
IpexT: Integrated Planning and Execution
for Military Satellite Tele-Communications

Christian Plaunt Kanna Rajan
NASA Ames Research Center

Mail Stop 269-2 Moffett Field, CA 94035
{plaunt ,kanna}Qptolemy.arc.nasa.gov

Abstract

The next generation of military communications satel-
lites may be designed as a fast packet-switched con-
stellation of spacecraft able to withstand substantial
bandwidth capacity fluctuation in the face of dynamic
resource utilization and rapid environmental changes
including jamming of communication frequencies and
unstable weather phenomena. We are in the process of
designing an integrated scheduling and execution tool
which will aid in the analysis of the design parameters
needed for building such a distributed system for nom-
inal and battlefield communications. This paper &
cusses the design of such a system based on a temporal
constraint posting planner/scheduler and a smart ex-
ecutive which can cope with a dynamic environment
to make a more optimal utilization of bandwidth than
the current circuit switched based approach.

Introduction
The current revolution in information technology con-
tinually produces new advances in communications ca-
pability. In its vision for the future, the US Depart-
ment of Defense (DoD) perceives information as crit-
ical to tactical and strategic decisions and satellite
communication as an essential operational component
(Deptartment of Defense, Space Command 1997). One
of the critical technologies being closely scrutinized is
the application of Asynchronous Transfer Mode (ATM)
technology to military satellite communications.

Satellites are limited and expensive communications
resources and ATM’s offers greater flexibility and ca-
pacity than existing circuit-switched systems. As a
first step however, the DoD is in the process of eval-
uating the design parameters needed for such a sys-
tem using simulation based design. One of the tools
needed as part of this design analysis is a prediction
and execution component. For this, we are proposing
the use of the Planner/Scheduler (PS) and Smart Ex-
ecutive (Exec) subsystems of the Remote Agent (RA)
(Bernard et al. 1998; Pel1 et al. 1998). The RA will

be the first artificial intelligence-based autonomy archi-
tecture to reside in the flight processor of a spacecraft
(NASA’s Deep Space One (DS1)). The system we have
designed based on these components, is called IpexT.

Similar to other high-level control architectures
(Bonasso et al. 1997; Wilkins et al. 1995; Drabble
et al. 1996; Simmons 1990; Musliner et al. 1993),
IpexT clearly distinguishes between a deliberative and
a reactive layer. In the current context the Plan-
ner/Scheduler develops a schedule based on requested
bandwidth allocations known a priori. Like DS1 the
Exec issues commands to the low-level real-time con-
trol software according to the scheduler’s directives and
it locally reacts to sensory information which monitors
the runtime network performance. Unlike the DS1 sce-
nario however, the environment is substantially more
dynamic and uncertain. Requests t o use the band-
width can come at any time from any geographical lo-
cation and environmental factors can conspire to fluc-
tuate the actual bandwidth at any time. Therefore a
schedule generated by PS not only has to be as optimal
as possible, but must also be robust, anticipating run
time changes. In addition, the Exec must not only cope
with dispatching these plans in a highly dynamic envi-
ronment but it needs to make the most of the available
bandwidth at run time.

In this paper, we describe the overall problem in
greater detail in Section , followed by the IpexT ar-
chitecture in Section , with details of the approaches
taken in Section and Section . We conclude with the
current status and future work envisioned in Section .

The Domain
Motivation
We are motivated by the requirements of a complex
military communications systems. In this domain,
there are several conflicting goals which influence many
levels of design choices (for instance, guaranteed con-
nections versus maximal network throughput, fluctu-
ating bandwidth, conflicting demand patterns, quality

Baulefidd Scenario coverage

Figure 1: A simplified battlefield scenario supported
by an ATM networked constellation

of service). These considerations - an inherently un-
stable environment which allows for a variable level of
autonomy - make this a particularly interesting do-
main for our exploration. A communication network in
this domain must be highly configurable and control-
lable in order to handle the strategic needs of the user,
and also be highly autonomous in order to function
efficiently in the potential absence of such control.

The objective of this overall effort is to build an anal-
ysis and design tool capable of simulating and analyz-
ing multiple configurations, topologies, and environ-
ments in the unstable environment of military commu-
nications with the purpose of designing a future gen-
eration satellite based telecommunications system. In
the design phase, the planner/scheduler would gener-
ate output for designers to evaluate operations policy
by providing flexibility in the operational constraints
modeled. Rapid iteration of the system design would
be possible by comparison of throughput performance
results for candidate designs. Moreover, network plan-
ners can optimize the policy for users and potential
customers can be advised in planning for network us-
age.

After design optimization, the planner/scheduler has
the potential t o migrate to operational use. At present,
satellite communications network planning is a compu-
tation and labor intensive element of operations. The
model-based planning agent would improve efficiency
and reduce cost and effort.

A Brief Background on ATM’s
The domain consists of a constellation of spacecraft
which act as ATM switches directing and controlling
traffic flow from a number of sources to a number of
destinations (Figure 1). Traffic is based on an ATM
model with different contract types and priorities. Con-
tracts ensure a Quality of Service (QoS) so that guar-

antees can be made a priori about specific call requests.
The user must inform the network upon connection
setup of both the expected nature of the traffic and the
type of QoS contract required. The idea is to ensure
that critical calls that need to get through under all cir-
cumstances, are guaranteed bandwidth capacity while
those of lower priority or of a non-critical nature are al-
located bandwidth on an as available basis. Following
are some terms from the ATM literature (see (Varma
1997) for a concise tutorial) we will use in this paper:
CBR (Constant Bit Rate): Bit rate remains constant
over duration of connection; requires delay, jitter and
bandwidth guarantees’. VBR (Variable Bit Rate): In-
tended for supporting bursty data and defined by peak
and average rate. ABR (Available Bit Rate): Intended
for data transmission which do not preserve any timing
relationship between source and destination. For in-
stance, critical calls that need to get through under all
circumstances will have the CBR contract type. Calls
that might not be so critical could request VBR while
low priority or non-critical data would be categorized
as using ABR with the expectation that they can be
shed at run time.

Currently, the military manages communication by
restricting who, when, and the bandwidth of people
and equipment that communicate. Multiple high pri-
ority channels are reserved just in case an important
message needs to be sent. In this approach not only
is the complete bandwidth allocation preallocated as a
“pipe” (i.e once allocated the resources are completely
tied to the user), but dynamic request allocations can
only be accepted if the request is of a high enough
priority, to preempt an ongoing call when enough ca-
pacity is not available. Needless to say, this is a highly
suboptimal approach, especially in the forward tactical
areas where frequently a large amount of bandwidth is
needed on demand and where no accurate predictions
can be made a priori.

System Architecture

The IpexT architecture implemented, consists of a
cluster of several modules, as shown in Figure 2. The
architecture is based on the components of the Re-
mote Agent architecture (Pel1 et al. 1998), plus several
domain specific components and simulators which are
used either at plan-time or run-time. In this section
we discuss the various components of the system ar-
chitecture with each module annotated as in the figure
above.

We distinguish here between different peak and average
bandwidth requirements among QoS contracts. E.g., CBR
2 requires roughly twice as much bandwidth as CBR 1.

Figure 2: The IpexT architecture for a Modular High Level ATM Network Controller

Plan Time Components
The Authorization Request Generator (1) is a simu-
lator that generates call “reservations” for the Plan-
ner/Scheduler (3) at plan time. The plan time Envi-
ronmental Expert (2) supplies the Planner/Scheduler
(PS) with estimates of the effects of environmental con-
ditions on bandwidth capacity, which PS uses during
plan generation. The PS (3) generates a schedule of
bandwidth demand for authorized calls based on the
input for a specific planning horizon. The schedule pro-
duced from these inputs is supplied both to the users
of the system (to order to regulate usage) and t o the
run-time execution system.

Run Time Execution Components
The major tasks of the run-time execution system, the
Exec, are (i) to admit calls to the system, and (ii) to
administer those calls which are admitted.

The Plan Runner (4) executes the plan provided by
PS (3). This consists of commanding the Beam Man-
ager (5) in order to provide uplink/downlink cover-
ages, and commanding changes to the Call Admission
Control (CAC) Priority Table Manager (6) and the
Contract Manager (CM) Priority Table Manager (7).
These priority tables control the behavior of the ma-
jor run-time execution components of the system, the
Call Admission Controller (9) and the Contract Man-
ager (11).

The run time Request Generator (8) is a simulator
which sends real time call request traffic to the Call Ad-
mission Controller (9). These requests are a variable
mixture of scheduled and unscheduled calls designed
to simulate various distributions.

The Call Admission Controller (9), the central com-
ponent of the process, receives requests for calls at run

time from the Request Generator (8), and based on (i)
the policy specified by the CAC Priority Table Man-
ager (6), (ii) the state of the network (Le. current
bandwidth capacity and usage) as reported by the Net-
work Monitor (14), (iii) the availability of communica-
tion resources as reported by the Router Expert (lo),
and (iv) the allowable types of contracts in the call
request received, handles the requests. The call re-
quests can be (i) serviced as requested, (ii) serviced
but with some alternative contract type (as allocated
by the Router Expert (lo)), or (ii) denied. When a
call request is accepted, the call is passed, along with
the allocated contract to the Contract Manager (10).

The Router Expert (10) is a run-time simulator
which does or does not allocate call connection con-
tracts in response to requests from the Call Admission
Controller (9) based on the state of the network re-
ported by the Network Monitor (14) and the Network
Runtime Simulator (16), availability of point to point
virtual circuits, etc.

The other major functionality provided by the run-
time system is contract management, embodied here
in the Contract Manager (11) and Load Balancer (12).

The Contract Manager is the run-time module which
keeps track of all contracted calls received from the Call
Admission Controller (lo), and based on the priority
policy in the CM Priority Table Manager (7), and the
current state of the network from the Load Balancer
(12), controls the in progress call traffic. When band-
width usage approaches (or exceeds) capacity, calls can
be migrated among beams, ABR rates can be reduced,
and when necessary, calls can be shed to keep usage
within network load capacity. Conversely, when usage
falls below capacity, ABR rates can be increased to use
the extra bandwidth.

Network Simulation Components
The Network Monitor is the interface between the run-
time execution system and the network itself. Based on
input from the run time Environmental Expert (13),
the Network Runtime Simulator (16), and the Network
Predictor (15), it reports the current total bandwidth
capacity and current actual usage to the Load Balancer
(12), the Router Expert (10) and the Call Admission
Controller (9) at run time. The run time Environ-
mental Expert (13) simulates changes of the environ-
ment which affect bandwidth capacity on the beams
(e.g. weather changes, hardware problems, jamming,
etc.). The Network Predictor (15) is a traffic expert
which can be used by the plan-time and run-time En-
vironmental Experts (2, 13) for better network usage
predictions.

Finally, the Network Runtime Simulator is our
“real” network. Primarily, it feeds the Network Moni-
tor (14) with run time fluctuations in network capacity.

Clearly, this architecture is divided between plan-
time and run-time. The focus of the plan-time compo-
nents is to smooth the fluctuations in the actual run-
time call requests as much as possible. The focus of
the run-time components is to respond to just such
fluctuations.

The Planning/Scheduling Component
The objective of the Planner/Scheduler (PS)2 is to
schedule traffic allocations which are known before
hand, as optimally as possible. The Exec then takes
this generated schedule and in trying to place the
scheduled calls, also has to meet the demands of a dy-
namic real-time traffic that can request the same band-
width. The objective of having the PS in the loop is to
ensure that run time allocations are not sub-optimal.

The PS is a timeline based non-linear temporal
constraint planner which uses chronological backtrack
search. Temporal information in the plan is repre-
sented within the general framework of Simple Tem-
poral Constraint networks, as introduced by Dechter,
Meiri, and Pearl (Dechter et al. 1991) in a Tem-
poral Database (TDB). Details of the HSTS plan-
ner/scheduler and TDB can be found in (Muscettola
1994).

The Scheduling Process
The PS component generates a schedule of calls based
on a domain model. The model describes the set of

’Note that while we refer to a planner/scheduler,
scheduling of bandwidth resources is the primary activity
that the PS does. The planning component is restricted to
deciding when to slew the spacecraft to ensure beam cov-
erage for a priori requests. Our use of the term planning as
a result, is somewhat loose in this paper.

constraints that all the calls have to satisfy. The sched-
ules consist of several parallel timelines, each of which
consist of a sequence of tokens. A timeline in this
domain describes the condition of each channel over
time. Each call is a token on a timeline. In our do-
main there are primarily two token types; a call request
token which specifies all the request parameters neces-
sary for scheduling and a beam location which specifies
to the planner where the beam coverage is. Beam slew-
ing (when the spacecraft’s beam is to be transitioned
from one area of coverage to another) is assumed to be
instantaneous so no token is required.

Beam Scheduling The PS receives as input a traffic
request allocation which specifies for each call request,
the contract type, priorities, requested capacity, dura-
tion of the call and the source and destination target
areas. The PS then tentatively builds a partial plan
based on the requested start times and duration. A
constraint is posted on the beam timeline specifying
a region of beam coverage which will satisfy the call
constraints. A conglomeration of such requests will
then allow the planner to search through all the possi-
ble ways of specifying where the limited set of beams
need to provide coverage. A simple example is shown
in Figure 3. Calls (represented as tokens) assigned to
some channel (represented as timelines) request band-
width (not shown) and beam coverage. As the partial
schedule is built both the location and the duration
of the beam at those requested locations get refined.
When no more beam requests are to be satisfied the PS
can then determine slew boundaries when the space-
craft can move the beam from one area of coverage
to another. Scheduling beam coverage as a result, is
a matter of ensuring that most (if not all) requested
calls are covered by some beam. Those calls that are
not covered will be rejected.

Bandwidth Scheduling A simple forward dis-
patching strategy by the PS would then be adequate
to schedule all calls. However, the problem is further
complicated by the introduction of contract types and
priority. Each contract type has an associated Peak
and Average capacity. The Peak capacity ensures that
a guaranteed bandwidth capacity (in slots per second)
exists for a call t o be scheduled. For instance if a CBR
request is posted to a temporal duration [tl, t z] and if
the peak capacity still has room this call could be ac-
commodated within the temporal duration. If not, any
previously scheduled ABR or VBR calls would need to
be rescheduled to accommodate the incoming CBR.
Correspondingly if a non-CBR request comes in after
a CBR call capacity is satisfied, then depending on the
request type, its duration and requesting range, the

i

I . , .
B u m 1

Figure 3: A partial schedule with calls requesting bandwidth and beam coverage. Height of a token indicates
amount of bandwidth requested while shading corresponds to a specific beam coverage location. Conglomeration
of beam location requests results in the PS scheduling beams as shown in the top of the figure.

new call request could be either moved or rejected out-
right. For a CBR call the guaranteed peak will need to
be allocated; for an ABR it will be zero and for a VBR
somewhere in between. This ensures that a CBR will
always have the capacity reserved for it when sched-
uled, while a ABR could be shed at execution time.
The reason for the peak capacity is then to provide
some way to figure out a reasonable mix of call types,
not to allocate actual bandwidth, something that is
obtained through the "average" timeline3.

Model Representation
The plan model consists of definitions for all the time-
lines, definitions for all the tokens that can appear on
those timelines, and a set of temporal constraints that
must hold among the tokens in a valid schedule. The
planner model is described in a domain description lan-
guage (DDL) (Muscettola 1995), and is represented as
part of the planner's TDB.

Temporal constraints are specified in DDL by com-
patibilities. A compatibility consists of a muster token
and a boolean expression of temporal relations that
must hold between the master token and target tokens.
An example is shown in Figure 4. The first constraint
specifies that a call request master token can only be
satisfied if its peak bandwidth capacity is satisfied, and
it is within the confines of some beam which provides
coverage. Additionally, another call is to follow (pre-
cede) it on this channel.

3At an implementationd level this implies that for each
channel additionally a peak and an average timeline, is
needed to record bandwidth capacity, which could become
a runtime issue for PS.

Heuristics tell the planner what decisions are most
likely to be best at each choice point in the plan-
ner search algorithm, thereby reducing the search. In
HSTS, the heuristics are closely intertwined with the
model and can be used to specify which compatibility
to place on the planners agenda mechanism to focus its
search. In the current system acquiring good heuristics
to make the planner search computationally tractable
is still an issue.

Run-Time Execution
Dynamic Policy Enforcement
The run-time execution system's objective in IpexT
is to enforce a small number of communication policies
in a variety of environmental network loading situa-
tions in order to analyze their effects on the system.
That is, the Exec's job is (i) to enforce policy on prior-
ity based bandwidth allocation, (ii) within that policy,
to execute the scheduled allocations generated by PS,
and (iii) to service unscheduled bandwidth allocation
requests for bandwidth dynamically as (i) and (ii) al-
low.

In particular, this means that the active run-time
policy will determine the default behavior of the Exec
(and the behavior of the communications system) when
(i) there is no plan available (for whatever reason), (ii)
between the time when a plan is broken and a new plan
is received, (iii) when the is not enough bandwidth to
satisfy the current plan, etc.

Currently, the communication policy of interest is
(i) service all dynamic communication requests, sched-
uled or not, in highest first priority order until either

(Define-Compatibility ;; compats on Call Request
(Call-Request ?ID ?Contract-Type ?Priority ?Avg-Cap ?X ?Y ?Peak-Cap ?Beam-Region)
:parameter-functions ((?Beam-Region <- Request-Beam-Region(?X ?Y))
:compatibility-spec
(AND (equal (DELTA MULTIPLE (Capacity) (+ ?Peak-Cap Used))

(contained-by (Beam-Pointing ?-any-value- ?Beam-Region))
(OR ;; has to be some other call altogether
(met-by (Call-Request))
; ; or is a filler which is used us as slack for execution
;; time dynamic requests.
(met-by (Bandwidth-Slack)

(met-by (Call-Request))
(met-by (Bandwidth-Slack)))

(OR ; ; same as above.

(Define-Compatibility ;; Transitional Pointing
(Beam-Pointing ?to ?Coverage-Area)
:compatibility-spec
(AND
(met-by (Beam-Pointing ?-any-value- ?-any-value-)
(meets (Beam-Pointing ?-any-value- ?-any-value-)

Figure 4: An example of a compatibility constraint in the IpexT Planner model.

all are serviced or bandwidth capacity is reached; (ii)
when all planned request are being serviced, service dy-
namic communication requests in highest first priority
order until bandwidth capacity is reached; (iii) when
bandwidth capacity is exceeded, shed (all) communi-
cation allocations in lowest first priority order until it
is no longer exceeded.

At run time, whenever a conflict arises over band-
width allocation in either the Call Admission Con-
troller or the Contract Manager, they consult a dy-
namic table of priorities to determine which call(s) are
accepted, migrated, denied, or shed. One such table is
shown in Table 1.

Two such tables are maintained for use by the CA4C
and CM, which consult them in order to increase or
decrease bandwidth usage. These tables each have a
”manager” which the Plan Runner commands in order
to set and reset these tables.

Given a clear policy on such priorities, the run-time
system will work even in the absence of a plan. Fur-
ther, there can be multiple policies which the Exec can
enforce, perhaps depending on various environmental
or experimental circumstances.

Run-Time Execution
At run-time, the Exec accepts a stream of call requests,
some reserved in advance, others not. Requests are ei-
ther to start or release a connection. Start requests
contain data about the call’s requested contract, as-
signed priority, origin, destination, etc.

When the CAC receives a call, with the help of the
Router Expert and the Network Monitor, either a route
and a contract are granted or denied. If the contract is

granted, the call is connected via the assigned beam(s)
a t the granted bandwidth, and the call and contract
are passed on to the Contract Manager. In the case of
a release request, the relevant parts of the system are
notified, and the call (and its associated resources) are
released.

The Contract Manager administers all of the in
progress traffic in the system. In order to maintain
bandwidth limitation, it has the ability to migrate calls
among beams, or to terminate calls. For example, if
bandwidth becomes unexpectedly restricted, the CM
can migrate or shed calls in reverse priority order to
preserve as many virtual circuits as possible within the
bandwidth available (Figure 5).

Open Issues and Future Work

Open Issues

There are a number of open issues this domain has
brought out. While the architecture addresses how to
deal with an unpredictive environment with an open
architecture, we have as yet to determine how our de-
sign scales up to a constellation of spacecraft. Traffic
patterns and routing efficiencies are bound to affect
the performance of the system. One interesting issue
to explore would be to perform Machine Learning for
load prediction and apply it to the Network Predict-
ing (15) component. Determining schedule quality to
ensure that the PS generates a dispatchable schedule
for the Exec is another, something we are currently in
the process of addressing (Muscettola et al. 1997).

i

.
-

Rank
Contract
Priority

1 2 3 4 5 6 7 8 9 10
C B R l CBR2 V B R 1 C B R l CBR2 C B R l A B R l -4BR2 A B R l ABR2

high high high med med med high high med med

Table 1: -4n example of the first several entries in a priority table. Priority rank is determined as a function of
assigned priority and the QoS contract. That is, the number one raked calls are high priority CBR 1 calls, the
second rank are high priority CBR 2 calls, and SO on.

[Setting Beam Capacity for BEAM-2 to 151
Handling netvork event at 5050.00 for <BEAM-2 18/15 in use (120.0%). 5 calls>
Migrating <CALL 6 :LOW-PRIORITY (13) :VBR-1 (4 s/s) :AREA-C to :AREA-D (BEAM-2)> to BEAM-1 at 5050.01

(BEAM-i 26/100 in use (26.0%), 9 calls>
~

Done handling network event at 5050.02 for <BEAM-2 14/15 in use (93.311, 4 calls>
[several tra&actions elided]
Looking for 2 s/s on BEAM-1 for <CALL 26 :HIGH-PRIORITY (1) :CBR-1 (2 s/s) :AREA-A to :AREA-B (BEAM-l)>
Looking for 3 s/s on BEAM-2 for <CALL 12 :NED-PRIORITY (6) :VBR-l (4 s/s) :AREA-C to :AREA-D (BEAM-l)>
Can't rind 3 s/s on BEAM-2 to reclaim.
Shedding <CALL 12 :ED-PRIORITY (6) :VBR_l (4 s/s) :AREA-C to :AREA-D (BEAM-l)> at 5077.96

- ~ ~ -

<BEAMIl 26/30 in use (86.7%), 10 calls>

<BEAM-l 28/30 in use (93.3%), 11 calls>
Accepted <CALL 26 :HIGH-PRIORITY (1) :CBR-1 (2 s/s) :AREA-A to :AREA-B (BEAM-l)> at 5077.97

Figure 5: A trace of the run-time execution s stem which demonstrates call mi ration and shedding. CALL 16 is
moved when network capacity changes, and (?ALL 26 is accepted after CALL 18 is shed.

Future Work
What we have described in this paper is, in part, work
in progress. We have developed the PS models and
the Exec interfaces to most of the run time monitoring
and execution software, and are running the Exec in a

P. P. Nayak, B. Pell, K. Rajan, N. Rouquette,
B. Smith, & B. C. Williams (1998). Design of the
remote agent experiment for spacecraft autonomy.
In Proceedings of the IEEE Aerospace Conference,
Snowmass, CO. IEEE. To Appear.

Bonasso, R. P., D. Kortenkamp, D. Miller, & M. Slack
(1997). Experiences with an architecture for in-
telligent, reactive agents. Journal of Experimental
and Theoretical AI, 9(l),

standalone mode with no planner input.
We are currently only demonstrating a modest sce-

nario with 2 beams and 10 channels per beam, though
we subsequently plan to increase the number of beams
and hence the number of call requests this system can
handle. In the near term we will be injecting various
failure scenarios into both the plan-time and run-time
environment (e.g restricting the bandwidth because
of a jamming or atmospheric phenomena) as also by
modeling the uplink and downlink segments separately.
The latter would allow us to analyze throughput rates
for each spacecraft which is acting as an ATM switch
by changing the on board buffering capacity that each
spacecraft provides.

Acknowledgment We wish to thank Nicola
Muscettola, Barney Pell and Gregory Dorais of NASA
Ames for useful technical discussions. Scott Sawyer,
Laura Plice, Tom Fall, Maxilyn Golden and Gregory
White of Lockheed Martin provided the necessary do-
main knowledge and the framework necessary for our
understanding of this problem.

References
Bernard, D. E., G. -4. Dorais, C. Fry, E. B. G. Jr.,

B. Kanefsky, J. Kurien, W. Millar, N. Muscettola,

Dechter, R., I. Meiri, & J. Pearl (1991). Temporal Con-
straint Yetworks. Artificial Intelligence, 49:61-95.

Deptartment of Defense, Space Command (1997). Ad-
vanded Satellite Communications Capstone Re-
quirements Document.

Drabble, B., A. Tate, & J. Dalton (1996). 0-
plan project evaluation experiments and re-
sults. Oplan Technical Report ARPA-RL/O-
Plan/TR/23 Version 1, AIAI.

Muscettola, N. (1994). HSTS: Integrating planning
and scheduling. In M. Fox & M. Zweben, editors,
Intelligent Scheduling. Morgan Kaufmann.

Muscettola, N. (1995). HSTS Domain Description
Language v1.2 User Manual.

Muscettola, E., P. Morris, B. Pell, & B. Smith (1997).
Issues in temporal reasoning for autonomous con-
trol systems. Working Notes from the 1997 A A A I
workshop on Spatial and Temporal Reasoning.

Musliner, D., E. Durfee, & K. Shin (1993). Circa: -4
cooperative, intelligent, real-time control architec-
ture. IEEE Transactions on Systems, Man, and
Cybernetics, 23(6).

Pell, B., D. E. Bernard, S. A. Chien, E. Gat,
N. Muscettola, P. P. Nayak, M. D. Wagner, &
B. C. Williams (1998). An autonomous spacecraft
agent prototype. Autonomous Robotics, 5(1). To
Appear.

Simmons, R. (1990). An architecture for coordinating
planning, sensing, and action. In Procs. DARPA
Workshop on Innovative Approaches to Planning,
Scheduling and Control, pages 292-297, San Ma-
teo, CA. DARPA, Morgan Kaufmann.

Varma, A. (1997). Tutorial on Traffic Management in
ATM Networks.

Wilkins, D. E., K. L. Myers, J. D. Lowrance, & L. P.
Wesley (1995). Planning and reacting in uncer-
tain and dynamic environments. Journal of Ex-
perimental and Theoretical AI, 7(1):197-227.

