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Abstract. AI software is often used as a means for providing greater auton- 
omy to automated systems, capable of coping with harsh and unpredictable 
environments. Due in part to  the enormous space of possible situations that 
they aim to addrs, autonomous systems pose a serious challenge to tradi- 
tional test-based verification approaches. Efficient verification approaches need 
to be perfected before these systems can reliably control critical applications. 
This publication describes Livingstone PathFinder (LPF), a verification tool 
for autonomous control software. LPF applies state space exploration algo- 
rithms to an instrumented testbed, consisting of the controller embedded in a 
simulated operating environment. Although LPF has focused on NASA’s Liv- 
ingstone model-based diagnosis system applications, the architecture is mod- 
ular and adaptable to other systems. This article presents different facets of 
LPF and experimental results from applying the software to a Livingstone 
model of the main propulsion feed subsystem for a prototype space vehicle. 

1 Introduction 

Complex decision-making capabilities are increasingly embedded into controllers. 
Robots substitute for humans in hazardous environments such as distant planets, 
deep waters or battle fields. This trend is perhaps best exemplified by NASA’s need 
for autonomous spacecrafts, rovers, airplanes and submarines, capable of executing 
in harsh and unpredictable environments. Moreover, increased autonomy can be a 
significant cost saver, even in more accessible regions, by reducing the need for ex- 
pensive human monitoring. An important trend in autonomous control is model-based 
autonomy, where control is performed by a generic engine applying automated rea- 
soning techniques to a high-level model of the system being diagnosed. This is the 
case for the Livingstone diagnosis system on which the work presented here is based. 
The idea behind model-based solutions is that the system, in any situation, will be 
able to infer appropriate actions from the model. 

While autonomous systems offer promises of improved capabilities at reduced op- 
erational costs, a serious challenge to traditional test-based verification approaches 
occurs because of the enormous space of possible scenarios such systems aim to ad- 
dress. Several factors make testing advanced controllers particularly difficult. First, 
the range of situations to be tested is significantly larger because the controller itself 



is more complex and designed to operate over a broad range of unpredictable situ- 
ations during a prolonged time span. The program implicitly incorporates response 
scenarios to any combination of events that might occur, instead of relying on human 
experts to handle off-nominal casks. Second, autonomous systems close the control 
loops and feature concurrent interacting components. Thus, it becomes more difficult 
to plug in test harnesses and write test runs that drive the system through a desired 
behavior. Third, concurrency may introduce hard-bdetect, non-deterministic race 
conditions. 

This paper describes a flexible framework for simulating, analyzing and verify- 
ing autonomous controllers. The proposed approach applies state space exploration 
algorithms to an instrumented testbed, consisting of the actual control program be- 
ing analyzed embedded in a simulated operating environment. This framework forms 
the foundation of Livingstone PathFinder (LPF), a verification tool for autonomous 
diagnosis applications based on NASA’s Livingstone model-based diagnosis system. 

LPF accepts as input a Livingstone model of the physical system and a scenario 
script defining the class of commands and faults to be analyzed. The model is used 
to perform model-based diagnosis and will be used to simulate the system as well. 
The tool runs through all acecutions specified in the script, backtracking as necessary 
to explore alternate routes. At each step, LPF checks for error conditions, such as 
discrepancies between the actual simulated faults and those reported by diagnosis. If 
an error is detected, LPF reports the sequence of events that led to the current state. 

To avoid confusion in reading what follows, it is important to clearly distinguish 
two similar-sounding but very different notions, that we refer to as faults and errors: 

- Faults are physical events causing the controlled system to behave abnormally, 
such as a stuck valve or a sensor emitting erroneous measurements. They typically 
result from external degradation, and are handled by making the system fault- 
tolerant. Detecting and identifying faults is the goal of diagnosis systems such as 
Livingstone. 

- Errors are improper behaviors of the controller, such as inaccurately identifying 
the current state of the controlled system. They typically result from unintended 
flaws in design or configuration, and need to be eliminated before the system is 
deployed. Detecting and identifying errors is the goal of verification techniques 
and tools such as LPF. 

This article discusses Livingstone PathFinder on three different levels: 

- As a verification approach, LPF applies a combination of model checking and 
testing principles that we refer to as simulation-based verification. This is the 
subject of Section 2. 

- As a pmgram jkamework, LPF provides an infrastructure for applying simulation- 
based verification to autonomous controllers. This is referred to in Section 4.5. 

- As a concrete pmgmrn, LPF currently instantiates the framework to applications 
based on the Livingstone diagnosis system. This constitutes the central part of 
the paper, mainly discussed in Section 4. 

A preliminary account of this work was presented in [SI. The remainder of the 
paper is organized as follows: Section 2 presents the general simulation-based verifi- 
cation approach; Section 3 provides an overview of Livingstone; Section 4 describes 



the LPF software tool; Section 5 reviews some experimental results; Section 6 draws 
conclusions and perspectives. 

2 Simulation-Based Verification 

The approach we follow in the work presented is a composite between conventional 
testing and model checking, here referred to as simulation-based verification. Similar 
to conventional testing, it executes the real program being verified rather than an 
abstract model derived from the system. In order to support its interactions, the 
program is embedded in a testbed that simulates its environment. On the other hand, 
as in model checking the execution ranges over an entire graph of possible behaviors 
as opposed to a suite of linear test cases. In the optimal setting, each visited state 
is marked to avoid redundant explorations of the same state and can be restored 
for backtracking to alternate executions. Furthermore, sources of variation in the 
execution, such as external events, scheduling or faults, are controlled to explore all 
alternatives. 

The rationale behind simulation-based verification is to take the advanced state 
space exploration algorithms and optimizations developed in the field of model check- 
ing and apply them to the testing of real code. By doing so, we avoid the need for 
developing a separate model for verification purposes, and more importantly for scru- 
tinizing each reported violation to assess whether it relates to  the real system or 
to a modeling inaccuracy. Of course, simulation-based verification will in general be 
significantly less &cient and scalable than model checking an abstract model of the 
same program. However, it should be seen as an evolutionary improvement to tradi- 
tional testing approaches, with important potential gains in scalability, automation 
and flexibility. 

To enable their controlled execution, instrumentation is introduced in both the 
analyzed program and its environment. To perform a true model-checking search, the 
tool should be capable of iterating over aJl alternate events at each state, backtracking 
to previously visited states, and detecting states that produce the same behavior. 
Some of these capabilities may be supported only partly or not at all, depending on 
the nature of the Merent components in the testbed and the needs and trade-offs of 
the analysis being performed. For example, a complex piece of software may provide 
checkpointing capabilities on top of which backtracking can easily be built; however, 
state equivalence might require an analysis of internal data structures that is either 
too complex, computationally expensive, or infeasible due to the proprietary nature 
of the software. In addition, this analysis may not be worthwhile because equivalent 
states will seldom be reached anyway. Even if true backtracking is not available, it 
can still be simulated by replaying the sequence up to the desired state. This reduces 
the exploration to a suite of sequential test cases, but the additional automation and 
flexibility in search strategies can still be beneficial. 

With these capabilities, the program and its testbed constitute a virtual ma- 
chine that embodies a fully controllable state machine, whose state space can be 
explored according to different strategies, such as depth-first search, breadth-first 
search, heuristic-based guided search, randomized search, pattern-guided search or 
interactive simulation. The environment portion of the testbed is typically restricted 



to a well-defined range of possible scenarios in order to constrain the state space 
within tractable bounds. 

The principle behind simulation-based verification can be traced back to Gode- 
froid’s seminal work on the VeriSoft tool [4]. VeriSoft instruments a C program with 
explicit stop and choice points, to allow its controlled execution over a range of 
traces. Verisoft makes no attempt at capturing the state of the verified program; in- 
stead, trace re-play is used to simulate backtracking. This approach is referred to as 
state-Less model checking. The original contribution presented in this paper pertains 
to the application of that general idea to the LPF hamework and tool as well as the 
experimental results on a real-world application. The same principle can be found in 
Visser and Havelund’s Java PathFinder 2 [lo] with a twist: a complete Java virtual 
machine, optimized for verification, has been built rather than merely instrumenting 
the Java code to be analyzed. 

The models used in model-based autonomy are typically abstract and concise 
enough to be amenable to formal analysis. Indeed, the Livingstone-to-SMV transla- 
tor [9] is another verification tool for Livingstone applications, focusing exclusively 
on the Livingstone model but allowing true exhaustive analysis through the use of 
symbolic model checking. Nevertheless, a good model is a necessary but insufficient 
condition for a suitable model-based controller. Additional factors may compromise 
proper operation, such as problems in the engine itself or incomplete diagnosis heuris- 
tics used to achieve desired response times. The principles and techniques we discuss 
here aim to supplement high-level formal analysis with dcient and flexible tools 
designed to scrutinize the behavior of the actual program. 

3 Livingstone 

As the name implies, LPF has focused on the Livingstone model-based diagnosis 
system [12]. Generally speaking, diagnosis involves observing the input (commands, 
actuators) and output (observations, sensors) of a physical system to  estimate its 
internal state, and in particular detect and identify faulty conditions that may have 
occurred. In model-based diagnosis, this state estimate is inferred from a model of the 
Merent components of the physical plant and their interactions, both under nominal 
and faulty conditions. Livingstone uses a qualitative finite model. This allows the use 
of an efficient inference engine based on propositional logic to perform the diagnosis. 

A Livingstone model defines a collection X of discrete variables, or attributes, rep- 
resenting the state of the various components of the physical ~ y s t e m . ~  Each attribute 
z E X ranges over a finite domain D,. A state s of model associates to each z E X a 
value s (x)  E D,. The command and observable attributes 0 c X capture the visible 
interface of the system; the mode attributes M c X ,  one for each individual com- 
ponent, denote the hidden state to be inferred. The domain D, of a mode attribute 
m is partitioned into nominal modes and a (possibly empty) subset of fault modes 
F, E D,. The model also sets constraints between these attributes, both within 
a state and across transitions. Nominal transitions result from particular command 
values while fault transitions are spontaneous. Each fault mode f E F, has a rank 
p ( f )  estimating its probability (e.g. rank 4 for probability 

The model may also cover aspects of the surrounding environment, that do not strictly 
belong to the controlled system but are relevant to diagnosis. 



As an example, the following Livingstone model fragments describe a valve com- 
ponent, extracted from the PITEX model that we used for our experiments (see 
Section 5). Note that Livingstone is supported by a graphical modeling environment, 
that generates part of this code automatically. 

claas ventBeliefValva 
ventline T U I ~ L M O I ~ ;  
thraaholdVduaa pnauuticLineIn; 
ventline'l~ratpre ventLim0ut ; 
// . . . mty attributes 
private anum Ilodaljpa inorinal. atuckOp.n, stuckQosad3; 

statavactor b d a ]  ; 
privata loaeljpa lode; 

I 
if (valvaPosition = closad) { 

ventLina0ut .ambient. upperBound = balodbrashold t 
vanttinaOut.ubient.lowarBolmd = abovaThreshold k 
vanttineIn.flow.sign = zaro; 

3 
// ... more conatraints 
switch (modal { 

case nominal: 
if (pnauraticLineIn = abovaThrashold) valvaPosition = opan; 
if (pneuuticLinaIn = belod'hrsshold) valvaPosition = closed; 

ValvaPosition = open; 

valvePosition = closed; 

case stuc)lOp.n: 

case stuckclosed: 

1 
3 
failure a t u c m ( * ,  stnckOp.n, 1asaLikely) I 1 
failure stuckCloud(8, stuckQosod, likaly) I 1 

Livingstone performs diagnosis by receiving observations (that is, values of com- 
mands and observables) and searching for mode values (possibly including faults) that 
are consistent with these observations. The result is a list of candidates (c1, . . . , c,,), 
where each candidate c assigns a value c ( m )  to every mode attribute m E M and 
has a rank p(c) resulting from the faults leading to that candidate. For verifica- 
tion purposes, we will say that a candidate c matches a state s, written c = s ,  if 
they have the same mode values, and that c subsumes s, written c 5 s, if faults 
of c are also faults of s. Formally, c M s if€ Vm E M c ( m )  = s(m), and c 5 s iff 
V m  E M . c ( m )  E F, * c ( m )  = s(m). 

Livingstone's best-first search algorithm returns more likely, lower ranked candi- 
dates first ( p ( ~ )  5 p(c++l)). In particular, when the nominal case is consistent with 
Livingstone's observations, the empty (Le. fault-free) candidate (of rank 0) is gener- 
ated. The search is not necessarily complete: to tune response time, Livingstone has 
configurable parameters that limit its search in various ways, such as the maximum 
number of rank of candidates returned. 

The first generation of Livingstone (in Lisp) flew in space as part of the Remote 
Agent Experiment (FLAX) demonstration on Deep Space 1 [7]. Livingstone 2 (or L2) 
has been rewritten in C++ and adds temporal trajectory tracking. A utility program, 
12test, provides a command line interface to perform all L2 operations interactively. 
latest commands can be stored in L2 scenario files for batch replay. A third gener- 
ation supporting more general constraint types (hybrid discrete/continuous models) 
is under development. 



4 Livingstone PathFinder 

The Livingstone PathFinder (LPF) program is a simulation-based verification tool 
for analyzing and verifying Livingstone-based diagnosis applications. LPF executes a 
Livingstone diagnosis engine, embedded into a simulated environment, and runs that 
assembly through all executions described by a user-provided scenario script, while 
checking for various selectable error conditions after each step. 

The architecture of the LPF tool is depicted in Figure 1. The testbed under 
analysis consists of the following three components: 

- Diagnosis: the diagnosis system being analyzed, based on the Livingstone diag- 
nosis engine, interpreting a model of the physical system. 

- Simulator: the simulator for the physical system on which diagnosis is performed. 
Currently this is a second Livingstone engine interpreting a model of the physical 
system. The models used in the Diagnosis and the Simulator are the same by 
default but can be different. 

- Driver: the simulation driver that generates commands and faults according to a 
user-provided scenario script. The scenario file is essentially a non-deterministic 
test case whose elementary steps are commands and faults. 

Search 
Engine 

Fig. 1. Livingstone PathFinder Architecture 

n o m  a testing standpoint, the Diagnosis is the implementation under test (IUT), 
while the Driver and Simulator constitute the test harness. All three components 
are instrumented so that their execution can be single-stepped in both forward and 
backward directions. Together, these three elements constitute a non-deterministic 
state machine, where the non-determinism comes mainly from the scenario script 
interpreted by the D r i ~ e r . ~  The Search Engine controls the order in which the tree 
of possible executions of that state machine is explored. In each forward step, LPF 
performs the following cycle of operations: 

event := get next step from the Driver 
apply event to the Simulator 
if event is a command 

LPF can also deal with non-determinism in the Simulator. 



then notify event to the Diagnosis 
else do nothing (Faults are not directly visible to Diagnosis) 
obs := get updated observations from the Simulator 
notify obs to the Diagnosis 
ask Diagnosis to update its candidates 

This cycle is repeated dong all steps covered by the scenario, according to the cho- 
sen search strategy. Before each cycle, the current state is saved (using Livingstone’s 
built-in checkpointing capability) so it can be later restored to explore alternate 
routes. User-selectable error conditions, such as consistency between the diagnosis 
results and the actual state of the Simulator, axe checked at the end of each cycle, 
and a trace is reported if an error is detected. Since the cycle needs to be repeatedly 
rolled and unrolled by the backtracking search, it h o t  simply be implemented as 
a program iteration, but instead needs to be simulated using non-trivial bookkeeping 
of the search trajectory. 

LPF bears some resemblance to conformance testing, in that it checks whether 
the Diagnosis, seen as an implementation, “conforms” to the Simulator, seen as a 
specification. The “conformance” relation, however, is quite dif€erent from classical 
conformance relations that require the implementation to behave similarly (in some 
specific precise sense) to the specification (see e.g. [2]). Here, the relation is one of 
observability, i.e. that the implementation (Diagnmis) can track the state of the spec- 
ification (Simulator). Even if Simulator and Diagnosis are “equivalent”, in the sense 
that they operate on identical models of the controlled system, Diagnosis may s t i l l  
fail to “conform” , because the observation it receives or its own computing limitations 
prevent accurate tracking. This is indeed the situation we consider by using the same 
model in both the Simulator and the Diagnosis. 

4.1 Scenario Scripts 

The driver constrains the possible executions to a user-provided combination of cDm- 
mands and faults, defined in a scenario script. This is essential to reduce the state 
space to a tractable size: the state space of the PITEX Livingstone model, used in 
the experiments reported later in this paper, is on the order of states. Although 
model states do not necessarily map into simulator or diagnosis states, this still gives 
a fair estimate of the orders of magnitude. 

The scenario script is essentially a non-deterministic program whose elementary 
instructions are commands and faults. It can be viewed as an extended test case (or 
test suite) representing a tree of executions rather than a single sequence (or a set 
thereof). Scenarios are built from individual commands and faults using sequential, 
concurrent (interleaved) and choice statements, according to the following syntax: 

stmt ::= “ewent” ; I { stmt* 3 I mix s t m t  (and stmt)* I choose stmt (or stmt)*  

These operators have their classical semantics from process algebras such as CSP 
[5], that we will not repeat here. For example, the following scenario defines a sequence 
of three commands, with one fault chosen among three occurring at some point in 
the sequence. LPF provides a way to automatically generate a scenario combining 
all commands and faults of a model following this sequence/choice pattern. More 
configurable ways to generate scenarios from models or other external sources is an 
interesting direction for further work. 



mix I 
"cornand t e s t .  breaker. undh = on" ; 
44cOTrmbnd test. breaker. cmdIn = off I' ; 
"cornand t e s t .  breaker. cmdIn = on" ; 

choose ' I f  ault  t e s t .  bulb .mode = blown" ; 
or "fault t e s t .  bulb .mode = short" ; 
or "fault test .meter.mode = broken" ; 

3 and 

4.2 Error Conditions 

In each state along its exploration, LPF can check one or several error conditiow 
among a user-selectable set. In addition to simple consistency checks, LPF supports 
the following error conditions: given a list of candidates (c1, . . . , cn) and a simulator 
state 9, 

- Mode comparison checks that the best (lowest-ranked) candidate matches the 

- Candidate matching checks that at least one candidate matches the Simulator 

- Candidate subsumption checks that at least one candidate subsumes the Simulator 

Simulator state, i.e. c1 M s, 

state, i.e. 3k.Q M s, and 

state, i.e. 3k.ck E s. 

where M and 5 were defined in Section 3. These conditions constitute three suc- 
cessive refinement steps with the notion that diagnosis should properly track the state 
of the (simulated) system. Mode comparison only considers the most likely candidate 
and reports errors even if another reported candidate matches the state, which is 
overly restrictive in practice since the injected fault may not be the most likely one. 
Alternatively, candidate matching considers all candidates. Even SO, a fault may often 
remain unnoticed without causing immediate harm, as long as its component is not 
activated: for example a stuck valve will not be detected until one tries to change 
its position. Experience reveals this to be a frequent occurrence, causing a large pro- 
portion of spurious error reports. In contrast, candidate subsumption only reports 
cases where none of the diagnosed fault sets are included in the actual fault set. For 
example, the empty candidate is subsumed by any fault set and thus never produces 
an error using this condition. While this will not detect cases where diagnosis misses 
harmful faults, it will catch cases where the wrong faults are reported by the diagnosis 
engine. This condition has provided the best results thus far, as further discussed in 
Section 5. 

4.3 Simulators in LPF 
The modular design of LPF accommodates the use of different simulators through 
a generic application programming interface (API). As a first step, we have been 
using a second Livingstone engine instance for the Simulator (used in a different way: 
simulation infers outputs from inputs and injected faults, whereas diagnosis infers 
faults given inputs and outputs). 

Using the same model for simulation and diagnosis may appear to be circular 
reasoning but has its own merits. It provides a methodological separation of concerns: 



’ .  

by doing SO, we validate operation of the diagnostic system under the assumption that 
the diagnosis model is a perfect model of the physical system, thus concentrating on 
proper operation of the diagnosis algorithm itself. Incidentally, it also provides a cheap 
and easy way to set up a verification testbed, even in the absence of an independent 
simulator. 

On the other hand, using the same model for the simulation ignores the issues 
due to inaccuracies of the diagnosis model w.r.t. the physical system, which is a main 
source of problems in developing model-based applications. In order to address this 
concern, we have already been studying integration of NASA Johnson Space Center’s 
CONFIG simulator system [3]. Note that higher fidelity simulators are likely to be less 
flexible and efficient; for example, they may not have backtracking or checkpointing. 

4.4 Search Strategies 

LPF currently supports two alternative state space exploration algorithms. The first 
is a straightforward depth-first search. The second performs a heuristic (or guided) 
search Heuristic search uses a heuristic (or fitness function) to rank different states 
according to a given criterion and explores them in that order. Provided that a good 
heuristic can be found, heuristic search can be used to automatically orient the search 
over a very large state space towards the most critical, suspicious, or otherwise in- 
teresting states. This offers two advantages: The first is that errors are likely to be 
found earlier on and the second is the production of shorter counterexample paths. 

The first heuristic uses the execution depth, i.e. the number of steps to that state. 
This heuristic results in performing a breadth-first search. Although this exploration 
strategy does not use any application knowledge to improve the search, its main 
benefit over depth-first search is in providing the shortest counter-examples. 

The second heuristic, called candidate count, uses the number of candidates gen- 
erated by Diagnosis. The intuition is that executions with a low number of diagnosis 
candidates are more likely to lead to cases where no correct candidate is reported. 

4.5 Implementation Notes 

Backtracking of the Diagnosis and Simulator take advantage of checkpointing capa- 
bilities present in Livingstone. Using built-in checkpointing capabilities provide better . 
performance than extracting and later reinstalling all relevant data through the API 
of Livingstone engine. 

LPF also offers a number of useful auxiliary capabilities, such as generating an 
expanded scenario tree, counting scenario states, exploring the simulator in isolation 
(no diagnosis), generating a default scenario, and producing a wide array of diagnostic 
and debugging information, including traces that can be replayed using the 12test 
command-line interface or in Livingstone simulation tools. LPF is written in Java and 
makes extensive use of Java interfaces to support its modular architecture. The core 
source base consists of 47 classes totaling 7.4K lines. It has been successfully run on 
Solaris, Linux and Windows operating systems. 

Livingstone PathFinder is built in a modular way, using generic interfaces as 
its main components. The Simulator and Diagnosis components implement generic 
interfaces, that capture generic simulation and diagnosis capabilities but remain in- 
dependent of Livingstonespecific references. The top-level class that encompasses 



all three components of the testbed and implements the main simulation loop dis- 
cussed in Section 4 only uses the generic abstractions provided by these interfaces. 
This provides a flexible, extensible framework for simulation-based verification of di- 
agnosis applications beyond the purely Livingstone-based setup (both for diagnosis 
and simulation) shown in Figure 1. Both the Simulator and Diagnosis modules are 
replaceable by alternative implementations, not necessarily model-based, provided 
those implementations readily provide the corresponding generic interfaces. 

Livingstone PathFinder is not available for download but can be obtained free of 
charge under a NASA licensing agreement. Please contact the authors if interested. 

5 Experimental Results 

The Livingstone diagnosis system is being considered for Integrated Vehicle Health 
Maintenance (IVHM) to be deployed on NASA’s next-generation space vehicles. In 
that context, the PITEX experiment has demonstrated the application of Livingstone 
based diagnosis to the main propulsion feed subsystem of the X-34 space vehicle [l ,  81, 
and LPF has been successfully applied to the PITEX model of X-34. This particular 
Livingstone model consists of 535 components and 823 attributes, 250 transitions, 
compiling to 2022 propositional clauses. 

Two different scenarios have been used to analyze the X-34 model: 

- The PITEX baseline scenario combines one nominal and 29 failure scenarios, de- 
rived from those used by the PITEX team for testing Livingstone, as documented 
in [SI. This scenario covers 89 states. 

- The random scenario covers a set of commands and faults combined according 
to the sequence/choice pattern illustrated in Section 4.1. This scenario is an ab- 
breviated version of the one automatically generated by LPF, and covers 10216 
states. 

We will first discuss scalability and compare different error conditions using depth- 
first search, then discuss the benefits of heuristic search and finally illustrate two 
different errors found during the experiments. 

5.1 Depth-First Search 

Our initial experiments involved searching the entire state space, letting the search 
proceed normally after detecting an error, and reporting any additional errors. We 
used the depth-first algorithm in this case, since heuristic search offers no advantage 
when searching through all states of the scenario. Table 1 summarizes our depth-fist 
search statistics. It shows that LPF covered the PITEX baseline and random scenario 
at an average rate of 51 states per minute (on a 500MHz Sun workstation). 

When searching for candidate matching, LPF reported an excessive number of 
errors, most of which were triuid, in the following sense: when a fault produces no 
immediately observable effect, Livingstone diagnosis does not infer any abnormal 
behavior and reports the empty candidate. For example, although a valve may be 
stuck, the fault will stay unnoticed until a command to that valve fail to produce the 
desired change of position. While these errors are indeed missed diagnoses, experience 



Table 2. Comparison of Heuristic vs. depth-&st search 

strategy lmax. depthlcondition' 1 time ]stateslstates/min 
DFS 1 16 I CS 102:55:381 8648 I 49 

cc 1 5 38 
DFS I 16 I CM 100:00151 17 I 68 

2o I BFS 2 00:00:13 4 
l c c l  1 I /OO:OO:lll 4 I 24 

See Table 1 

5.3 Example Scenario 1 

Our first example involves the PITEX baseline scenario, and was performed with an 
earlier version of L2 in which, as it turns out, the checkpointing functionality used 
by LPF was flawed. The scenario involves a double fault, where a valve sv31 (on a 
liquid oxygen venting line) gets stuck and a micro-switch sensing the position of that 
valve fails at the same time. The sequence of events is as follows: 

1. A command open is issued to sv31. 
2. A command close is issued to sv31. 
3. The open microswitch of sv31 breaks. 
4. sv31 fails in stuck-open position. 

The microswitch fault remains undetected (Livingstone still reports the empty 
candidate after event 3), however the stuck valve causes a fault diagnosis: after event 
4, Livingstone reports the following candidates (the number before the X sign is the 
time of occurrence of the presumed fault): 

Cmdidata 0 )  

Cmdidat. 1) 

Candidat. 2) 

Candidat. 3) 

5tta.t .rrOl .rod~TraP.ition=stuckOpon:Z 

-tt~~t.rrOl.rod~Truuition=~tuckClo~~d:2 

-~~~t.~v31.md~Tra~ition=stuckClo~~d:3 

-tt.it.rrOl.mod.Truition=.tuc~:Z 
3tt~st.rrOl.rod.Trmaition=~tuckClo**d:2 

5ttt..t.forsrrdlo2.rpl.v.~d~Tra~.iti~=lmhrounFdt:5 

-east .forsudln2.rplsr.rod.Truuition=unknounFdt: 5 

3tLm.t. f orrrardI.02 .rpl.v.lod~Trm.itian=lmhrormfdt : 5 

W t . ~ s t . s v 3 1 . r o d ~ T r u u i t i o n = ~ t u c ~ : 5  

-tL..t..r03..v.rod.huuition=stuc~o.*d:3 
31t.st..r03.op.nll..rod.Trr.n.ition~a~t~:3 

-tL.mt ..~..v.mod.ha~.ition-.tuctClo..d:3 
-ttt..t..r03.op.nna.lod*Truuition~a~t~:3 

Candidat. 4) 

Candidat. 5) 

Candidate 6 )  

Candidat. 7 )  

Cmdidat. 8) 

Candidat. 9) 

At this point, LPF reports a candidate-matching error, indicating that none of the 
Livingstone candidates match the modes from the simulator. The fault is detected 
(otherwise no faulty candidates would be generated), but incorrectly diagnosed (note 
that candidate 7 subsumes, but does not match, the actual faults). At this point the 
data seems to suggest that Livingstone is not properly generating all valid candidates. 



To further interpret and confirm the results reported by LPF, we ran 12test  
on the L2 scenario associated with this error. The following list of candidates were 
generated, which differs from those obtained above via LPF: 
Candidate 0 )  

Candidate 1) 

Candidate 2) 

Cmdidat. 3) 

Weat.rrOl.modeTransition=stnc~0p.n:2 

~~st.rrOl.aodeha~.ition=atnck~n:2 

m a s t  .f~rrdlo2.aodeTr~itionsunlmoPnf.ul+:5 

31to.t .forrrrrdlo2.aode,Tnn.ition~o~a~t :5 

4tteat.1~31 .~v.modeh.anaition=stuck0p.n:5 

W e s t  .f o r r r u d l o 2 . m o d s T r ~ i t i o n ~ o ~ n ~ t  : 5 

- ~ e a t . f ~ u ~ o 2 . a o d e h . a ~ . i t i o n - ~ o ~ a ~ t : 5  

Weat.av31.av.rodsTraPaition=atnc~n:5 

Cmdidate 4) 

Candidate 5 )  

Candidate 6) 

Cmdidatm 7 )  

Although none of these match the actual faults either (i.e. there is indeed a 
candidate-matching error in this state), the difference also shows that the results from 
LPF were flawed. Further analysis revealed that the discrepancy originated from a 
checkpointing bug. In particular, Livingstone did not properly restore its internal con- 
straint network when restoring checkpoints, resulting in a corrupted internal state and 
incorrect diagnosis results. With our assistance, the error was localized and resolved 
in a new release of the Livingstone program. 

5.4 Example Scenario 2 

The second example considers one of the five errors reported using Candidate sub- 
sumption on the Random scenario. It involves a solenoid valve, sv02, which sends 
pressurized helium into a propellant tank. A command close is issued to the valve, 
but the valve fails and remains open-in LPF terms, a fault is injected in the simu- 
lator. The following sample output lists the candidates reported by Livingstone after 
the fault occurs in sv02: 

Candidate 0 )  

Candidata 1) 

Candidate 2) 

Cmdidat. 3) 

Candidatm 4) 

m e a t .  arOZ.op.nlls.aodoh.ritian=i.ultJ:3 

3.teat.ar02.op.~.aode~riti~~a~ty:3 

m e a t .  arOZ.op.nl(..rodoTruiti~~~~t~: 3 

-tteat.~rO2.op.nlla.~eTrrition~a~ty:3 

-tteat.arO2.rpiav.rodsTr.nsition~o~:4 

The injected fault, test. svO2 .rplsv .mode=stuckOpen, is detected (otherwise no 
faulty candidates would be generated) but incorrectly diagnosed: none of these can- 
didates matches or subsumes the correct fault. The first four candidates consist of 
a faulty open microswitch sensor at different time steps (microswitches report the 
valve’s position). The last candidate consists of an unknown fault mode. The L2 
scenario corresponding to this error was replayed in 12tes t  and produced identical 
results, confirming the validity of the results from LPF. Further analysis by applica- 
tion specialists revealed that fault ranks in the X-34 model needed retuning, which 
resolved the problem. 



6 Conclusions and Perspectives 

Livingstone PathFinder (LPF) is a software tool for automatically analyzing model- 
based diagnosis applications across a wide range of scenarios. Livingstone is its current 
target diagnosis system, however the architecture is modular and adaptable to other 
systems. LPF has been successfully demonstrated on a real-size example taken from 
a space vehicle application. 

Although the experiments have so far been performed only by the LPF develop- 
ment team, Livingstone specialists from the PITEX project have shown great interest 
in the results we obtained. In comparison, their verification approach is based on run- 
ning a fixed, limited set of test cases, as detailed in [SI. LPF shows great potential for 
radically expanding the number of tested behaviors, with a modest additional effort 
from the users. Our next stage is to put the tools in the hands of the developers. In 
this perspective, we have also been adding a graphical user interface and integrating 
LPF into the Livingstone modeling and simulation tool. 

LPF is under active development, in close collaboration with Livingstone applica- 
tion developers at NASA Ames. After considerable efforts resolving technical issues 
in both LPF and relevant parts of Livingstone, we are now contributing useful results 
to application specialists, who in turn reciprocate much needed feedback and sug- 
gestions on further improvements. The candidate subsumption error condition is the 
latest benefit from this interaction. Directions for further work include new search 
strategies and heuristics, additional error conditions including capture of application- 
specific criteria, improved post-treatment and display of the large amount of data 
that is typically produced. 

Future work includes support for determining state equivalence, to allow pruning 
the search when reaching a state equivalent to an already visited one. The potential 
benefits from this approach remain to be assessed: as Livingstone retains data not 
only about the current step but previous ones as well, cases where equivalent states 
are reached through Merent executions may be very infrequent. As an alternative, 
experiments with weaker or approximate equivalences may be performed to reduce 
the search space, at the risk of inadvertently missing relevant traces. 

We are also currently adapting LPF to MIT’s Titan model-based executive [ll], 
which offers a more comprehensive diagnosis capability as well as a reactive controller. 
This extends the verification capabilities to involve the remediation actions taken by 
the controller when faults are diagnosed. In this regard, LPF can be considered as 
evolving towards a versatile system-level verification tool for model-based controllers. 
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