3D surface reconstruction and automatic camera calibration
a Bayesian approach

March 2004

André Jalobeanu

Estandiar Bandari, Peter Cheeseman, Frank Kuebel, John Stitz, Dorna Tal

Bayesian Vision Group
NASA Ames Research Center - Moffett Field, CA, USA

Summary

- Goal?
- Proposed vs. classical methods
- Bayesian approach and graphical model
- The surface model*
- Observation parameters
- Forward problem: rendering*
- Inverse problem: optimization
- Preliminary results
- Applications
- Conclusion
- Extensions and future work

* my contributions

2/45

https://ntrs.nasa.gov/search.jsp?R=20040068183 2018-08-07T07:23:08+00:00Z
Case 1: infer the geometry

Example - Asteroid 433 Eros (NEAR mission)

- N optical images; very large number N > 10000
- Light direction ∼ known
- Camera parameters ∼ known
- Albedo ∼ constant

N calibrated images → Geometry
Case 2: infer topography and scalar albedo

N aerial or satellite images

Cameras

Light sources

Elevation (height field)

Albedo (panchromatic)

Shape from Stereo [Zhang et al. 94]

- The 2D projection of a surface point into the left and right cameras can be re-projected to give a point in the 3D space

Drawbacks:
- Relies on finding point matches in both images
- The density of the recovered surface points is data dependent

Shape from Shading [Horn & Brooks 89]

- Image gradients are related directly to surface gradients.
- Integrating from known boundary condition gives heights.

Drawbacks:
- Density of points is fixed at the image resolution
- Assumptions: Lambertian reflection and constant albedo
3D reconstruction: existing methods II

Generalized stereo [Fua & Lecerc 94]

- Use textured triangles on a dense 3D mesh as stereo features
- Optimize a cost function including a data term and a smoothness penalty term
- Combines stereo and shading information

Drawbacks:
- Not a Bayesian method: difficult to infer prior model parameters, and the data term is not natural

Other methods

- [Morris & Kanade 03]
 Keep vertices fixed, search for good triangulations
- [Isidoro & Sclaroff 02, Vogiatzis et al. 03]
 Stochastic algorithm
 Iteratively shrink and deform a mesh

Drawbacks:
- Stochastic: slow, complex
- Others: sensitive to local optima

Advantages of the proposed approach

Existing methods are not compatible with our **long-term goal:**

> dense reconstruction of both **geometry** and **reflectance**, taking advantage of **all the information** in the N images

The proposed approach:

- Enables us to arbitrarily choose the surface **density**
 (e.g. according to the amount of available data)
- Can use any **reflectance model**, from the simple Lambertian BRDF to complex realistic BRDFs
- Can use data from **any sensor**, whatever the pixel size;
 in principle we should be able to use non-optical data (e.g. altimetry)
- Should be able to easily integrate **new images**
 once a initial estimate has been computed
The Bayesian approach

\[P(\text{surface, cameras | images}) \propto P(\text{surface}) \times \prod P(\text{camera}_i) \times \prod P(\text{image}_j | \text{surface}, \text{camera}_i) \]

Graphical model (generative model)

- **Surface**
 - Mean: 3D object
 - Uncertainty on the object
- **Observations**
 - Mean: Rendering + Blur
 - Uncertainty from noise
- **Observation parameters**
 - Mean: calibration
 - Uncertainty on camera pose

Graphical model:

Relationship between random variables (prior and conditional densities)
The different densities

Surface model $P(S)$
- **Geometry:** dense triangular mesh: vertices + neighborhood
- **Reflectance:** one albedo per vertex
- **Topology:** arbitrary – DEM (flat), planet/asteroid (spherical)
 Subdivided mesh, has the topology of the initial mesh

Observation parameter density $P(\theta)$
- **Camera pose:** position, orientation
- **Camera physics:** PSF, noise variance
- **Light source:** orientation, ambient and direct intensity

Image formation model $P(Y \mid I(S, \theta))$
- **Rendering:** realistic synthetic image, $I(S, \theta)$ non-linear w.r.t. S, θ
- **Degradation:** blur by PSF, Gaussian noise

Fractal appearance of natural surfaces
Surface analysis and modeling

What tool to use to analyze and model fractal surfaces?

Check the statistical self-similarity:
 first compute the power spectrum of the object to analyze.

- Height fields on planar surfaces: 2D Fourier Transform
- Height fields on spherical surfaces: Spherical Harmonics

- Arbitrary surfaces: ?
 irregular sampling, arbitrary topology

Wavelets on subdivided meshes
 Spectrum: feature size = fct(scale)

Topology, geometry and regularity

Topological support
 Set of sites (vertices) + neighborhood system
 Support regularity = neighborhood regularity
 Semi-regular mesh: 5 or 6 neighbors

Geometry
 3D point for each topological site
 Objects can have an irregular geometry,
 but the wavelets are defined on a semi-regular topological support.
Subdivided meshes

Creation of a new topological vertex at the midpoint of each edge
Each triangle is replaced by 4 smaller triangles

→ ideal framework for a multiresolution analysis

Vertex prediction

Geometric Subdivision: new vertex creation using a prediction rule

Prediction of a new vertex at level \(j+1 \) using 8 neighbors at level \(j \):
interpolation scheme

\[
m = \frac{1}{2} (v_1 + v_2) + \frac{1}{8} (v_1^2 + v_2^2) - \frac{1}{16} (v_1^3 + v_2^3 + v_3^3 + v_4^3)
\]

[Dyn et al. 90,
Sweldens & Schroeder 95]
Wavelets on a triangular mesh

Wavelet coefficients at level \(j+1 \) = vertices at level \(j+1 \) – prediction from level \(j \)

encode the **details** at level \(j+1 \)

Multiresolution analysis

Approximations: \(a_1 \ldots a_n \)

from coarse to fine, different versions of the same surface

Details: \(d_1 \ldots d_n \)

differences between two successive approximations
Defining a local scale

- dilation / x
- dilation / y
- skew

details = absolute geometric variations
(independent of the local mesh resolution)

→ we need to define a local scale estimate:

\[s = L^{-1/2} \left(\frac{3}{4} \frac{L^2}{L^2} (\cos \alpha + \sin \alpha)^2 + 4 \right) \]

Defining a local direction

Wavelet details are 3D vectors

\[W = W_\perp + W_\parallel \]
normal + parallel decomposition

geometric detail sampling irregularity

vertex at level j+1
Amplitude spectrum of 433 Eros, data from the NEAR mission lidar

\[\log \sigma \propto r^{-q} \]

Scale-invariant adaptive Gaussian model on \(W_0 \):

- prior roughness

\[P(\{w_i\}) \propto \prod_i \exp \left(-\lambda_i (s_i)^{-2q} |w_i|^2 \right) \]

- geometric details = Gaussian random variables
- spatially adaptive parameters
- local scales

~ 3D analog of the fractional Brownian motion in 2D

Efficient description of the power spectrum of natural images

- Statistical model of \(\omega \): mesh regularity prior density
 - (sampling regularity)
Observation parameters

Prior on the observation parameters (camera, light, PSF, noise):

- Knowledge of the camera motion and orientation
 (rover: odometers; space probe: gyroscopes, etc.)
- Use the navigation parameters if available
- Sensors: orientation w.r.t. sun or stars
- Prior knowledge of the PSF and noise level
Forward problem: rendering

Rendering:
- known surface
- known reflectance
- known light source
- known camera param. (internal & external)

Compute the intensity for each pixel...
... and its derivatives!

Why do we need an accurate rendering?

- Sub-pixel accuracy required for good reconstruction accuracy and super-resolution
- Compute the derivatives of the pixel intensity w.r.t. all the parameters (surface, camera, light) to perform optimization
- Photometric accuracy: ambient light, reflectance functions, etc.
- Occlusions (hidden surface removal)
- Shadows (remove surfaces hidden from the light source)

We need to work in the object space

Most of existing algorithms work in image space
Image space or object space?

Image

• Very fast, real time (OpenGL, etc.)
• Image = non-continuous function of the surface S
• Aliasing
• Limited to big triangles

Object

• Sum of contributions / pixel
 \[I_p = \sum A_i \Phi_i \]
• Image = continuous fct. of S
• No aliasing (better sampling)
• Works with any triangle size
• Independence image/model

The rendering method

Core of the algorithm: occlusion removal

Hidden surfaces = occlusions / camera projection
Surfaces in shadow = occlusions / light source projection

Compute the contribution to a pixel by a partially hidden triangle

• Polygonal approach
• Recursive polygon-triangle subtractions
• Trick:
 only on ridge lines
• At the end: polygon moments + derivatives
Rendering method - details

<table>
<thead>
<tr>
<th>Intersection triangle/pixel</th>
<th>Occluding triangles subtraction</th>
<th>Shadowing triangles subtraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera projection</td>
<td>Camera projection</td>
<td>Camera + light projection</td>
</tr>
</tbody>
</table>

- **Intersection triangle/pixel**
 - Camera projection
 - Hidden surface removal (including triangles sub.)
- **Occluding triangles subtraction**
 - Camera projection
 - Camera projection + light
- **Shadowing triangles subtraction**
 - Camera projection
 - Under development

The rendering tree...

under development

- **vertices**
- **camera**
- **light**
- **BRDF**
- **albedo**
- **irradiances**
- **continuous shading**
- **camera projection**
- **camera+light projection**
- **visibility polygons**
- **moments**
- **blur**
- **Hard shadows**
- **Soft shadows**
Derivative computation

The chain rule:

Examples of derivatives:

- \(\frac{\partial P}{\partial v} \) projected vertex
- \(\frac{\partial n}{\partial v} \) normal
- \(\frac{\partial P}{\partial F} \) 2D polygon vertex
- \(\frac{\partial A}{\partial x} \) polygon area
- \(\frac{\partial L}{\partial n} \) irradiance
- \(\frac{\partial W}{\partial A} \) pixel intensity

Rendered images: asteroid
Rendering examples 1

Light source rotation

Rendering examples 2

Object rotation
Solving the inverse problem: optimization

Maximum A Posteriori (MAP) - iterative optimization
- Linearize the intensity (rendering):
 \[I(S, \Theta) = I(S_0, \Theta) + \left[\frac{\partial I}{\partial S} \right] (S - S_0) + \left[\frac{\partial I}{\partial \Theta} \right] (\Theta - \Theta_0) \]
 \[\Rightarrow \log P(S, \Theta | \{ Y \}) \text{ approx. by a quadratic form} \]
 \[\rightarrow \text{optimization of } S, \{ \Theta \} \text{ using a conjugate gradient} \]
- Result: used to initialize the next iteration
- Convergence: small variation of \(S, \{ \Theta \} \)

- Optimization over \(S \):
 3D geometry and reflectance recovery
- Optimization over \(\{ \Theta \} \):
 automatic camera and light calibration

Estimating the uncertainties

estimated pose : mean \(\mu \)
uncertainty : covariance \(\Sigma \)
prior pose
prior uncertainty

- At the end: keep the inverse covariance matrix (related to the uncertainty), not only the estimated parameters \(S, \{ \Theta \} \)
- Very useful to initialize a new estimation procedure, so that new data can be added
- recursive refinement of \(S, \{ \Theta \} \):
 - Update the 3D (process large amounts of data recursively instead of batch)
 - Refine the camera pose - Simultaneous Localization And Mapping (SLAM)
Preliminary surface reconstruction results
Duckwater, Nevada

- Physical model built using USGS elevation model
- Hand-painted albedo

Images: CMOS camera
(10 bits, monochromatic)
Light source: sun

Goal: reconstruct DEM+albedo
Assumptions:
- no shadows, no occlusions [old]

Preliminary estimation:
- sun direction (sun dial)
- camera param. (checkerboard)

One of the 8 observed images

Preliminary surface reconstruction results
Duckwater, Nevada

Geometry (height field)

Ground truth (USGS DEM)
Inferred DEM
(max error < 10 mm, RMS error < 2 mm)
Preliminary surface reconstruction results
Duckwater, Nevada

Special case: uniform albedo

Ground truth (USGS DEM)

Inferred DEM
(max error ~ 15mm)

Estimating the camera parameters

Camera pose estimation
Method used: joint MAP = estimation of \(\{\Theta, S\}\)
Alternate optimizations w.r.t. surface and camera (sub-optimal)

Estimation error

Camera calibrated from points
Camera calibrated using MAP
Potential applications

- **3D object reconstruction from multiple images:**
 - Asteroids (albedo uniform, spherical topology)
 - Planetary surfaces (variable albedo, planar/spherical topology)
 - Rover situation: MER mission (variable albedo, overhangs)

- **Simultaneous Localization And Mapping (SLAM):**
 - Simplified terrain model: use 3D features instead of meshes

- **Space probe localization and 3D object recovery:**
 - approach and flyby: recursive trajectory estimation and object model refinement

- **Multi-sensor data fusion:**
 - Optical (multi- and hyperspectral), radar (SAR), lidar, ...

- **Fractal geometry and synthetic images:**
 - Generate realistic fractal surfaces
 - Compute photorealistic BRDFs for natural surfaces

Inverse rendering and computer vision

- **Computer vision**
 (3D model reconstruction from multiple observations):
 inverse problem of rendering

- **Bayesian inference**
 applied to this inverse problem:
 everything is described by random variables

- 2D data fusion into a single 3D model
 becomes a parameter estimation problem

- It can be solved by existing efficient optimization techniques
Main contributions

• Rendering:
 - Take into account shadows and occlusions
 - Visibility polygons (recursive subtraction)
 - Derivative computation
 - Extensions

• Surface modeling:
 - New wavelet transform on surfaces of arbitrary topology:
 - Normal/parallel wavelet detail separation
 - Local scale computation
 - Fractal model for natural surfaces

Extensions and future work I - Rendering

• Extensions (in progress):
 - Accurate shadows
 - Continuous shading (visibility polygon moments)
 - Continuous PSF, take into account the blur
 - Complex BRDFs (≠ Lambert)

• Future extensions:
 - Multispectral
 - Adaptive subdivision
 - Adaptive BRDFs
 - Secondary reflections
 - Other types of camera (push-broom, etc.)
 - Approximate methods
Extensions and future work II
models and inference

• Model extensions:
 Study real surfaces (Earth, Mars):
 - Reflectance/geometry interactions
 - Multi- and hyperspectral albedos

• Inference method extensions:

 Marginalization:
 - Simultaneous reconstruction and calibration
 - Separated geometry and albedo inference

 Bayesian model selection:
 - Infer the topology (overhangs, etc.)
 - Dynamic and adaptive subdivision