QUANTUM SCATTERING STUDY OF RO-VIBRATIONAL EXCITATIONS IN N+N₂ COLLISIONS UNDER RE-ENTRY CONDITIONS

Dunyou Wang*, James R. Stallcop†, Christopher E. Dateo‡, David W. Schwenke§, and Winifred M. Huo∥
NASA Ames Research Center, MS T27B-1, Moffett Field, CA 94035-1000

Abstract

A three-dimensional time-dependent quantum dynamics approach using a recently developed ab initio potential energy surface is applied to study ro-vibrational excitation in N+N₂ exchange scattering for collision energies in the range 2.1-3.2 eV. State-to-state integral exchange cross sections are examined to determine the distribution of excited rotational states of N₂. The results demonstrate that highly-excited rotational states are produced by exchange scattering and furthermore, that the maximum value of Δj increases rapidly with increasing collision energies. Integral exchange cross sections and exchange rate constants for excitation to the lower (v = 0-3) vibrational energy levels are presented as a function of the collision energy. Excited-vibrational-state distributions for temperatures at 2,000 K and 10,000 K are included.

Nomenclature

h = Plank constant
i = subscript denoting initial state
j = N₂ rotational quantum number
J = total angular momentum
k = reaction rate constant, cm³/sec
P = state-resolved reaction probability
r = N-N separation distance, a₀
R = distance between N and N₂ midpoint, a₀
t = propagation time
T = temperature, K
v = N₂ vibrational quantum number
Δj = change in value of j
κ = Boltzmann constant
μ = reduced mass
σ = integral cross section, $a₀²$
θ = angle between r and R
Θ = angle between r_a and r_b
Ω = projection of J along z axis
Ψ = time-dependent wave function
Ψ^+ = time-independent wave function

Introduction

In a recent shock tube experiment using nitrogen gas, Fujita et al.¹ measured the rotational and vibrational temperatures using the N₂ 2nd positive and N₂⁺ first negative bands and found significant nonequilibrium between the measured rotational and translational temperatures. This result is in apparent violation of the two-temperature model of Park², one of the standard models widely used in the analysis of nonequilibrium aerothermodynamics. The observed deviation led to two studies of nitrogen rotational excitations behind a strong shock wave. Fujita and Abe³ carried out quasi-classical trajectory (QCT) calculations of state-to-state rotational
excitation rates in N2+N2 collisions using the empirical N2–N2 intermolecular potential energy of Billing and Fisher4. Their calculation covered transitions with very large (well over 100) Δj, which is the change in the N2 rotational state quantum number j. Their QCT rate differed significantly from the empirical Rahn-Palmer5 rate formula above 3000 K. Simultaneously, Park6 extended the Rahn-Palmer formula to large Δj and high temperature. His results appeared to agree reasonably well with the shock tube data of Sharma and Gillespie7 and Ref. 1.

Both approaches, the calculation of Ref. 3 and the Rahn-Palmer extension of Ref. 6 have substantial shortcomings that make their predictions unreliable. Stallcop and Partridge8 have constructed a potential energy surface (PES) for N2–N2 interactions that is based on accurate short-range ab initio results from high-level quantum structure calculations; the van der Waals interaction and the long-range behavior of this PES have been validated9 by very accurate results from a bond-function calculation. Knowing the anisotropy of the actual N2–N2 interaction energy assists our assessment of the reliability of the two approaches.

The N2–N2 interaction energy used in calculation of Ref. 3 was developed in Ref. 4 to study V-V and V-T energy transfer rates. Rotational motion was not quantized in Ref. 4, but was considered to be part of the translational motion. The angular dependence of the repulsive interaction energy was represented by the factors: cosh(εi) with εi = 0.5αri cosγi, where ri is the N-N separation distance of the ith N2 molecule and γi the angle between ri and R, which is the separation distance of the center of masses of the two N2 molecules. Also, α is a parameter that specifies the range of the repulsive potential energy. The use of the cosh(εi) factors is unusual. Because the repulsive interaction energy of Ref. 4 does not fully reflect the symmetry of the N2–N2 interaction, it can lead to very high Δj transitions that are physically unrealistic. It has been shown that the angular variation of the repulsive potential energy of the accurate interaction energy can be represented by a relatively simple form8, but it is very different from that of Ref. 4. Because rotational motion was not explicitly accounted for in the calculation of Billing and Fisher, the above factors did not create readily-discernable problems in their results4. On the other hand, rotational motion was quantized in the study of Ref. 3. The cosh(εi) factors were the source of very large Δj transitions, which would not have been found if a more realistic N2–N2 interaction energy had been used.
FIG. 3: State-to-state integral cross sections for exchange scattering, with rotational state excitation, \(N + N_2(v = 0, j = 0) \rightarrow N_2(v' = 0, j') + N \), vs. \(j \) for total scattering energy at 2.5 eV. The symbols \(\circ \) and \(\diamond \) represent the results obtained by neglecting nuclear spin and using Bose-Einstein statistics, respectively. The discrete data points are joined by straight-line curves for clarity.

Among more recent model calculations, Esposito et al.10,11 have calculated \(N+N_2 \) scattering using a quasi-classical method and a semiempirical London-Eyring-Polany-Sato (LEPS) interaction energy. All but one of the parameters of the LEPS model have been obtained12 from the potential energy well of a ground-state \(N_2 \) molecule or an extrapolation using a Morse-potential-energy fit; the remaining parameter specifies the height of a transition state barrier and has been estimated from the results of limited measurement.

A theoretical determination of exchange scattering must be based on a quantum mechanical description. For example, the \(N-N^+ \) resonance charge exchange13 would be underestimated by almost an order of magnitude using classical mechanics. The first \textit{ab initio} potential energy surface for the \(N_3 \) system (WSHDSP PES) that includes variation in the interatomic separation distances of the \(N_2 \) molecules and the first quantum dynamics study of the cumulative reaction probabilities and chemical reaction rates of the \(N+N_2 \) exchange reaction have recently been reported by our group14.

The WSHDSP14 PES for \(N_3 \) is constructed from the results of high-level quantum structure calculations. These calculations are primarily based on the same methods that were used to determine the \textit{ab initio} data for the construction of the very accurate \(N+N_2 \) rigid-rotor PES of Stallcop et al.15; long-range dispersion force data and nearly 4000 \textit{ab initio} data points, are applied to construct our present \(N_3 \) PES. The reaction region of the PES con-
FIG. 5: State to state integral cross sections for exchange scattering with with rotational state excitation, \(N + N_2(v = 0, j = 0) \rightarrow N_2(v' = 0, j') + N \), as a function of the kinetic energy.

FIG. 6: Integral cross sections for exchange scattering with \(N + N_2(v = 0, j = 0) \rightarrow N_2(v') + N \) as a function of kinetic energy; \(v' = 0 - 3 \).

Theoretical Method

The 3D quantum dynamics of the state-to-state reaction calculation is carried out using a time-dependent wave packet method\(^\text{20,21}\); this method is summarized briefly below. The split-operator\(^\text{22}\) propagation scheme is used for wave packet propagation. Also, a two-stage propagation approach is employed to calculate the state-resolved reaction probability. First, an initial wave packet for a given total angular momentum \(J \), located in the reactant asymptotic region and covering the translational energy from 2.0 eV to 3.2 eV, is propagated in the reactant Jacobi coordinates on the \(\textit{ab initio} \) PES, until it enters into the transition state region after about 2000 atomic units of time. At this stage, its position representation is transformed from the reactant into the product Jacobi coordinates and the propagation is continued.

After the wave packet enters into the product asymptotic region, the energy-dependent state-resolved reaction probability \(P_{fi}(E) \) for energy \(E \) is obtained from the flux passing through a dividing surface in the product asymptotic region

\[
P_{fi}(E) = \frac{\hbar}{\mu} Im \left[\Psi_f^+ (E, R') \frac{\partial}{\partial R'} \Psi_i (E, R') \right] |_{R' = R_i},
\]

where \(\mu \) is the reduced mass of the system. The quantities \(i \) and \(f \) represent the set of quantum numbers \(v, j, J, \Omega \) and \(v', j', J, \Omega' \) for the initial and final states, respectively. Also, \(R \) is the translation Jacobi coordinate that connects an N atom to the center mass of the \(N_2 \)
molecule; unprimed or primed indicates that the coordinate system is located in the reactant or product channel, respectively. The quantity R_f is the position of the dividing surface in the product asymptotic region where the reaction is complete and the flux is invariant with respect to moving R_f further away from the interaction region. The time-independent scattering wavefunction $\Psi_{f_i}(E, R')$ is obtained by performing a Fourier transform of the time-dependent wave equation $\Psi_i(t)$; i.e.,

$$\Psi_{f_i}(E, R') = \frac{1}{a_i(E)} \int_{-\infty}^{+\infty} e^{iR' \cdot \xi} \left| \psi_i(t) \right| dt.$$ (3)

where the coefficient $a_i(E)$ is given by the overlap between the initial wave packet $\psi_i(0)$ and the normalized asymptotic scattering function.

Since a two-stage propagation scheme is employed to calculate the state-to-state reaction probability, there are two sets of basis functions for this calculation. One set is for the reactant channel, with 220 sine functions to represent R from 2.3 a_0 to 10.4 a_0, 100 vibrational eigenfunctions of N_2 to cover the vibrational coordinate (N-N separation distance) r from 1.3 a_0 to 5.5 a_0, and 70 even Legendre functions ($j_{\text{max}}=140$) or 70 odd Legendre functions ($j_{\text{max}}=139$) to cover θ, which is defined to be the angle between R and r. The other set is for the product channel, where 320 sine functions are used for R' in the range from 0.1 a_0 to 14.0 a_0, 220 vibrational functions for expansions of r' from 0.1 a_0 to 12.0 a_0, and 150 Legendre functions for θ'. As described above, the wave packet first propagates in the reactant channel and then it is transformed into the product-channel coordinates. Finally, it is propagated for 8000 atomic units of time in the product channel. The state resolved flux is calculated at $R_f=10.0$ a_0. The whole calculation has been carried out using 32 CPU on a SGI Origin 3000 system. About 40,000 CPU hours were required for the state-resolved calculations described here.

When nuclear spin is ignored (no-spin), the integral cross section can be obtained by summing over all partial waves J

$$\sigma_{v'j'\rightarrow vj} = \frac{\pi}{k_i^2(2J'+1)} \sum_{j=0}^{J'} (2J+1) P_{v'j'\rightarrow vj}(E).$$ (4)

where $P_{v'j'\rightarrow vj}(E)$ is obtained from the P_{f_i} of Eq. (1) by summing over Ω and Ω'. The quantity k_i in Eq. (4) comes from the initial-state wave vector.

Since the nitrogen atoms have identical nuclei (99.7% of nitrogen consists of the 14N isotope), the $N+N_2$ cross section σ is obtained from sums and averages over the nuclear spin states. The nuclear spin of nitrogen atom is equal to 1; hence, the $N+N_2$ scattering obeys Bose-Einstein (BE) statistics. The cross sections with the appropriate nuclear spin factors become

$$\sigma_{v'j'\rightarrow vj} = \left\{ \begin{array}{ll}
\frac{4}{3} \sigma_{v'j'\rightarrow vj} & \text{if } j' \text{ is even,} \\
\frac{2}{3} \sigma_{v'j'\rightarrow vj} & \text{if } j' \text{ is odd.}
\end{array} \right.$$ (5)

Results and Discussion

Rotational Excitation

The determination of the state-to-state integral cross section requires summing over 96 partial waves (i.e., from $J = 0$ to $J_{\text{max}} = 95$) to obtain convergence for kinetic energies in the range from 2.0 eV to 3.2 eV. State-to-state integral cross sections for scattering energies at 2.5 eV and 3.0 eV are given in Figs. 3 and 4, respectively, to illustrate the distribution of rotational state excitation. Note that we plot both results, one with nuclear spin based on Bose-Einstein statistics and the other without spin. Since the nuclear spin factors of Eq. (5) introduce rapid oscillations in the cross sections, resonance features in the cross sections are more easily recognizable using the data without nuclear spin. In Fig. 3, strong oscillations occur at low j' and at the three major reactive resonances centered at $j' = 19, 30, \text{and } 43$. There is no
significant excitation to rotational states with \(j' \) larger than 57. Comparison of Fig. 3 with the similar results shown in Fig. 10 of Ref. 19 for a scattering energy at 2.4 eV shows that the excited rotational distribution is quite sensitive the scattering energy. Fig. 4 shows that higher (up to \(j' = 70 \)) rotational states of \(\text{N}_2 \) are excited at a higher scattering energy. Furthermore, the integral cross sections are larger at higher scattering energies; strong oscillations are also found at low \(j' \) and have a variation similar to that shown in the figures discussed above.

Figure 5 shows \(\sigma_{v'j'\rightarrow vj} \) for scattering from a \((v = 0, j = 0)\) initial ro-vibrational state to various final ro-vibrational states. The curves of \(\sigma_{0j'\rightarrow 00} \) for low-lying final ro-vibrational states, such as the \((v' = 0, j' = 0)\) and \((v' = 0, j' = 2)\) states, have an oscillating behavior arising from reactive resonances. As described above, these resonances have been shown to be caused by metastable states of the ‘Lake Eyring’ region of the PES. Here they appear, primarily, as ‘bumps’ in the state-to-state integral cross sections. However, for higher final ro-vibrational states, e.g., \((v' = 0,j' = 48)\) and \((v' = 0,j' = 69)\) states, the resonances are washed out by the sum over the partial waves. Fig. 5 also shows that the integral cross section for \(j = 0 \rightarrow j' = 2 \) has a much smaller magnitude than that for \(j = 0 \rightarrow j' = 48 \) at lower kinetic energies. The variation of the large cross sections for producing high \(j' \), such as \(j = 0 \rightarrow j' = 48 \), with kinetic energy verifies that the \(\text{N} + \text{N}_2 \) exchange reaction is quite efficient for producing high rotational levels of \(\text{N}_2 \) molecules.

The above results for rotational excitation indicate that the exchange reaction of \(\text{N} + \text{N}_2 \) collisions provides a mechanism to pump \(\text{N}_2 \) molecules with low rotational states into \(\text{N}_2 \) molecules with higher rotational states. Because this exchange reaction has a propensity for producing highly excited rotational states, it provides a route that may lead to nonequilibrium rotational temperature behind a strong shock.

Vibrational Excitation

The integral cross section for \(v' \) excitation from a \((v = 0, j = 0)\) initial ro-vibrational state is obtained by summing over all the final rotational states; i.e.,

\[
\sigma_{v'\rightarrow 00} = \sum_{j'} \sigma_{v'j'\rightarrow 00}.
\]

The values of \(\sigma_{v'\rightarrow 00} \) are shown in Fig. 6 for \(v' = 0-3 \). This figure shows that significant vibrational excitation of \(\text{N}_2 \) is produced by exchange reactions at higher kinetic energies. In particular, this figure shows that at lower kinetic energies, the largest integral cross section is found for \(v' = 0 \). However, at higher energies the order is different; for example, at 3.2 eV the order is: \(\sigma_{1\rightarrow 00} > \sigma_{2\rightarrow 00} > \sigma_{0\rightarrow 00} \). In other words, at this energy, the vibrational products are larger at higher \(v' \) than at the lower \(v' \) vibrational level. Furthermore, the \(v' = 3 \) vibrational state does not have a major role in the final state distributions at this energy.

Rate Constants

The reaction rate constant \(k_{v'\rightarrow 00}(T) \), for exchange scattering from the \((v = 0, j = 0)\) initial ro-vibrational state to the \((v', j')\) final ro-vibrational states for all \(j' \), is obtained from

\[
k_{v'\rightarrow 00}(T) = \frac{8}{\kappa^3T^3\pi\mu} \int dE \exp\left(-E/kT\right) E \sigma_{v'\rightarrow 00}(E).
\]

We present \(k_{v'\rightarrow 00}(T) \) for \(v' = 0-3 \) in Fig. 7. Note that the rates can be represented fairly well by straight lines except at high \(T \) where there is a small fall-off; the integration of Eq. (7) has been truncated at the highest energy of this study.

The product vibrational distributions are calculated...
from the equation

\[D_{v'\rightarrow 00}(T) = k_{v'\rightarrow 00}(T)/\sum_{v'} k_{v'\rightarrow 00}(T). \] (8)

Figure 8 shows \(D_{v'\rightarrow 00}(T) \) for \(T = 2,000 \) K and 10,000 K. Note that the distribution of the final vibrational states of \(N_2 \) is more concentrated at low \(v' \). As \(T \) increases, the peak of the distribution moves to a higher-lying vibrational state as expected.

Concluding Remarks

Our calculations demonstrate that the \(N+N_2 \) exchange reaction could result in a rotational distribution that is very much in nonequilibrium. This was not predicted by a previous QCT study\(^{10,11} \) of \(N+N_2 \) collisions because the LEPS interaction energy\(^{12} \), which was used for their study, does not have the 'Lake Eyring' feature. Furthermore, the resonance structures in the reaction probability are quantal features that are not amenable to classical treatment.

One might disregard like-atom exchange from atom-molecule collisions since there is no change in the population density of the constituents of the gas; the above study, however, demonstrates that these reactions could significantly change the energy distribution among the constituents. Furthermore, we point out that the above approach, construction of a PES from \textit{ab initio} data and subsequent quantum-dynamical calculation of the atom-molecule reactions, can also be applied to determine the exchange reaction for unlike atoms, such as

\[O + N_2 \rightarrow NO + N. \] (9)

The use of model interaction energies in scattering calculations may reproduce the results of certain experiments, but we emphasize that, in general, the results of these calculations do not provide reliable thermodynamic properties, especially at high temperatures.

Direct \(N+N_2 \) inelastic collisions, which do not involve any bond breakage and formation, will lead to low \(\Delta j \) transitions until the kinetic energy is at or above the onset of exchange reaction. In this region, the resonances that play such an important role in exchange collisions also affect inelastic collisions and large \(\Delta j \) transitions are expected from these inelastic collisions, as well as that found for the exchange reactions.

We plan to study ro-vibrational excitations in \(N+N_2 \) inelastic collisions. The inelastic results from direct scattering will then be incorporated with the present results for \(N+N_2 \) exchange collisions. The data will be used to simulate the shock tube experiments of Refs. 1 and 7. Rotational and vibrational temperatures under high-speed entry conditions will also be studied.
