < c j x ] ~ ~  - P , [ G ~ ~ T  +a:~ - O ; Z ( P ~ [ + , ~ I T [ G , ~ I P ~  + 4kb,12pcp:), (33a) 

p c  =-& pc - a ~ 2 ( ~ o [ f , x l T [ 5 B X l + 4 k ~ ~ ~ ~ n ) P c ,  (33b) 

p, =-az-2(le, x pcr +4kt?Jpf). (33c) 

Equation (33a) shows that the 3x3 attitude covariance Pa obeys the same equation 
in the ray representation MKF ( k = 0) as in the MEKF. Equation (33b) shows that 
pc is zero for all time in either AEKF if its initial value is zero. Equation (26) shows 
that this is the case if the initial estimate $ is an eigenvector of the initiaI 
covariance; this includes the case that the initial P,  is a multiple of the identity. The 
measurement term in Eq. (33b) will drive pc to zero if it is not initially zero. In the 
ray representation AEKF, the norm variance p ,  is constant if pc is zero, which may 



cause loss of significance of the attitude covariance if the attitude estimate 
converges to small errors, since Pa is mixed withp, in the quaternion covariance Pq. 

The attitude covariance Pa in the quadratic AEKF ( k  = 1) is different from the other 
two filters unless pc is zero. The last term in Eq. (33c) drives p ,  to zero in the 
quadratic AEKF, so the 4x4 covariance matrix becomes singular with null vector z .  The resultant potential instability of the quadratic AEKF can be avoided only by 
adding unphysical process noise to the quaternion magnitude. Note that the 
convergence of FI to unity and of pn to zero is a result purely of measurement 
processing, requiring neither “brute force” normalization of the quaternion nor 
norm-enfQrcing pseudo-measurements. Such subterfuges have been found useful in 
the presence of norm errors arising from numerical and discretization effects in 
AEKF implementations, however [ 101. 

Discussion 
Of the methods considered in this paper, the MEW requires the least computational 
effort due to the lower dimensionality of its covariance matrix. The MEKF is also 
the most satisfying conceptually, since it respects the dimensionality of the rotation 
group and its attitude estimate is a unit quaternion by definition. 

The ray representation AEKF is conceptually simpler than the MEKF, since it 
requires no attitude parameterization other than the quaternion, and it gives the 
same attitude estimates and covariance at the cost of some additional computational 
burden. Numerical significance issues may arise from the unobservable quaternion 
norm degree of freedom, but these have not caused difficulties in applications. 

The quadratic AEKF rests on less secure foundations. We have shown that the 
quaternion approaches unit norm, and thus the attitude matrix approaches an 
orthogonal matrix, as a natural result of measurement processing, without resorting 
to “brute force” normalization of the quaternion or norm-enforcing pseudo- 
measurements. If the initial quaternion estimate is an eigenvector of the initial 4x4 
quaternion covariance, the attitude errors and quaternion norm errors are 
uncorrelated for all time, and the attitude covariance and attitude estimates are the 
same as the other filters. If the correlation between the attitude errors and 
quaternion norm errors is not zero, the attitude update and attitude covariance differ 
from those of the other filters. The estimates provided by this method should be 
regarded with caution in either case, since the attitude matrix is not exactly 
orthogonal and the 4x4 covariance matrix becomes singular, potentially leading to 
instability that can be avoided only by adding unphysical process noise to the 
quaternion magnitude. 

The motivation for considering the additive EKFs, despite the conceptual and 
computational advantages of the MEKF, appears to be their superficial resemblance 
to a linear Kalman filter. This resemblance is deceiving, because the process noise 
and any dynamic parameters to be estimated enter mutiplicatively rather than 
additively in the quaternion kinematics equation. Realistic measurement models are 
also nonlinear, so we see no valid reason to prefer an AEKF to the MEKF. 
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