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Case 1 : infer the geometry 

Example - Asteroid 433 Ems (NEAR mission) 

N optical images; very large number N>10000 
Light direction N known 
Camera parameters N known 
Albedo N constant 

N calibrated images Geometry 

- 
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,/ Case 2 : infer topography and scalar albedo 
i i m e a n ~ ~  cemr 

N aerial or satellite images 

I Cameras I 

1 Elevation (height field) 1 

i Liqhtsources I 
5145 

Shape from Stereo [Bang et al. 941 

The 2D projection of a surface point into 
the left and right cameras can be re- 
projected to give a point in the 3D space 

Drawbacks : 
Relies onlindng point matches in both 
irngages 
The density of the recovered surface 
points is data dependent 

Shape from Shading [Horn & BFOO~S 891 

Integrating from known boundary 

Image gradients are related directly to 
surface gradients. 

condition gives heights. 

Drawbacks : 
Density of points isfixed at the image 
resohition 
Assumptions: Lambertian reflection 
and constant albedo 
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3D reconstruction: existing methods I1 

Generalized stereo [Fua &. Lecterc 941 

Use textured triangles on a dense 3D 
mesh as stereo features 
Optimize a cost function including a data 
term and a smoothness penalty term 
Combines stereo and shading information 

Drawbacks ; 
Not a Bayesian method: difficult to  infer 
prior model parameters, and the data 
term is not natural 

Other methods 

[Morris & Kanade 031 
Keep vertices fixed, search for good 
triangulations 

[Isidoro & Sclaroff 02, Vogiatris et al. 031 
Stochastic algorithm 
Iteratively shrink and deform a mesh 

Drawbacks ; 
Stochastic: slow, complex 
Others: sensitive to local optima 
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Advantages of the proposed approach 

Existing methods are not compatible with our long-term goal: 

ektance 
aking advantage of all the information in the N images 

The proposed approach : 

- Enables us to arbitrarily choose the surface density 

- Can use any reflectance model, 

- Can use data from any sensor, whatever the pixel size; 

-:Shouldbeable-to-easilyinteg~atenew-image 

(e.g. according to the amount of available data 

from the simple Lambettian BRDF to complex realistic BRDFs 

in principle we should be able to use non-optical data (e.g. altimetry) 

once a initial estimate has been computed 
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The Bayesian approach 

posterior density 
f l  A \ 

S @I {YI 
P(surface, cameras I images) a 

L i 
v ‘J 

prior density I i kel i hood 
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Graphical model (generative model) 

I 

~ .- Reldtionship between random variables 
(pFioraFid conditionaTeiiHiZ3) ~ ~ 

5 
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The different densities 

Surface model P(S) 

Geometry: dense triangular mesh: vertices + neighborhood 
Reflectance: one albedo per vertex 
Topology: arbitrary - DEM (flat), planevasteroid (spherical) 
Subdivided mesh, has the topology of the initial mesh 

Observation parameter density P(0) 

Camera pose: position, orientatio 
Camera physics : PSF, noise variance 
Light source: orientation, ambient and direct intensity 

Image formation model P(Y / I(S,@) 1 
Rendering: realistic synthetic image, I(S,O) non-linear w.r.t. S,O 
Degradation: blur by PSF, Gaussian noise 

11/45 

appearence of natural surfaces 
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Surface analysis and modeling 

What tool to use to analyze and model fractal surfaces? 

Check the statistical self-similarity: 
< first compute the power spectrum of the object to analyze. 

Height fields on planar surfaces: 2D Fourier Transform 
Height fields on spherical surfaces: Spherical Harmonics 

Arbitrary surfaces : ? 
irregular sampling, arbitrary topology 

Wavelets on subdivided meshes 
Spectrum: feature size = fct(scale) 
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Topology, geometry and regularity 

Topological support 
Set of sites (vertices) + neighborhood system 
Support regularity = neighborhood regularity 
Semi-regular mesh: 5 or 6 neighbors 

Geometry q , , 1  ~ 

W 
0 3D point for each topological site 

tOpol0gY 
Objects can have an irregular geometry, 

but the wavelets are defined on a semi-regular 
topobijiGT3Uppoit. ~ 

> m 

- - __ 
~ 
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Subdivided meshes 

uniform . subdivision / \' 
A 

... 

Root mesh mesh subdivided l x  

Creation of a new topological vertex at the midpoint of each edge 

Each triangle is replaced by 4 smaller triangles 

3 ideal framework for a multiresolution analysis 
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Vertex prediction 

Geometric Subdivision : new vertex creation using a prediction rule 

Prediction of a new vertex at level 

[Dyn et at. 90, 
Sweldens & Schroeder 951 

~~~ - _ _ ~  
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Wavelets on a triangular mesh 
~ . -. . .. . . .. 

Wavelet coefficients at level j t l  = 
vertices at level j + l  - prediction from level j 

encode the details at level j+l 
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Multiresolution analysis 

Approximations : a, ... a, 
from coarse to fine, different versions of the same surface 

Details : d, ... d, 
differences between two successive approximations 

.~ 
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Defining a local scale 

dilation / x 
dilation / y 

9 skew 

deforma tion - 
1 

details = absolute geometric variations $\ (independent of the local mesh resolution) 

' I  + we need to define a local scale estimate: 
I .  

1 I 
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Defining a local direction 

Wavelet details are 3D vectors 

normal + Darallel decomDosition 

ertex at level j + l  

20145 
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Statistical self-similarity - asteroid 

Amplitude spectrum of 433 Eros, data from the NEAR mission lidar 

log 0 

(mean 
amplitude 
of the 
normal 
wavelet 
coef.) 

0 

1 

e 

3 

-4 

5 

6 

7 
1 0 1 2 3 (local scale) 
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A new multiscale model Adcm 
Scale-invariant adaptive Gaussian model on gi:: 
prior roughness of the surface 

spatially adaptive 
(=:e, 7 

N 3D analog of the fractional Brownian motion in 2D 
(wavelet coefficients instead of Fourier coefficients) 
Efficient description of the power spectrum of natural images 

Statistical model of @$,: mesh regularity prior density 
(sampling regularity) 22/45 
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Samples from the surface model 

23/45 

Observation parameters 

Prior on the observation parameters (camera, light, PSF, noise) : 

Knowledge of the camera motion and orientation 
(rover: odometers; space probe: gyroscopes, etc.) 

Use the navigation parameters if available 

-0 Sensorx orientation w-r-t. sun-or stars ~ ~ 

Prior knowledge of the PSF and noise level 

24/45 

12 



Forward problem: rendering 

Rendering : 

1s knownsurface 
knownreflectance 

known light source 
known camera param. 
(internal & external) 

Compute the intensity 
for each pixel 
... and its derivatives I Surface S 
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Why de we need an accurate rendering? 

Sub-pixel accuracy required for good reconstruction accuracy and 
super-resolution 
Compute the derivatives of the pixel intensity w.r.t. all the 
parameters (surface, camera, light) to perform optimization 
Photometric accuracy: ambient light, reflectance functions, etc. 
Occlusions (hidden surface removal) 
Shadows (remove surfaces hidden from the light source) 

We need to work in the object space 

Most of existing algorithms work in image space 

~~~~~ ~ . ~~~ 
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Image space or object space? 

Image 

Very fast, real time Sum of contributions / pixel 
(OpenGL, etc.) 1, - p P b  

A 

Image = non-continuous 
function of the surface S 
Aliasing 
Limited to big triangles 

0 Image = continuous fct. of S 
No aliasing (better sampling) 

0 Works with any triangle size 
0 Independence image/model 
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The rendering method 

Core of the algorithm : occlusion removal 

Hidden surfaces = occlusions / camera projection 
Surfaces in shadow = occlusions / light source projection 

Compute the contribution to a pixel 
h r h  by a partially hidden triangle 

Polygonal approach 
Recursive polygon-triangle subtractions 
Trick: 
only on ridge lines 

~ __ _ _  -~ - 

A t " l l  . ... i J,, 

At the end: polygon moments + derivatives 
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Rendering method - details 

I Intersection Occluding triangles 
triangle/pixel su btradion 

Shadowing triangles 
subtraction 

Camera projection Camera projection Camera + light projection 29/45 

The rendering tree... 
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Derivative computation 

The chain rule : Examples of derivatives : 

normal 

irradiance 
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Rendered images: asteroid 
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Rendering examples 1 

Light source rotation 
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Rendering examples 2 
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,,/d Solving the inverse problem: optimization 
nm& Restmb Center 

lb /I Maximum A Posteriori (MAP) - iterative optimization 

- Linearize the intensity (rendering): 

, 
+ - log P(S, {e} I {Y)) approx. by a quadratic form 

! - optimization of S, {o}  using a conjugate gradient 

- Result: used to initialize the next iteration 
- Convergence: small variation of S, {0} 

0 Optimization over S : 

Optimization over (0 )  : 
30 geometry and reflectance recovery 

automatic camera and light calibration 
AI45 

Estimating the uncertainties 

uncertainty : cob srinncc Z 

prior uncertaiir ty 

At the end : keep the inverse covariance matrix (related to the 
uncertainty), not only the estimated parameters S, (0) 

Very useful to initialize a new estimation procedure, 
so that new data can be added 

recursive refinement of S, (0): 
- -- -Updatethe-3D-fpro€ess4argemottnts of data recursively-instead of-batch) 
- Refine the camera pose - Simultaneous Localization And Mappping (SLAM) 
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Preliminary surface reconstruction results 
Duckwater, Nevada /4 AmeS t?KeaI& C&?r 

Physical model built using USGS elevation model 

Hand-painted albedo 

Images : CMOS camera 

tight source : sun 
(10 bits, monochromatic) 

Goal: reconstruct DEM+albedo 
Assumptions: 

no shadows, no occlusions [old] 

Preliminary estimation ; 

sun direction (sun dial) 
ca mera pa ram. (checkerboard) 

One of the 8 observed images 
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Preliminary surface reconstruction results 
Duckwater, Nevada 

Geometry (height field) 

Ground truth (USGS DEM) Inferred DEM 
(max errorelOmm, RMS errorc2mm ) 
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Preliminary surface reconstruction results 
Duckwater, Nevada 

Special case: uniform albedo 

Ground truth (USGS DEM) 

Inferred DEM 
(max error N 15mm) 
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Estimating the camera parameters 

Camera pose estimation 
Method used : joint MAP = estimation of ({a}$) 
Alternate optimizations w.r.t. surface and camera (sub-optimal) 

Estimation error 

r .C 

3 \.% ~ 3 -  1. c=+ 

Cameraralibratedfrompoints 

4 
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Potential applications 

0 3D object reconstruction from multiple images: 
- Asteroids (albedo -uniform, spherical topology) 
- Planetary surfaces (variable albedo, planar/spherical topology) 
- Rover situation: MER mission (variable albedo, overhangs) 

Simultaneous Localization And Mapping (SLAM): 
- Simplified terrain model: use 30 features instead of meshes 

Space probe localization and 3D object recove 
- approach and flyby: recursive trajectory estimation an 

model refinement 

Multi-sensor data fusion: 
- Optical (multi- and hyperspxtral), radar (SAR), lidar, ... 

Fractal geometry and synthetic images: 
- Generate realistic fractal surhces 
- Compute photorealistic BRDFs for natural surfaces 41/45 

Inverse rendering and computer vision 

Computer vision 
(3D model reconstruction from multiple 
observations) : 
inverse problem of rendering 

Bayesian inference 
applied to this inverse problem: 
everything is described by random variables 

2D data fusion into a single 3D model 
becomes a parameter estimation problem 

It can be solved by existing emdent 
optimization techniques ~~ 
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Main contributions 

Rendering: 
-Take into account shadows and occlusions 
- Visibility polygons (recursive subtraction) 
- Derivative computation 
- &tensions 

Surface modeling: 
-new wavelet transform on surfaces of 
arbitrary topology: 
- normal/parallel wavelet detail separation 
- local scale computation 
- Fractal model for natural surfaces 
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Extensions and future work I - Rendering 

Extensions (in progress): 
- Accurate shadows 
- Continuous shading 

(visibility polygon moments) 
- Continuous PSF, 

take into account the blur 
- complex BRDFs (+ Lambert) 

Future extensions: 
- Multispectral 
- Adaptive subdivision 
- Adaptive BRDFs 

- Other types of camera (push-broom, etc.) 
- Approximate methods 

Seco&Fy-&lections _. _ _  
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Extensions and future work I1 
models and inference 

M o d e l  extensions: 
Study real surfaces (Earth, Mars): 
- Reflectance/geometry interactions 
- Multi- and hyperspectral albedos 

Inference method extensions: 

Marginalization: 
- Simultaneous reconstruction and calibration 
- Separated geometry and albedo inference 
Bayesian model selection: 
- Infer the topology (overhangs, etc.) 
- Dynamic and adaptive subdivision 
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