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Abstract 

The next generation of military communications satel- 
lites may be designed as a fast packet-switched con- 
stellation of spacecraft able to withstand substantial 
bandwidth capacity fluctuation in the face of dynamic 
resource utilization and rapid environmental changes 
including jamming of communication frequencies and 
unstable weather phenomena. We are in the process of 
designing an integrated scheduling and execution tool 
which will aid in the analysis of the design parameters 
needed for building such a distributed system for nom- 
inal and battlefield communications. This paper & 
cusses the design of such a system based on a temporal 
constraint posting planner/scheduler and a smart ex- 
ecutive which can cope with a dynamic environment 
to make a more optimal utilization of bandwidth than 
the current circuit switched based approach. 

Introduction 
The current revolution in information technology con- 
tinually produces new advances in communications ca- 
pability. In its vision for the future, the US Depart- 
ment of Defense (DoD) perceives information as crit- 
ical to tactical and strategic decisions and satellite 
communication as an essential operational component 
(Deptartment of Defense, Space Command 1997). One 
of the critical technologies being closely scrutinized is 
the application of Asynchronous Transfer Mode (ATM) 
technology to military satellite communications. 

Satellites are limited and expensive communications 
resources and ATM’s offers greater flexibility and ca- 
pacity than existing circuit-switched systems. As a 
first step however, the DoD is in the process of eval- 
uating the design parameters needed for such a sys- 
tem using simulation based design. One of the tools 
needed as part of this design analysis is a prediction 
and execution component. For this, we are proposing 
the use of the Planner/Scheduler (PS) and Smart Ex- 
ecutive (Exec) subsystems of the Remote Agent (RA) 
(Bernard et al. 1998; Pel1 et al. 1998). The RA will 

be the first artificial intelligence-based autonomy archi- 
tecture to reside in the flight processor of a spacecraft 
(NASA’s Deep Space One (DS1)). The system we have 
designed based on these components, is called IpexT. 

Similar to  other high-level control architectures 
(Bonasso et al. 1997; Wilkins et al. 1995; Drabble 
et al. 1996; Simmons 1990; Musliner et al. 1993), 
IpexT clearly distinguishes between a deliberative and 
a reactive layer. In the current context the Plan- 
ner/Scheduler develops a schedule based on requested 
bandwidth allocations known a priori. Like DS1 the 
Exec issues commands to the low-level real-time con- 
trol software according to  the scheduler’s directives and 
it locally reacts to  sensory information which monitors 
the runtime network performance. Unlike the DS1 sce- 
nario however, the environment is substantially more 
dynamic and uncertain. Requests t o  use the band- 
width can come at any time from any geographical lo- 
cation and environmental factors can conspire to  fluc- 
tuate the actual bandwidth at any time. Therefore a 
schedule generated by PS not only has to be as optimal 
as possible, but must also be robust, anticipating run 
time changes. In addition, the Exec must not only cope 
with dispatching these plans in a highly dynamic envi- 
ronment but it needs to make the most of the available 
bandwidth at run time. 

In this paper, we describe the overall problem in 
greater detail in Section , followed by the IpexT ar- 
chitecture in Section , with details of the approaches 
taken in Section and Section . We conclude with the 
current status and future work envisioned in Section . 

The Domain 
Motivation 
We are motivated by the requirements of a complex 
military communications systems. In this domain, 
there are several conflicting goals which influence many 
levels of design choices (for instance, guaranteed con- 
nections versus maximal network throughput, fluctu- 
ating bandwidth, conflicting demand patterns, quality 
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Figure 1: A simplified battlefield scenario supported 
by an ATM networked constellation 

of service). These considerations - an inherently un- 
stable environment which allows for a variable level of 
autonomy - make this a particularly interesting do- 
main for our exploration. A communication network in 
this domain must be highly configurable and control- 
lable in order to  handle the strategic needs of the user, 
and also be highly autonomous in order to function 
efficiently in the potential absence of such control. 

The objective of this overall effort is to build an anal- 
ysis and design tool capable of simulating and analyz- 
ing multiple configurations, topologies, and environ- 
ments in the unstable environment of military commu- 
nications with the purpose of designing a future gen- 
eration satellite based telecommunications system. In 
the design phase, the planner/scheduler would gener- 
ate output for designers to  evaluate operations policy 
by providing flexibility in the operational constraints 
modeled. Rapid iteration of the system design would 
be possible by comparison of throughput performance 
results for candidate designs. Moreover, network plan- 
ners can optimize the policy for users and potential 
customers can be advised in planning for network us- 
age. 

After design optimization, the planner/scheduler has 
the potential t o  migrate to operational use. At present, 
satellite communications network planning is a compu- 
tation and labor intensive element of operations. The 
model-based planning agent would improve efficiency 
and reduce cost and effort. 

A Brief Background on ATM’s 
The domain consists of a constellation of spacecraft 
which act as ATM switches directing and controlling 
traffic flow from a number of sources to a number of 
destinations (Figure 1). Traffic is based on an ATM 
model with different contract types and priorities. Con- 
tracts ensure a Quality of Service (QoS) so that guar- 

antees can be made a priori about specific call requests. 
The user must inform the network upon connection 
setup of both the expected nature of the traffic and the 
type of QoS contract required. The idea is to  ensure 
that critical calls that need to get through under all cir- 
cumstances, are guaranteed bandwidth capacity while 
those of lower priority or of a non-critical nature are al- 
located bandwidth on an as available basis. Following 
are some terms from the ATM literature (see (Varma 
1997) for a concise tutorial) we will use in this paper: 
CBR (Constant Bit Rate): Bit rate remains constant 
over duration of connection; requires delay, jitter and 
bandwidth guarantees’. VBR (Variable Bit Rate): In- 
tended for supporting bursty data and defined by peak 
and average rate. ABR (Available Bit Rate): Intended 
for data transmission which do not preserve any timing 
relationship between source and destination. For in- 
stance, critical calls that need to get through under all 
circumstances will have the CBR contract type. Calls 
that might not be so critical could request VBR while 
low priority or non-critical data would be categorized 
as using ABR with the expectation that they can be 
shed at run time. 

Currently, the military manages communication by 
restricting who, when, and the bandwidth of people 
and equipment that communicate. Multiple high pri- 
ority channels are reserved just in case an important 
message needs to  be sent. In this approach not only 
is the complete bandwidth allocation preallocated as a 
“pipe” (i.e once allocated the resources are completely 
tied to  the user), but dynamic request allocations can 
only be accepted if the request is of a high enough 
priority, to preempt an ongoing call when enough ca- 
pacity is not available. Needless to say, this is a highly 
suboptimal approach, especially in the forward tactical 
areas where frequently a large amount of bandwidth is 
needed on demand and where no accurate predictions 
can be made a priori. 

System Architecture 

The IpexT architecture implemented, consists of a 
cluster of several modules, as shown in Figure 2. The 
architecture is based on the components of the Re- 
mote Agent architecture (Pel1 et al. 1998), plus several 
domain specific components and simulators which are 
used either at plan-time or run-time. In this section 
we discuss the various components of the system ar- 
chitecture with each module annotated as in the figure 
above. 

We distinguish here between different peak and average 
bandwidth requirements among QoS contracts. E.g., CBR 
2 requires roughly twice as much bandwidth as CBR 1. 



Figure 2: The IpexT architecture for a Modular High Level ATM Network Controller 

Plan Time Components 
The Authorization Request Generator (1) is a simu- 
lator that generates call “reservations” for the Plan- 
ner/Scheduler (3) at plan time. The plan time Envi- 
ronmental Expert (2) supplies the Planner/Scheduler 
(PS) with estimates of the effects of environmental con- 
ditions on bandwidth capacity, which PS uses during 
plan generation. The PS (3) generates a schedule of 
bandwidth demand for authorized calls based on the 
input for a specific planning horizon. The schedule pro- 
duced from these inputs is supplied both to the users 
of the system (to order to regulate usage) and t o  the 
run-time execution system. 

Run Time Execution Components 
The major tasks of the run-time execution system, the 
Exec, are (i) to admit calls to the system, and (ii) to  
administer those calls which are admitted. 

The Plan Runner (4) executes the plan provided by 
PS (3). This consists of commanding the Beam Man- 
ager (5) in order to provide uplink/downlink cover- 
ages, and commanding changes to the Call Admission 
Control (CAC) Priority Table Manager (6) and the 
Contract Manager (CM) Priority Table Manager (7). 
These priority tables control the behavior of the ma- 
jor run-time execution components of the system, the 
Call Admission Controller (9) and the Contract Man- 
ager (11). 

The run time Request Generator (8) is a simulator 
which sends real time call request traffic to the Call Ad- 
mission Controller (9). These requests are a variable 
mixture of scheduled and unscheduled calls designed 
to simulate various distributions. 

The Call Admission Controller (9), the central com- 
ponent of the process, receives requests for calls at run 

time from the Request Generator (8), and based on (i) 
the policy specified by the CAC Priority Table Man- 
ager (6), (ii) the state of the network (Le. current 
bandwidth capacity and usage) as reported by the Net- 
work Monitor (14), (iii) the availability of communica- 
tion resources as reported by the Router Expert (lo), 
and (iv) the allowable types of contracts in the call 
request received, handles the requests. The call re- 
quests can be (i) serviced as requested, (ii) serviced 
but with some alternative contract type (as allocated 
by the Router Expert (lo)), or (ii) denied. When a 
call request is accepted, the call is passed, along with 
the allocated contract to the Contract Manager (10). 

The Router Expert (10) is a run-time simulator 
which does or does not allocate call connection con- 
tracts in response to requests from the Call Admission 
Controller (9) based on the state of the network re- 
ported by the Network Monitor (14) and the Network 
Runtime Simulator (16), availability of point to point 
virtual circuits, etc. 

The other major functionality provided by the run- 
time system is contract management, embodied here 
in the Contract Manager (11) and Load Balancer (12). 

The Contract Manager is the run-time module which 
keeps track of all contracted calls received from the Call 
Admission Controller (lo), and based on the priority 
policy in the CM Priority Table Manager (7), and the 
current state of the network from the Load Balancer 
(12), controls the in progress call traffic. When band- 
width usage approaches (or exceeds) capacity, calls can 
be migrated among beams, ABR rates can be reduced, 
and when necessary, calls can be shed to  keep usage 
within network load capacity. Conversely, when usage 
falls below capacity, ABR rates can be increased to use 
the extra bandwidth. 



Network Simulation Components 
The Network Monitor is the interface between the run- 
time execution system and the network itself. Based on 
input from the run time Environmental Expert (13), 
the Network Runtime Simulator (16), and the Network 
Predictor (15), it reports the current total bandwidth 
capacity and current actual usage to the Load Balancer 
(12), the Router Expert (10) and the Call Admission 
Controller (9) at run time. The run time Environ- 
mental Expert (13) simulates changes of the environ- 
ment which affect bandwidth capacity on the beams 
(e.g. weather changes, hardware problems, jamming, 
etc.). The Network Predictor (15) is a traffic expert 
which can be used by the plan-time and run-time En- 
vironmental Experts (2, 13) for better network usage 
predictions. 

Finally, the Network Runtime Simulator is our 
“real” network. Primarily, it feeds the Network Moni- 
tor (14) with run time fluctuations in network capacity. 

Clearly, this architecture is divided between plan- 
time and run-time. The focus of the plan-time compo- 
nents is to smooth the fluctuations in the actual run- 
time call requests as much as possible. The focus of 
the run-time components is to respond to just such 
fluctuations. 

The Planning/Scheduling Component 
The objective of the Planner/Scheduler (PS)2 is to 
schedule traffic allocations which are known before 
hand, as optimally as possible. The Exec then takes 
this generated schedule and in trying to place the 
scheduled calls, also has to meet the demands of a dy- 
namic real-time traffic that can request the same band- 
width. The objective of having the PS in the loop is to 
ensure that run time allocations are not sub-optimal. 

The PS is a timeline based non-linear temporal 
constraint planner which uses chronological backtrack 
search. Temporal information in the plan is repre- 
sented within the general framework of Simple Tem- 
poral Constraint networks, as introduced by Dechter, 
Meiri, and Pearl (Dechter et al. 1991) in a Tem- 
poral Database (TDB). Details of the HSTS plan- 
ner/scheduler and TDB can be found in (Muscettola 
1994). 

The Scheduling Process 
The PS component generates a schedule of calls based 
on a domain model. The model describes the set of 

’Note that while we refer to a planner/scheduler, 
scheduling of bandwidth resources is the primary activity 
that the PS does. The planning component is restricted to 
deciding when to slew the spacecraft to ensure beam cov- 
erage for a priori requests. Our use of the term planning as 
a result, is somewhat loose in this paper. 

constraints that all the calls have to satisfy. The sched- 
ules consist of several parallel timelines, each of which 
consist of a sequence of tokens. A timeline in this 
domain describes the condition of each channel over 
time. Each call is a token on a timeline. In our do- 
main there are primarily two token types; a call request 
token which specifies all the request parameters neces- 
sary for scheduling and a beam location which specifies 
to the planner where the beam coverage is. Beam slew- 
ing (when the spacecraft’s beam is to  be transitioned 
from one area of coverage to another) is assumed to be 
instantaneous so no token is required. 

Beam Scheduling The PS receives as input a traffic 
request allocation which specifies for each call request, 
the contract type, priorities, requested capacity, dura- 
tion of the call and the source and destination target 
areas. The PS then tentatively builds a partial plan 
based on the requested start times and duration. A 
constraint is posted on the beam timeline specifying 
a region of beam coverage which will satisfy the call 
constraints. A conglomeration of such requests will 
then allow the planner to search through all the possi- 
ble ways of specifying where the limited set of beams 
need to provide coverage. A simple example is shown 
in Figure 3. Calls (represented as tokens) assigned to 
some channel (represented as timelines) request band- 
width (not shown) and beam coverage. As the partial 
schedule is built both the location and the duration 
of the beam at those requested locations get refined. 
When no more beam requests are to  be satisfied the PS 
can then determine slew boundaries when the space- 
craft can move the beam from one area of coverage 
to another. Scheduling beam coverage as a result, is 
a matter of ensuring that most (if not all) requested 
calls are covered by some beam. Those calls that are 
not covered will be rejected. 

Bandwidth Scheduling A simple forward dis- 
patching strategy by the PS would then be adequate 
to schedule all calls. However, the problem is further 
complicated by the introduction of contract types and 
priority. Each contract type has an associated Peak 
and Average capacity. The Peak capacity ensures that 
a guaranteed bandwidth capacity (in slots per second) 
exists for a call t o  be scheduled. For instance if a CBR 
request is posted to a temporal duration [tl, t z ]  and if 
the peak capacity still has room this call could be ac- 
commodated within the temporal duration. If not, any 
previously scheduled ABR or VBR calls would need to 
be rescheduled to accommodate the incoming CBR. 
Correspondingly if a non-CBR request comes in after 
a CBR call capacity is satisfied, then depending on the 
request type, its duration and requesting range, the 
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Figure 3: A partial schedule with calls requesting bandwidth and beam coverage. Height of a token indicates 
amount of bandwidth requested while shading corresponds to  a specific beam coverage location. Conglomeration 
of beam location requests results in the PS scheduling beams as shown in the top of the figure. 

new call request could be either moved or rejected out- 
right. For a CBR call the guaranteed peak will need to  
be allocated; for an ABR it will be zero and for a VBR 
somewhere in between. This ensures that a CBR will 
always have the capacity reserved for it when sched- 
uled, while a ABR could be shed at execution time. 
The reason for the peak capacity is then to  provide 
some way to figure out a reasonable mix of call types, 
not to allocate actual bandwidth, something that is 
obtained through the "average" timeline3. 

Model Representation 
The plan model consists of definitions for all the time- 
lines, definitions for all the tokens that can appear on 
those timelines, and a set of temporal constraints that 
must hold among the tokens in a valid schedule. The 
planner model is described in a domain description lan- 
guage (DDL) (Muscettola 1995), and is represented as 
part of the planner's TDB. 

Temporal constraints are specified in DDL by com- 
patibilities. A compatibility consists of a muster token 
and a boolean expression of temporal relations that 
must hold between the master token and target tokens. 
An example is shown in Figure 4. The first constraint 
specifies that a call request master token can only be 
satisfied if its peak bandwidth capacity is satisfied, and 
it is within the confines of some beam which provides 
coverage. Additionally, another call is to follow (pre- 
cede) it on this channel. 

3At an implementationd level this implies that for each 
channel additionally a peak and an average timeline, is 
needed to record bandwidth capacity, which could become 
a runtime issue for PS. 

Heuristics tell the planner what decisions are most 
likely to  be best at each choice point in the plan- 
ner search algorithm, thereby reducing the search. In 
HSTS, the heuristics are closely intertwined with the 
model and can be used to specify which compatibility 
to place on the planners agenda mechanism to focus its 
search. In the current system acquiring good heuristics 
to  make the planner search computationally tractable 
is still an issue. 

Run-Time Execution 
Dynamic Policy Enforcement 
The run-time execution system's objective in IpexT 
is to  enforce a small number of communication policies 
in a variety of environmental network loading situa- 
tions in order to  analyze their effects on the system. 
That is, the Exec's job is (i) to  enforce policy on prior- 
ity based bandwidth allocation, (ii) within that policy, 
to  execute the scheduled allocations generated by PS, 
and (iii) to service unscheduled bandwidth allocation 
requests for bandwidth dynamically as (i) and (ii) al- 
low. 

In particular, this means that the active run-time 
policy will determine the default behavior of the Exec 
(and the behavior of the communications system) when 
(i) there is no plan available (for whatever reason), (ii) 
between the time when a plan is broken and a new plan 
is received, (iii) when the is not enough bandwidth to 
satisfy the current plan, etc. 

Currently, the communication policy of interest is 
(i) service all dynamic communication requests, sched- 
uled or not, in highest first priority order until either 



(Define-Compatibility ;; compats on Call Request 
(Call-Request ?ID ?Contract-Type ?Priority ?Avg-Cap ?X ?Y ?Peak-Cap ?Beam-Region) 
:parameter-functions ( (?Beam-Region <- Request-Beam-Region(?X ?Y)) 
:compatibility-spec 
(AND (equal (DELTA MULTIPLE (Capacity) (+ ?Peak-Cap Used)) 

(contained-by (Beam-Pointing ?-any-value- ?Beam-Region) ) 
(OR ;; has to be some other call altogether 
(met-by (Call-Request)) 
; ;  or is a filler which is used us as slack for execution 
;; time dynamic requests. 
(met-by (Bandwidth-Slack) 

(met-by (Call-Request)) 
(met-by (Bandwidth-Slack) ) ) 

(OR ; ; same as above. 

(Define-Compatibility ;; Transitional Pointing 
(Beam-Pointing ?to ?Coverage-Area) 
:compatibility-spec 
(AND 
(met-by (Beam-Pointing ?-any-value- ?-any-value-) 
(meets (Beam-Pointing ?-any-value- ?-any-value-) 

Figure 4: An example of a compatibility constraint in the IpexT Planner model. 

all are serviced or bandwidth capacity is reached; (ii) 
when all planned request are being serviced, service dy- 
namic communication requests in highest first priority 
order until bandwidth capacity is reached; (iii) when 
bandwidth capacity is exceeded, shed (all) communi- 
cation allocations in lowest first priority order until it 
is no longer exceeded. 

At run time, whenever a conflict arises over band- 
width allocation in either the Call Admission Con- 
troller or the Contract Manager, they consult a dy- 
namic table of priorities to  determine which call(s) are 
accepted, migrated, denied, or shed. One such table is 
shown in Table 1. 

Two such tables are maintained for use by the CA4C 
and CM, which consult them in order to increase or 
decrease bandwidth usage. These tables each have a 
”manager” which the Plan Runner commands in order 
to set and reset these tables. 

Given a clear policy on such priorities, the run-time 
system will work even in the absence of a plan. Fur- 
ther, there can be multiple policies which the Exec can 
enforce, perhaps depending on various environmental 
or experimental circumstances. 

Run-Time Execution 
At run-time, the Exec accepts a stream of call requests, 
some reserved in advance, others not. Requests are ei- 
ther to start or release a connection. Start requests 
contain data about the call’s requested contract, as- 
signed priority, origin, destination, etc. 

When the CAC receives a call, with the help of the 
Router Expert and the Network Monitor, either a route 
and a contract are granted or denied. If the contract is 

granted, the call is connected via the assigned beam(s) 
a t  the granted bandwidth, and the call and contract 
are passed on to the Contract Manager. In the case of 
a release request, the relevant parts of the system are 
notified, and the call (and its associated resources) are 
released. 

The Contract Manager administers all of the in 
progress traffic in the system. In order to  maintain 
bandwidth limitation, it has the ability to migrate calls 
among beams, or to terminate calls. For example, if 
bandwidth becomes unexpectedly restricted, the CM 
can migrate or shed calls in reverse priority order to 
preserve as many virtual circuits as possible within the 
bandwidth available (Figure 5). 

Open Issues and Future Work 

Open Issues 

There are a number of open issues this domain has 
brought out. While the architecture addresses how to 
deal with an unpredictive environment with an open 
architecture, we have as yet to determine how our de- 
sign scales up to a constellation of spacecraft. Traffic 
patterns and routing efficiencies are bound to affect 
the performance of the system. One interesting issue 
to explore would be to  perform Machine Learning for 
load prediction and apply it to the Network Predict- 
ing (15) component. Determining schedule quality to 
ensure that the PS generates a dispatchable schedule 
for the Exec is another, something we are currently in 
the process of addressing (Muscettola et al. 1997). 
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Rank 
Contract 
Priority 

1 2 3 4 5 6 7 8 9 10 
C B R l  CBR2 V B R 1  C B R l  CBR2 C B R l  A B R l  -4BR2 A B R l  ABR2 

high high high med med med high high med med 

Table 1: -4n example of the first several entries in a priority table. Priority rank is determined as a function of 
assigned priority and the QoS contract. That is, the number one raked calls are high priority CBR 1 calls, the 
second rank are high priority CBR 2 calls, and SO on. 

[Setting Beam Capacity for BEAM-2 to 151 
Handling netvork event at 5050.00 for <BEAM-2 18/15 in use (120.0%). 5 calls> 
Migrating <CALL 6 :LOW-PRIORITY (13) :VBR-1 (4 s/s) :AREA-C to :AREA-D (BEAM-2)> to BEAM-1 at 5050.01 

(BEAM-i 26/100 in use (26.0%), 9 calls> 
~ 

Done handling network event at 5050.02 for <BEAM-2 14/15 in use (93.311, 4 calls> 
[several tra&actions elided] 
Looking for 2 s/s on BEAM-1 for <CALL 26 :HIGH-PRIORITY (1) :CBR-1 (2 s/s) :AREA-A to :AREA-B (BEAM-l)> 
Looking for 3 s/s on BEAM-2 for <CALL 12 :NED-PRIORITY (6) :VBR-l (4 s/s)  :AREA-C to :AREA-D (BEAM-l)> 
Can't rind 3 s/s on BEAM-2 to reclaim. 
Shedding <CALL 12 :ED-PRIORITY (6) :VBR_l (4 s/s) :AREA-C to :AREA-D (BEAM-l)> at 5077.96 

- ~ ~ - 

<BEAMIl 26/30 in use (86.7%), 10 calls> 

<BEAM-l 28/30 in use (93.3%), 11 calls> 
Accepted <CALL 26 :HIGH-PRIORITY (1) :CBR-1 (2 s/s)  :AREA-A to :AREA-B (BEAM-l)> at 5077.97 

Figure 5: A trace of the run-time execution s stem which demonstrates call mi ration and shedding. CALL 16 is 
moved when network capacity changes, and (?ALL 26 is accepted after CALL 18 is shed. 

Future Work 
What we have described in this paper is, in part, work 
in progress. We have developed the PS models and 
the Exec interfaces to most of the run time monitoring 
and execution software, and are running the Exec in a 
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standalone mode with no planner input. 
We are currently only demonstrating a modest sce- 

nario with 2 beams and 10 channels per beam, though 
we subsequently plan to  increase the number of beams 
and hence the number of call requests this system can 
handle. In the near term we will be injecting various 
failure scenarios into both the plan-time and run-time 
environment (e.g restricting the bandwidth because 
of a jamming or atmospheric phenomena) as also by 
modeling the uplink and downlink segments separately. 
The latter would allow us to analyze throughput rates 
for each spacecraft which is acting as an ATM switch 
by changing the on board buffering capacity that each 
spacecraft provides. 
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