
Simulation-Based Verification
of Autonomous Controllers
via Livingstone PathFinder

A.E. Lindsey1 and Charles Pecheus

’ QSS Group, NASA Ames Research Center, Moffett Field, CA 94035, U.S.A.
tlindseyQptolemy.arc.nasa.gov

pecheur@ptolemy . arc. nasa . gov
RIACS, NASA Ames Research Center, Moffett Field, CA 94035, U.S.A.

Abstract. AI software is often used as a means for providing greater auton-
omy to automated systems, capable of coping with harsh and unpredictable
environments. Due in part to the enormous space of possible situations that
they aim to addrs, autonomous systems pose a serious challenge to tradi-
tional test-based verification approaches. Efficient verification approaches need
to be perfected before these systems can reliably control critical applications.
This publication describes Livingstone PathFinder (LPF), a verification tool
for autonomous control software. LPF applies state space exploration algo-
rithms to an instrumented testbed, consisting of the controller embedded in a
simulated operating environment. Although LPF has focused on NASA’s Liv-
ingstone model-based diagnosis system applications, the architecture is mod-
ular and adaptable to other systems. This article presents different facets of
LPF and experimental results from applying the software to a Livingstone
model of the main propulsion feed subsystem for a prototype space vehicle.

1 Introduction

Complex decision-making capabilities are increasingly embedded into controllers.
Robots substitute for humans in hazardous environments such as distant planets,
deep waters or battle fields. This trend is perhaps best exemplified by NASA’s need
for autonomous spacecrafts, rovers, airplanes and submarines, capable of executing
in harsh and unpredictable environments. Moreover, increased autonomy can be a
significant cost saver, even in more accessible regions, by reducing the need for ex-
pensive human monitoring. An important trend in autonomous control is model-based
autonomy, where control is performed by a generic engine applying automated rea-
soning techniques to a high-level model of the system being diagnosed. This is the
case for the Livingstone diagnosis system on which the work presented here is based.
The idea behind model-based solutions is that the system, in any situation, will be
able to infer appropriate actions from the model.

While autonomous systems offer promises of improved capabilities at reduced op-
erational costs, a serious challenge to traditional test-based verification approaches
occurs because of the enormous space of possible scenarios such systems aim to ad-
dress. Several factors make testing advanced controllers particularly difficult. First,
the range of situations to be tested is significantly larger because the controller itself

is more complex and designed to operate over a broad range of unpredictable situ-
ations during a prolonged time span. The program implicitly incorporates response
scenarios to any combination of events that might occur, instead of relying on human
experts to handle off-nominal casks. Second, autonomous systems close the control
loops and feature concurrent interacting components. Thus, it becomes more difficult
to plug in test harnesses and write test runs that drive the system through a desired
behavior. Third, concurrency may introduce hard-bdetect, non-deterministic race
conditions.

This paper describes a flexible framework for simulating, analyzing and verify-
ing autonomous controllers. The proposed approach applies state space exploration
algorithms to an instrumented testbed, consisting of the actual control program be-
ing analyzed embedded in a simulated operating environment. This framework forms
the foundation of Livingstone PathFinder (LPF), a verification tool for autonomous
diagnosis applications based on NASA’s Livingstone model-based diagnosis system.

LPF accepts as input a Livingstone model of the physical system and a scenario
script defining the class of commands and faults to be analyzed. The model is used
to perform model-based diagnosis and will be used to simulate the system as well.
The tool runs through all acecutions specified in the script, backtracking as necessary
to explore alternate routes. At each step, LPF checks for error conditions, such as
discrepancies between the actual simulated faults and those reported by diagnosis. If
an error is detected, LPF reports the sequence of events that led to the current state.

To avoid confusion in reading what follows, it is important to clearly distinguish
two similar-sounding but very different notions, that we refer to as faults and errors:

- Faults are physical events causing the controlled system to behave abnormally,
such as a stuck valve or a sensor emitting erroneous measurements. They typically
result from external degradation, and are handled by making the system fault-
tolerant. Detecting and identifying faults is the goal of diagnosis systems such as
Livingstone.

- Errors are improper behaviors of the controller, such as inaccurately identifying
the current state of the controlled system. They typically result from unintended
flaws in design or configuration, and need to be eliminated before the system is
deployed. Detecting and identifying errors is the goal of verification techniques
and tools such as LPF.

This article discusses Livingstone PathFinder on three different levels:

- As a verification approach, LPF applies a combination of model checking and
testing principles that we refer to as simulation-based verification. This is the
subject of Section 2.

- As a pmgram jkamework, LPF provides an infrastructure for applying simulation-
based verification to autonomous controllers. This is referred to in Section 4.5.

- As a concrete pmgmrn, LPF currently instantiates the framework to applications
based on the Livingstone diagnosis system. This constitutes the central part of
the paper, mainly discussed in Section 4.

A preliminary account of this work was presented in [SI. The remainder of the
paper is organized as follows: Section 2 presents the general simulation-based verifi-
cation approach; Section 3 provides an overview of Livingstone; Section 4 describes

the LPF software tool; Section 5 reviews some experimental results; Section 6 draws
conclusions and perspectives.

2 Simulation-Based Verification

The approach we follow in the work presented is a composite between conventional
testing and model checking, here referred to as simulation-based verification. Similar
to conventional testing, it executes the real program being verified rather than an
abstract model derived from the system. In order to support its interactions, the
program is embedded in a testbed that simulates its environment. On the other hand,
as in model checking the execution ranges over an entire graph of possible behaviors
as opposed to a suite of linear test cases. In the optimal setting, each visited state
is marked to avoid redundant explorations of the same state and can be restored
for backtracking to alternate executions. Furthermore, sources of variation in the
execution, such as external events, scheduling or faults, are controlled to explore all
alternatives.

The rationale behind simulation-based verification is to take the advanced state
space exploration algorithms and optimizations developed in the field of model check-
ing and apply them to the testing of real code. By doing so, we avoid the need for
developing a separate model for verification purposes, and more importantly for scru-
tinizing each reported violation to assess whether it relates to the real system or
to a modeling inaccuracy. Of course, simulation-based verification will in general be
significantly less &cient and scalable than model checking an abstract model of the
same program. However, it should be seen as an evolutionary improvement to tradi-
tional testing approaches, with important potential gains in scalability, automation
and flexibility.

To enable their controlled execution, instrumentation is introduced in both the
analyzed program and its environment. To perform a true model-checking search, the
tool should be capable of iterating over aJl alternate events at each state, backtracking
to previously visited states, and detecting states that produce the same behavior.
Some of these capabilities may be supported only partly or not at all, depending on
the nature of the Merent components in the testbed and the needs and trade-offs of
the analysis being performed. For example, a complex piece of software may provide
checkpointing capabilities on top of which backtracking can easily be built; however,
state equivalence might require an analysis of internal data structures that is either
too complex, computationally expensive, or infeasible due to the proprietary nature
of the software. In addition, this analysis may not be worthwhile because equivalent
states will seldom be reached anyway. Even if true backtracking is not available, it
can still be simulated by replaying the sequence up to the desired state. This reduces
the exploration to a suite of sequential test cases, but the additional automation and
flexibility in search strategies can still be beneficial.

With these capabilities, the program and its testbed constitute a virtual ma-
chine that embodies a fully controllable state machine, whose state space can be
explored according to different strategies, such as depth-first search, breadth-first
search, heuristic-based guided search, randomized search, pattern-guided search or
interactive simulation. The environment portion of the testbed is typically restricted

to a well-defined range of possible scenarios in order to constrain the state space
within tractable bounds.

The principle behind simulation-based verification can be traced back to Gode-
froid’s seminal work on the VeriSoft tool [4]. VeriSoft instruments a C program with
explicit stop and choice points, to allow its controlled execution over a range of
traces. Verisoft makes no attempt at capturing the state of the verified program; in-
stead, trace re-play is used to simulate backtracking. This approach is referred to as
state-Less model checking. The original contribution presented in this paper pertains
to the application of that general idea to the LPF hamework and tool as well as the
experimental results on a real-world application. The same principle can be found in
Visser and Havelund’s Java PathFinder 2 [lo] with a twist: a complete Java virtual
machine, optimized for verification, has been built rather than merely instrumenting
the Java code to be analyzed.

The models used in model-based autonomy are typically abstract and concise
enough to be amenable to formal analysis. Indeed, the Livingstone-to-SMV transla-
tor [9] is another verification tool for Livingstone applications, focusing exclusively
on the Livingstone model but allowing true exhaustive analysis through the use of
symbolic model checking. Nevertheless, a good model is a necessary but insufficient
condition for a suitable model-based controller. Additional factors may compromise
proper operation, such as problems in the engine itself or incomplete diagnosis heuris-
tics used to achieve desired response times. The principles and techniques we discuss
here aim to supplement high-level formal analysis with dcient and flexible tools
designed to scrutinize the behavior of the actual program.

3 Livingstone

As the name implies, LPF has focused on the Livingstone model-based diagnosis
system [12]. Generally speaking, diagnosis involves observing the input (commands,
actuators) and output (observations, sensors) of a physical system to estimate its
internal state, and in particular detect and identify faulty conditions that may have
occurred. In model-based diagnosis, this state estimate is inferred from a model of the
Merent components of the physical plant and their interactions, both under nominal
and faulty conditions. Livingstone uses a qualitative finite model. This allows the use
of an efficient inference engine based on propositional logic to perform the diagnosis.

A Livingstone model defines a collection X of discrete variables, or attributes, rep-
resenting the state of the various components of the physical ~ y s t e m . ~ Each attribute
z E X ranges over a finite domain D,. A state s of model associates to each z E X a
value s (x) E D,. The command and observable attributes 0 c X capture the visible
interface of the system; the mode attributes M c X , one for each individual com-
ponent, denote the hidden state to be inferred. The domain D, of a mode attribute
m is partitioned into nominal modes and a (possibly empty) subset of fault modes
F, E D,. The model also sets constraints between these attributes, both within
a state and across transitions. Nominal transitions result from particular command
values while fault transitions are spontaneous. Each fault mode f E F, has a rank
p (f) estimating its probability (e.g. rank 4 for probability

The model may also cover aspects of the surrounding environment, that do not strictly
belong to the controlled system but are relevant to diagnosis.

As an example, the following Livingstone model fragments describe a valve com-
ponent, extracted from the PITEX model that we used for our experiments (see
Section 5). Note that Livingstone is supported by a graphical modeling environment,
that generates part of this code automatically.

claas ventBeliefValva
ventline T U I ~ L M O I ~ ;
thraaholdVduaa pnauuticLineIn;
ventline'l~ratpre ventLim0ut ;
// . . . mty attributes
private anum Ilodaljpa inorinal. atuckOp.n, stuckQosad3;

statavactor b d a] ;
privata loaeljpa lode;

I
if (valvaPosition = closad) {

ventLina0ut .ambient. upperBound = balodbrashold t
vanttinaOut.ubient.lowarBolmd = abovaThreshold k
vanttineIn.flow.sign = zaro;

3
// ... more conatraints
switch (modal {

case nominal:
if (pnauraticLineIn = abovaThrashold) valvaPosition = opan;
if (pneuuticLinaIn = belod'hrsshold) valvaPosition = closed;

ValvaPosition = open;

valvePosition = closed;

case stuc)lOp.n:

case stuckclosed:

1
3
failure a t u c m (* , stnckOp.n, 1asaLikely) I 1
failure stuckCloud(8, stuckQosod, likaly) I 1

Livingstone performs diagnosis by receiving observations (that is, values of com-
mands and observables) and searching for mode values (possibly including faults) that
are consistent with these observations. The result is a list of candidates (c1, . . . , c,,),
where each candidate c assigns a value c (m) to every mode attribute m E M and
has a rank p(c) resulting from the faults leading to that candidate. For verifica-
tion purposes, we will say that a candidate c matches a state s, written c = s , if
they have the same mode values, and that c subsumes s, written c 5 s, if faults
of c are also faults of s. Formally, c M s if€ Vm E M c (m) = s(m), and c 5 s iff
V m E M . c (m) E F, * c (m) = s(m).

Livingstone's best-first search algorithm returns more likely, lower ranked candi-
dates first (p (~) 5 p(c++l)). In particular, when the nominal case is consistent with
Livingstone's observations, the empty (Le. fault-free) candidate (of rank 0) is gener-
ated. The search is not necessarily complete: to tune response time, Livingstone has
configurable parameters that limit its search in various ways, such as the maximum
number of rank of candidates returned.

The first generation of Livingstone (in Lisp) flew in space as part of the Remote
Agent Experiment (FLAX) demonstration on Deep Space 1 [7]. Livingstone 2 (or L2)
has been rewritten in C++ and adds temporal trajectory tracking. A utility program,
12test, provides a command line interface to perform all L2 operations interactively.
latest commands can be stored in L2 scenario files for batch replay. A third gener-
ation supporting more general constraint types (hybrid discrete/continuous models)
is under development.

4 Livingstone PathFinder

The Livingstone PathFinder (LPF) program is a simulation-based verification tool
for analyzing and verifying Livingstone-based diagnosis applications. LPF executes a
Livingstone diagnosis engine, embedded into a simulated environment, and runs that
assembly through all executions described by a user-provided scenario script, while
checking for various selectable error conditions after each step.

The architecture of the LPF tool is depicted in Figure 1. The testbed under
analysis consists of the following three components:

- Diagnosis: the diagnosis system being analyzed, based on the Livingstone diag-
nosis engine, interpreting a model of the physical system.

- Simulator: the simulator for the physical system on which diagnosis is performed.
Currently this is a second Livingstone engine interpreting a model of the physical
system. The models used in the Diagnosis and the Simulator are the same by
default but can be different.

- Driver: the simulation driver that generates commands and faults according to a
user-provided scenario script. The scenario file is essentially a non-deterministic
test case whose elementary steps are commands and faults.

Search
Engine

Fig. 1. Livingstone PathFinder Architecture

n o m a testing standpoint, the Diagnosis is the implementation under test (IUT),
while the Driver and Simulator constitute the test harness. All three components
are instrumented so that their execution can be single-stepped in both forward and
backward directions. Together, these three elements constitute a non-deterministic
state machine, where the non-determinism comes mainly from the scenario script
interpreted by the D r i ~ e r . ~ The Search Engine controls the order in which the tree
of possible executions of that state machine is explored. In each forward step, LPF
performs the following cycle of operations:

event := get next step from the Driver
apply event to the Simulator
if event is a command

LPF can also deal with non-determinism in the Simulator.

then notify event to the Diagnosis
else do nothing (Faults are not directly visible to Diagnosis)
obs := get updated observations from the Simulator
notify obs to the Diagnosis
ask Diagnosis to update its candidates

This cycle is repeated dong all steps covered by the scenario, according to the cho-
sen search strategy. Before each cycle, the current state is saved (using Livingstone’s
built-in checkpointing capability) so it can be later restored to explore alternate
routes. User-selectable error conditions, such as consistency between the diagnosis
results and the actual state of the Simulator, axe checked at the end of each cycle,
and a trace is reported if an error is detected. Since the cycle needs to be repeatedly
rolled and unrolled by the backtracking search, it h o t simply be implemented as
a program iteration, but instead needs to be simulated using non-trivial bookkeeping
of the search trajectory.

LPF bears some resemblance to conformance testing, in that it checks whether
the Diagnosis, seen as an implementation, “conforms” to the Simulator, seen as a
specification. The “conformance” relation, however, is quite dif€erent from classical
conformance relations that require the implementation to behave similarly (in some
specific precise sense) to the specification (see e.g. [2]). Here, the relation is one of
observability, i.e. that the implementation (Diagnmis) can track the state of the spec-
ification (Simulator). Even if Simulator and Diagnosis are “equivalent”, in the sense
that they operate on identical models of the controlled system, Diagnosis may s t i l l
fail to “conform” , because the observation it receives or its own computing limitations
prevent accurate tracking. This is indeed the situation we consider by using the same
model in both the Simulator and the Diagnosis.

4.1 Scenario Scripts

The driver constrains the possible executions to a user-provided combination of cDm-
mands and faults, defined in a scenario script. This is essential to reduce the state
space to a tractable size: the state space of the PITEX Livingstone model, used in
the experiments reported later in this paper, is on the order of states. Although
model states do not necessarily map into simulator or diagnosis states, this still gives
a fair estimate of the orders of magnitude.

The scenario script is essentially a non-deterministic program whose elementary
instructions are commands and faults. It can be viewed as an extended test case (or
test suite) representing a tree of executions rather than a single sequence (or a set
thereof). Scenarios are built from individual commands and faults using sequential,
concurrent (interleaved) and choice statements, according to the following syntax:

stmt ::= “ewent” ; I { stmt* 3 I mix s t m t (and stmt)* I choose stmt (or stmt)*

These operators have their classical semantics from process algebras such as CSP
[5], that we will not repeat here. For example, the following scenario defines a sequence
of three commands, with one fault chosen among three occurring at some point in
the sequence. LPF provides a way to automatically generate a scenario combining
all commands and faults of a model following this sequence/choice pattern. More
configurable ways to generate scenarios from models or other external sources is an
interesting direction for further work.

mix I
"cornand t e s t . breaker. undh = on" ;
44cOTrmbnd test. breaker. cmdIn = off I' ;
"cornand t e s t . breaker. cmdIn = on" ;

choose ' I f ault t e s t . bulb .mode = blown" ;
or "fault t e s t . bulb .mode = short" ;
or "fault test .meter.mode = broken" ;

3 and

4.2 Error Conditions

In each state along its exploration, LPF can check one or several error conditiow
among a user-selectable set. In addition to simple consistency checks, LPF supports
the following error conditions: given a list of candidates (c1, . . . , cn) and a simulator
state 9,

- Mode comparison checks that the best (lowest-ranked) candidate matches the

- Candidate matching checks that at least one candidate matches the Simulator

- Candidate subsumption checks that at least one candidate subsumes the Simulator

Simulator state, i.e. c1 M s,

state, i.e. 3k.Q M s, and

state, i.e. 3k.ck E s.

where M and 5 were defined in Section 3. These conditions constitute three suc-
cessive refinement steps with the notion that diagnosis should properly track the state
of the (simulated) system. Mode comparison only considers the most likely candidate
and reports errors even if another reported candidate matches the state, which is
overly restrictive in practice since the injected fault may not be the most likely one.
Alternatively, candidate matching considers all candidates. Even SO, a fault may often
remain unnoticed without causing immediate harm, as long as its component is not
activated: for example a stuck valve will not be detected until one tries to change
its position. Experience reveals this to be a frequent occurrence, causing a large pro-
portion of spurious error reports. In contrast, candidate subsumption only reports
cases where none of the diagnosed fault sets are included in the actual fault set. For
example, the empty candidate is subsumed by any fault set and thus never produces
an error using this condition. While this will not detect cases where diagnosis misses
harmful faults, it will catch cases where the wrong faults are reported by the diagnosis
engine. This condition has provided the best results thus far, as further discussed in
Section 5.

4.3 Simulators in LPF
The modular design of LPF accommodates the use of different simulators through
a generic application programming interface (API). As a first step, we have been
using a second Livingstone engine instance for the Simulator (used in a different way:
simulation infers outputs from inputs and injected faults, whereas diagnosis infers
faults given inputs and outputs).

Using the same model for simulation and diagnosis may appear to be circular
reasoning but has its own merits. It provides a methodological separation of concerns:

’ .

by doing SO, we validate operation of the diagnostic system under the assumption that
the diagnosis model is a perfect model of the physical system, thus concentrating on
proper operation of the diagnosis algorithm itself. Incidentally, it also provides a cheap
and easy way to set up a verification testbed, even in the absence of an independent
simulator.

On the other hand, using the same model for the simulation ignores the issues
due to inaccuracies of the diagnosis model w.r.t. the physical system, which is a main
source of problems in developing model-based applications. In order to address this
concern, we have already been studying integration of NASA Johnson Space Center’s
CONFIG simulator system [3]. Note that higher fidelity simulators are likely to be less
flexible and efficient; for example, they may not have backtracking or checkpointing.

4.4 Search Strategies

LPF currently supports two alternative state space exploration algorithms. The first
is a straightforward depth-first search. The second performs a heuristic (or guided)
search Heuristic search uses a heuristic (or fitness function) to rank different states
according to a given criterion and explores them in that order. Provided that a good
heuristic can be found, heuristic search can be used to automatically orient the search
over a very large state space towards the most critical, suspicious, or otherwise in-
teresting states. This offers two advantages: The first is that errors are likely to be
found earlier on and the second is the production of shorter counterexample paths.

The first heuristic uses the execution depth, i.e. the number of steps to that state.
This heuristic results in performing a breadth-first search. Although this exploration
strategy does not use any application knowledge to improve the search, its main
benefit over depth-first search is in providing the shortest counter-examples.

The second heuristic, called candidate count, uses the number of candidates gen-
erated by Diagnosis. The intuition is that executions with a low number of diagnosis
candidates are more likely to lead to cases where no correct candidate is reported.

4.5 Implementation Notes

Backtracking of the Diagnosis and Simulator take advantage of checkpointing capa-
bilities present in Livingstone. Using built-in checkpointing capabilities provide better .
performance than extracting and later reinstalling all relevant data through the API
of Livingstone engine.

LPF also offers a number of useful auxiliary capabilities, such as generating an
expanded scenario tree, counting scenario states, exploring the simulator in isolation
(no diagnosis), generating a default scenario, and producing a wide array of diagnostic
and debugging information, including traces that can be replayed using the 12test
command-line interface or in Livingstone simulation tools. LPF is written in Java and
makes extensive use of Java interfaces to support its modular architecture. The core
source base consists of 47 classes totaling 7.4K lines. It has been successfully run on
Solaris, Linux and Windows operating systems.

Livingstone PathFinder is built in a modular way, using generic interfaces as
its main components. The Simulator and Diagnosis components implement generic
interfaces, that capture generic simulation and diagnosis capabilities but remain in-
dependent of Livingstonespecific references. The top-level class that encompasses

all three components of the testbed and implements the main simulation loop dis-
cussed in Section 4 only uses the generic abstractions provided by these interfaces.
This provides a flexible, extensible framework for simulation-based verification of di-
agnosis applications beyond the purely Livingstone-based setup (both for diagnosis
and simulation) shown in Figure 1. Both the Simulator and Diagnosis modules are
replaceable by alternative implementations, not necessarily model-based, provided
those implementations readily provide the corresponding generic interfaces.

Livingstone PathFinder is not available for download but can be obtained free of
charge under a NASA licensing agreement. Please contact the authors if interested.

5 Experimental Results

The Livingstone diagnosis system is being considered for Integrated Vehicle Health
Maintenance (IVHM) to be deployed on NASA’s next-generation space vehicles. In
that context, the PITEX experiment has demonstrated the application of Livingstone
based diagnosis to the main propulsion feed subsystem of the X-34 space vehicle [l , 81,
and LPF has been successfully applied to the PITEX model of X-34. This particular
Livingstone model consists of 535 components and 823 attributes, 250 transitions,
compiling to 2022 propositional clauses.

Two different scenarios have been used to analyze the X-34 model:

- The PITEX baseline scenario combines one nominal and 29 failure scenarios, de-
rived from those used by the PITEX team for testing Livingstone, as documented
in [SI. This scenario covers 89 states.

- The random scenario covers a set of commands and faults combined according
to the sequence/choice pattern illustrated in Section 4.1. This scenario is an ab-
breviated version of the one automatically generated by LPF, and covers 10216
states.

We will first discuss scalability and compare different error conditions using depth-
first search, then discuss the benefits of heuristic search and finally illustrate two
different errors found during the experiments.

5.1 Depth-First Search

Our initial experiments involved searching the entire state space, letting the search
proceed normally after detecting an error, and reporting any additional errors. We
used the depth-first algorithm in this case, since heuristic search offers no advantage
when searching through all states of the scenario. Table 1 summarizes our depth-fist
search statistics. It shows that LPF covered the PITEX baseline and random scenario
at an average rate of 51 states per minute (on a 500MHz Sun workstation).

When searching for candidate matching, LPF reported an excessive number of
errors, most of which were triuid, in the following sense: when a fault produces no
immediately observable effect, Livingstone diagnosis does not infer any abnormal
behavior and reports the empty candidate. For example, although a valve may be
stuck, the fault will stay unnoticed until a command to that valve fail to produce the
desired change of position. While these errors are indeed missed diagnoses, experience

Table 2. Comparison of Heuristic vs. depth-&st search

strategy lmax. depthlcondition' 1 time]stateslstates/min
DFS 1 16 I CS 102:55:381 8648 I 49

cc 1 5 38
DFS I 16 I CM 100:00151 17 I 68

2o I BFS 2 00:00:13 4
l c c l 1 I /OO:OO:lll 4 I 24

See Table 1

5.3 Example Scenario 1

Our first example involves the PITEX baseline scenario, and was performed with an
earlier version of L2 in which, as it turns out, the checkpointing functionality used
by LPF was flawed. The scenario involves a double fault, where a valve sv31 (on a
liquid oxygen venting line) gets stuck and a micro-switch sensing the position of that
valve fails at the same time. The sequence of events is as follows:

1. A command open is issued to sv31.
2. A command close is issued to sv31.
3. The open microswitch of sv31 breaks.
4. sv31 fails in stuck-open position.

The microswitch fault remains undetected (Livingstone still reports the empty
candidate after event 3), however the stuck valve causes a fault diagnosis: after event
4, Livingstone reports the following candidates (the number before the X sign is the
time of occurrence of the presumed fault):

Cmdidata 0)

Cmdidat. 1)

Candidat. 2)

Candidat. 3)

5tta.t .rrOl .rod~TraP.ition=stuckOpon:Z

-tt~~t.rrOl.rod~Truuition=~tuckClo~~d:2

-~~~t.~v31.md~Tra~ition=stuckClo~~d:3

-tt.it.rrOl.mod.Truition=.tuc~:Z
3tt~st.rrOl.rod.Trmaition=~tuckClo**d:2

5ttt..t.forsrrdlo2.rpl.v.~d~Tra~.iti~=lmhrounFdt:5

-east .forsudln2.rplsr.rod.Truuition=unknounFdt: 5

3tLm.t. f orrrardI.02 .rpl.v.lod~Trm.itian=lmhrormfdt : 5

W t . ~ s t . s v 3 1 . r o d ~ T r u u i t i o n = ~ t u c ~ : 5

-tL..t..r03..v.rod.huuition=stuc~o.*d:3
31t.st..r03.op.nll..rod.Trr.n.ition~a~t~:3

-tL.mt ..~..v.mod.ha~.ition-.tuctClo..d:3
-ttt..t..r03.op.nna.lod*Truuition~a~t~:3

Candidat. 4)

Candidat. 5)

Candidate 6)

Candidat. 7)

Cmdidat. 8)

Candidat. 9)

At this point, LPF reports a candidate-matching error, indicating that none of the
Livingstone candidates match the modes from the simulator. The fault is detected
(otherwise no faulty candidates would be generated), but incorrectly diagnosed (note
that candidate 7 subsumes, but does not match, the actual faults). At this point the
data seems to suggest that Livingstone is not properly generating all valid candidates.

To further interpret and confirm the results reported by LPF, we ran 12test
on the L2 scenario associated with this error. The following list of candidates were
generated, which differs from those obtained above via LPF:
Candidate 0)

Candidate 1)

Candidate 2)

Cmdidat. 3)

Weat.rrOl.modeTransition=stnc~0p.n:2

~~st.rrOl.aodeha~.ition=atnck~n:2

m a s t .f~rrdlo2.aodeTr~itionsunlmoPnf.ul+:5

31to.t .forrrrrdlo2.aode,Tnn.ition~o~a~t :5

4tteat.1~31 .~v.modeh.anaition=stuck0p.n:5

W e s t .f o r r r u d l o 2 . m o d s T r ~ i t i o n ~ o ~ n ~ t : 5

- ~ e a t . f ~ u ~ o 2 . a o d e h . a ~ . i t i o n - ~ o ~ a ~ t : 5

Weat.av31.av.rodsTraPaition=atnc~n:5

Cmdidate 4)

Candidate 5)

Candidate 6)

Cmdidatm 7)

Although none of these match the actual faults either (i.e. there is indeed a
candidate-matching error in this state), the difference also shows that the results from
LPF were flawed. Further analysis revealed that the discrepancy originated from a
checkpointing bug. In particular, Livingstone did not properly restore its internal con-
straint network when restoring checkpoints, resulting in a corrupted internal state and
incorrect diagnosis results. With our assistance, the error was localized and resolved
in a new release of the Livingstone program.

5.4 Example Scenario 2

The second example considers one of the five errors reported using Candidate sub-
sumption on the Random scenario. It involves a solenoid valve, sv02, which sends
pressurized helium into a propellant tank. A command close is issued to the valve,
but the valve fails and remains open-in LPF terms, a fault is injected in the simu-
lator. The following sample output lists the candidates reported by Livingstone after
the fault occurs in sv02:

Candidate 0)

Candidata 1)

Candidate 2)

Cmdidat. 3)

Candidatm 4)

m e a t . arOZ.op.nlls.aodoh.ritian=i.ultJ:3

3.teat.ar02.op.~.aode~riti~~a~ty:3

m e a t . arOZ.op.nl(..rodoTruiti~~~~t~: 3

-tteat.~rO2.op.nlla.~eTrrition~a~ty:3

-tteat.arO2.rpiav.rodsTr.nsition~o~:4

The injected fault, test. svO2 .rplsv .mode=stuckOpen, is detected (otherwise no
faulty candidates would be generated) but incorrectly diagnosed: none of these can-
didates matches or subsumes the correct fault. The first four candidates consist of
a faulty open microswitch sensor at different time steps (microswitches report the
valve’s position). The last candidate consists of an unknown fault mode. The L2
scenario corresponding to this error was replayed in 12tes t and produced identical
results, confirming the validity of the results from LPF. Further analysis by applica-
tion specialists revealed that fault ranks in the X-34 model needed retuning, which
resolved the problem.

6 Conclusions and Perspectives

Livingstone PathFinder (LPF) is a software tool for automatically analyzing model-
based diagnosis applications across a wide range of scenarios. Livingstone is its current
target diagnosis system, however the architecture is modular and adaptable to other
systems. LPF has been successfully demonstrated on a real-size example taken from
a space vehicle application.

Although the experiments have so far been performed only by the LPF develop-
ment team, Livingstone specialists from the PITEX project have shown great interest
in the results we obtained. In comparison, their verification approach is based on run-
ning a fixed, limited set of test cases, as detailed in [SI. LPF shows great potential for
radically expanding the number of tested behaviors, with a modest additional effort
from the users. Our next stage is to put the tools in the hands of the developers. In
this perspective, we have also been adding a graphical user interface and integrating
LPF into the Livingstone modeling and simulation tool.

LPF is under active development, in close collaboration with Livingstone applica-
tion developers at NASA Ames. After considerable efforts resolving technical issues
in both LPF and relevant parts of Livingstone, we are now contributing useful results
to application specialists, who in turn reciprocate much needed feedback and sug-
gestions on further improvements. The candidate subsumption error condition is the
latest benefit from this interaction. Directions for further work include new search
strategies and heuristics, additional error conditions including capture of application-
specific criteria, improved post-treatment and display of the large amount of data
that is typically produced.

Future work includes support for determining state equivalence, to allow pruning
the search when reaching a state equivalent to an already visited one. The potential
benefits from this approach remain to be assessed: as Livingstone retains data not
only about the current step but previous ones as well, cases where equivalent states
are reached through Merent executions may be very infrequent. As an alternative,
experiments with weaker or approximate equivalences may be performed to reduce
the search space, at the risk of inadvertently missing relevant traces.

We are also currently adapting LPF to MIT’s Titan model-based executive [ll],
which offers a more comprehensive diagnosis capability as well as a reactive controller.
This extends the verification capabilities to involve the remediation actions taken by
the controller when faults are diagnosed. In this regard, LPF can be considered as
evolving towards a versatile system-level verification tool for model-based controllers.

Acknowledgments

This research is funded by NASA under ECS Project 2.2.1.1, Validation of Model-
Based IVHM Architectures. The authors would like to thank Livingstone application
developers at NASA Ames, especially Sandra Hayden and Adam Sweet, for their
active cooperation, and Livingstone lead developer Lee Brownston for his responsive
support. We are also grateful to reviewers of previous versions of this article for their
helpful comments. All trademarks used are properties of their respective owners.

References

1. A. Bajwa and A. Sweet. The Livingstone Model of a Main Propulsion System. In Pro-
ceedings of the IEEE Aerospace Conference, March 2003.

2. E. Brinksma. A Theory for the Derivation of Tests. In: S. Agganval, K. Sabnani, eds.,
Protocol Specification, Testing and Verification, VIII. North-Holland, Amsterdam, 1988,

3. L. Fleming, T. Hatfield and J. Malin. Simulation-Based Test of Gas Transfer Control
Software: CONFIG Model of Product Gas Transfer System. Automation, Robotics and
Simulation Division Report, AR&SD-98-017, (Houston, TX:NASA Johnson Space Cen-
ter Center, 1998).

4. P. Godefroid. Model Checking for Programming Languages using VeriSoft. In Proceed-
ings of the 4 t h ACM Symposium on Principles of Programming Languages, pages 174-
186, Paris, January 1997.

ISBN 0-444-70542-2, 63-74.

5. C. A. R Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.
6. A.E. Lindsey and C. Pecheur, Simulation-Based Verification of Livingstone Applications.

Workshop on Model-Checking for Dependable Software-Intensive Systems, San fiancisco,
June 2003.

7. N. Muscettola, P. Nayak, B. Pel1 and B. Williams. Remote Agent: To Boldly Go Where
No AI System Has Gone Before. Artafiial Intelligence, vol. 103, pp. 5-47, 1998.

8. C. Meyer, H. Cannon, Propulsion IVHM Technology Experiment Overview, In Proceed-
ings of the IEEE Aerospace Conference, March 8-15, 2003.

9. C. Pecheur, R. Simmons. From Livingstone to SMV: Formal Verification for Autonomous
Spacecrafts. In Proceedings of First Goddard Workshop on Fonnal Approaches to Agent-
Based Systems, NASA Goddard, April 5-7, 2000. Lecture Notes in Computer Science,
vol. 1871, Springer Verlag.

10. W. Visser, K. Havelund, G. Brat and S. Park. Model Checking Programs. In Proceedings
of the IEEE International Conference on Automated Software Engineering, pages 3-12,
September 2000.

11. B. Williams, M. Ingham, S. Chung and P. Elliot, Model-based Programming of Intel-
ligent Embedded Systems and Robotic Space Explorers. In Proceedings of the IEEE
Modelings and Design of Embedded Software Conference, vol. 9, no.1 pp- 212-237, 2003.

12. B. Williams and P. Nayak, A Model-based Approach to Reactive Self-configuring Sys-
tems. In Proceedings of the National Conference on Artificial Intelligence, vol. 2, pp.
971-978, August 1996.

