
ON IMPROVING EFFICIENCY OF DIFFERENTIAL EVOLUTION FOR
AERODYNAMIC SHAPE OPTIMIZATION APPLICATIONS

Nateri K. Madamn*
NASA Ames Research Center, Moffett Field, California

ABSTRACT

Differential Evolution (DE) is a simple and robust
evolutionary strategy that has been provEn effective i n
determining the global optimum for several difficult
optimization problems. Although DE offers several
advantages over traditional optimization approaches, its
use in applications such as aerodynamic shape optimiza-
tion where the objective function evaluations are com-
putationally expensive is limited by the large number of
function evaluations often required. In this paper various
approaches for improving the efficiency of DE are
reviewed and discussed. Several approaches that have
proven effective for other evolutionary algorithms are
modified and implemented in a DE-based aerodynamic
shape optimization method that uses a Navier-Stokes
solver for the objective function evaluations. Paralleliza-
tion techniques on distributed computers are used to
reduce turnaround times. Results are presented for stan-
dard test optimization problems and for the inverse
design of a turbine airfoil. The efficiency improvements
achieved by the different approaches are evaluated and
compared.

INTRODUCTION

Aerodynamic shape optimization refers to the process
of determining the shapes of airfoils, wings, or other
aerodynamic surfaces that are optimal with regard to
one or several desired characteristics. Major advances in
the field of aerodynamic shape optimization have been
achieved in recent years by combining improved meth-
ods for the simulation of complicated flow fields with
efficient numerical optimization techniques and by
exploiting the powerful capabilities of modern comput-
ers. Both Euler and high-fidelity Navier-Stokes solvers
have been combined with various traditional optimiza-
tion techniques (gradient-based methods, response sur-
faces, etc.) as well as non-traditional approaches such as
neural networks and evolutionary algorithms to obtain
optimal aerodynamic shapes and designs.

* Research Scientist, NASA Advanced Supercomputing Division.
Senior Member, AIAA.

This article deals with an evolutionary algorithm (EA)
known at Differential Evolution ',* for aerodynamic

ary strategy (ES) that has been proven effective for sev-
eral difficult optimization problem^.^ Its application in
a e r o n a u t i c ~ , 4 ~ ~ ~ ~ . ~ , ~ , ~ however, has been somewhat lim-
ited. Generally speaking, population-based evolution-
ary approaches such as DE are easy to implement and
are quite robust and capable of locating the global opti-
mum. However, as with other EA approaches, DE often
require a lot of objective function evaluations to arrive at
the optimal solution. This poses a serious impediment to
the use of DE in aerodynamic shape optimization appli-
cations where the objective function evaluations are per-
formed by computationally expensive analysis codes
based on the Euler or Navier-Stokes equations.

The purpose of this article is to explore and summa-
rize various modifications to the DE algorithm that can
lead to improved computational efficiency and apply
them to aerodynamic shape optimization problems. Sev-
eral promising approaches that have proven effective in
the context of other EAs have been modified and imple-
mented in a DE-based aerodynamic shape optimization
method that uses a Navier-Stokes solver for objective
function evaluations. The shape optimization method is
implemented on distributed parallel computers so that
new designs can be obtained within reasonable turn-
around times. Results are presented for standard test
optimization problems from the literature and for the
inverse design of a turbine airfoil. The efficiency
improvements achieved by the different approaches are
evaluated and compared. Some of these approaches
have been reported by the author in earlier This
article extends this prior work and summarizes our
efforts to date aimed at improving the efficiency of the
DE algorithm.

Other efforts to improve the efficiency of the DE algo-
rithm have also been reported in the literature. Chiou
and Wang'' developed a hybrid DE algorithm that
incorporated a gradient-based local search method for
chemical engineering applications. In aeronautics,
Rogalsky et aL6 developed a DE hybrid by incorporating
a Nelder-Mead downhill simplex search and used it with
a potential flow solver in the inverse design of turboma-

shape optimization. DE is a simple and robust evolution- _ _ . -

1

American Institute of Aeronautics and Astronautics

I .

c

chinery airfoils. Airfoil design optimization methods
that use the DE algorithm in conjunction with neural
network strategies have also been reported by Rai7

DIFFERENTIAL EVOLUTION

DE is a conceptually simple ES developed for single-
objective optimization in continuous search spaces with
good convergence properties that have been demon-
strated in a variety of application^.^ Details of the algo-
rithm can be found elsewhere;'>2 only its main features
are summarized here.

DE uses a' population P that contains m n-dimen-
sional real-valued parameter vectors, where n is the
number of parameters or decision variables:

P = {X,, ..., f,}

P (0) = {.fl(0>, ...). .r,(O)}, g = 0

The population is usually initialized at generation
g = 0 in a random fashion:

The population size m is maintained constant
throughout the optimization process. Differential evolu-
tion is thus similar to a (p, h) ES" with p and h equal
to m.12 The method however differs from standard ES
approaches in several respects as described below.

As with all ES-based approaches, mutation is the key
ingredient of differential evolution. The basic idea is to
generate new parameter vectors for the subsequent gen-
eration by using weighted differences between two (or
more) parameter vectors selected randomly from the
current population to provide appropriately scaled per-
turbations that modify another parameter vector (or,
comparison vector) selected from the same population.
This idea has been implemented in various forms. In the
the classical implementation that is rather popular, new
trial parameter vectors (y l , ... , j j , } for the next gen-
eration g + 1 are generated according to the following
mutation scheme:

For I = 1, m ; i = l , n generate

I l l In the above al , a 2 , a3 are distinct elements of
{ 1,2, ... , m } randomly selected for each I , and
F E [0,2] is a parameter that controls the amplification
of the differential variation. Other variants that either
use the difference between more than two parameter
vectors or keep track of the best parameter vector at
each generation and use it in the mutation scheme have
also been developed' and used with varying success in
specific applications.

DE is similar to other recombinant ES approaches in
that it' also uses discrete recombination. The strategy
adopted in differential evolution is to modify the trial

parameter vectors {jjl , ... , Y n t } to generate parameter
vectors {Z1, ... , Z m } as follows:

For I = 1, m ; i = 1, n generate

yf with probability p c
z, =
- I

(xf(g) with probability 1 - p ,

where p c is a parameter that controls the proportion
of perturbed elements in the new population. Note that
the mutation and recombination operations described
above can lead to new vectors that may fall outside the
boundaries of the variables. .Various repair rules can be
used t~ ensure that these inadmissible vectcrs de c ~ t
enter the population. A simple strategy, which is the one
adopted here, is to delete these inadmissible vectors and
form new ones until the population is filled.

The selection scheme used in DE is deterministic but
differs from methods usually employed in standard ES
approaches. Selection is based on local competition
only, with the modified trial parameter vector competing
against one population member (the comparison vector)
and the survivor entering the new population g + 1 as
follows:

For 1 = 1, m

where f denotes the corresponding objective function
(or fitness) value. This greedy selection criterion results
in fast convergence; the adaptive nature of the mutation
operator, in general, helps safeguard against premature
convergence and allows the process to extricate itself
from local optima. The generation counter is incre-
mented and the process is repeated until some stopping
criteria are satisfied.

EFFICIENCY IMPROVEMENT
STRATEGIES FOR DIFFERENTIAL

EVOLUTION

A variety of approaches that seek to improve the com-
putational efficiency of evolutionary approaches without
compromising their desirable features have been pro-
posed in the literature. Several of these were evaluated
in the present study in the context of the Differential
Evolution algorithm and are discussed below.

Metamodeling Techniques
Metamodeling techniques for improving the effi-

ciency of evolutionary approaches are based on the use
of approximate models as surrogates for the actual
objective functions. These surrogates can be incorpo-

L

American Institute of Aeronautics and Astronautics

rated in the optimization process and their judicious use
can reduce the number of calls to the expensive analysis
codes. One metamodeling approach that has received
much attention is the response surface method (RSM).
While traditional RSM uses low-order polynomials for
function approximation, generalized response surface
methods (GRSM) allow for the inclusion of a wide
range of approximations, including polynomials, neural
networks, kriging, multivariate adaptive regression
splines, radial basis functions, and multiquadrics. Both
global and local GRSM approaches have been estab-
lished. In the global approach a GRSM metamodel -. for
the entire design space is used and gradually refined as
the optimization progresses. Since developing good glo-
bal metamodels with validity over the entire design
space can be difficult, a local approach based on local
approximations and a sequential approximate optimiza-
tion strategy for iteratively zooming into the region of
design space around the optimum is often preferred.
Qpically, the optimization process is decomposed into a
sequence of cycles and an optimization subproblem is
defined within a trust region, i.e., a smaller part of the
design space, where local metamodels are used as SUITO-

gates for the exact objective functions. The exact objec-
tive functions are evaluated only at a limited number of
points in each trust region thus reducing computational
cost. The trust regions are resized andor moved as the
optimization progresses. Various optimization frame-
works based on such trust-region and move-limit meth-
ods have been developed to strike an appropriate
balance between the use of exact and approximate func-
tion eva~uations.'~

The GRSM metamodeling strategy for DE of
Madavan' with metamodels based on artificial neural
networks is used here. A simple strategy is adopted
where the metamodel is used only in the latter stages of
the optimization after the population has evolved to the
general vicinity of the optimal solution. This eliminates
the need for a more elaborate sequential zooming strat-
egy although it limits the efficiency improvements.
Using the neural network as a local response surface
with validity only in a small region of the design space
makes neural network training easier and improves net-
work generalization abilities. A three-layer feed-for-
ward neural network is used here.

Memetic Methods
Generally speaking, evolutionary algorithms are not

well suited for fine-tuned search close to the optimal
solution. Another approach to improving the efficiency
of evolutionary approaches is the use of memetic meth-
ods that apply a separate local search process to refine
specific individuals. These methods are also referred to

as hybrid algorithms or genetic local searchers. The gen-
eral idea is to combine the global nature of evolutionary
search with more efficient deterministic local search
techniques. A simple strategy often adopted is to per-
form a two-stage optimization with the best solution
determined by the GA being used as the starting point
for the local search method. Alternatively, strategies that
permit dynamic coupling and interaction between the
GA and the local search method can be used that intu-
itively seem likely to be more effective.

In the context of DE, memetic methods have been
explored in Madavan9 where the DE algorithm. was
c ~ ~ ~ r , e d :.:ith, 2 dynziic hill c!irnbingl4J5 (FEE)
local search technique in order to exploit the comple-
mentary advantages of both methods and achieve better
computational efficiency than standard DE. This
approach is used here and described briefly below.

The core of the basic DHC algorithm is an efficient
technique for locating local optima. l4 The search origi-
nates at a specified location given by the vector 2 of the
design parameters and uses a probing vector V whose
length is initially specified but increases or decreases
dynamically to suit the local objective function terrain.
Random move directions are tried (up to a specified
maximum number) for a given probing vector length

/ V I . If the objective function value at a new point, i + G ,
is better than the previous value, the probing vector
length is doubled and further regions of the domain are
searched; if not, the vector length is halved and a more
localized search is performed. In addition, a memory
vector ii is also used to keep track of the previous suc-
cessful move direction. A linear combination U + V of
this vector and the probing vector is also evaluated as a
candidate move direction. The process stops when the
probing vector length falls below a specified (small)
threshold value.

An important decision that has to be made for effi-
cient optimization is the relative effort levels for the glo-
bal and the local search. There are various aspects to this
decision dealing with which and how many population
members should be chosen for the local search, when
the local search should be invoked, and when it should
be terminated. The standard approach is to specify these
parameters and keep their values fixed during the opti-
mization. However, this involves considerable parameter
tuning to obtain the best values for a particular applica-
tion. Further, the tuning process is application-specific
and will have to be repeated for a different application.
Following Espinoza, et al.I6 an alternate approach is
used in Madavang where these parameters are not speci-
fied but adapt in response to recent performance as the
algorithm converges to the optimal solution. The change
in the relative coefficient of variation (CV) of the fitness

3

American Institute of Aeronautics and Astronautics

function between generations is monitored. l6 CV is
defined as the ratio of the mean and the standard devia-
tion of the population fitness. In a similar fashion, the
number of local search iterations to be performed before
switching back to the global DE search is decided by
comparing the most recent fitness improvement by local
search with the latest fitness improvement by global
search. l6 In general, local search typically is performed
on a small subset of the population and the probability
of a population member being selected for local search
can also be made to adapt with the solution.16 However,
in the results reported here, only one (either the current
best or randomly chosen) member of the population
from a generation is selected for the local search.

Subpopulation or Island Techniques
Another efficiency enhancement technique that has

had some success in certain applications is the use of
subpopulation or island genetic algorithms. 17,18 These
are essentially coarse-grained distributed genetic algo-
rithms where multiple subpopulations or “islands” are
evolved in a distributed fashion with interaction occur-
ring between the islands through occasional migration
of individuals. Each island searches its own space for
feasible solutions. The islands can be connected through
various topologies: bidirectional rings, unidirectional
rings, hypercubes, etc. Different parameter settings and
fitness function models of varying fidelity or resolution
can be used in the various islands. For example, there
can be several islands using inexpensive low-fidelity
evaluations that progressively pass on individuals to
fewer islands using higher fidelity evaluations. The final
paper will discuss the present implementation in more
detail.

Adaptive Parameter Range Techniques
The idea in adaptive parameter range techniques is to

dynamically alter the parameter range of the space being
searched. The idea originated with binary-coded genetic
algorithms and is also referred to as dynamic coding”
or stochastic genetic algorithm.20 With dynamic coding
higher precision is achieved with the same chromosome
length as the extent of the search space is gradually
refined during the optimization process. These dynamic
coding ideas have also been extended to real-coded
genetic algorithms. The approach implemented here in
the DE algorithm closely follows that of Oyama et aL21
More details will be provided in the final paper.

Other Associated Strategies
Some additional improvement strategies that have

been incorporated here to enhance the efficiency of the
DE algorithm are described in this subsection. It is noted
that these have been used both individually or in combi-

4

c

nation with each other and in some fashion with all of
the broad techniques described above.

Variable Complexity Strategies
The main idea in variable complexity modeling

strategies22 is to tailor the “complexity” of the analysis
codes used in objective function evaluation to meet the
needs of the optimization phase or method as it evolves
toward the optimum solution. This is also referred to as
multiscale or multilevel strategies in the literature. In the
context of aerodynamic design, “complexity” can mean
any of several attributes of the CFD analysis codes used,
such as fidelity level. grid density. and convergence cri-
teria. Variable complexity modeling is implemented
here by using low fidelity, coarse grid Euler computa-
tions in the initial phases of the DE optimization fol-
lowed by fine-grid Navier-Stokes analyses that are more
appropriate as the algorithm approaches convergence.
One crucial issue in using information from numerical
models of varying fidelity on varying grid sizes is that
the numerical inaccuracies can impart variation in the
fitness function evaluations for the same candidate
designs. However, the sequential strategy used here
works well for the problems considered.

Small Population or Micro-GA Strategies
Another strategy for improving efficiency is to reduce

the overall population size. This must be done with care
to avoid premature convergence and not sacrificing
robustness or reliability. Although more generations are
typically required for convergence, the overall number
of objective function evaluations required can be smaller
since fewer evaluations are being performed at each
generation.

In order to make the DE algorithm work reliably with
much smaller population sizes a diversity-preserving
technique is incorporated. When using DE in function
optimization, an acceptable trade-off between conver-
gence and population diversity must be determined. The
DE parameters F and p , can be adjusted to control the
convergence speed but population diversity is a requisite
for ensuring that the algorithm converges to a global,
rather than local, optimum. Diversity is a function of the
population size, and for a given problem, DE typically
becomes more robust with convergence speeds that are
less sensitive to the choice of F and p , as the popula-
tion size is increased. However, when DE is used with
small population sizes, the population can lose diversity
and get closely clustered. The DE mutation and cross-
over operations are then unable to generate better new
individuals and the algorithm converges prematurely to
a local optimum and population diversity is lost as all
members of the population soon cluster around this
point. In order to maintain population diversity, a degree

American Institute of Aeronautics and Astronautics

of diversity parameter” is monitored in the current
approach. If this measure of diversity falls below a spe-
cific tolerance level, only the current best population
member is retained and the remaining population is re-
initialized for the next generation. While frequent popu-
lation reinitialization slows down convergence, results
show that it is possible to achieve reductions in the over-
all number of function evaluations by using a much
smaller population size than what would be normally
required to maintain diversity and converge reliably to
the global optimum.

Function Evaluation Reuse Strategies
This is a simple idea of storing all the evaluated solu-

tions and their fitness values in a database for later reuse
during the optimization process. This approach can save
a significant amount of computation time. In particular,
instead of initializing a new Navier-Stokes evaluation
from freestream conditions the solution from the nearest
(in an Euclidean sense) design in the database can be
used. as the starting solution.

Parallel Computing Strategies
The discussion so far has centered on the enhancing

algorithmic efficiency of DE to improve overall design
cycle time and cost. In addition, substantial reductions
in overall design time can also be achieved by resorting
to parallelization techniques on parallel computers that
can perform distributed computations simultaneously on
multiple processors. All the DE efficiency enhancement
methods described here lend themselves to such paral-
lelization in a straightforward manner. In the present
work the various methods have been implemented on
distributed parallel computers such as the SGI Origin
3000. It is noted that most of the computing time is
expended in the aerodynamic analyses. Parallel imple-
mentation relies on the simultaneous computation of
multiple, independent aerodynamic simulations on sepa-
rate processors. A script-based procedure is used that
invokes a variable number of processors depending on
processor availability and the population size. A “mas-
ter-slave” arrangement is used, with the master handling
the tasks of setting up the simulations, neural network
training as needed, and the farming out of the aerody-
namic computations to the other slave processors. Since
the aerodynamic computations are independent of each
other, no communication between the processors is
required until the computations are completed. The
slave processors then communicate their results to the
master which then performs the necessary calculations
to determine the population members of the next gener-
ation. In the injection island approach, an overall master
assigns to each sub-population a master and a fixed
number of slave processors; some additional communi-

cation burden is incurred between the subpopulations
during the migration phase.

AERODYNAMIC SHAPE OPTIMIZATION
METHOD IMPLEMENTATION DETAILS

Some details regarding other aspects of the DE-based
aerodynamic shape optimization method incorporating
the various efficiency enhancement approaches are
described briefly in this section.

Constraint Handling
An efficient constraint handling mechanism is incor-

porated in the optimization method. It is a parameter-
less approach that helps steer the algorithm away from
infeasible regions of the design space. This constraint
handling method was found to perform well when
applied to various test problems taken from the con-
strained optimization literature. The constraint handling
mechanism was adapted for use in aerodynamic optimi-
zation where both physical constraints (e.g. maximum
airfoil thickness) as well as aerodynamic constraints
(e.g. wavy surfaces) are imposed. Airfoil geometries
that do not violate the constraints but for which the CFD
solver fails to converge are also deemed infeasible and
handled appropriately.

Airfoil Geometry Parametrization
Geometry parametrization and prudent selection of

design variables are critical aspects of any shape optimi-
zation procedure. Since this study focuses on airfoil
redesign, the ability to represent various airfoil geome-
tries with a common set of geometrical parameters is
essential. Variations of the airfoil geometry can be
obtained then by smoothly varying these parameters.
Geometrical constraints imposed for various reasons,
such as structural, aerodynamic (e.g., to eliminate flow
separation), etc., should be included in this parametric
representation as much as possible. Additionally, the
smallest number of parameters should be used to repre-
sent the family of airfoils. Here, the airfoil geometry
parametrization method’ is adopted with a total of 13
geometric parameters being used to define the airfoil
geometry. This parametrization provided the necessary
variations in airfoil geometry required by the optimiza-
tion procedure.

CFD Simulation Methodology
A Navier-Stokes solver was used to perform the flow

simulations (direct function evaluations) that serve as
inputs to the shape optimization process. The solver
used is a modified version of the ROTOR-2 computer
code23 and solves the two-dimensional, Navier-Stokes
equations around a single airfoil in a cascade (with

5

American Institute of Aeronautics and Astronautics

,
. *

spanwise periodic boundary conditions) for a given set
of inlet and exit conditions. Multiple grids are used to
discretize the flow domain; an inner “0” grid that con-
tains the airfoil and an outer “H’ grid that conforms to
the external boundaries as shown in Fig. 1. For the anal-
yses performed here, each inner 0 grid has 151 points in
the circumferential direction and 41 points in the wall-
normal direction. Each outer H grid has 101 points in
the axial direction and 41 points in the transverse direc-
tion. For the sake of clarity, only some of the grid points
are shown in Fig. 1.

The dependent variables are initialized to freestream

subject to the boundary conditions. The flow parameters
that are specified are the pressure ratio across the turbine
(ratio of exit static pressure to inlet total pressure), inlet
temperature and flow angle, flow coefficient, and unit
Reynolds number based on inlet conditions.

Design Objective Formulation
Various design objectives can be incorporated in the

optimization method depending on the problem being
solved. For the inverse turbine airfoil design shown
here, the design objective function was formulated as
the equally-weighted sum-of-squares error between the
target and actual pressure obtained during the optimiza-
tion process at various locations on the airfoil.

. I _ . ,_C and t h ~ c ~ j ~ i t i ~ i ~ of i i io t i~ i~ aic thcii iiit~gratcd

RESULTS

In the final paper, results obtained using the various
approaches will be presented in this section. The
approaches will be first tested on various unconstrained
and constrained test problems taken from the optimiza-
tion literature. For the test problems some effort was
made to determine appropriate input parameter settings
that resulted in good overall convergence. Results for
aerodynamic shape optimization of a turbine airfoil will
be then presented and compared using the various
approaches. In order to provide a flavor of the results
some prior results using a couple of the approaches
described here are included. These results were pre-
sented the author in earlier work.899 The final paper will
include more detailed comparisons between these and
the other approaches described in this paper.

Test Optimization Problem
The test problem considered is the well-known Levy

No. 5 function.24 The topology of this objective func-
tion f l (see Ref. 9 for details) is shown in Fig. 2. Note
that the negative of the function is plotted so all the min-
ima appear as maxima in the figure. There are about 760
local minima with one global minimum and the large

number of local optima makes it difficult to locate the
global minimum.

The performance of the memetic DE and baseline DE
algorithms on this test problem is compared in Table 1.
The reliability values in Table 1 denote the percentage
of independent tests that converged to the correct opti-
mum and are a measure of the robustness of the algo-
rithms. On test problem f l , the base DE algorithm
required a population size of 25 and 2045 objective
function evaluations to converge to the correct optimum
with 100% reliability; the memetic DE algorithm
achieves the same 100% reliability with only a popula-

lation size this small, the base DE algorithm is unable to
converge with more than 30% reliability. Thus the
memetic DE method is able to achieve a marked
improvement of 70% in the number of function evalua-
tions required for the functions f

+:-.. -:-,. C < -..A <OQ hr-,.+;rrn ..ot;nnr uvii ~ i ~ b GL J uiiu J / U I U I I ~ L I U I I ~ V U ~ U U L L U I ~ . ‘?iith 2 P G P U -

I I I I I

IDE-DHCI 5 I 4689 I 2138 I 100

Table 1. Performance comparison of DE and hybridized
DE-DHC algorithms on unconstrained and constrained
optimization test problems. Results based on an average
of 100 (20 for f3 case) independent test runs

Figure 3 compares the convergence behavior of the
memetic and standard DE algorithms on the test func-
tion f l . The ordinate in the figure is the objective func-
tion value for the best population member at each
generation. Typical results are shown from sample test
runs with population sizes for both algorithms chosen
for 100% reliability. In both cases, the DE algorithm
exhibits a typical step convergence pattern, where the
objective function value remains constant for several
generations before descending to the next lower level.
Due to the small population size, the memetic DE starts
at higher objective function values but is able to con-
verge rapidly. On the other hand, DE shows good con-
vergence behavior initially, but then slows down in later
generations as the optimum is approached.

6

American Institute of Aeronautics and Astronautics

Aerodynamic Shape Optimization
The standard DE algorithm and the various efficiency

improving ideas were also were used in the inverse
design of a turbine airfoil with a specified pressure dis-
tribution. Results’ are shown here for the baseline DE
and the metamodel and memetic variants. The target
pressure distribution was obtained at the midspan of a
turbine vane from a modem Pratt and Whitney jet
engine. Several flow and geometry parameters were also
supplied and used in the design process. The design
objective function was formulated as the equally-
weighted sum-of-squares error between -the target and

at 45 locations on the airfoil.
The initial design space was chosen to be quite large

to allow a wide range of airfoil shapes to be explored. A
sampling of some of the initial airfoil geometries is
shown in Fig. 4. In order to hold the CFD function eval-
uations to a reasonable number, 6 design variables
(instead of 13) were used in the initial stages of the
design. A population size of 25 and 10 members was
used for the metamodel and memetic DE algorithms,
respectively.

For the metamodel DE algorithm, several generations
were first evolved using the base DE algorithm. In the
early stages of evolution several of the airfoil geometries
were determined to be infeasible and hence were not
evaluated by the CFD solver. After 13 generations had
evolved, the number of design variables was increased
from 6 to 13 and the population was evolved further for
another 5 generations. At this point the switch to the
metamodel DE algorithm was made with the results
from this generation being used to train the neural net-
work. Figure 5 shows the data used in neural network
training in the form of an envelope of pressure data
around the target pressure distribution. Note, however,
that the network was trained directly on the sum-square-
error and not on the individual pressure data. The data
envelope in Fig. 5 represents the variation of the pres-
sure distributions for the range of airfoil geometries in
the neural network training set and is meant to convey
the local nature of the neural network response surface
in the vicinity of the optimal solution.

For the memetic DE algorithm, a small population
size of 10 members was used. At each generation, the
CV ratio of the population was monitored and the best
member of the population was picked for DHC search if
deemed necessary. In order to minimize the number of
function evaluations required, the DHC search was con-
strained to a small local region around the chosen loca-
tion in design space. The diversity-preserving
techniques described earlier were used to ensure that the
solution did not converge prematurely although this was

~ t t t d FTCSSGC: ~btiiiiid during the i@iriZZtiCii piocejs

.

not much of an issue for this particular objective func-
tion landscape.

The optimal pressure distributions obtained using the
two DE variants are shown in Fig. 6. Both methods are
seen to agree well with the target P&W distribution. The
airfoil geometries corresponding to these optimal pres-
sure distributions are also in close agreement as shown
in Fig. 7.

The above represents some of the results obtained.
The final paper will evaluate and compare the various
approaches described on these and additional optimiza-
tion problems. Detailed measurements of algorithm con-
vergence WXI also be included.

REFERENCES

‘Storn, R. and Price, K., “Differential Evolution - A
Simple Evolution Strategy for Fast Optimization,” Dr.
Dobb’s Journal, Vol. 22, No. 4, pp. 18-24, April 1997.

2K. V. Price: ‘Differential Evolution: A Fast and Sim-
ple Numerical Optimizer’. In: Biennial Conference of
the North American Fuzzy Information Processing
Society, (NAFIPS), June 1996, ed. by M. Smith, M. Lee,
J. Keller, J. Yen (IEEE Press, New York 1996) pp. 524--
527.

3J. Lampinen: A Bibliography of Differential Evolu-
tion Algorithm. Technical Report. Lappeenranta Univer-
sity of Technology, Department of Information
Technology, Laboratory of Information Processing,
Lappeenranta, Finland (2001).

4Nho, K., and Agarwal, R. K., “Fuzzy Logic Model-
Based Predictive Control of Aircraft Dynamics Using
ANFIS,” AIAA Paper 2001-0316, Jan., 2001.

5Rogalsky, T., Derksen, R.W. and Kocabiyik, S., “Dif-
ferential Evolution in Aerodynamic Optimization,”
Canadian Aeronautics and Space Institute Journal, Vol.
46, No. 4, pp. 183-190, Dec. 2000.

6Rogalsky, T. and Derksen, R.W., “Hybridization of
Differential Evolution for Aerodynamic Design,” Pro-
ceedings of the 8th Annual Conference of the Computa-
tional Fluid Dynamics Society of Canada, pp. 729-736,
June 11-13,2000.

7Rai, M. M., “Towards a Hybrid Aerodynamic Design
Procedure Based on Neural Networks and Evolutionary
Methods,” AIAA Paper No. 2002-3 143. June 2002.

*Madavan, N. K., “Turbomachinery Airfoil Design
Optimization Using Differential Evolution,” 2nd Inter-
national Conference on Computational Fluid Dynamics,
Sydney, Australia, Jul. 2002. Lecture Notes in Physics,
Springer-Verlag, to appear.
’ Madavan, N. K., “Aerodynamic Shape Optimization

Using Hybridized Differential Evolution,” AIAA Paper

I
American Institute of Aeronautics and Astronautics

No. 3792, AIAA Applied Aerodynamics Conference,
Orlando, FL, June 24-27,2003.

“Chiou, J., and Wang, F. S., “A Hybrid Method of
Differential Evolution with Application to Optimal Cnn-
trol Problems of a Bioprocess System,” Proceedings of
the IEEE International Conference on Evolutionary
Computation, IEEE, New York, NY, pp. 627-632, 1998.

”Back. T, Hammel, U., and Schwefel, H.-P., “Evolu-
tionary Computation: Comments on the History and
Current State,” IEEE Trans. on Evolutionary Computa-
tion, Vol. 1, pp. 3-17, 1997.

12M. A. Shokrollahi, and R. Storn: ‘Design of Effi-
cient Erasure Codes with Differential Evolution’. In:
Proceedings of ISIT 2000, International Symposium on
Information Theory, Sorrento, Italy, June 25-30,2000.

‘3Alexandrov, N. M., Dennis, J. E., Lewis. R. M., and
Torczon, V., “A Trust Region Framework for Managing
the Use of Approximation Models in Optimization,”
Structural Optimization, Vol 15, No. 1, pp. 16-23, 1998.

14Yuret, D., and Maza, M., “Dynamic Hill Climbing:
Overcoming the Limitations of Optimization Tech-
niques,’’ 2nd Turkish Symposium on Artificial Intelli-
gence and Neural Networks, pp. 208-212, 1993.

”Yuret, D., and Maza, M., “Dynamic Hill Climbing,”
AI Expert, Vol. 9,. No. 3, pp. 26-31, March 1994.

16Espinoza, F. P., Minsker, B. S., and Goldberg, D. E.,
“A Self-Adaptive Hybrid Genetic Algorithm,” Proceed-
ings of the Genetic and Evolutionary Computation Con-
ference (GECCO-2001), International Society for
Genetic and Evolutionary Computation, San Francisco,
CA, 2001.

17Eby, D., Averill, R. C., Gelfand, B., and Punch, W.,
“An Injection Island GA for Flywheel Design Optimiza-
tion,” Eufit 1997, 5th European Congress on Intelligent
Techniques, H. Zimmerman, Ed., Verlag, Aachen , pp.

“Vekeria, H. D., and Parmee, I., “Cooperative Evolu-
tionary Strategies for Single Component Design,” in
Proceedings of the 7th Int. Conf. on Genetic Algo-
rithms, Back, T. Ed., Morgan Kaufmann, San Francisco,

‘9Schraudolph, N. N., and Belew, R. K., “Dynamic
Parameter Encoding for Genetic Algorithms,” Machine
Learning, Vol. 9, pp. 9-21, 1992.

20Krishnakumar, K., Swaminathan, R., Garg, S., and
Narayanaswamy, S., “Solving Large Parameter Optimi-
zation Problems Using Genetic Algorithms,” Proc. of
the Guidance, Navigation, and Control Conference, pp.

210yama, A., Obayashi, S., and Nakahashi, K., “Real-
Coded Adaptive Range Genetic Algorithm and Its

687-691,1997.

pp. 529-536, 1997.

3136-3141, 1995.

Application to Aerodynamic Design,” JSME Interna-
tional Journal, Series A, Vol. 43, No. 2, pp. 124-129,
April 2000.

22Barthelemy, J-E, M., and Haftka, R. T., “Approxi-
mation Concepts for Optimum Structural Design -- A
Review,” Structural Optimization, Col. 5, pp. 129- 144,
1993.

23Rai, M. M., and Madavan, N. K., “Multi-Airfoil
Navier-Stokes Simulations of Turbine Rotor-Stator
Interaction,” ASME Journal of Turbomachinery,
Vol. 112, pp. 167-190, Jul. 1990.

24Levy, A. V., Montalvo, A., Gomez, S., and Cal-
deron, A., “Topics in Global Optimization,” Lecture
Notes in Mathematics, Springer-Verlag, Vol. 909, pp.
18-33, 1982.

Figure 1. Representative turbine airfoil geometry an
computational grid used in the CFD simulations.

8

American Institute of Aeronautics and Astronautics

global
i . JoDtimum

0.4 I I I 1 I I _ - _ ~. ,- .
-
-
-

-
-

-0.8 - -

-'%O 012 0: 016 Ol8 110 112 1.4

-low -10
Figure 2. Topology of unconstrained test optimization
function f l (Levy No. 5) in the search space.

o t - +- - DE - DE-DHC

I I I I I
-200; 500 1000 1500 2000 2500

No. of Function Evaluations

Figure 3. Comparision of convergence behavior of DE
and memetic DE (DE-DHC) algorithms for function F1.

I

:---7-r-m--;
of N w n l

Tnhnp DaU
I I I I

0.0 0.2 0.4 0.6 0.8 1.0
X/C

Figure 5. Envelope of airfoil loadings used to train the
neural network for metamodel DE (DE-") algorithm.

DE-DHC
P&W Targel Design

0.0 0.2 0.5 0.8 1 .o
X/C

Figure 6. Airfoil pressure loading for the optimal design
using DE variants.

0.2 I I I I I I

I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

XlC

-1.0 I I

Figure 7. Airfoil geometry for the optimal design using
DE variants.

i 9

Ameri,can Institute of Aeronautics and Astronautics

