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Why Ablative TPS

/ Ames Research Center

» Atmospheric entry probes are designed to slow down from orbital or
higher speeds using aerodynamic drag. A consequence of this is the
heating encountered by the entry probe.

» A Thermal Protection System(TPS) is required to protect an entry
probe from this heating.

> All NASA planetary entry probes (to date) have used ablative TPS
» TPS is a single point-of-failure subsystem, i.e., critical!
> Two classes of TPS:
® Reusable TPS:
¢ No changes in mass, properties
¢ Typically limited to relatively mild entry environments (e.g., Shuttle < 75 W/cm?)
® Ablative TPS:
¢ Accommodates high heating rates and heat loads through phase change and
mass loss
¢ Heritage approach to TPS used for over 40 years in a broad range of
applications
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Ablative TPS materials /1

7 himes Research Center
Energy management through material consumption
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Ablative TPS Chronology - 1

/" Ames Research Center

> Strategic reentry systems

® 1st ICBM ~ 1958
¢ teflon, 2.18 g/cm3

® 2nd ICBM ~ 1965

¢ silica phenolic, 1.63 g/cm3
® MMIl ~ 1970

¢ Graphite NT, carbon phenolic HS, 1.45 g/cm3
® MMIIl ~ 1975

¢ C-C NT, carbon phenolic HS, 1.45 g/cm?3

® Peacekeeper ~ 1980
- ®C-C NT, carbon phenolic HS, 1.45 g/cm?
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Ablative TPS Chronology - 2

ltes Research Center

» Solid Rocket Motor Nozzles
® Carbon phenolic/silica phenolic
® Graphite throat inserts

® Carbon-carbon throat inserts
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NASA’s Entry Probe History
Ames Research Genler
Ablative TPS Chronology (forebody)
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In over 40 years, NASA entry probes have only employed a few
’ ablative TPS materials. Half of these materials are (or are about
to be) no longer available.
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Broad Range of Entry
Environments

Mission Environments

’ Ames Research Center
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NASA entry probes have successfully survived entry environments
ranging from the very mild (Mars Viking ~25 W/cm? and 0.05 atm.)
to the extreme (Galileo ~30,000W/cm? and 7 atm.)
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TPS Mass Fraction
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....... optimization for a very

Galileo

demanding mission
® High heat fluxes
® High pressures

® Relatively modest total heat
load

® Carbon phenolic (not a very
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good choice.

The TPS mass fraction for an entry probe is a strong function of the
total integrated heat load (e.g., = 50% for Galileo) and the TPS
material optimal performance characteristics.
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Material Performance Limits

Ames Research Center

Limitations of ablative TPS classes
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Optimal performance regime is balanced between ablative and
insulation efficiency. When material is used outside of optimal zone,
inefficient performance leads to non-minimal mass fraction.
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Ablation Mechanisms - 1

I
Ames Research Center

» Surface

® Transpiration (mass injection into the BL)
® Surface melting
< Liquid layer runoff/shear removal

® Surface oxidation
¢ 2C(s) + O,(g) 2C0O(9g)
¢ C(s) + CO,(g) 2CO(g)

® Surface vaporization
# SiO, (1) =SiO(g) + 1/20,(g)

® Surface sublimation
¢ nC(s) ©C.(9)

ms 19-22 October 2003 55th Pacific Coast Regional & Basic Science Division Fall Meeting BL-11

Thermal Protection Materials and Systems Branch




Ablation Mechanisms - 2

/imes Research Center

» Surface (concluded)

® Surface spallation
¢Material structural failure (macroscale)

» Subsurface
| ® Pyrolysis

¢Organic resin(s) = pyrolysis gas + char
® Convective cooling

#Pyrolysis gas percolation through the char to
surface
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Ablation Mechanisms - 3

,,,,,

/fimes Research Cenler
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Ablation Mechanisms - 4

/ imes Research Cenlr

> This plot illustrates how

the input heat load is
accommodated by the
ablative TPS material

Surface re-radiation is
the most effective
energy accommodation
mechanism (=60%)

Only a small fraction of
the input heating is
conducted into the TPS
material (=10%)
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Ablation Mechanisms -5

/Aies Research Center

Apollo Flight AS-501, Body Point 705
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Ablative Materials Testing - 1

1
Ames Research Center

Environment Simulation

> Arc Plasma Facilities

® Cannot simulate all environmental parameters
simultaneously

® Need to unders(g’r\g’l’%’g ’é'ri‘)ticipated ablation
mechanisms at the conditions of interest and
their sensitivity to environmental parameters

® Surface temperature is a key parameter
¢ Must be measured in every test

® |nstalling subsurface thermocouples is an art
# Conductive chars, effects of T/C mass, etc.
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Ablative Materials Testing - 2

. RN
Ames Research Center

Environment Simulation
» Arc plasma facilities (concluded)

® Post-test evaluation
¢ Surface recession
¢Shape change
¢ Sectioning
¢ Char depth
¢ Char thickness
¢ Char chemistry/density? (profiling)
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Ablative Materials Testing - 3 A/IM,

Apollo 5026-39/HC-G Acusil |

Cross-sections of post-test arc jet samples illustrate important
material performance characteristics (e.g., char depth, char
thickness, transitions in char chemistry, cracking, delamination, etc.)
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Ablative Materials Testing - 4

/ limes Reseatch Canter

Environment Simulation

» Other test facilities

® Combustion facilities

¢ Is surface chemistry important?
¢ |s free-stream enthalpy important?

® [ aser facilities
¢ [s surface chemistry important?
¢ s free-stream enthalpy important?
¢ |s absorption length important?
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Ablative Materials Testing - 5

/ fimes Research Center

Thermophysical & Thermochemical Properties

» Standard tests for thermochemical properties
(e.g., TGA, DSC)
® Controversy over applicability of heating rates
® Chemical composition of virgin material
® Chemical composition of (post-test) char

» Standard tests for measuring thermophysical
properties of virgin material( poco k 8)
» No tests for measuring propertfés of char

® Oven prechars are not representative
® Best derived from T/C data correlation
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Ablative Materials Modeling - 1

/ dimes Research Center

» Mathematical models/codes developed in the 60s
® Munson & Spindler (Avco)

¢ First to formulate the equations describing the in-depth energy
transfer in a charring material (1963)

® Every aerospace prime contractor developed their own

(proprietary) code based on Munson & Spindler
¢ REKAP, CHAP, STAB, etc.

® Kratsch, Hearne & McChesney (Lockheed) first to describe
surface ablation chemistry in terms of non-dimensional mass
loss rates (1963)
® Kendall, Rindal & Bartlett (Aerotherm) first to develop
thermal response codes for charring materials (ACE, CMA)
with consideration of surface and in-depth chemistry (1968)
+ Requires model for enthalpy of pyrolysis gases = f(T, p)

¢ Employs surface boundary conditions coupled to surface
thermochemistry solutions
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Ablative Materials Modeling - 2

’ Aimes Research Center
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