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ABSTRACT 

Differential Evolution (DE) is a simple and robust 
evolutionary strategy that has been provEn effective i n  
determining the global optimum for several difficult 
optimization problems. Although DE offers several 
advantages over traditional optimization approaches, its 
use in applications such as aerodynamic shape optimiza- 
tion where the objective function evaluations are com- 
putationally expensive is limited by the large number of 
function evaluations often required. In this paper various 
approaches for improving the efficiency of DE are 
reviewed and discussed. Several approaches that have 
proven effective for other evolutionary algorithms are 
modified and implemented in a DE-based aerodynamic 
shape optimization method that uses a Navier-Stokes 
solver for the objective function evaluations. Paralleliza- 
tion techniques on distributed computers are used to 
reduce turnaround times. Results are presented for stan- 
dard test optimization problems and for the inverse 
design of a turbine airfoil. The efficiency improvements 
achieved by the different approaches are evaluated and 
compared. 

INTRODUCTION 

Aerodynamic shape optimization refers to the process 
of determining the shapes of airfoils, wings, or other 
aerodynamic surfaces that are optimal with regard to 
one or several desired characteristics. Major advances in 
the field of aerodynamic shape optimization have been 
achieved in recent years by combining improved meth- 
ods for the simulation of complicated flow fields with 
efficient numerical optimization techniques and by 
exploiting the powerful capabilities of modern comput- 
ers. Both Euler and high-fidelity Navier-Stokes solvers 
have been combined with various traditional optimiza- 
tion techniques (gradient-based methods, response sur- 
faces, etc.) as well as non-traditional approaches such as 
neural networks and evolutionary algorithms to obtain 
optimal aerodynamic shapes and designs. 
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This article deals with an evolutionary algorithm (EA) 
known at Differential Evolution ',* for aerodynamic 

ary strategy (ES) that has been proven effective for sev- 
eral difficult optimization  problem^.^ Its application in 
a e r o n a u t i c ~ , 4 ~ ~ ~ ~ . ~ , ~ , ~  however, has been somewhat lim- 
ited. Generally speaking, population-based evolution- 
ary approaches such as DE are easy to implement and 
are quite robust and capable of locating the global opti- 
mum. However, as with other EA approaches, DE often 
require a lot of objective function evaluations to arrive at 
the optimal solution. This poses a serious impediment to 
the use of DE in aerodynamic shape optimization appli- 
cations where the objective function evaluations are per- 
formed by computationally expensive analysis codes 
based on the Euler or Navier-Stokes equations. 

The purpose of this article is to explore and summa- 
rize various modifications to the DE algorithm that can 
lead to improved computational efficiency and apply 
them to aerodynamic shape optimization problems. Sev- 
eral promising approaches that have proven effective in 
the context of other EAs have been modified and imple- 
mented in a DE-based aerodynamic shape optimization 
method that uses a Navier-Stokes solver for objective 
function evaluations. The shape optimization method is 
implemented on distributed parallel computers so that 
new designs can be obtained within reasonable turn- 
around times. Results are presented for standard test 
optimization problems from the literature and for the 
inverse design of a turbine airfoil. The efficiency 
improvements achieved by the different approaches are 
evaluated and compared. Some of these approaches 
have been reported by the author in earlier This 
article extends this prior work and summarizes our 
efforts to date aimed at improving the efficiency of the 
DE algorithm. 

Other efforts to improve the efficiency of the DE algo- 
rithm have also been reported in the literature. Chiou 
and Wang'' developed a hybrid DE algorithm that 
incorporated a gradient-based local search method for 
chemical engineering applications. In aeronautics, 
Rogalsky et aL6 developed a DE hybrid by incorporating 
a Nelder-Mead downhill simplex search and used it with 
a potential flow solver in the inverse design of turboma- 

shape optimization. DE is a simple and robust evolution- _ _  . -  
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chinery airfoils. Airfoil design optimization methods 
that use the DE algorithm in conjunction with neural 
network strategies have also been reported by Rai7 

DIFFERENTIAL EVOLUTION 

DE is a conceptually simple ES developed for single- 
objective optimization in continuous search spaces with 
good convergence properties that have been demon- 
strated in a variety of  application^.^ Details of the algo- 
rithm can be found elsewhere;'>2 only its main features 
are summarized here. 

DE uses a' population P that contains m n-dimen- 
sional real-valued parameter vectors, where n is the 
number of parameters or decision variables: 

P = {X,, ..., f,} 

P ( 0 )  = {.fl(0>, ...). .r,(O)}, g = 0 

The population is usually initialized at generation 
g = 0 in a random fashion: 

The population size m is maintained constant 
throughout the optimization process. Differential evolu- 
tion is thus similar to a (p, h)  ES" with p and h equal 
to m.12 The method however differs from standard ES 
approaches in several respects as described below. 

As with all ES-based approaches, mutation is the key 
ingredient of differential evolution. The basic idea is to 
generate new parameter vectors for the subsequent gen- 
eration by using weighted differences between two (or 
more) parameter vectors selected randomly from the 
current population to provide appropriately scaled per- 
turbations that modify another parameter vector (or, 
comparison vector) selected from the same population. 
This idea has been implemented in various forms. In the 
the classical implementation that is rather popular, new 
trial parameter vectors ( y l ,  ... , j j , }  for the next gen- 
eration g + 1 are generated according to the following 
mutation scheme: 

For I = 1, m ; i = l , n  generate 

I l l  In the above al , a 2 ,  a3 are distinct elements of 
{ 1,2, ... , m }  randomly selected for each I ,  and 
F E [0,2] is a parameter that controls the amplification 
of the differential variation. Other variants that either 
use the difference between more than two parameter 
vectors or keep track of the best parameter vector at 
each generation and use it in the mutation scheme have 
also been developed' and used with varying success in 
specific applications. 

DE is similar to other recombinant ES approaches in 
that it' also uses discrete recombination. The strategy 
adopted in differential evolution is to modify the trial 

parameter vectors {jjl ,  ... , Y n t }  to generate parameter 
vectors {Z1, ... , Z m }  as follows: 

For I = 1, m ; i = 1, n generate 

yf with probability p c  
z, = 
- I  

(xf(g) with probability 1 - p ,  

where p c  is a parameter that controls the proportion 
of perturbed elements in the new population. Note that 
the mutation and recombination operations described 
above can lead to new vectors that may fall outside the 
boundaries of the variables. .Various repair rules can be 
used t~ ensure that these inadmissible vectcrs de c ~ t  
enter the population. A simple strategy, which is the one 
adopted here, is to delete these inadmissible vectors and 
form new ones until the population is filled. 

The selection scheme used in DE is deterministic but 
differs from methods usually employed in standard ES 
approaches. Selection is based on local competition 
only, with the modified trial parameter vector competing 
against one population member (the comparison vector) 
and the survivor entering the new population g + 1 as 
follows: 

For 1 = 1, m 

where f denotes the corresponding objective function 
(or fitness) value. This greedy selection criterion results 
in fast convergence; the adaptive nature of the mutation 
operator, in general, helps safeguard against premature 
convergence and allows the process to extricate itself 
from local optima. The generation counter is incre- 
mented and the process is repeated until some stopping 
criteria are satisfied. 

EFFICIENCY IMPROVEMENT 
STRATEGIES FOR DIFFERENTIAL 

EVOLUTION 

A variety of approaches that seek to improve the com- 
putational efficiency of evolutionary approaches without 
compromising their desirable features have been pro- 
posed in the literature. Several of these were evaluated 
in the present study in the context of the Differential 
Evolution algorithm and are discussed below. 

Metamodeling Techniques 
Metamodeling techniques for improving the effi- 

ciency of evolutionary approaches are based on the use 
of approximate models as surrogates for the actual 
objective functions. These surrogates can be incorpo- 
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rated in the optimization process and their judicious use 
can reduce the number of calls to the expensive analysis 
codes. One metamodeling approach that has received 
much attention is the response surface method (RSM). 
While traditional RSM uses low-order polynomials for 
function approximation, generalized response surface 
methods (GRSM) allow for the inclusion of a wide 
range of approximations, including polynomials, neural 
networks, kriging, multivariate adaptive regression 
splines, radial basis functions, and multiquadrics. Both 
global and local GRSM approaches have been estab- 
lished. In the global approach a GRSM metamodel -. for 
the entire design space is used and gradually refined as 
the optimization progresses. Since developing good glo- 
bal metamodels with validity over the entire design 
space can be difficult, a local approach based on local 
approximations and a sequential approximate optimiza- 
tion strategy for iteratively zooming into the region of 
design space around the optimum is often preferred. 
Qpically, the optimization process is decomposed into a 
sequence of cycles and an optimization subproblem is 
defined within a trust region, i.e., a smaller part of the 
design space, where local metamodels are used as SUITO- 

gates for the exact objective functions. The exact objec- 
tive functions are evaluated only at a limited number of 
points in each trust region thus reducing computational 
cost. The trust regions are resized andor moved as the 
optimization progresses. Various optimization frame- 
works based on such trust-region and move-limit meth- 
ods have been developed to strike an appropriate 
balance between the use of exact and approximate func- 
tion eva~uations.'~ 

The GRSM metamodeling strategy for DE of 
Madavan' with metamodels based on artificial neural 
networks is used here. A simple strategy is adopted 
where the metamodel is used only in the latter stages of 
the optimization after the population has evolved to the 
general vicinity of the optimal solution. This eliminates 
the need for a more elaborate sequential zooming strat- 
egy although it limits the efficiency improvements. 
Using the neural network as a local response surface 
with validity only in a small region of the design space 
makes neural network training easier and improves net- 
work generalization abilities. A three-layer feed-for- 
ward neural network is used here. 

Memetic Methods 
Generally speaking, evolutionary algorithms are not 

well suited for fine-tuned search close to the optimal 
solution. Another approach to improving the efficiency 
of evolutionary approaches is the use of memetic meth- 
ods that apply a separate local search process to refine 
specific individuals. These methods are also referred to 

as hybrid algorithms or genetic local searchers. The gen- 
eral idea is to combine the global nature of evolutionary 
search with more efficient deterministic local search 
techniques. A simple strategy often adopted is to per- 
form a two-stage optimization with the best solution 
determined by the GA being used as the starting point 
for the local search method. Alternatively, strategies that 
permit dynamic coupling and interaction between the 
GA and the local search method can be used that intu- 
itively seem likely to be more effective. 

In the context of DE, memetic methods have been 
explored in Madavan9 where the DE algorithm. was 
c ~ ~ ~ r , e d  :.:ith, 2 dynziic hill c!irnbingl4J5 (FEE) 
local search technique in order to exploit the comple- 
mentary advantages of both methods and achieve better 
computational efficiency than standard DE. This 
approach is used here and described briefly below. 

The core of the basic DHC algorithm is an efficient 
technique for locating local optima. l4  The search origi- 
nates at a specified location given by the vector 2 of the 
design parameters and uses a probing vector V whose 
length is initially specified but increases or decreases 
dynamically to suit the local objective function terrain. 
Random move directions are tried (up to a specified 
maximum number) for a given probing vector length 

/ V I  . If the objective function value at a new point, i + G , 
is better than the previous value, the probing vector 
length is doubled and further regions of the domain are 
searched; if not, the vector length is halved and a more 
localized search is performed. In addition, a memory 
vector ii is also used to keep track of the previous suc- 
cessful move direction. A linear combination U + V of 
this vector and the probing vector is also evaluated as a 
candidate move direction. The process stops when the 
probing vector length falls below a specified (small) 
threshold value. 

An important decision that has to be made for effi- 
cient optimization is the relative effort levels for the glo- 
bal and the local search. There are various aspects to this 
decision dealing with which and how many population 
members should be chosen for the local search, when 
the local search should be invoked, and when it should 
be terminated. The standard approach is to specify these 
parameters and keep their values fixed during the opti- 
mization. However, this involves considerable parameter 
tuning to obtain the best values for a particular applica- 
tion. Further, the tuning process is application-specific 
and will have to be repeated for a different application. 
Following Espinoza, et al.I6 an alternate approach is 
used in Madavang where these parameters are not speci- 
fied but adapt in response to recent performance as the 
algorithm converges to the optimal solution. The change 
in the relative coefficient of variation (CV) of the fitness 
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function between generations is monitored. l6 CV is 
defined as the ratio of the mean and the standard devia- 
tion of the population fitness. In a similar fashion, the 
number of local search iterations to be performed before 
switching back to the global DE search is decided by 
comparing the most recent fitness improvement by local 
search with the latest fitness improvement by global 
search. l6 In general, local search typically is performed 
on a small subset of the population and the probability 
of a population member being selected for local search 
can also be made to adapt with the solution.16 However, 
in the results reported here, only one (either the current 
best or randomly chosen) member of the population 
from a generation is selected for the local search. 

Subpopulation or Island Techniques 
Another efficiency enhancement technique that has 

had some success in certain applications is the use of 
subpopulation or island genetic algorithms. 17,18 These 
are essentially coarse-grained distributed genetic algo- 
rithms where multiple subpopulations or “islands” are 
evolved in a distributed fashion with interaction occur- 
ring between the islands through occasional migration 
of individuals. Each island searches its own space for 
feasible solutions. The islands can be connected through 
various topologies: bidirectional rings, unidirectional 
rings, hypercubes, etc. Different parameter settings and 
fitness function models of varying fidelity or resolution 
can be used in the various islands. For example, there 
can be several islands using inexpensive low-fidelity 
evaluations that progressively pass on individuals to 
fewer islands using higher fidelity evaluations. The final 
paper will discuss the present implementation in more 
detail. 

Adaptive Parameter Range Techniques 
The idea in adaptive parameter range techniques is to 

dynamically alter the parameter range of the space being 
searched. The idea originated with binary-coded genetic 
algorithms and is also referred to as dynamic coding” 
or stochastic genetic algorithm.20 With dynamic coding 
higher precision is achieved with the same chromosome 
length as the extent of the search space is gradually 
refined during the optimization process. These dynamic 
coding ideas have also been extended to real-coded 
genetic algorithms. The approach implemented here in 
the DE algorithm closely follows that of Oyama et aL21 
More details will be provided in the final paper. 

Other Associated Strategies 
Some additional improvement strategies that have 

been incorporated here to enhance the efficiency of the 
DE algorithm are described in this subsection. It is noted 
that these have been used both individually or in combi- 

4 

c 

nation with each other and in some fashion with all of 
the broad techniques described above. 

Variable Complexity Strategies 
The main idea in variable complexity modeling 

strategies22 is to tailor the “complexity” of the analysis 
codes used in objective function evaluation to meet the 
needs of the optimization phase or method as it evolves 
toward the optimum solution. This is also referred to as 
multiscale or multilevel strategies in the literature. In the 
context of aerodynamic design, “complexity” can mean 
any of several attributes of the CFD analysis codes used, 
such as fidelity level. grid density. and convergence cri- 
teria. Variable complexity modeling is implemented 
here by using low fidelity, coarse grid Euler computa- 
tions in the initial phases of the DE optimization fol- 
lowed by fine-grid Navier-Stokes analyses that are more 
appropriate as the algorithm approaches convergence. 
One crucial issue in using information from numerical 
models of varying fidelity on varying grid sizes is that 
the numerical inaccuracies can impart variation in the 
fitness function evaluations for the same candidate 
designs. However, the sequential strategy used here 
works well for the problems considered. 

Small Population or Micro-GA Strategies 
Another strategy for improving efficiency is to reduce 

the overall population size. This must be done with care 
to avoid premature convergence and not sacrificing 
robustness or reliability. Although more generations are 
typically required for convergence, the overall number 
of objective function evaluations required can be smaller 
since fewer evaluations are being performed at each 
generation. 

In order to make the DE algorithm work reliably with 
much smaller population sizes a diversity-preserving 
technique is incorporated. When using DE in function 
optimization, an acceptable trade-off between conver- 
gence and population diversity must be determined. The 
DE parameters F and p ,  can be adjusted to control the 
convergence speed but population diversity is a requisite 
for ensuring that the algorithm converges to a global, 
rather than local, optimum. Diversity is a function of the 
population size, and for a given problem, DE typically 
becomes more robust with convergence speeds that are 
less sensitive to the choice of F and p ,  as the popula- 
tion size is increased. However, when DE is used with 
small population sizes, the population can lose diversity 
and get closely clustered. The DE mutation and cross- 
over operations are then unable to generate better new 
individuals and the algorithm converges prematurely to 
a local optimum and population diversity is lost as all 
members of the population soon cluster around this 
point. In order to maintain population diversity, a degree 
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of diversity parameter” is monitored in the current 
approach. If this measure of diversity falls below a spe- 
cific tolerance level, only the current best population 
member is retained and the remaining population is re- 
initialized for the next generation. While frequent popu- 
lation reinitialization slows down convergence, results 
show that it is possible to achieve reductions in the over- 
all number of function evaluations by using a much 
smaller population size than what would be normally 
required to maintain diversity and converge reliably to 
the global optimum. 

Function Evaluation Reuse Strategies 
This is a simple idea of storing all the evaluated solu- 

tions and their fitness values in a database for later reuse 
during the optimization process. This approach can save 
a significant amount of computation time. In particular, 
instead of initializing a new Navier-Stokes evaluation 
from freestream conditions the solution from the nearest 
(in an Euclidean sense) design in the database can be 
used. as the starting solution. 

Parallel Computing Strategies 
The discussion so far has centered on the enhancing 

algorithmic efficiency of DE to improve overall design 
cycle time and cost. In addition, substantial reductions 
in overall design time can also be achieved by resorting 
to parallelization techniques on parallel computers that 
can perform distributed computations simultaneously on 
multiple processors. All the DE efficiency enhancement 
methods described here lend themselves to such paral- 
lelization in a straightforward manner. In the present 
work the various methods have been implemented on 
distributed parallel computers such as the SGI Origin 
3000. It is noted that most of the computing time is 
expended in the aerodynamic analyses. Parallel imple- 
mentation relies on the simultaneous computation of 
multiple, independent aerodynamic simulations on sepa- 
rate processors. A script-based procedure is used that 
invokes a variable number of processors depending on 
processor availability and the population size. A “mas- 
ter-slave” arrangement is used, with the master handling 
the tasks of setting up the simulations, neural network 
training as needed, and the farming out of the aerody- 
namic computations to the other slave processors. Since 
the aerodynamic computations are independent of each 
other, no communication between the processors is 
required until the computations are completed. The 
slave processors then communicate their results to the 
master which then performs the necessary calculations 
to determine the population members of the next gener- 
ation. In the injection island approach, an overall master 
assigns to each sub-population a master and a fixed 
number of slave processors; some additional communi- 

cation burden is incurred between the subpopulations 
during the migration phase. 

AERODYNAMIC SHAPE OPTIMIZATION 
METHOD IMPLEMENTATION DETAILS 

Some details regarding other aspects of the DE-based 
aerodynamic shape optimization method incorporating 
the various efficiency enhancement approaches are 
described briefly in this section. 

Constraint Handling 
An efficient constraint handling mechanism is incor- 

porated in the optimization method. It is a parameter- 
less approach that helps steer the algorithm away from 
infeasible regions of the design space. This constraint 
handling method was found to perform well when 
applied to various test problems taken from the con- 
strained optimization literature. The constraint handling 
mechanism was adapted for use in aerodynamic optimi- 
zation where both physical constraints (e.g. maximum 
airfoil thickness) as well as aerodynamic constraints 
(e.g. wavy surfaces) are imposed. Airfoil geometries 
that do not violate the constraints but for which the CFD 
solver fails to converge are also deemed infeasible and 
handled appropriately. 

Airfoil Geometry Parametrization 
Geometry parametrization and prudent selection of 

design variables are critical aspects of any shape optimi- 
zation procedure. Since this study focuses on airfoil 
redesign, the ability to represent various airfoil geome- 
tries with a common set of geometrical parameters is 
essential. Variations of the airfoil geometry can be 
obtained then by smoothly varying these parameters. 
Geometrical constraints imposed for various reasons, 
such as structural, aerodynamic (e.g., to eliminate flow 
separation), etc., should be included in this parametric 
representation as much as possible. Additionally, the 
smallest number of parameters should be used to repre- 
sent the family of airfoils. Here, the airfoil geometry 
parametrization method’ is adopted with a total of 13 
geometric parameters being used to define the airfoil 
geometry. This parametrization provided the necessary 
variations in airfoil geometry required by the optimiza- 
tion procedure. 

CFD Simulation Methodology 
A Navier-Stokes solver was used to perform the flow 

simulations (direct function evaluations) that serve as 
inputs to the shape optimization process. The solver 
used is a modified version of the ROTOR-2 computer 
code23 and solves the two-dimensional, Navier-Stokes 
equations around a single airfoil in a cascade (with 
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spanwise periodic boundary conditions) for a given set 
of inlet and exit conditions. Multiple grids are used to 
discretize the flow domain; an inner “0” grid that con- 
tains the airfoil and an outer “H’ grid that conforms to 
the external boundaries as shown in Fig. 1. For the anal- 
yses performed here, each inner 0 grid has 151 points in 
the circumferential direction and 41 points in the wall- 
normal direction. Each outer H grid has 101 points in 
the axial direction and 41 points in the transverse direc- 
tion. For the sake of clarity, only some of the grid points 
are shown in Fig. 1. 

The dependent variables are initialized to freestream 

subject to the boundary conditions. The flow parameters 
that are specified are the pressure ratio across the turbine 
(ratio of exit static pressure to inlet total pressure), inlet 
temperature and flow angle, flow coefficient, and unit 
Reynolds number based on inlet conditions. 

Design Objective Formulation 
Various design objectives can be incorporated in the 

optimization method depending on the problem being 
solved. For the inverse turbine airfoil design shown 
here, the design objective function was formulated as 
the equally-weighted sum-of-squares error between the 
target and actual pressure obtained during the optimiza- 
tion process at various locations on the airfoil. 

. I _  . ,_C and t h ~  c ~ j ~ i t i ~ i ~  of i i io t i~ i~  aic thcii iiit~gratcd 

RESULTS 

In the final paper, results obtained using the various 
approaches will be presented in this section. The 
approaches will be first tested on various unconstrained 
and constrained test problems taken from the optimiza- 
tion literature. For the test problems some effort was 
made to determine appropriate input parameter settings 
that resulted in good overall convergence. Results for 
aerodynamic shape optimization of a turbine airfoil will 
be then presented and compared using the various 
approaches. In order to provide a flavor of the results 
some prior results using a couple of the approaches 
described here are included. These results were pre- 
sented the author in earlier work.899 The final paper will 
include more detailed comparisons between these and 
the other approaches described in this paper. 

Test Optimization Problem 
The test problem considered is the well-known Levy 

No. 5 function.24 The topology of this objective func- 
tion f l  (see Ref. 9 for details) is shown in Fig. 2. Note 
that the negative of the function is plotted so all the min- 
ima appear as maxima in the figure. There are about 760 
local minima with one global minimum and the large 

number of local optima makes it difficult to locate the 
global minimum. 

The performance of the memetic DE and baseline DE 
algorithms on this test problem is compared in Table 1. 
The reliability values in Table 1 denote the percentage 
of independent tests that converged to the correct opti- 
mum and are a measure of the robustness of the algo- 
rithms. On test problem f l ,  the base DE algorithm 
required a population size of 25 and 2045 objective 
function evaluations to converge to the correct optimum 
with 100% reliability; the memetic DE algorithm 
achieves the same 100% reliability with only a popula- 

lation size this small, the base DE algorithm is unable to 
converge with more than 30% reliability. Thus the 
memetic DE method is able to achieve a marked 
improvement of 70% in the number of function evalua- 
tions required for the functions f 

+:-.. -:-,. C < -..A <OQ hr-,.+;rrn ..ot;nnr uvii ~ i ~ b  GL J uiiu J / U  I U I I ~ L I U I I  ~ V U ~ U U L L U I ~ .  ‘?iith 2 P G P U -  

I I I I I 

IDE-DHCI 5 I 4689 I 2138 I 100 

Table 1. Performance comparison of DE and hybridized 
DE-DHC algorithms on unconstrained and constrained 
optimization test problems. Results based on an average 
of 100 (20 for f3 case) independent test runs 

Figure 3 compares the convergence behavior of the 
memetic and standard DE algorithms on the test func- 
tion f l  . The ordinate in the figure is the objective func- 
tion value for the best population member at each 
generation. Typical results are shown from sample test 
runs with population sizes for both algorithms chosen 
for 100% reliability. In both cases, the DE algorithm 
exhibits a typical step convergence pattern, where the 
objective function value remains constant for several 
generations before descending to the next lower level. 
Due to the small population size, the memetic DE starts 
at higher objective function values but is able to con- 
verge rapidly. On the other hand, DE shows good con- 
vergence behavior initially, but then slows down in later 
generations as the optimum is approached. 
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Aerodynamic Shape Optimization 
The standard DE algorithm and the various efficiency 

improving ideas were also were used in the inverse 
design of a turbine airfoil with a specified pressure dis- 
tribution. Results’ are shown here for the baseline DE 
and the metamodel and memetic variants. The target 
pressure distribution was obtained at the midspan of a 
turbine vane from a modem Pratt and Whitney jet 
engine. Several flow and geometry parameters were also 
supplied and used in the design process. The design 
objective function was formulated as the equally- 
weighted sum-of-squares error between -the target and 

at 45 locations on the airfoil. 
The initial design space was chosen to be quite large 

to allow a wide range of airfoil shapes to be explored. A 
sampling of some of the initial airfoil geometries is 
shown in Fig. 4. In order to hold the CFD function eval- 
uations to a reasonable number, 6 design variables 
(instead of 13) were used in the initial stages of the 
design. A population size of 25 and 10 members was 
used for the metamodel and memetic DE algorithms, 
respectively. 

For the metamodel DE algorithm, several generations 
were first evolved using the base DE algorithm. In the 
early stages of evolution several of the airfoil geometries 
were determined to be infeasible and hence were not 
evaluated by the CFD solver. After 13 generations had 
evolved, the number of design variables was increased 
from 6 to 13 and the population was evolved further for 
another 5 generations. At this point the switch to the 
metamodel DE algorithm was made with the results 
from this generation being used to train the neural net- 
work. Figure 5 shows the data used in neural network 
training in the form of an envelope of pressure data 
around the target pressure distribution. Note, however, 
that the network was trained directly on the sum-square- 
error and not on the individual pressure data. The data 
envelope in Fig. 5 represents the variation of the pres- 
sure distributions for the range of airfoil geometries in 
the neural network training set and is meant to convey 
the local nature of the neural network response surface 
in the vicinity of the optimal solution. 

For the memetic DE algorithm, a small population 
size of 10 members was used. At each generation, the 
CV ratio of the population was monitored and the best 
member of the population was picked for DHC search if 
deemed necessary. In order to minimize the number of 
function evaluations required, the DHC search was con- 
strained to a small local region around the chosen loca- 
tion in design space. The diversity-preserving 
techniques described earlier were used to ensure that the 
solution did not converge prematurely although this was 
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not much of an issue for this particular objective func- 
tion landscape. 

The optimal pressure distributions obtained using the 
two DE variants are shown in Fig. 6. Both methods are 
seen to agree well with the target P&W distribution. The 
airfoil geometries corresponding to these optimal pres- 
sure distributions are also in close agreement as shown 
in Fig. 7. 

The above represents some of the results obtained. 
The final paper will evaluate and compare the various 
approaches described on these and additional optimiza- 
tion problems. Detailed measurements of algorithm con- 
vergence WXI also be included. 
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Figure 3. Comparision of convergence behavior of DE 
and memetic DE (DE-DHC) algorithms for function F1. 
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Figure 5. Envelope of airfoil loadings used to train the 
neural network for metamodel DE (DE-") algorithm. 
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Figure 6. Airfoil pressure loading for the optimal design 
using DE variants. 
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Figure 7. Airfoil geometry for the optimal design using 
DE variants. 
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