Use of the SCIRun PSE for Coupled Fluid-Structure Analysis

Christopher Cheung
Guru Guruswamy

Eleventh Conference on Parallel Processing for Scientific Computing
February 2004, San Francisco

Objectives

- To investigate the use of PSE for tightly coupled fluid-structure control analysis of aerospace vehicles
Background

- To Date Multidiscipline Software Are Developed As Monolithic Pieces To Work In “Off-line” Mode
 - Not Suitable For Changing Computing Environments
 - Less Suitable To Absorb New Discipline Modules
 - Not Designed For GRID Environment

- Use Of Problem Solving Environments (PSE) To Address Above Issues Has Started

The SCIRun PSE

- SCIRun- developed by the University of Utah’s Scientific Computing and Imaging Department
- A software package that provides users with a set of tools to solve problems modularly
- Attempts to allow users to add custom tools to augment the tools already supplied in the package
Projects Done with SCIRun

- BioPSE – extends capabilities of SCIRun by including modules that are geared toward bioelectric field problems
- Uintah – derivative of SCIRun that targets large scale simulations on distributed memory supercomputers
- C-SAFE – simulate propagation of fire

Research Procedures

- Installation
- Module Development
- Time Testing
Installation

- SCIRun requires pre-installed software packages
- Xerces – parses XML
- Tcl/Tk – required for GUI
- Python – scripts for installing SCIRun
- MPICH – optional for distributed computing

Installation Problems on NAS

- Xerces – Number of command line arguments in the installation script exceeded the allowable number of command line arguments on an SGI
Module Development

• MyFieldReader
 • Developed to gain understanding of SCIRun disk I/O and user interface
 • Built upon the provided SCIRun FieldReader module
 • Extended the functions in FieldReader to allow reading of other data formats such as FieldView
 • Data selection available from the GUI of MyFieldReader

Module Development (cont.)

• Tri2d
 • 2D Structures solver program written in FORTRAN
 – Computes the stresses of a 2D surface when a load is applied from a given direction
 • Tri2d(SCIRun) uses a system call to run the FORTRAN written executable
 • The executable receives data from SCIRun's I/O
 • The executable then outputs the data back into SCIRun
 • Tri2d(SCIRun) also generated the 2D grid as part of the input
Module Development (cont.)

- Tri2d's GUI (graphical user interface)
 - Written in TCL script
 - Allows the user to input data
 - Provides users with the ability to monitor the convergence through each iteration
 - Allows users to input the grid resolution
 - Changing the total number of nodes in the generated surface grid

Module Development (cont.)

- Arc2d
 - Arc2d is a flow solver program written in FORTRAN that computes the fluid flow over a solid 2d surface
 - Arc2d (SCIRun) uses the ARC2D(FORTRAN) executable
 - Receives and sends data through SCIRun's I/O
Module Development (cont.)

- Arc2dtoTri2d
 - Serves as an interface between Arc2d and Tri2d by distributing the pressure values in the output of Arc2d
 - A mapping of data from Arc2d to Tri2d

Module Testing Framework

- Framework is setup in a loop to allow for multiple iterations
Time Testing of SCIRun

- System used for time testing
 - SGI-Octane – 250 MHz R10000, 512 Mbytes RAM

- The SCIRun framework used for testing
 - The same as described in a previous slide

- Compared to the Independent Solver
 - Independent Solver – Completely written in C++
 - Runs the Fortran Programs completely independent of SCIRun
 - Allows for determining the extra overhead required by SCIRun

COMPUTATIONAL EFFICIENCY

<table>
<thead>
<tr>
<th>Iterations</th>
<th>CPU Time (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

Cheung/Guruswamy INA
Time Test Results

- SCIRun requires about 30% more time to run compared to the Independent Solver
- Increased CPU time in SCIRun due to extra overhead cost of transferring data with SCIRun’s I/O

Problems Encountered

- Problems running through iterations-looping
 - In larger iteration test cases (over 200 total iterations), the SCIRun modules would lock up
- Autoexecute ability in some of SCIRun’s supplied modules
 - Modules would automatically execute the entire framework in some cases out of user control
Conclusions

- SCIRun package provides a great deal of modules that can be incorporated into user created frameworks
- Provides ease of use for users
- SCIRun’s extra overhead hinders its ability to compute larger or more complex problems
- Limitation on number of iterations

Future Studies

- The use of PETSc to create a Problem Solving Environment
- The use of multiple processors in Problem Solving Environments
- Incorporation of other graphics packages to help visualize data as it is being computed