SESSION 4- Thin Films for Sensor Applications and Readout Electronics

High and Mid Temperature Superconducting Sensors for far IR/Sub-mm applications in space.

Brook lakew*, J. C. Brasunas
NASA- Goddard Space Flight Center, Greenbelt, MD 20771

ABSTRACT

In this review paper an overview of the potential applications of high Tc (~90 K) superconductors (HTS) and mid-Tc (~39 K) superconductors (MTS) thin films in far IR/Sub-mm thermal detectors is presented. HTSs (YBCO, GdBCO etc.) were discovered in the late 80s while superconductivity in MgB$_2$, an MTS, was discovered in 2001. The sharp transition in transport properties of HTS has allowed the fabrication of composite infrared thermal detectors (bolometers) with better figures of merit than thermopile detectors - thermopiles are currently on board the CIRS instrument on the Cassini mission to Saturn. The potential for developing even more sensitive sensors for IR/Sub-mm applications using MgB$_2$ thin films is assessed. Current MgB$_2$ thin film deposition techniques and film quality are reviewed.

INTRODUCTION

YBCO and GdBCO

HTS materials were discovered almost 15 years ago. Two of the most known among them are Y$_1$B$_2$Cu$_3$O$_{7-x}$ (YBCO) and Gd$_{1}$B$_2$Cu$_3$O$_{7-x}$ (GdBCO). The potential uses of these materials especially HTSs have been enumerated in many papers. Just to list a few applications: SQUID readouts, far IR bolometers, lossless power transmission cables, energy storage devices, filters for the mobile phone communications etc. The early euphoria has subsided and the mechanism by which these materials superconduct is yet to be explained. However the interest in HTS superconductors has remained constant in the planetary exploration arena. Bolometers using HTS materials can be particularly suited for far IR instruments on planetary missions. These missions typically take many years (7 years for the Cassini mission to Saturn1 and have stringent mass and power budgets limitation thus making it impossible to carry heavy cryogens or use high power cryocoolers.

MgB$_2$

Since early 2001, yet another material, MgB$_2$ has been found to be superconducting. MgB$_2$ is simpler than HTSs and superconducts2 at 39 K. It is a simple binary intermetallic compound and a common reagent in the chemical reactions in which compounds exchange partners3. MgB$_2$’s lower Tc in conjunction with the strong cryocoolers development effort at NASA4 could yield more sensitive bolometers for application in planetary and Earth sciences.

1. Bolometers:

Bolometers are composite IR detectors consisting of a substrate that has a thermistor on one side, a radiation absorber on the other and coupled to a heat sink via a thermal conductance G. The temperature coefficient of resistance β of the thermistor = $1/R(dR/dT)$. And if the total heat capacity of the bolometer is C, the thermal time constant $\tau = C/G$.

* Contact information for B. Lakew- Email: brook.lakew-1@nasa.gov
Responsivity, NEP and specific detectivity D^*:

When the HTS thin film is current biased, the voltage across it is $V = IR$ and if the effect of thermal feedback neglected then the responsivity is commonly expressed as:

$$S = \frac{Vb}{G} (1 + 2\pi f \tau)$$

where f is the chopping frequency of the incoming radiation.

The sensitivity of the bolometer is usually expressed as the noise equivalent power (NEP). It is defined as the input signal power such that the signal-to–noise ratio at the output is 1 (in a 1 Hz bandwidth). It is usually obtained by summing the squares of statistically independent contributions to the noise. The Noise Equivalent Power (NEP)\(^2\) is the sum of the squares of statistically independent contributions. Thus:

$$\text{NEP} = \left(\frac{4k_B T c^2}{c^2 \hbar^3} \right) \int_0^\infty \frac{t^4 e'^2 dt}{(e' - 1)^2} + 4k_B T c^2 G + \frac{4k_B T c^2 R}{c^2} + \frac{AV^2}{f} + \frac{4k_B T c^2 R}{c^2} \right)^{1/2} (1)$$

Of particular interest are the two dominant terms of equation 1: the second term (phonon noise) and third term (Johnson noise in the HTS).

The specific detectivity D^* is a normalized figure of merit that is widely used. For a detector of area A it is expressed as:

$$D^* = \frac{\sqrt{\text{Area}}}{\text{NEP}} \text{ (cm.Hz}^{1/2}\text{.W}^{-1})$$

The lower the NEP the higher the D^*.

2. YBC0 and GdBCO based TES bolometers

In HTS bolometers the thermistor is a superconducting thin film operated near the mid-point of its transition. The substrate is typically either Al_2O_3, YSZ, MgO or SrTiO$_3$. The thermistor is an HTS thin film: YBCuO, GdBCuO etc. (typically 1000 to 1500 Å thick). It is either current or voltage biased. A selection of the most sensitive ones is put in table 1.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Sensing element</th>
<th>Substrate</th>
<th>Time constant (ms)</th>
<th>NEP (W/Hz(^{1/2}))</th>
<th>D^* (cmHz(^{1/2})W(^{-1}))</th>
<th>IR Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kakehi et al</td>
<td>25µm(^2)</td>
<td>Thick MgO</td>
<td>NG</td>
<td>2.1x10(^{-14})</td>
<td>2.5x10(^{11})</td>
<td>0.830 µm laser</td>
</tr>
<tr>
<td>Lakew et al</td>
<td>GdBCO1x 1 mm(^2)</td>
<td>Al_2O_3 (7 µm) + absorber</td>
<td>100</td>
<td>8x10(^{12})</td>
<td>2 x10(^{10}) at 3.8 Hz*</td>
<td>Black Body</td>
</tr>
<tr>
<td>Li H et al</td>
<td>GdBCO 0.7 mm(^2)</td>
<td>YSZ (50 µm)</td>
<td>1-5</td>
<td>3.8x10(^{12})</td>
<td>1.7x10(^{10})</td>
<td>Black Body</td>
</tr>
<tr>
<td>de Nivelle et al</td>
<td>GdBCO 0.9 mm(^2)</td>
<td>SiN 0.62 µm + buffer</td>
<td>115</td>
<td>5.5x10(^{12})</td>
<td>1.8x10(^{10})</td>
<td>Black Body</td>
</tr>
</tbody>
</table>

Table 1. A selection of the most sensitive HTS bolometers on thick, thin and ultrathin substrates. Kreisler and Gaugue have compiled an excellent list of 34 HTS bolometers\(^6\).
3. HTS bolometers and other thermal detectors:
The NASA/Goddard HTS bolometer is compared to other uncooled or moderately cooled thermal detectors in Table 2.

<table>
<thead>
<tr>
<th>Detector</th>
<th>Sensing element</th>
<th>Operating temp (K)</th>
<th>Time constant (ms)</th>
<th>D* ((\text{cmHz}^{1/2}\text{W}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermopile</td>
<td>BiTe</td>
<td>140 – 300</td>
<td>25</td>
<td>3.9 x 10^9</td>
</tr>
<tr>
<td>Pyroelectrics</td>
<td>LiTaO3</td>
<td>>240</td>
<td>0.3</td>
<td>2 to 3 x10^8</td>
</tr>
<tr>
<td>NASA/Goddard HTS</td>
<td>GdBCO</td>
<td>90</td>
<td>100</td>
<td>2 x 10^16</td>
</tr>
<tr>
<td>Optimal HTS bolometer</td>
<td>YBCO</td>
<td>90</td>
<td>56</td>
<td>~7 x 10^18*</td>
</tr>
</tbody>
</table>

Table 2. Performance of NASA/GSFC’s HTS bolometers vs other thermal detectors. Note: *Calculated using \(G \sim 1 \mu W/K\) and \(C \sim 0.1 \mu J/K\) for current biased bolometer. For higher \(G\) values the time constant of the ideal bolometer can be made smaller but with a smaller \(D^*\) as a consequence.

4. MTS bolometers- the case of MgB\(_2\):
MgB\(_2\)’s crystal structure consists of hexagonal honeycombed planes of boron atoms separated by planes of magnesium atoms along the \(c\) axis in the hexagonal lattice. It is believed that MgB\(_2\) forms by diffusion of Mg into Boron grains. Unlike HTS, MgB\(_2\) grain boundaries are not weak and can carry large currents. Experiments by Bud’ko et al have shown that lower mass isotopes of B increase \(T_c\) indicating that phonons play an important role in the superconducting interaction.

Advantage of MgB\(_2\) thin films as thermistors:
Assuming that thermal noise and Johnson noise dominate in Equation 1 then \(\text{NEP} \sim \frac{4k_B T_c^2 G + 4k_B T_c R}{S^2} \frac{1}{\sqrt{2}}\). Everything else being equal, including thin film quality, the noise will be smaller when \(T_c\) is smaller. Thus the promise of more sensitive bolometers with MgB\(_2\) thin films as thermists.

MgB\(_2\) thin films growing methods:
- Hybrid Physical-Chemical Vapor Deposition (HPCVD): a combination of Physical Vapor Deposition (PVD) and Chemical Vapor Deposition (CVD)– at \(\sim 750 \degree C\), film grows epitaxially on (0001) sapphire and (0001) 4H-SiC substrates.
- Molecular beam epitaxy (MBE) – Pure metal sources are evaporated via electron beam evaporators in vacuum chamber (1x10^{-9} Torr).
- Sintering (the Ames Method) – A stoichiometric mixture of Mg and B are sealed\(^7\) in Ta tube and heated to 950 \degree C.
- Pulsed Laser Deposition (PLD): *ex situ* or *in situ*:
 - Ex situ: (PLD and Ames method); Boron deposited via PLD on SITiO\(_3\) (100) and (111) at \(800 \degree C\), then reacted with Boron in a sealed Ta tube.
 - In situ: (1) PLD from sintered MgB\(_2\) target; (2) PLD of multilayers of MgB\(_2\) and Mg followed by *in situ* anneal at high temperature; (3) PLD of multilayers of B and Mg followed by *in situ* anneal at high temperature. Better \(T_c\) obtained with *ex situ* anneal\(^12\).

Summary
Table 3. Summary of current MgB₂ thin films growing methods. * Isotope Mg¹¹; ** Mg¹⁰

Film Quality:
The main obstacle to obtaining good quality films is the high volatility of Magnesium¹¹.¹³ Degradation of MgB₂ due to exposure to water on film quality has also been noticed¹⁴.

5. Conclusion
For space borne IR instruments that have moderately cooled focal planes, HTS and MTS bolometers remain, to date, the sensors with the highest signal to noise (S/N). MgB₂ with a Tc at 39 K promises even better S/N. Improvements in the fabrication methods will hopefully improve the quality and stability of MgB₂ thin films.

REFERENCES