
Melissa Molnar
Ohio University, Athens, Ohio

C. John Marek
Glenn Research Center, Cleveland, Ohio
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076

Melissa Molnar
Ohio University, Athens, Ohio

C. John Marek
Glenn Research Center, Cleveland, Ohio

April 2004

Melissa Molnar
Ohio University
Athens, Ohio 45701

C. John Marek
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

ABSTRACT

A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1×10^{-20}. The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting properties of the reaction.

The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx were obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel.

A similar correlation was also developed using data from NASA’s Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering the turbine (T4) was also correlated as a function of the initial combustor temperature (T3), equivalence ratio, water to fuel mass ratio, and pressure.
A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two step kinetic scheme presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method (Reference 1) to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at initial with smaller water concentrations of less than 1×10^{-20} moles/cc. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole fractions, pressure and temperature (T4). The simple correlations would then be used with the turbulent mixing times to determine the limiting properties of the reaction.

Water injection into gas turbine engines can be useful in many ways. This includes reduced NOx formation, a lower temperature entering into the turbine (T4) and improving the efficiency and performance of the engine. Water injection has been used in industrial applications, including turbo machinery and diesel engines. Aeronautical applications are still being developed and studied. (Reference 2). The chemical kinetic times for Jet-A fuel and methane with water injection is the focus of the research presented here.

Reaction rates are kinetically limited at low temperatures and mixing limited at very high temperatures. According to the Magnussen model (Reference 3), the fuel oxidation rate will be determined by the maximum of either the chemical kinetic time or the turbulent mixing times of the fuel and air. However, for large numerical solutions it is very tedious to use detailed classical calculations to compare both the kinetic and turbulent mixing times to determine the limits of the reaction. Detailed chemical kinetic schemes are extremely time consuming for two and three dimensional computer calculations for combustors.

Large mechanisms with many intermediate species and very fast radical reactions which cause the equations to be stiff (extremely fast compared to the overall rate, requiring a large number of small time steps), making them very difficult to integrate. Calculations for these extensive mechanisms are repetitive and complex. Using the simplified kinetic scheme developed here to calculate the three chemical kinetic times greatly reduces the amount of time required to compare kinetic reaction times with turbulent mixing times and will reduce the time required to obtain a converged solution. The advantage of extracting the chemical kinetic time for only the species of interest from a detailed computation is that we have only the differential equations of interest to solve, resulting in a much smaller set of equations.

This method is for use in Computational Fluid Dynamics (CFD) calculations where chemical kinetics is important. The current version of NCC requires the user to decide to use either chemical kinetics or the turbulent mixing rates for computing the overall conversion rate. Following detailed conventional methods would not allow for the calculation of both in a reasonable amount of time. The derived method allows for a quick and easy comparison over the complete spectrum of conditions. This scheme is intended for use in numerical combustion codes, but it can also be used as a quick and accurate method to calculate chemical reaction rates.

We have also curve fitted T4 and the equilibrium concentrations of COe, and NOxe using data generated by the NASA Chemical Equilibrium Application code (CEA). Jet-A fuel was represented as $C_{12}H_{23}$, using Krishna Kundu’s twenty three step mechanism (References 4 and
5. The methane combustion was represented using the GRI-mech version 2.1 mechanism (Reference 10).

GLSENS (Reference 6) was used to integrate the system of equations at constant temperature and pressure, at over 2000 conditions to derive the rate expressions. We have massively correlated the output from GLSENS, the NASA detailed kinetics code, into simple exponential expressions for the chemical kinetic times. It may be reasoned that the presented equations are only as good as the overall mechanism that calculates the data. However, performing the calculations in the conventional manner is also only as good as the mechanism equations and constants that go into them. The first sections of the report, including Mixing and Kinetics, Model Equations, H2O Mass Balance, Determination of the Chemical Kinetic Time, and the kinetic schemes pertain to both Jet-A and methane fuels. The Jet-A equilibrium and chemical kinetic time correlations will then be presented, followed by the methane correlations. Suggestions for using the correlations and a comparison of NOx production data (Reference 2) and the NOx produced by the chemical kinetic time correlations will then be given.

MIXING AND KINETICS

The Magnussen model (Reference 3) proposes that the maximum of either the turbulent mixing or the chemical kinetic times will be the limiting factor of a chemical reaction. This model could be explored by numerically calculating both times to compare them. However, using detailed mechanisms, this is a long and tedious process. The calculations would be extremely complicated for the detailed chemical kinetic time. By using the equations presented here to determine the chemical kinetic times and using conventional numerical methods to determine mixing times, the Magnussen model can be applied in a much more convenient way.

\[
\text{Net rate } \sigma_r = \min\left(\frac{AE}{k} y_{\text{fuel}}, \frac{AE}{k} y_{\text{oxygen}}, \frac{1}{r_f}, \sigma_{\text{kinetic}} \right) \quad (1)
\]

Where \(\frac{k}{AE} \) equals the turbulent mixing time, \(\tau_m \), with \(k \) being the turbulent kinetic energy, \(\varepsilon \) is the dissipation rate, \(y \) is the mass fraction, and \(r_f \) is the stoichiometric coefficient written on a mass fraction basis. The mixing constant, \(A \), is usually given as 4.0. The factor \(\frac{y_{\text{fuel}}}{\sigma_{\text{kinetic}}} \) is the chemical kinetic time \(\tau_c \) computed in this report from the correlations presented.

In order to obtain the chemical source term \(\sigma_r \), a comparison is made of the mixing rate, \(\frac{1}{\tau_m} \), and the chemical kinetic rate \(\frac{1}{\tau_c} \), and the lowest rate or the longest time is used in the expression; see Figure 1. This may also be represented by the following relationship:

\[
\tau = \max (\tau_m, \tau_c) \quad (2)
\]
MODEL EQUATIONS

The following equations can be used to model the chemical system.

\[C_x H_y + (x/2 + y/4) O_2 \xrightarrow{\tau_{Fuel}} x CO + y/2 H_2O \]
\[CO + \frac{1}{2} O_2 \xrightarrow{\tau_{CO}} CO_2 \]
\[N_2 + O_2 \xrightarrow{2\tau_{NO}} 2NO \]

The following first order reaction was used to represent the rate of fuel burning. (In this report, \(t \) and \(\tau \) are given in milliseconds, except \(\tau_{NOx} \) which is in \(\frac{ms \cdot cc}{gmol} \), while concentrations are given in gmoles/cc):

\[\frac{dFuel}{dt} = -\frac{Fuel}{\tau_{Fuel}} \]
(3)

For a constant \(\tau_{Fuel} \), the fuel concentration is then represented by a simple exponential decay expression, where \(F_0 \) is the initial fuel concentration.

\[Fuel = F_0 e^{-\frac{t}{\tau_{Fuel}}} \]
(4)

The carbon monoxide reaction rate was represented by Equations (5) and (5a). The fuel concentration is multiplied by a factor of 12 because the Jet-A fuel takes the formula \(C_{12}H_{23} \). Equation (6) is the solution to the differential equation showing the CO concentration as a function of initial fuel concentration, CO equilibrium concentration and the chemical kinetic times for fuel and CO.

\[\frac{dCO}{dt} = -\frac{(CO - COeq)}{\tau_{CO}} + \frac{12Fuel}{\tau_{Fuel}} \]
(5)

and

\[\frac{dCO_2}{dt} = \frac{CO}{\tau_{CO}} \]
(5a)
\[
CO - CO_{eq} = e^{-\tau_{CO}} \left[CO(t = 0) - CO_{eq} \frac{12F_o}{\tau_f - \tau_{CO}} \right] + \frac{12F_o}{\tau_f - \tau_{CO}} e^{-\frac{t}{\tau_f}}
\]

(6)

Finally, the nitrogen oxide formation rate, a species important for combustor emissions, was modeled as a simple zero order expression.

\[
\frac{dNOx}{dt} = \frac{1}{\tau_{NOx}} \tag{7}
\]

or

\[
NOx = \frac{t}{\tau_{NOx}} \tag{8}
\]

* \(\tau_{NOx}\) has units of \(\frac{ms \cdot cc}{gmol}\)

H₂O MASS BALANCE

The inlet mixture contains only fuel, H₂O, and air, so the initial mole fractions can be easily calculated using the method of LSENS (Reference 7). This procedure is described in detail below. The mixture is completely specified by fixing the equivalence ratio, Eratio, and the water to fuel ratio, H₂OF (weight H₂O/weight fuel). We have chosen to keep the weight of the H₂O separate from the weight of the fuel so that the stoichiometric fuel/air ratio is always 0.068 for all Jet-A water to fuel ratios and 0.059 for all methane water to fuel ratios. This H₂O mass balance was used for both Jet-A and methane fuels. The term MWF can be used to represent the molecular weights of either fuel.

Let \(y_i = \frac{\text{moles } i}{\text{mole mixture}} \tag{9}\); let \(x_i = \frac{\text{moles } i}{\text{moles } O_2 \text{ in air}} \tag{10}\)

For the general chemical equation:

\[
C_{n_c}H_{n_h}O_{n_o} + \frac{4n_c + n_h - 2n_o}{4}O_2 = n_cCO_2 + \frac{n_h}{2}H_2O
\]

(11)

let \(\phi = \frac{f}{o_2} \tag{12}\); let \(\frac{f}{o_2} \text{ stoich} \frac{4\phi}{4n_c + n_h - 2n_o} \tag{13}\)

The above equations are the same as with water injection and \(n_o\) is equal to zero for Jet-A and methane. The sum of the mole fractions of all species in the system is equal to one.
\[y_f + y_{H_2O} + y_{O_2} + y_{N_2} + y_{Ar} + y_{CO} = 1.0 \] \hspace{2cm} (14)

let \(H2OF = \frac{\text{lbs } H_2O}{\text{lb fuel}} \); \hspace{1cm} \(H2OM = \frac{\text{moles } H_2O}{\text{mole fuel}} = \frac{H2OF \times MWF}{18} \) \hspace{2cm} (15)

where MWF for Jet-A is 167 and MWF for methane is 16.

\[y_{H_2O} = y_f \left(\frac{H2OF \times MWF}{18} \right) \] \hspace{2cm} (16)

\[y_f = \frac{4\phi}{4n_c + n_h + 2n_o} y_{O_2} \] \hspace{2cm} (17)

Or,

\[y_{O_2} = \frac{4n_c + n_h - 2n_o}{4\phi \left(1 + \frac{H2OF \times MWF}{18} \right) + (4n_c + n_h - 2n_o) \left(1 + x_{N_2} + x_{Ar} + x_{CO_2} \right)} \] \hspace{2cm} (18)

(See the computer code modifications in Appendix C)

DETERMINATION OF CHEMICAL KINETIC TIME

With the approach derived here, a simple direct comparison can be made between the mixing and chemical kinetic times and the minimum rate used for the computation as shown in Figure 1. The integration was performed for 2160 cases shown below for Jet-A and methane fuels with water injection.

<table>
<thead>
<tr>
<th>Input Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>1 to 40 atmospheres (increments of 10 atm)</td>
</tr>
<tr>
<td>Temperature</td>
<td>1000 to 2500K (increments of 500K)</td>
</tr>
<tr>
<td>Lean Equivalence ratios</td>
<td>0.3 to 1.0 (increments of 0.1)</td>
</tr>
<tr>
<td>Rich Equivalence ratios</td>
<td>1.0 to 2.0 (increments of 0.1)</td>
</tr>
<tr>
<td>Water to fuel mass ratio</td>
<td>0.0 to 2.0 (increments of 0.5)</td>
</tr>
<tr>
<td>Step One Time</td>
<td>1×10^{-6} to 2 ms</td>
</tr>
<tr>
<td>Step Two Time</td>
<td>0.05 to 6 ms</td>
</tr>
</tbody>
</table>
Calculations were performed isothermally using GLSENS for each condition over a time of 0 to 6 milliseconds. By computing the progress isothermally, the chemical rate constants were fixed and the chemical kinetic time was determined as a unique value of temperature, pressure and instantaneous mole fractions of fuel and water. GLSENS computes the cumulative rate of reaction for each species from all equations in the mechanism, so it is a simple matter to then compute the chemical kinetic time for each species. For the fuel equation (3) the chemical kinetic time is given as

$$\tau_f = -\frac{Fuel}{\int Fuel \, dt}$$ (19)

This simple calculation was done using additional steps in Subroutine Out2 in the GLSENS code (see Appendix D). Values for the chemical kinetic time were calculated for each concentration at each output time and each set of conditions. For time step 1, the trapezoidal rule (using $1/\tau$) was then used to average the chemical kinetic time to calculate the best value for each set of conditions and the final numbers regressed over the complete set of cases to obtain the final correlation.

A correlation could then be developed that determines the chemical kinetic time as a function of the initial overall cell fuel/air ratio, water to fuel mass ratio, pressure and temperature. The data was correlated using the same method as previously mentioned for the equilibrium equations. Two correlations for each step for each of the three species, one for the lean side and one for the rich side, were obtained. This results in a total of 12 Jet-A correlations and 12 Methane correlations. As OH is formed, the reaction rates get faster and the chemical kinetic time gets smaller. Chemical kinetic time was correlated using two different steps to increase the accuracy of the calculation. Step one is an average chemical kinetic time taken over 2.0 milliseconds. Step two is an instantaneous value that depends on the instantaneous amounts of fuel, water and oxygen. Since we were not tracking the radical concentrations, we were using H2O to indicate the state of the radical species. In other words for the reactions

- $H_2 + OH = H_2O + H$
- $CO + OH = CO_2 + H$
- $CH_4 + OH = CH_3 + H_2O$
- $N + OH = NO + H$ etc.

The radicals could be correlated with H2O because of the first reaction.

The user should want to switch from step one to step two when the molar concentration of water is greater than 1×10^{-20} moles/cc. Step two can not be used with small concentrations of water because if the value of the water concentration was zero, the entire correlation time would go to zero.
JET-A KINETIC SCHEME FOR STEP 1 (AVERAGE) AND STEP 2 (INSTANTANEOUS) METHODS

The following is GLSENS input for the 23 step, 16 species mechanism from Krishna Kundu that was used for the Jet-A calculations. The water and fuel were added as a liquid to the equilibrium program, but they were added as gases to the kinetic program to make up the reacting mixture. We did not alter the mechanism equations to compute the chemical kinetic times for water injection. The additional water took part in the reaction set as the rate equations dictated.

Jet-A Mechanism used in GLSENS

\&RTYPE GLOBAL=.TRUE., GRONLY=.FALSE., &END

H2 + OH = H2O + H 1.17E+11 1.1 3626.
H2 + O = H + OH 2.50E+15 0. 6000.
H + O2 = O + OH 4.00E+14 0. 18000.
N2 + O2 >2.0O + N2 1.00E+18 0. 122239.
H2 +2.0O > O2 + H2 5.00E+17 .5 0.
H2 +2.0H =2.0H2 4.00E+20 -1. 0.
H + O2 = HO2 1.00E+15 -1.1 0.
O + HO2 = OH + O2 1.50E+13 0. 0.
H + HO2 = H2 + O2 1.50E+13 0. 0.
CO + OH = CO2 + H 4.17E+11 0.0 1000.
CO + HO2 > CO2 + OH 5.80E+13 0. 22934.
CH + O = CO + H 1.00E+10 .5 0.
CH + NO = CO + NH 1.00E+11 0. 0.
CH + O2 = CO + OH 3.00E+10 0. 0.
C2H2 + O2 =2.0CO + H 3.00E+12 0. 49000.
N2 +2.0N = N2 + N2 1.00E+15 0. 0.
N + O2 = NO + O 6.30E+09 1. 6300.
N + OH = NO + H 3.00E+13 0. 0.
NH + O = NO + H 1.50E+13 0. 0.
NH + NO = N2 + OH 2.00E+15 -.8 0.

O + N2 + HO2 >2.0NO + H + O
.1 .1 .1 1.50E+07 1. 45900.
2.0NO + H > N2 + HO2
1.1 1. 2.50E+10 .16 8000.
N2 + O > NO + N
.5 1. 4.75E+10 .29 75010.
N + NO > N2 + O
1. 1. 3.00E+12 .2 0.
H2 + N2 +2.0CH >2.0CH +2.0NH
.1 1. 1. 1.00E+16 0. 78000.
2.0NH +2.0CH >2.0CH + N2 + H2
2. 1. 1. 1.95E+15 0. 0.
N2 + C12H23 >6.0C2H2 +11.0H + N2
.8 .8 2.50E+09 .0 30000.
N2 + C12H23 >12.0CH +11.0H + N2
.8 .8 2.50E+10 .0 30000.

For example the last three body mechanism step the rate is given by
2.5\times10^{10}T^{-0.5}e^{-30000/RT}N_2^{0.8}C_{12}H_{23}^{0.8} in an irreversible step.

Note the fuel is C_{12}H_{23}. The last two steps are irreversible fuel breakup reactions to CH and C_{2}H_{2}.
Note, some reactions are bimolecular and some are trimolecular expressions. The code follows the method of LSENS developed by Radhakrishnan (Reference 7).

PARTIAL METHANE KINETICS SCHEME

Whereas Jet-A is broken down in an irreversible molecule breaking step which has a given rate, methane, CH4 is broken down by radicals OH, H, O, etc so the fast reaction is delayed until the radical pool builds up. This forces the modeling scheme to use a two step method to predict the chemical time constants. We have just listed the CH4 reactions to illustrate this process. The complete GRI-mech mechanism is listed in Appendix B. The complicated nature of the methane mechanism makes it very difficult to obtain a correlation with so few variables over a wide range of conditions (so the resulting R² is low).

CH4 partial mechanism showing free radical attack

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Rate Constant</th>
<th>Exponent</th>
<th>Reaction Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH + CH4 = CH3 + H2O</td>
<td>1.000E+08</td>
<td>1.600</td>
<td>3120.00</td>
</tr>
<tr>
<td>OH + CO = H + CO2</td>
<td>4.760E+07</td>
<td>1.228</td>
<td>70.00</td>
</tr>
<tr>
<td>N + OH = NO + H</td>
<td>7.333E+13</td>
<td>0.000</td>
<td>1120.00</td>
</tr>
<tr>
<td>2.O + = O2</td>
<td>1.200E+17</td>
<td>-1.000</td>
<td>.00</td>
</tr>
<tr>
<td>H + H2 = H2 + M</td>
<td>1.000E+18</td>
<td>-1.000</td>
<td>.00</td>
</tr>
<tr>
<td>O + H2 = H + OH</td>
<td>5.000E+04</td>
<td>2.670</td>
<td>6290.00</td>
</tr>
<tr>
<td>H + O2 = O + OH</td>
<td>8.300E+13</td>
<td>0.000</td>
<td>14413.00</td>
</tr>
<tr>
<td>H + HO2 = O2 + H2</td>
<td>2.800E+13</td>
<td>0.000</td>
<td>1068.0</td>
</tr>
<tr>
<td>OH + H2 = H + H2O</td>
<td>2.160E+08</td>
<td>1.510</td>
<td>3430.00</td>
</tr>
<tr>
<td>O + CH4 = OH + CH3</td>
<td>1.020E+09</td>
<td>1.500</td>
<td>8600.00</td>
</tr>
<tr>
<td>OH + CH2 = CH + H2O</td>
<td>1.130E+07</td>
<td>2.000</td>
<td>3000.00</td>
</tr>
<tr>
<td>OH + CH3 = CH3OH + M</td>
<td>6.300E+13</td>
<td>0.000</td>
<td>.00</td>
</tr>
<tr>
<td>CH + CH4 = H + C2H4</td>
<td>6.000E+13</td>
<td>0.000</td>
<td>.00</td>
</tr>
<tr>
<td>CH2 + CH4 = 2.CH3</td>
<td>2.460E+06</td>
<td>2.000</td>
<td>8270.00</td>
</tr>
<tr>
<td>CH3 + CH2O = HCO + CH4</td>
<td>3.320E+03</td>
<td>2.810</td>
<td>5860.00</td>
</tr>
<tr>
<td>CH3 + CH3OH = CH2OH + CH4</td>
<td>3.000E+07</td>
<td>1.500</td>
<td>9940.00</td>
</tr>
<tr>
<td>CH3 + CH3OH = CH3O + CH4</td>
<td>1.000E+07</td>
<td>1.500</td>
<td>9940.00</td>
</tr>
<tr>
<td>CH3 + C2H4 = C2H3 + CH4</td>
<td>2.270E+05</td>
<td>2.000</td>
<td>9200.00</td>
</tr>
<tr>
<td>CH3 + C2H6 = C2H5 + CH4</td>
<td>6.140E+06</td>
<td>1.740</td>
<td>10450.00</td>
</tr>
<tr>
<td>N + O2 = NO + O</td>
<td>2.650E+12</td>
<td>0.000</td>
<td>6400.00</td>
</tr>
<tr>
<td>NO + O = NO2 + M</td>
<td>1.060E+20</td>
<td>-1.410</td>
<td>.00</td>
</tr>
</tbody>
</table>

JET-A EQUILIBRIUM CORRELATIONS WITH AND WITHOUT WATER INJECTION

Equilibrium correlations were generated by using Microsoft Excel to perform a multivariate linear regression on the large data set generated by the CEA program of Reference 8. (A detailed procedure describing the regression used for both equilibrium and finite rate chemical times can be found in Appendix A). CEA has a plot f option for direct tabulation of the output data, for ‘f/a, P, T H2O, CO, NO’. Although the equilibrium correlations were not usually used in the calculation of the chemical kinetic times, we feel that these equations could still be very useful for other calculations. Table 1 shows the Jet-A equilibrium correlations for
T4, CO and NOx for both the lean and rich cases. Figures 2 is a parity plot showing the strength of the lean Jet-A CO equilibrium correlation. This plot shows a minimal amount of scatter, mostly at an equivalence ratio of 1.0, indicating a strong correlation (R² values greater than 0.9). Note that the units of COeq and NOxeq are moles/cc. This parity plot is typical of all the variables because of the high R² values obtained. This was a correlation for all of the range of independent variables in the Table Input.

Table 1. EQUILIBRIUM Lean Jet-A with Water Injection Correlations

<table>
<thead>
<tr>
<th>Species</th>
<th>Lean (f/a ≤ 0.068)</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>$T_4 = 1725 (T^3)^{0.241} \left(\frac{f}{a} \right)^{0.442} (1 + h \frac{2a}{f})^{-0.151} P^{0.00301}$</td>
<td>0.949</td>
</tr>
<tr>
<td>CO</td>
<td>$CO_{eq} = 226(\frac{f}{a})^{2.22} (1 + h \frac{2a}{f})^{0.068} P^{0.524} \exp \left[\frac{-31647}{T} \right]$</td>
<td>0.995</td>
</tr>
<tr>
<td>NOx</td>
<td>$NOx_{eq} = 2.65e^{-8} (\frac{f}{a})^{1.52} (1 + h \frac{2a}{f})^{-0.133} P^{0.980} \exp \left[\frac{-9953}{T} \right]$</td>
<td>0.958</td>
</tr>
</tbody>
</table>

Table 2. EQUILIBRIUM Rich Jet-A with Water Injection Correlations

<table>
<thead>
<tr>
<th>Species</th>
<th>Rich (f/a > 0.068)</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>$T_4 = 163(T^3)^{1.186} \left(\frac{f}{a} \right)^{0.613} (1 + h \frac{2a}{f})^{-0.296} P^{0.00231}$</td>
<td>0.959</td>
</tr>
<tr>
<td>CO</td>
<td>$CO_{eq} = 3.85e^{-4} (\frac{f}{a})^{2.86} (1 + h \frac{2a}{f})^{-0.369} P^{0.995} \exp \left[\frac{185}{T} \right]$</td>
<td>0.990</td>
</tr>
<tr>
<td>NOx</td>
<td>$NOx_{eq} = 1.80e^{-8} (\frac{f}{a})^{-0.608} (1 + h \frac{2a}{f})^{0.418} P^{0.530} \exp \left[\frac{-38952}{T} \right]$</td>
<td>0.993</td>
</tr>
</tbody>
</table>

CHEMICAL KINETIC TIMES FOR JET-A WITH AND WITHOUT WATER INJECTION

Step One Equations for Jet-A

The following form of equation was used for the Jet-A step one correlations:

$$\tau = A(P)^a (f/a)^b (1 + h \frac{2a}{fuel})^c \exp \left[\frac{D}{T} \right]$$ (26)
where \(\tau \) is the chemical kinetic time in milliseconds, \(P \) is pressure in atm, \(f/a \) is the initial or overall mass fuel air ratio as in reference 1, \(\frac{H_2O}{fuel} \) is the initial mass water to fuel ratio and \(T \) is the temperature in Kelvin. The correlation is switched to Step Two when the water molar concentration is greater than \(1 \times 10^{-20} \).

The initial or overall fuel air ratio can be determined as follows:

\[
f / a = \left(\frac{CO + CO_2}{12} \right) \times \frac{0.79}{28N_2}
\]

The coefficients for each of the parameters in the correlations may be found in Table 3. R-square values have been included to demonstrate the strength of the correlation. R-squared is a measure of the error that the model accounts for; an R-squared value of one is ideal.

Table 3. Step One Jet-A With Water Injection Chemical Kinetic Time Correlations

<table>
<thead>
<tr>
<th>Component</th>
<th>Rich or lean</th>
<th>A</th>
<th>a</th>
<th>D</th>
<th>b</th>
<th>c</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Lean</td>
<td>7.47×10^{-5}</td>
<td>-0.60</td>
<td>14202</td>
<td>0.238</td>
<td>0.0712</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>CO Lean</td>
<td>7.13×10^{-2}</td>
<td>-0.758</td>
<td>9295</td>
<td>-0.314</td>
<td>0.159</td>
<td>0.933</td>
<td></td>
</tr>
<tr>
<td>NOx Lean</td>
<td>1.00×10^{6}</td>
<td>-1.30</td>
<td>26139</td>
<td>0.110</td>
<td>1.30</td>
<td>0.994</td>
<td></td>
</tr>
<tr>
<td>Fuel Rich</td>
<td>8.19×10^{-5}</td>
<td>-0.60</td>
<td>14206</td>
<td>0.296</td>
<td>0.153</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>CO Rich</td>
<td>1.39×10^{-3}</td>
<td>-0.882</td>
<td>6803</td>
<td>-0.222</td>
<td>-0.328</td>
<td>0.988</td>
<td></td>
</tr>
<tr>
<td>NOx Rich</td>
<td>93.2</td>
<td>-1.67</td>
<td>27755</td>
<td>-0.0582</td>
<td>0.529</td>
<td>0.983</td>
<td></td>
</tr>
</tbody>
</table>

All of the results presented here are correlated over the complete conditions listed in Table Input. Parity plots for the lean step one correlations have been created and may be found in Figures 3-5. The x-axis contains values for the chemical kinetic time generated by the full mechanism GLSENS at each condition. The y-axis contains values calculated using the chemical kinetic time correlations above at the same set of conditions. This demonstrates how close the calculated value is to the expected value and is a good measurement of the strength of the correlations. Figure 6 shows an increase in the step one chemical kinetic time with a higher water to fuel ratio. Data from the previous Jet-A chemical kinetic time correlation without water injection has also been included on this plot for comparison. In order to compare the correlations, we took various values of \(f/a, p, \) and \(T \) and obtained predictions for the previous correlation (Ref. 1 as “No Water Injection”). Then these prediction are plotted using the overall factor found here (x axis). Note that the previous work gave a much faster time (averaged over a total time as high as 10 milliseconds and accounted for the lower \(\tau \). This difference in results caused us to switch to an instantaneous correlation (Step Two) for longer times.

Step Two Equations for Jet-A

The following form of equation was used for the Jet-A step two fuel and NO\(_x\) correlations. This form of the equation produced the best fit:
\[
\tau = A(P)^a (c_{fuel})^b (c_{CO})^c (c_{H2O})^d \exp \frac{E}{T}
\]
(34)

and for the Jet-A step two CO correlation:

\[
\tau = A(P)^a (c_{fuel})^b (c_{CO})^c (c_{H2O})^d \exp \frac{F}{T}
\]
(35)

where \(P \) is pressure in atm, \(c_{fuel} \) is the instantaneous molar concentration of fuel, \(c_{CO} \) is the instantaneous molar concentration of CO. We added CO as a parameter in order to attempt to raise the \(R^2 \) value for the CO correlation. We have preceded the symbol with a c to indicate molar concentration was used and a y for mole fraction. The \(c_{CO2} \) is the instantaneous molar concentration of \(O_2 \), \(c_{H2O} \) is the instantaneous molar concentration of water, and \(T \) is the temperature in Kelvin. We have correlated to only the major species hoping that \(H_2O \) will track the minor species (OH, H, O, etc.) to allow good overall correlation and easy use of the equations.

The coefficients for each parameter are given in Table 4. Parity plots for the step two lean Jet-A correlations can be found in Figures 7-9. These figures show a minimal amount of scattering for the fuel and NO\(_x\), which is consistent with the high R-squared values as seen in Table 4. However, the CO plot shows considerably more scattering with an R-squared value of 0.578 for the lean case and 0.389 for the rich case.

Table 4. Step Two Jet-A With Water Injection Chemical Kinetic Time Correlations

<table>
<thead>
<tr>
<th>Component</th>
<th>Rich or Lean</th>
<th>(A)</th>
<th>Pressure</th>
<th>(1/T)</th>
<th>(c_{fuel})</th>
<th>(c_{CO})</th>
<th>(c_{O2})</th>
<th>(c_{H2O})</th>
<th>(R)-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>Lean</td>
<td>7.31E-06</td>
<td>-0.173</td>
<td>12412</td>
<td>0.0792</td>
<td>-0.164</td>
<td>-0.115</td>
<td>0.927</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Lean</td>
<td>9.28E-07</td>
<td>-0.164</td>
<td>8893</td>
<td>-0.15</td>
<td>0.268</td>
<td>-0.549</td>
<td>-0.0588</td>
<td>0.578</td>
</tr>
<tr>
<td>NO(_x)</td>
<td>Lean</td>
<td>2.67E-03</td>
<td>-0.628</td>
<td>28071</td>
<td>-0.186</td>
<td>-0.558</td>
<td>0.0458</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>Fuel</td>
<td>Rich</td>
<td>1.35E-04</td>
<td>-0.352</td>
<td>12962</td>
<td>0.0147</td>
<td>-0.0743</td>
<td>-0.0373</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Rich</td>
<td>0.373</td>
<td>-0.422</td>
<td>4387</td>
<td>-0.287</td>
<td>0.206</td>
<td>0.227</td>
<td>0.115</td>
<td>0.389</td>
</tr>
<tr>
<td>NO(_x)</td>
<td>Rich</td>
<td>28.9</td>
<td>-0.00805</td>
<td>19595</td>
<td>-0.117</td>
<td>-0.158</td>
<td>-0.16</td>
<td>0.438</td>
<td></td>
</tr>
</tbody>
</table>

METHANE EQUILIBRIUM CORRELATIONS WITH AND WITHOUT WATER INJECTION

The rich and lean Methane equilibrium correlations can be found in Tables 5 and 6, respectively. A parity plot for the rich Methane CO equilibrium correlation can be found in Figure 10.
Table 5. EQUILIBRIUM Lean Methane With Water Injection Correlations

<table>
<thead>
<tr>
<th>Species</th>
<th>Lean ((f/a \leq 0.058))</th>
<th>Rich ((f/a > 0.058))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>(T4 = 1565(f/a)^{0.435}(1 + \frac{h2o}{f})^{-0.069}(T3)^{0.258}(P)^{0.00284}) (0.944)</td>
<td>(T4 = 177(f/a)^{-0.559}(1 + \frac{h2o}{f})^{-0.146}(T3)^{0.176}(P)^{0.00167}) (0.976)</td>
</tr>
<tr>
<td>CO</td>
<td>(CO_{eq} = 3.37 \times 10^6(f/a)^{1.90}(1 + \frac{h2o}{f})^{0.00705}(P)^{-0.477}\exp\frac{-33388}{T}) (0.998)</td>
<td>(CO_{eq} = 72.2(f/a)^{2.55}(1 + \frac{h2o}{f})^{-0.358}(P)^{-0.00393}\exp\frac{-31365}{T}) (0.911)</td>
</tr>
<tr>
<td>NO(_x)</td>
<td>(NO_{eq} = 2.44 \times 10^{-2}(f/a)^{-1.13}\exp(1 + \frac{h2o}{f})^{-1.07}(P)^{-0.017}\exp\frac{-11415}{T}) (0.953)</td>
<td>(NO_{eq} = 0.218(f/a)^{-4.43}\exp(1 + \frac{h2o}{f})^{0.427}(P)^{-0.493}\exp\frac{-41408}{T}) (0.998)</td>
</tr>
</tbody>
</table>

Table 6. EQUILIBRIUM Rich Methane With Water Injection Correlations

<table>
<thead>
<tr>
<th>Species</th>
<th>Lean ((f/a \leq 0.058))</th>
<th>Rich ((f/a > 0.058))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>(T4 = 1565(f/a)^{0.435}(1 + \frac{h2o}{f})^{-0.069}(T3)^{0.258}(P)^{0.00284}) (0.944)</td>
<td>(T4 = 177(f/a)^{-0.559}(1 + \frac{h2o}{f})^{-0.146}(T3)^{0.176}(P)^{0.00167}) (0.976)</td>
</tr>
<tr>
<td>CO</td>
<td>(CO_{eq} = 3.37 \times 10^6(f/a)^{1.90}(1 + \frac{h2o}{f})^{0.00705}(P)^{-0.477}\exp\frac{-33388}{T}) (0.998)</td>
<td>(CO_{eq} = 72.2(f/a)^{2.55}(1 + \frac{h2o}{f})^{-0.358}(P)^{-0.00393}\exp\frac{-31365}{T}) (0.911)</td>
</tr>
<tr>
<td>NO(_x)</td>
<td>(NO_{eq} = 2.44 \times 10^{-2}(f/a)^{-1.13}\exp(1 + \frac{h2o}{f})^{-1.07}(P)^{-0.017}\exp\frac{-11415}{T}) (0.953)</td>
<td>(NO_{eq} = 0.218(f/a)^{-4.43}\exp(1 + \frac{h2o}{f})^{0.427}(P)^{-0.493}\exp\frac{-41408}{T}) (0.998)</td>
</tr>
</tbody>
</table>

CHEMICAL KINETIC TIMES FOR METHANE WITH AND WITHOUT WATER INJECTION

Step One Equations for Methane

The step one Methane chemical kinetic time correlations are of the following form:

\[
\tau = A(P)^{a}(f/a)^{b}(1 + \frac{h2o}{fuel})^{c}\exp\left[\frac{D}{T}\right]
\] \(48\)

where \(P\) is pressure in atm, \(f/a\) is the initial or overall fuel air ratio, \(\frac{h2o}{fuel}\) is the initial water to fuel ratio and \(T\) is the temperature in Kelvin.

The initial or overall fuel air ratio can be determined as follows:

\[
f/a = (fuel + (CO + CO_2)) \times 16 / \frac{0.79}{28N_2}
\] \(49\)

NASA/TM—2004-213046 13
A summary of these correlations can be found in Table 7. Parity plots for the lean step one methane with water injection correlations can be found in Figures 11-13. These parity plots show minimal scatter, which is consistent with the high R-squared values of the lean correlations. Figure 14 shows an increase in step one chemical kinetic time with a higher water to fuel ratio.

Table 7. Step One Methane With Water Injection Chemical Kinetic Time Correlations

<table>
<thead>
<tr>
<th>Component</th>
<th>Rich or Lean</th>
<th>A</th>
<th>a</th>
<th>D</th>
<th>b</th>
<th>c</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>Lean</td>
<td>2.09x10^{-4}</td>
<td>-1.07</td>
<td>22625</td>
<td>0.222</td>
<td>0.0675</td>
<td>0.996</td>
</tr>
<tr>
<td>Co</td>
<td>Lean</td>
<td>9.99x10^{-4}</td>
<td>-1.00</td>
<td>2434</td>
<td>0.101</td>
<td>0.0959</td>
<td>0.999</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>Lean</td>
<td>29395</td>
<td>-2.11</td>
<td>34859</td>
<td>0.0315</td>
<td>0.329</td>
<td>0.996</td>
</tr>
<tr>
<td>Fuel</td>
<td>Rich</td>
<td>0.0274</td>
<td>-0.328</td>
<td>14216</td>
<td>0.111</td>
<td>-0.829</td>
<td>0.75</td>
</tr>
<tr>
<td>Co</td>
<td>Rich</td>
<td>1.30x10^{-3}</td>
<td>-1.00</td>
<td>2433</td>
<td>0.215</td>
<td>0.195</td>
<td>0.999</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>Rich</td>
<td>43928</td>
<td>-2.00</td>
<td>32649</td>
<td>0.284</td>
<td>0.641</td>
<td>0.999</td>
</tr>
</tbody>
</table>

Step Two Equations for Methane

The following form of equation was used for all lean Methane step two correlations:

$$
\tau = A(P)^a (cfuel)^b (ch20)^c (1 + \frac{ch2o}{cfuel})^d \exp \left[\frac{E}{T} \right] \tag{56}
$$

The following form of equation was used for the rich Methane step two correlations for fuel and NO\textsubscript{x}:

$$
\tau = A(P)^a (cfuel)^b (co2)^c (ch2O)^d \exp \frac{E}{T} \tag{57}
$$

and for the rich Methane step two CO correlation:

$$
\tau = A(P)^a (cfuel)^b (cco)^c (co2)^d (ch2O)^e \exp \frac{F}{T} \tag{58}
$$

Table 8 provides a summary of these correlations, and lean parity plots can be found in Figures 15-17.
Table 8. Step Two Methane With Water Injection Chemical Kinetic Time Correlations

<table>
<thead>
<tr>
<th>Component</th>
<th>A</th>
<th>Pressure</th>
<th>1/T</th>
<th>cfuel</th>
<th>cCO</th>
<th>cO2</th>
<th>cH2O</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel (lean)</td>
<td>3.50x10^-9</td>
<td>-0.0713</td>
<td>14149</td>
<td>-0.307</td>
<td>-</td>
<td>-</td>
<td>-0.465</td>
<td>-0.221</td>
</tr>
<tr>
<td>CO (lean)</td>
<td>3.07x10^-3</td>
<td>-1.09</td>
<td>2291</td>
<td>0.0957</td>
<td>-</td>
<td>-</td>
<td>-9.82x10^-4</td>
<td>0.131</td>
</tr>
<tr>
<td>NOx (lean)</td>
<td>1.48x10^6</td>
<td>-2.28</td>
<td>37437</td>
<td>0.239</td>
<td>-</td>
<td>-</td>
<td>-0.0206</td>
<td>0.778</td>
</tr>
<tr>
<td>Fuel (rich)</td>
<td>9.99x10^-11</td>
<td>-0.761</td>
<td>19950</td>
<td>0.050</td>
<td>-</td>
<td>-0.549</td>
<td>-0.350</td>
<td>-</td>
</tr>
<tr>
<td>CO (rich)</td>
<td>1.64E-10</td>
<td>0.0722</td>
<td>7800</td>
<td>-0.261</td>
<td>0.0568</td>
<td>-0.636</td>
<td>-0.00341</td>
<td>-</td>
</tr>
<tr>
<td>NOx (rich)</td>
<td>1.67E+06</td>
<td>-2.45</td>
<td>24117</td>
<td>0.05</td>
<td>-</td>
<td>0.119</td>
<td>-0.281</td>
<td>-</td>
</tr>
</tbody>
</table>

TWO STEP METHANE CHEMICAL KINETIC TIMES WITHOUT WATER INJECTION

The step two methane chemical kinetic times were also correlated without water injection. The previous correlations are a massive regression over all water injection values. If one were not using water injection, the relations would be useful, but the following relations resulted in a higher R^2 factor. The equations are of the same form as the methane step two correlations with water injection. The results can be found in Table 9:

Table 9. Step Two Methane Without Water Injection Chemical Kinetic Time Correlations

<table>
<thead>
<tr>
<th>Component</th>
<th>A</th>
<th>Pressure</th>
<th>1/T</th>
<th>cfuel</th>
<th>cCO</th>
<th>cO2</th>
<th>cH2O</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel (lean)</td>
<td>1.86x10^-9</td>
<td>0.479</td>
<td>13446</td>
<td>0.182</td>
<td>-</td>
<td>0.0528</td>
<td>-0.704</td>
<td>0.349</td>
</tr>
<tr>
<td>CO (lean)</td>
<td>1.43x10^-3</td>
<td>-1.04</td>
<td>2371</td>
<td>0.0461</td>
<td>-</td>
<td>-</td>
<td>-5.7x10^-4</td>
<td>-</td>
</tr>
<tr>
<td>NOx (lean)</td>
<td>10.0</td>
<td>-1.92</td>
<td>38229</td>
<td>0.0389</td>
<td>-</td>
<td>-</td>
<td>-0.200</td>
<td>-</td>
</tr>
<tr>
<td>Fuel (rich)</td>
<td>2.02x10^-14</td>
<td>0.498</td>
<td>14860</td>
<td>0.252</td>
<td>-</td>
<td>-0.776</td>
<td>-0.756</td>
<td>0.254</td>
</tr>
<tr>
<td>CO (rich)</td>
<td>6.73x10^-13</td>
<td>0.244</td>
<td>8229</td>
<td>-0.274</td>
<td>-0.237</td>
<td>-0.802</td>
<td>0.217</td>
<td>-</td>
</tr>
<tr>
<td>NOx (rich)</td>
<td>0.0574</td>
<td>-1.22</td>
<td>26010</td>
<td>-0.103</td>
<td>-</td>
<td>-0.0583</td>
<td>-0.617</td>
<td>-</td>
</tr>
</tbody>
</table>

COMBINED LEAN AND RICH STEP TWO METHANE TIMES

In this case the program would not have to choose between the rich and lean fuel/air zones, but could use the correlation directly. The lean and rich step two methane chemical kinetic times were also combined into one large data set and correlated. The results of this correlation can be found in Table 10. The fuel correlation is in the following form:
\[\tau = A(P)^a (cfuel)^b (co2)^c (cH2O)^d \exp \frac{E}{T} \]

(71)

while the CO and NO\textsubscript{x} correlations are modeled by the following form:

\[\tau = A(P)^e (cfuel)^f (ch20)^g (1+ \frac{ch2o}{cfuel})^h \exp \frac{E}{T} \]

(72)

Table 10. Combined Step Two Methane With Water Injection Chemical Kinetic Time Correlations

<table>
<thead>
<tr>
<th>Component</th>
<th>A</th>
<th>Pressure</th>
<th>1/T</th>
<th>cfuel</th>
<th>co2</th>
<th>cH2O</th>
<th>(1+ \frac{ch2o}{cfuel})</th>
<th>R-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>6.20x10^{-9}</td>
<td>-0.290</td>
<td>14259</td>
<td>-0.0532</td>
<td>-0.332</td>
<td>-0.429</td>
<td>-</td>
<td>0.433</td>
</tr>
<tr>
<td>CO</td>
<td>1.18x10^{26}</td>
<td>-5.37</td>
<td>-1877</td>
<td>4.68</td>
<td>-</td>
<td>-0.106</td>
<td>4.90</td>
<td>0.627</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>2.42x10^{-14}</td>
<td>0.585</td>
<td>37951</td>
<td>-2.92</td>
<td>-</td>
<td>0.0539</td>
<td>-2.98</td>
<td>0.879</td>
</tr>
</tbody>
</table>

COMPARISON TO NO\textsubscript{x} DATA WITH WATER INJECTION

An important result of water injection into Jet-A and methane fuels is the reduction of NO\textsubscript{x} formation. The NO\textsubscript{x} concentrations calculated using the chemical kinetic time correlations were compared to water injection data presented in reference 2. This reduction is with constant T4. So the equations from Table 1 Lean T4 is solved for the increased f/a with an increase in \(h2o / f\), then the NO\textsubscript{x} value Table 3 Step One Lean is solved for the new NO\textsubscript{x} value. Figures 18 and 19 show the ratio of NO\textsubscript{x} with water injection to NO\textsubscript{x} without water injection versus weight fraction ratio of water to air for Jet-A and methane respectively from the correlations, at a fuel air ratio of 0.05 as shown in reference 2. The Jet-A predicted data behaves very similarly to the given experimental data while there is more of a difference in the methane prediction. Although the temperature is constant and the kinetic mechanism remains the same there is a change in kinetics rate due to water dilution. The residence time of the combustor is decreased because of the increased throughput with water addition (t corrected results) and the molecular weight of the mixture is decreased with water addition (T constant).

TANKS IN SERIES MODEL FOR PREDICTING EMISSIONS

A tanks-in-series Fortran program was developed to simulate CO and NO\textsubscript{x} production, so that it may be compared to the water injection data in reference 9. This model accounts for the increase in fuel/air ratio in the initial fuel injection and mixing process. Figure 20-23 show the results of this comparison.
Pf is the ratio of the tank f/a to the exit f/a. The f/a for tank 2 was limited to stoichiometric, to prevent it from going overstoichiometric as the exit f/a was increased. Reference 9 uses 15 reactors with the complete GRI Mech 2.11 mechanism compared to only the three reactors used here. Obviously one can adjust the times and equivalence ratios of the tanks, or add tanks until the output of the emissions matched the experimental data. We chose to not manipulate the parameters and determine the outcome. The results were very good.

The Fortran computer code is given in Appendix F. In this calculation we only use Step One, because it is a well stirred reactor. We had to compute the dilution factors due to Air addition between stages. We had chosen the equivalence ratio for the first stage to be one. Pf is the ratio of the equivalence ratio of the stage to the exit value. The following equation is the balanced reaction used to model the combustion of the methane fuel:

\[
\phi CH_4 + (1 + \frac{x}{4})O_2 + (1 + \frac{x}{4})\frac{79}{21}N_2 + \frac{16}{18}(\frac{H2O}{F})\phi \rightarrow \\
\phi CO_2 + (\frac{x}{2} + \frac{16}{18} \frac{H2O}{F} \phi) H2O + [(1-\phi)(1+\frac{x}{4}))]O_2 + (1+\frac{x}{4})\frac{79}{21}N_2
\]

where \(x\) is the ratio of hydrogen to carbon, and is equal to 4 for methane. The \(\frac{H2O}{F}\) term is the initial water to fuel ratio and \(\phi\) is the overall equivalence ratio.

This equation was used to obtain a wet to dry correction so that the generated NOx and CO data could be compared to existing data. The concentrations were corrected to 15% O2.

SUGGESTIONS FOR USING THE REDUCED EQUATIONS

In this section we show how our correlations might be used in a typical kinetics program to calculate the amount of reaction

The fuel equations that we use are:

\[
\frac{dFuel}{dt} = -\frac{Fuel}{\tau_{Fuel}}
\] (76)
where for step one:

\[
\tau_{\text{Fuel(lean)}} = 7.47 \times 10^{-5} \left(\frac{f}{a} \right)_o^{0.238} (P)^{-0.60} \left(1 + \frac{h2o}{fuel} \right)^{0.0712} \exp \frac{14202}{T}
\]

(77)

Equation (76) is the “net” rate, so one does not have to compute the reverse rate. Then

\[
\frac{dF}{dt} = -\frac{F \exp \frac{14202}{T}}{7.47 \times 10^{-5} \left(\frac{f}{a} \right)_o^{0.238} (P)^{-0.60} \left(1 + \frac{h2o}{fuel} \right)^{0.0712}} \Rightarrow -\frac{F}{C} e^{-\frac{E}{RT}}
\]

(78)

The denominator C is a constant since we take the initial conditions as being held constant throughout the reaction and one can treat the T4 constant as an activation energy \((14202 \times 1.987) = 28219\).

One can relate \((f/a)_o\) to \(F\) of a mixture by:

\[
F_o = C_{12}H_{25} + \frac{1}{12}(CO + CO_2) \text{ moles} \text{ cc}
\]

(79)

\[
\rho = \frac{P}{82.056T} \frac{\text{moles}}{\text{cc mix}}
\]

(80)

\[
x_{F_0} = \frac{F_o}{\rho} = \frac{f \frac{gm}{167}}{\frac{fgm}{29} + \frac{H2O}{18F}} = \frac{(f/a)_o}{(f/a)_o + 5.76 + 9.28} \Rightarrow \frac{(f/a)_o}{\frac{H2O}{F}}
\]

(81)

Note, \(gm\) is the grams of component. If some fuel had reacted one can use Equation (81) to find \(f/a_o\);

\[
(f/a)_o = \frac{5.76 F}{\rho} \left(1 - \frac{F}{\rho} \frac{H2O}{F} \right)
\]

(82)

Given Equation (78) above

\[
\frac{dF}{dt} \Rightarrow -\frac{F}{C} e^{-\frac{E}{RT}} \text{ which is directly usable by an Arrhenius .kinetics code}
\]

(83)

Then the mass balance equation is
\[C_{12}H_{23} + \left(6 + \frac{23}{4}\right)O_2 = 12CO + \frac{23}{2} H2O \]

(84)

To avoid fractional coefficients, one could use any number of methods, such as:

\[C_{12}H_{23} + (6)O_2 = 12CO + 23H2O \]

(85)

For CO

\[\frac{dCO}{dt} = \frac{-CO}{\tau_{CO}} \]

(86)

And for NOx

\[\frac{dNOx}{dt} = \frac{1}{\tau_{NOx}} = \frac{1}{C^o} e^{-\frac{26139}{T}} \]

(87)

\[N_2 + O_2 = 2NO \]

(88)

So

\[\frac{dN2}{dt} = \frac{1}{2} \frac{dNO}{dt} = \frac{1}{2C^o} e^{-\frac{26139}{T}} \]

(89)

This completes the equations that one would need to simulation of the chemical kinetics. In our model we have only three rates and seven species, therefore the step size can be large and the rates are no longer coupled. This should be very fast.

SIMULATION OF GLSENS WITH THE TWO STEP MODEL WITHOUT WATER INJECTION

In this example we compare directly the new two time step method with the complete kinetic mechanism for an arbitrary constant temperature of 2000K and at a constant pressure of two atmospheres. The initial fuel/air ratio was taken as 0.0526 with zero water injection. We used a simple Fortran code with a Newton integration method given in Appendix G. The results are shown in Figures 24 and 25. The results from methane was one reason for creating the two step method with step two trying to follow the instantaneous reaction times though correlation with H2O as the tracking species. Step 2 is very important for prediction of combustion stability and blowout for methane.

Figure 24 shows the rapid decreases in the chemical reaction time. This model is not as fast as the full kinetics version so the concentration decrease (Figure 25) lags the full kinetics version as well. The kinetics calculations in comparison the mixing times from (1.e-5 to 1.e-3 seconds) maybe much more relevant and accurate.
CONCLUSIONS

Much work still needs to be done to explore possible benefits and detriments of water injection in combustion. A simplified kinetic scheme for Jet-A and methane fuels with water injection resulted in a two time step correlation that calculates chemical kinetic times for fuel, CO, and NOx. These chemical kinetic time equations can then be used in a numerical combustor code to compare the chemical kinetic time with the turbulent mixing time. Strong step one Jet-A correlations were developed ($R^2 > 0.9$). The Jet-A step two correlations for CO and NOx are slightly weaker, but still thought to be effective. The Methane step one correlations were all very strong, while the rich step two correlations had considerably smaller R-squared values. However, because we are trying to correlate so many values over a wide range of conditions, we will accept a small amount of scatter. These twenty four equations are believed to be extremely useful in the comparison of kinetic reaction and turbulent mixing times and in the computation of kinetic rate results.
Performing Multiple Linear Regression on a Logarithmic Equation

This regression technique may be used to develop a correlation between a dependent variable and one or more independent variables. First the equation to be used must be linearized. An example of an exponential equation used here is shown below.

\[
A = BC^c D^d \exp\left(\frac{e}{T}\right) \quad \text{(Non-linear form)} \tag{A1}
\]

\[
\ln(A) = \ln(B) + c \ln(C) + d \ln(D) + \frac{e}{T} \quad \text{(Linear form)} \tag{A2}
\]

Columns of data containing the independent variables (natural log of C, natural log of D, 1/T,) and the independent variable (natural log of A) were contained in an Excel spreadsheet. (It is easiest to have the independent variables adjacent to each other, followed by the dependent variable.)

The multiple variable regression analysis is located in the Data Analysis Toolpak. The Data Analysis Toolpak must be added into the spreadsheet if it is not already running in Excel. In order to add it, select the ‘Add ins’ button from the Tools menu. Click on the Analysis Toolpak option and click OK to accept this choice. Then choose ‘Data Analysis’ from the Tools menu and double click on ‘regression’. Click on the ‘Input Y Range’ box and highlight the column that contains the logarithm of the dependent variable and press return. Click on the ‘Input X Range’ box and highlight the columns containing all of the independent variables. (In this case ln(C), ln(D) and 1/T). Press OK to begin the regression. The regression data will be contained in a new worksheet. The variable labeled ‘intercept’ will be equal to the natural log of coefficient B. The remaining coefficients (c,d, and e) will be given as X Variable 1,X Variable 2 and X Variable 3 respectively. This process is quick and accurate for Excel 2002 and was used for all equations given in this report. Excel has to capability to handle one dependent variable and multiple independent variables. As many as 12,000 points were used in the regressions.
APPENDIX B

COMPLETE GRI-MECH VERSION 2.1 (REF. 10) CH4 MECHANISM USED

&RTYPE GLOBAL=.TRUE., GRONLY=.FALSE., &END

2.00 = O2 M 1.200E+17 -1.000 .00
THIRDBODY
H2 2.40 H2O 15.40 CH4 2.00 CO 1.75
CO2 3.60 C2H6 3.00 N2 0.83 END

O = OH M 5.000E+17 -1.000 .00
THIRDBODY
H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 N2 0.5 END

O = OH M 6.020E+14 .000 3000.00
THIRDBODY
H2 2.00 O2 6.00 H2O 6.00 CH4 2.00
CO 1.50 C2O 3.50 C2H6 3.00 END

O = OH M 3.000E+13 .000 8000.00
THIRDBODY
H2 2.00 O2 6.00 H2O 6.00 CH4 2.00
CO 1.50 C2O 3.50 C2H6 3.00 END

O = HCO M 1.000E+14 .000 0.00
THIRDBODY
H2 2.00 O2 6.00 H2O 6.00 CH4 2.00
CO 1.50 C2O 3.50 C2H6 3.00 END

O = HCO M 2.800E+18 -.860 .00
THIRDBODY
H2 2.00 O2 6.00 H2O 6.00 CH4 2.00
CO 1.50 C2O 3.50 C2H6 3.00 END

O = HCO M 2.0CO 1.000E+14 .000 0.00
THIRDBODY
H2 2.00 O2 6.00 H2O 6.00 CH4 2.00
CO 1.50 C2O 3.50 C2H6 3.00 END

O = H2O2 M 3.000E+20 -1.720 .00
H = H2O2 M 2.0H2 =2.0H2 9.000E+16 -.600 .00
H = H2O2 M 2.0H2 =2.0H2 9.000E+16 -.600 .00
H = H2O2 M 2.0H2 =2.0H2 9.000E+16 -.600 .00
THIRDBODY

H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 N2 0.7
H CH3 = CH4 M 1.270E+16 -0.630 383.00
THIRDBODY

H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 N2 0.7
H HCO = CH2OH M 5.400E+11 0.454 2600.00
THIRDBODY

H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 N2 0.7
H CH2O = CH3O M 5.000E+13 0.000 8000.00
THIRDBODY

H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 N2 0.7
H CH3O = CH3OH M 4.200E+13 0.000 4870.00
THIRDBODY

H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 N2 0.7
H C2H2 = C2H3 M 5.600E+12 0.000 2400.00

NASA/TM—2004-213046
H C2H3 = C2H4 M 6.080E+12 .270 280.00
THIRDBODY
H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 END
H C2H3 = H2 C2H2 3.000E+13 .000 .00
H C2H4 = C2H5 M 1.080E+12 .454 1820.00
THIRDBODY
H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 N2 0.7 END
H C2H4 = C2H3 H2 1.325E+06 2.530 12240.00
H C2H5 = C2H6 M 5.210E+17 -.990 1580.00
THIRDBODY
H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 N2 0.7 END
H C2H5 = H2 C2H4 2.000E+12 .000 .00
H C2H6 = C2H5 H2 1.150E+08 1.900 7530.00
H CH2CO = HCCO H2 5.000E+13 .000 8000.00
H CH2CO = CH3 CO 1.130E+13 .000 3428.00
H HCCOH = H CH2CO 1.000E+13 .000 .00
H2 CO = CH2O M 4.300E+07 1.500 79600.00
THIRDBODY
H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 END
OH H2 = H H2O 2.160E+08 1.510 3430.00
OH OH = H2O2 M 7.400E+13 -.370 .00
THIRDBODY
H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 N2 0.7 END
2.0OH = O H2O 3.570E+04 2.400 -2110.00
OH HO2 = O2 H2O 2.900E+13 .000 -500.00
OH H2O2 = HO2 H2O 1.750E+12 .000 320.00
OH H2O2 = HO2 H2O 5.800E+14 .000 9560.00
OH C = H CO 5.000E+13 .000 .00
OH CH = H HCO 3.000E+13 .000 .00
OH CH2 = H CH2O 2.000E+13 .000 .00
OH CH2 = CH H2O 1.130E+07 2.000 3000.00
OH CH3 = CH3OH M 6.300E+13 .000 .00
THIRDBODY
H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 END
OH CH3 = CH2 H2O 5.600E+07 1.600 5420.00
OH CH4 = CH3 H2O 1.000E+08 1.600 3120.00
OH CO = H CO2 4.760E+07 1.228 70.00
OH HCO = H2O CO 5.000E+13 .000 .00
OH CH2O = HCO H2O 3.430E+09 1.180 -447.00
OH CH3O = H2O CH2O 5.000E+12 .000 .00
OH C2H = H HCCO 2.000E+13 .000 .00
OH C2H2 = H CH2CO 2.180E-04 4.500 -1000.00
OH C2H2 = C2H H2O 3.370E+07 2.000 14000.00
OH C2H2 = CH3 CO 4.830E-04 4.000 -2000.00
OH C2H3 = H2O C2H2 5.000E+12 .000 .00
OH C2H4 = C2H3 H2O 3.600E+06 2.000 2500.00
OH C2H6 = C2H5 H2O 3.540E+06 2.120 870.00
OH CH2CO = HCCO H2O 7.500E+12 .000 2000.00
2.0OH2 = O2 H2O2 1.300E+11 .000 -1630.00
2.0OH2 = O2 H2O2 4.200E+14 .000 12000.00
H2O CH2 = OH CH2O 2.000E+13 .000 .00
<table>
<thead>
<tr>
<th>Reaction</th>
<th>Products</th>
<th>Reagents</th>
<th>Rate Constant (s⁻¹)</th>
<th>Temperature</th>
<th>Energy (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO₂ + CH₃ = O₂ + CH₄</td>
<td>1.000E+12</td>
<td>.000</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HO₂ + CH₃ = OH + CH₃O</td>
<td>2.000E+13</td>
<td>.000</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HO₂ + CO = OH + CO₂</td>
<td>1.500E+14</td>
<td>.000</td>
<td>23600.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HO₂ + CH₂O = OH + CO₂</td>
<td>1.500E+14</td>
<td>.000</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C + O₂ = O + CO</td>
<td>5.800E+13</td>
<td>.000</td>
<td>576.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C + CH₂ = H + C₂H</td>
<td>5.000E+13</td>
<td>.000</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C + CH₃ = H + C₂H₂</td>
<td>5.000E+13</td>
<td>.000</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH + O₂ = O + HCO</td>
<td>3.300E+13</td>
<td>.000</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH + H₂ = H + CH₂</td>
<td>1.107E+08</td>
<td>1.790</td>
<td>1670.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH + H₂O = H + CH₂O</td>
<td>1.713E+13</td>
<td>.000</td>
<td>-755.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH + CH₂O = H + H₂CO</td>
<td>9.460E+13</td>
<td>.000</td>
<td>-515.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH + CH₃ = H + C₂H₂</td>
<td>5.000E+13</td>
<td>.000</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH + CH₄ = H + C₂H₃</td>
<td>3.000E+13</td>
<td>.000</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH + CO = HCO + M</td>
<td>5.000E+13</td>
<td>.000</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THIRDBODY

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Products</th>
<th>Reagents</th>
<th>Rate Constant (s⁻¹)</th>
<th>Temperature</th>
<th>Energy (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂ + 2.00 H₂O + 6.00 CH₄ + 2.00 CO</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ + 2.00 C₂H₆ + 3.00 N₂</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH + CO₂ = HCO + CO</td>
<td>3.400E+12</td>
<td>.000</td>
<td>690.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH + CH₂O = H + CH₂CO</td>
<td>9.460E+13</td>
<td>.000</td>
<td>-515.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH + HCO = CO + CH₂</td>
<td>5.000E+13</td>
<td>.000</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂ + O₂ = OH + HCO</td>
<td>1.320E+13</td>
<td>.000</td>
<td>1500.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂ + H₂ = H + CH₃</td>
<td>5.000E+05</td>
<td>2.000</td>
<td>7230.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0CH₂ = H + C₂H₂</td>
<td>3.200E+13</td>
<td>.000</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂ + CH₃ = H + C₂H₄</td>
<td>4.000E+13</td>
<td>.000</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂ + CH₄ = 2.0CH₃</td>
<td>2.460E+06</td>
<td>2.000</td>
<td>8270.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂ + CO = CH₂CO + M</td>
<td>8.100E+11</td>
<td>.500</td>
<td>4510.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THIRDBODY

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Products</th>
<th>Reagents</th>
<th>Rate Constant (s⁻¹)</th>
<th>Temperature</th>
<th>Energy (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂ + 2.00 H₂O + 6.00 CH₄ + 2.00 CO</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ + 2.00 C₂H₆ + 3.00 N₂</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂ + HCO = C₂H₃ + CO</td>
<td>3.000E+13</td>
<td>.000</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃ + O₂ = O + CH₃O</td>
<td>2.675E+13</td>
<td>.000</td>
<td>28800.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃ + O₂ = OH + CH₂O</td>
<td>3.600E+10</td>
<td>.000</td>
<td>8940.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃ + H₂O₂ = HO₂ + CH₄</td>
<td>2.450E+04</td>
<td>2.470</td>
<td>5180.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0CH₃ = H + C₂H₅</td>
<td>4.990E+12</td>
<td>.100</td>
<td>10600.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₅ + O₂ = HO₂ + C₂H₄</td>
<td>8.400E+11</td>
<td>.000</td>
<td>3875.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THIRDBODY

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Products</th>
<th>Reagents</th>
<th>Rate Constant (s⁻¹)</th>
<th>Temperature</th>
<th>Energy (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂ + 2.00 H₂O + 6.00 CH₄ + 2.00 CO</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ + 2.00 C₂H₆ + 3.00 N₂</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0CH₃ = H + C₂H₅</td>
<td>4.990E+12</td>
<td>.100</td>
<td>10600.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃ + HCO = CH₄ + CO</td>
<td>2.648E+13</td>
<td>.000</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃ + CH₂O = HCO + CH₄</td>
<td>3.320E+03</td>
<td>2.810</td>
<td>5860.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃ + CH₃OH = CH₂O + CH₄</td>
<td>3.000E+07</td>
<td>1.500</td>
<td>9940.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃ + CH₃OH = CH₃O + CH₄</td>
<td>1.000E+07</td>
<td>1.500</td>
<td>9940.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃ + C₂H₄ = C₂H₃ + CH₄</td>
<td>2.270E+05</td>
<td>2.000</td>
<td>9200.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃ + C₂H₆ = C₂H₅ + CH₄</td>
<td>6.140E+06</td>
<td>1.740</td>
<td>10450.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCO + O₂ = HO₂ + CO</td>
<td>7.600E+12</td>
<td>.000</td>
<td>400.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂OH + O₂ = HO₂ + CH₂O</td>
<td>1.800E+13</td>
<td>.000</td>
<td>900.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃O + O₂ = HO₂ + CH₂O</td>
<td>4.280E-13</td>
<td>7.600</td>
<td>-3530.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H + O₂ = HCO + CO</td>
<td>5.000E+13</td>
<td>.000</td>
<td>1500.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H + H₂ = H + C₂H₂</td>
<td>4.070E+05</td>
<td>2.400</td>
<td>200.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₃ + O₂ = HCO + CH₂O</td>
<td>3.980E+12</td>
<td>.000</td>
<td>-240.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M + C₂H₄ = H + C₂H₂</td>
<td>8.000E+12</td>
<td>.440</td>
<td>88770.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THIRDBODY

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Products</th>
<th>Reagents</th>
<th>Rate Constant (s⁻¹)</th>
<th>Temperature</th>
<th>Energy (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂ + 2.00 H₂O + 6.00 CH₄ + 2.00 CO</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ + 2.00 C₂H₆ + 3.00 N₂</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₅ + O₂ = HO₂ + C₂H₄</td>
<td>8.400E+11</td>
<td>.000</td>
<td>3875.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCO + O₂ = OH + 2.0CO</td>
<td>1.600E+12</td>
<td>.000</td>
<td>854.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.0HCCO = 2.0CO C2H2 1.000E+13 .000
N NO = N2 O 3.500E+13 .000
330.00
N O2 = NO O 2.650E+12 .000
6400.00
N OH = NO H 7.333E+13 .000 1120.00
N2O O = NO2 H 2.900E+13 .000 23150.00
N2O H = N2 OH 4.400E+14 .000 18880.00
N2O O = NO H2O 2.000E+12 .000 21060.00
M N2O = N2 O 1.300E+11 .000 59620.00

THIRDBODY
H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 N2 0.625 END
HO2 NO = NO2 OH 2.110E+12 .000 -480.00
480.00
NO O = NO2 M 1.060E+20 -1.410 .00

THIRDBODY
H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 END
NO2 O = NO O2 3.900E+12 .000 -240.00
NO2 H = NO OH 1.320E+14 .000 360.00
NH O = NO H 5.000E+13 .000 .00
NH H = N H2 3.200E+13 .000 330.00
NH OH = HNO H 2.000E+13 .000 .00
NH OH = N H2O 2.000E+09 1.200 .00
NH O2 = HNO O 4.610E+05 2.000 6500.00
NH O2 = NO OH 1.280E+06 1.500 100.00
NH N = N2 H 1.500E+13 .000 .00
NH H2O = HNO H2 2.000E+13 .000 13850.00
NH NO = N2 OH 2.160E+13 -.230 .00
NH NO = N2O H 4.160E+14 -.450 .00
NH2 O = OH NH 7.000E+12 .000 .00
NH2 O = H HNO 4.600E+13 .000 .00
NH2 H = NH H2 4.000E+13 .000 3650.00
NH2 OH = NH H2O 9.000E+07 1.500 -460.00
M NNH = N2 H 3.300E+08 .000 .00
M NNH = N2 H 1.300E+14 -.110 4980.00

THIRDBODY
H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 N2 0.7 END
NNH O2 = HO2 N2 5.000E+12 .000 .00
NNH O = OH N2 2.500E+13 .000 .00
NNH O = NH NO 7.000E+13 .000 .00
NNH H = H2 N2 5.000E+13 .000 .00
NNH OH = H2O N2 2.000E+13 .000 .00
NNH CH3 = CH4 N2 2.500E+13 .000 .00
H NO = HNO M 8.950E+19 -1.320 740.00

THIRDBODY
H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 N2 0.7 END
HNO O = NO OH 2.500E+13 .000 .00
HNO H = H2 NO 4.500E+11 .720 660.00
HNO OH = NO H2O 1.300E+07 1.900 -950.00
HNO O2 = HO2 NO 1.000E+13 .000 13000.00
CN O = CO N 7.700E+13 .000 .00
THIRD BODY

H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 N2 0.7 END
NCO NO N2O CO 2.850E+17 -1.520 740.00
NCO NO N2 CO2 5.700E+18 -2.000 800.00
M HCN H CN 1.040E+29 -3.300

126600.00
THIRD BODY

H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 N2 0.7 END
HCN O NCO H 1.107E+04 2.640 4980.00
HCN O NH CO 2.767E+03 2.640 4980.00
HCN N CN OH 2.134E+09 1.580 26600.00
HCN OH HOCN H 1.100E+06 2.360 26600.00
HCN OH HNCO H 4.400E+03 2.260 6400.00
HCN OH NH2 CO 1.600E+02 2.560 9000.00
H HCN N HNCN M 1.400E+26 -3.400 1900.00

THIRD BODY

H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 N2 0.7 END
H2CN N N2 CH2 6.000E+13 .000 400.00
C N2 CN N 6.300E+13 .000 46020.00
CH N2 HCN N 2.857E+08 1.100 20400.00
CH2 N2 HCN NH 1.000E+13 .000 74000.00
C NO CN O 1.900E+13 .000 .00
C NO CO N 2.900E+13 .000 .00
CH NO HCN O 5.000E+13 .000 .00
CH NO H NCO 2.000E+13 .000 .00
CH NO N HCO 3.000E+13 .000 .00
CH2 NO H HNCO 3.100E+17 -1.380 1270.00
CH2 NO OH HCN 2.900E+14 -6.90 760.00
CH2 NO H HNCO 3.800E+13 -3.36 580.00
CH3 NO H HCN H2O 9.600E+13 .000 28800.00
CH3 NO H H2CN OH 1.000E+12 .000 21750.00
HNCO O NH CO2 9.800E+07 1.410 8500.00
HNCO O HNO CO 1.500E+08 1.570 44000.00
HNCO O NCO OH 2.200E+06 2.110 11400.00
HNCO H NH2 CO 2.250E+07 1.700 3800.00
HNCO H H2 NCO 1.050E+05 2.500 13300.00
HNCO OH NCO H2O 4.650E+12 .000 6850.00
HNCO OH NH2 CO2 1.550E+12 .000 6850.00
M HNCO NH CO 1.180E+16 .000 84720.00

THIRD BODY

H2 2.00 H2O 6.00 CH4 2.00 CO 1.50
CO2 2.00 C2H6 3.00 N2 0.7 END
HCNO H H HNCO 2.100E+15 -6.90 2850.00
HCNO H OH HCN 2.700E+11 .180 2120.00

NASA/TM—2004-213046 28
HCNO H = NH2 CO 1.700E+14 -.750 2890.00
HOCN H = H HNCO 2.000E+07 2.000 2000.00
HCCO NO = HCNO CO 2.350E+13 .000 .00
CH3 N = H2CN H 6.100E+14 -.310 290.00
CH3 N = HCN H2 3.700E+12 .150 -90.00
NH3 H = NH2 H2 5.400E+05 2.400 9915.00
NH3 OH = NH2 H2O 5.000E+07 1.600 955.00
NH3 O = NH2 OH 9.400E+06 1.940 6460.00
NH + NO = N2 + OH 2.000E+15 -.8 0.

H O2 H2O = H2O 9.380E+18 -.760 .00
H O2 N2 = H2O N2 3.750E+20 -1.720 .00
OH CH2 OH = H2O CH2O 5.000E+12 .000 .00
OH CH3 OH = CH2 OH H2O 1.440E+06 2.000 -840.00
OH CH3 OH = CH3O H2O 6.300E+06 2.000 1500.00
HCO H2O = H CO 2.244E+18 -1.000 17000.00
NCO OH = NO H 2.500E+12 .000 .00
NCO OH = NO H CO 2.500E+12 .000 .00
APPENDIX C

MODIFICATIONS TO GLSENS FOR WATER INJECTION

C WATER INJECTION MODIFICATION FOR CH4 TO SUBROUTINE INIT
15 IF (FUEL.EQ.BLANK) GO TO 80
C SPECIAL COMPOSITION INPUT
 DO 20 J=1,NRS
 IF (FUEL.NE.DSPNM(J)) GO TO 20
 JFUEL=J
 GO TO 30
 20 CONTINUE
 WRITE (LWRITE,25) FUEL
25 FORMAT(//,7H0(INIT),5X,'***** WARNING: INPUT FUEL NAME "',A8,
1 '" IS NOT IN REACTANT LIST *****',//)
 NEXT=.TRUE.
 RETURN
30 IF (ERATIO.NE.0.) GO TO 35
 IF (FLAIR.EQ.0.) GO TO 80
 C FUEL-OXIDANT MASS RATIO SPECIFIED
 TERM1 = AIRMW*FLAIR/MW(JFUEL)
 FRO2 = 1.0/(1.0 + NOXRAT + ARAT + CRAT)
 TERM2 = 1.0/(1.0 + TERM1)
 CONCO2 = DBLE(FRO2*TERM2)
 GO TO 40
 C FUEL-OXIDANT EQUIVALENCE RATIO SPECIFIED
35 H2OMF=H2OF*16./18.
 TERM1 = 4.0*ERATIO*(1.+H2OMF)
 TINP = 4.0*SCC + SCH - 2.0*SCOX
 ERAT=ERATIO
 TERM2 = 1.0 + NOXRAT + ARAT + CRAT
 FRO2 = 1.0/TERM2
 TERM2 = 1.0/(TERM1 + TINP*TERM2)
 CONCO2 = DBLE(TINP*TERM2)
 C
40 IF (MOLEF) GO TO 42
 C WARNING: MOLEF = .FALSE. FOR SIMPLIFIED COMPOSITION INPUT.
 C SET MOLEF = .TRUE.
 MOLEF = .TRUE.
 WRITE (LWRITE,41)
41 FORMAT(//,7H0(INIT),5X,'**** WARNING: SIMPLIFIED COMPOSITION ',
1 1 'INPUT USED BUT MOLEF SET EQUAL TO .FALSE. IN NAMELIST START',//,
2 30X,'MOLEF HAS BEEN SET EQUAL TO .TRUE. ****',//)
C SIGMA = MOLES/GRAM MIXTURE
42 SIGMA(JFUEL) = DBLE((TERM1*TERM2)/(dbl(1.+H2OMF)))
 DO 45 I = 1,LS
 IF (O2.NE.DSPNM(I)) GO TO 45
 SIGMA(I) = CONCO2
 GO TO 50
45 CONTINUE
50 SIGMA(27) =SIGMA(JFUEL) *DBLE(H2OMF)
 DO 55 I = 1,LS
 IF (N2.NE.DSPNM(I)) GO TO 55
 SIGMA(I) = DBLE(NOXRAT)*CONCO2
 GO TO 60
55 CONTINUE
DO 65 I = 1,LS
IF (AR.NE.DSPNM(I)) GO TO 65
SIGMA(I) = DBLE(ARAT)*CONCO2
GO TO 70
65 CONTINUE
DO 75 I = 1,LS
IF (CO2.NE.DSPNM(I)) GO TO 75
SIGMA(I) = DBLE(CRAT)*CONCO2
GO TO 80
75 CONTINUE
C
READ (LDAT,85) DSP,TINP

Additional equations specific to the program.

\begin{equation}
Term2 = \frac{1}{Term1 + TINP + Term2}
\end{equation}

\begin{equation}
\text{conc } O_2 = y_{O_2} = \frac{TINP*1}{Term2}
\end{equation}

\begin{equation}
y_f = \frac{4Eratio}{4n_c + n_H - 2n_O} \times y_{O_2} = \frac{Term1}{TINP} \times TINP \times Term2
\end{equation}

\begin{equation}
y_{H2O} = y_{\text{fuel}} \times H2OF \times \frac{167}{18}
\end{equation}

\begin{equation}
y_{N_2} = \eta_{N_2} \times y_{O_2}
\end{equation}

let \(y_{Ar}=0.0 \), and \(y_{CO2}=0.0 \)
APPENDIX D

MODIFICATIONS TO OUT2 OF GLSENS FOR OBTAINING OUTPUT FOR THE CH4 COMPUTATIONS

C ALREADY DONE IN DIFFUN
C ch4.f dec 14,2003
420 foa=eratio*0.059
 tn=timil
 trr=sngl(T)
418 if(time.gt.0.)goto 427
 write(10,1)
 1 format(' TITLE= P atm T K f/a conc fuel co nox coequl time ')
C calculate the initial conditions for the averaging
write(11,417)ch4e
417 format(' ch4e ',e13.4)
nc=1
nco=1
t0=0.
stco=0.
areaf=0.
tauf=0.
tauco=0.
tauno=0.
areaco=0.
areano=0.
atauf=0.
atauco=0.
atauno=0.
427 continue
 cco=sngl(dabs(prc(9)))
 cnox=sngl(dabs(prc(31)+2.d0*prc(33)+prc(34)))
 xnox=sngl(prc(31)/(prc(31)+2.d0*prc(33)+prc(34)))
 cfuel=sngl(dabs(prc(14))))
C write(10,423)nc,P,T,foa,cfuel,cco,cnox,ccoe,
C 1timil
423 format(i4,f5.1,f8.1,1p,8e10.3)
C Begin Step One calculations
C calculate the initial conditions for the averaging
if(nc.lt.2)goto 1500
if(nc.eq.2)tstart=timil
if(nc.eq.2)t0=timil
O2=sngl(prc(2))
if(nc.eq.2)taufo=-sngl(prc(14)/W(14))*1.e3
C if(nc.eq.2)edd=15.*taufo
if(W(14).ne.0.)tauf=-sngl(prc(14)/W(14))*1.e3
if(tauno.le.0.)goto 424
C if(cfuel.lt.1.e-25)goto 424
areaf=areaf+(1./taufo+1./tauf)/2.*(tn-t0)
timet=timil-tstart
atauf=timet/areaf
if(nc/10*10.eq.nc)write(11,423)nc,P,T,foa,cfuel,O2,tauf,atauf,
1timil
taufo=tauf
if(nc.eq.2)tauni=sngl(1.D0/(W(31)+2.d0*W(33)+W(34)))*1.e3
 tauno=sngl(1.D0/(W(31)+2.d0*W(33)+W(34)))*1.e3
if(t0.eq.tn)goto 339
if(tauno.lt.0.)go to 339
areano=areano+(1./tauno+1./tauni)/2.*(tn-t0)
atauno=timet/areano
 tauni=tauno
xrate=sngl(W(31)+2.d0*W(33)+W(34))
if((nc/10*10).eq.nc)write(13,501)nc,P,T,xrate,cnox,tauno,xnox,
 1atauno,eratio,timil
339 denm=sngl(w(15))
 cco2=sngl(prc(15))
 if(w(15).lt.0.)next=.true.
 if(nc.eq.2)tauci=(sngl(dabs(prc(9))))/denm*1.e3
 tauco=(sngl(dabs(prc(9))))/denm*1.e3
if(t0.eq.tn) goto 504
if(tauco.le.0.)goto 503
 if(stco.eq.0.)stco=timil
 timco=timil
 rfuel=cfuel/tauf*1.e3
 areaco=areaco+(1./tauco+1./tauci)/2.*(tn-t0)
 atauco=timco/areaco
 tauci=tauco
 nco=nco+1
338 format(i7,1p8e11.3)
 rfuel2=sngl(w(14))
 dcdot=-((sngl(prc(9)))-ccoe)/tauco*1.e3
503 if((nc/10*10).eq.nc)write(12,423) nc,P,T,foa,cco,ccoe,tauco,
 1atauco,timil
if(nco.lt.100)write(15,338)nc,timco,tauci,tauco,atauco,areaco
504 t0=tn
431 format (f12.2,3e13.5,f8.3,f8.3,e13.5)
501 format(i4,f7.4,f7.1,4e12.5,f6.3,f9.3)
C Begin step Two calculations
 pl=log(P)
 tol=1./T
 h2ol=prc(27)
 h2osl=sngl(prc(27))
 h2ol=dlog(prc(27))
 if(cfuel.lt.1.e-20)cfuel=1.e-20
 fo=log(cfuel)
 fo2=sngl(prc(2))
 fo2l=log(fo2)
 tal=log(tauf)
 t alc=log(tauci)
 taln=log(tauni)
 if(nc.eq.2)tolo=log(tfop)
 if(nc.gt.2)tolo=timil
 if(cfuel.le.1.e-24)goto 902
425 format(i6,1p9e11.3)
C output fuel times
 write(26,900)foa,h2of,pl,tol,fo,fo2l,h2ol,tal,tolo
900 format(2f7.3,1p,9e11.3)
902 tal=log(tauci)
 if(cco.lt.1.e-20)goto 903
 col=log(cco)
 tolo=log(tcop)
if(nc.gt.2) tolo=timil
C Output co times and concentrations
 write(27,900)foa,h2of,pl,tol,fo,col,fo2l,h2ol,tal,tolo
903 continue
 tal=log(tauni)
 tolo=log(tnop)
 if(nc.gt.2) tolo=timil
C output nox times and concentrations
 write(28,900)foa,h2of,pl,tol,fo,fo2l,h2ol,tal,tolo
1500 nc=nc+1
C if(nc.gt.4000)next=.true.
C if(nc.gt.50)next=.true.
 if (timil.gt.1.) go to 502
430 DO 435 IJ=1,MAX
 IF (IJ.GT.LS.OR.IJ.GT.LR) GO TO 435
 TCON(IJ)=SNGL(PRC(IJ)/W(IJ))
 FMOL=SNGL(SIGMA(IJ)*MIXMW)
 WRITE (LWRITE,175) DSPNM(IJ),PRC(IJ),FMOL,W(IJ)
 GO TO 435
435 WRITE (LWRITE,185) IJ,RATE(IJ),PRX(IJ),EQUIL(IJ)
C430 continue
435 CONTINUE
APPENDIX E

RUN INPUT FOR GLSENS

Run input for Jet-A for GLSENS TYPICAL FOR STEP ONE
TIME PRESSURE

&prob TCON=.TRUE.,CT0=1.0,
IPRINT=1,end=1.e-2,,&end
&start time=0.,ERATIO=0.3,SCC=12.0,SCOX=0.,SCH=23.0,
NOXRAT=3.76,ARAT=0.,CRAT=0.,T=1000.,H2OF=0.&end
END
&solver mxstep=2000.,emax=1.e-13,atolsp=1.e-13,maxstp=190000,&end
INIT
ALLSP END
SENSVAR
ALLSP END
REAC
FINIS

RUN INPUT FOR JET-A FOR GLSENS TYPICAL FOR STEP TWO
REPEAT MECHANISM
TIME PRESSURE

&prob TCON=.TRUE.,CT0=1.0,
PRINT=5.e-5,1.e-4,1.5e-4,2.e-4,2.5e-4,
3.e-4,4.e-4,5.e-4,6.e-4,7.e-4,8.e-4,9.e-4,1.e-3,1.5e-3,2.e-3,2.5e-3,3.e-3,3.5e-3,4.e-3,
4.5e-3,5.e-3,5.5e-3,6.0e-3,&end
&start time=0.,ERATIO=0.3,SCC=12.0,SCOX=0.,SCH=23.0,
NOXRAT=3.76,ARAT=0.,CRAT=0.,T=1000.,H2OF=0.0&end
END
&solver mxstep=2000.,emax=1.e-13,atolsp=1.e-13,maxstp=190000,&end
INIT
ALLSP END
SENSVAR
ALLSP END
REAC
FINIS

RUN INPUT FOR CH4 FOR GLSENS TYPICAL FOR STEP ONE
TIME PRESSURE

&prob TCON=.TRUE.,CT0=1.0,
IPRINT=1,end=5.e-4,,&end
&start time=0.,ERATIO=0.4,SCC=1.0,SCOX=0.,SCH=4.0,
NOXRAT=3.76,ARAT=0.,CRAT=0.,T=1000.,H2OF=0.0&end
END
INIT
ALLSP END
SENSVAR
ALLSP END
REAC
FINIS

RUN INPUT FOR CH4 FOR GLSENS TYPICAL FOR STEP TWO
TIME PRESSURE

&prob TCON=.TRUE.,CT0=1.0,
PRINT=5.e-6,1.e-5,2.5e-5,5.e-5,1.e-4,1.5e-4,2.e-4,2.5e-4,
3.e-4,4.e-4,5.e-4,1.e-3,1.5e-3,2.e-3,2.5e-3,3.e-3,3.5e-3,4.e-3,
4.5e-3,5.e-3,5.5e-3,6.0e-3,&end

&start time=0.,ERATIO=0.3,SCC=1.0,SCOX=0.,SCH=4.0,
NOXRAT=3.76,ARAT=0.,CRAT=0.,T=1000.,H2OF=0.0,&end
END
&solver mxstep=20000,emax=1.e-14,atolsp=1.e-14,maxstp=300000, &end
ALLSP END
SENSVAR
ALLSP END
REAC
FINIS
APPENDIX F

FORTRAN CODE FOR TANKS IN SERIES CALCULATION

C IN FIGURE 8 OUTPUT THE PPM AS A FUNCTION OF TEMPERATURE AND COMPUTE
C EACH PHIN TO KEEP TEMPERATURE CONSTANT AS H INCREASES
C methane
C H=h/a t=time
C set up maximum reactors to be eight in series
C pf=f/a fraction in reactor, t=time milliseconds

DIMENSION pf(8),t(8),TT(8),EFT(8),TAUF(8),TCO(8),TNOX(8),tim(8)
DIMENSION fa(8),COE(8),rnox(10),hn(5),melissa(5)
data pf/1.5,1.2,1.0,5*0./
data t/1.,1.5,2.5,5*0.5/
REAL NOX,melissa

open(5,file='fort.5',form='formatted')
open(10,file='fort.10',form='formatted')
open(11,file='fort.11',form='formatted')
open(12,file='fort.12',form='formatted')
open(13,file='fort.13',form='formatted')
open(14,file='fort.14',form='formatted')
open(15,file='fort.15',form='formatted')
write(12,111)

C 111 format(' h2o phi h2o/f eftt tt(4) ppmco ',
111 format(' phi ',8X, 'h2o', 2X 'T4 ',9x,'O2 O2COR ',
1' ppmno, cwcd')
T3=700.
P=200./14.696
C read(5,5)p3,T3,pf,t
5 format(2e10.3,/,8f5.2,/8f5.3)
c p=p3/14.696
WRITE(10,7)P,T3,((PF(I),T(I)),I=1,4)
WRITE(13,7)P,T3,((PF(I),T(I)),I=1,4)
7 FORMAT(' P=',F5.2,' T3= ',F5.0,/,' PF,T=',2(2F5.2' : ')/2(2F5.2' :
1'),/,3x,'TEMP F H=0.0 H=0.05 H=0.1 H=0.15 ')
WRITE(15,7)P,T3,((PF(I),T(I)),I=1,4)
WRITE(10,8)
8 FORMAT(6x,'IR h FA(IR) T4(IR) EFF nox
1 Ttnox TAUNOX')
PHI=0.2
DO 11 IP=1,8
PHI=PHI+0.1
H=-0.05
DO 1 IH=1,4
H=H+0.05
PHIN=PHI
DO 36 IX=1,10
36 PHIN=PHI*(1.4H/(PHIN*0.059))*0.1586
C WRITE(10,37)IX,PHIN,PHI,H
37 FORMAT(5F11.4)
pf(1)=1./phin
if(phin.ge.1.)write(13,17) Phi, Phin,H
17 format(' phi=',e12.4,'phi=',e12.4,' h ',e12.4)
 if(PHIN.GT.1.) go to 500
 CO=0.
 NOX=0.
C ITERATE TO SOLVE FOR T4 FOR EACH REACTOR, IR= CONDITIONS FOR EACH REACTOR. (NO)

```plaintext
tim(1)=0.
DO 30 IR=1,3
    tim(ir)=tim(ir)+t(ir)
    FA(ir)=PHIN*0.059*PF(IR)
    If(fa(ir).gt.0.059)fa(ir)=0.059
    HF=H/FA(ir)
    IF(HF.GT.2.5)HF=2.5
    EFF=100.00
    EFTT=100.
    itI=0
C DO 40 IT4=1,10
    itI=itI+1
C  EFTT= TOTAL INEFFICIENCY
    EFFO=EFF
C DO NOT USE RICH CORRELATIONS HERE AS RESULTS FLUCTUATE - NOT PHYSICAL
    IF(fa(ir).GT.0.0592) GO TO 66
C   DO LEAN CORRELATIONS
    T4E=457.*(T3)**0.258*FA(ir)**0.435*(1.+HF)**(-.069)*(P)
    1**0.00284*0.059**(-.435)
    eff=100.
    T4=T3+(T4E-T3)*EFF/100.
    TAUF(IR)=2.09e-4*FA(ir)**0.222*(1.+HF)**0.0675*P**(-1.07)*
    1EXP(22625./T4)
    TCO(IR)=9.99E-4*FA(ir)**(0.101)*(1.+HF)**.959*p**(-1.00)*
    1EXP(2434./T4)
    TNOX(IR)=2.94E4*fa(ir)**.032*(1.+HF)**.329*p**(-2.1)*
    1EXP(34859./T4)
    COE(IR)=15569.*fa(ir)**1.90*(1.+HF)**.00705*P**(-.477)*
    1EXP(-33388./T4)*0.059**1.90
    goto 40
C   DO RICH CORRELATIONS
66 T4E=859.*T3**0.176*fa(ir)**(-0.559)*(1.+HF)**(-0.146)*P**
    1(.00167)*0.059**.559
    T4=T3+(T4E-T3)*EFF/100.
    TAUF(IR)=2.74e-2*fa(ir)**.111*(1.+HF)**(-.829)*P**(-0.328)*
    1EXP(14216./T4)
    TCO(IR)=1.3E-3*fa(ir)**(.215)*(1.+HF)**.195*p**(-1.0)*
    1EXP(32649./T4)
    TNOX(IR)=43928.*fa(ir)**(.284)*(1.+HF)**.641*P**(-2.0)
    1EXP(-31365./T4)*0.059**(-2.55)
C EFF EQUALS THE EFFICIENCY OF EACH REACTOR
    C IF CHANGE IN EFFICIENCY IS LESS THAN 0.1 ITS CONVERGED
C  67 EFF=(1.-EXP(-tim(IR)/TAUF(IR)))*100.
C IF(ABS(EFF-EFFO).LT.0.01)GO TO 41
C WRITE(10,96)IR,iTI,fa(ir),T4,EFF
40 CONTINUE
96 FORMAT(' IR= ',I10,' itI ',i4,' fa ',e10.3,' T4 ',F7.2,F7.2)
41 TT(IR)=T4
    EFT(IR)=EFF
    FAE=fa(ir)*EFF/100.
    XFO=FAE/(FAE*(1.+HF*16./29.)+16./29.)
    FO=XFO*P/82.056/T4
    eftt=eftt*(100.-eff)
```

```
```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```
C write(10,97) ir, phi, hf
   97 format( ' ir ', i5, ' phi ', f10.3, ' hf ', f8.3)
100 FORMAT(2X,4E12.4)
c CALCULATE CO FOR EACH REACTOR
   TTF= T(IR)/TAUF(IR)
   TTCO=T(IR)/TCO(IR)
   EXCO= EXP(-TTCO)
   TTAUF=T(IR)/TAUF(IR)
   FOT= FO*TTAUF/(TTCO-TTAUF)
      if (ir.eq.1) CO= COE(IR) - EXCO*COE(IR) + FOT*(EXP(-TTAUF) - EXCO)
      irb= ir
      if (IR.GT.1) irb= ir-1
      CO= CO*FA(IR)/FA(IRB)*(1.+FA(irb)*29./16.)/(1.+FA(ir)*29./16.)
      IF (IR.GT.1) CO= COE(IR) + (CO-COE(IR))*EXCO + FOT*(EXP(-TTAUF) - EXCO)
C CALCULATE NOX FOR EACH REACTOR
   TTNOX= T(IR)/TNOX(IR)
   IF (IR.EQ.1) nox= nox+TTnox
   NOX= NOX*FA(IR)/FA(IRB)*(1.+FA(irb)*29./16.)/(1.+FA(ir)*29./16.)
   IF (IR.GT.1) nox= nox+TTnox
   phio= FA(ir)/0.059
   WRITE(10,99) IR, IP, H, phio, T4e, EFF, NOX, TTNOX, TNOX(IR)
99 FORMAT(' *,2I4,2F8.4,2F9.2,1P6E10.2)
110 rnox(ih)= nox*1.e6*82.056*t4/p
   WRITE(11,98) ir, PHIO, t(ir), ttf, ttco, CO, COE(IR), T4
98 format(i3,1p7e10.2)
C END OF INDIVIDUAL REACTOR SEGMENT
30 continue
113 format(2x,f9.3,1p5e11.3)
   CWCD=(PHIN+(2.+(16./18.)*(HF)*PHIN)+(1.-PHIN)*2+(2.*79./21.))/
      (1*(PHIN+(1.-PHIN)*2.+(2.*79./21.)))
   RHO= P/82.056/TT(3)
   O2= (1.-PHIN)*2.*phio/(9.524-phio)
   if (O2.1t. 0.) O2=0.
   O2COR= (10.9-100.*O2)
   PPMCO= CO*1.E6/RHO*O2COR
   PPMCO= PPMCO*CWCD
   PPMN= NOX*1.E6/RHO*O2COR
   PPMN= PPMN*CWCD
   hn(ih)= ppmno
      melissa(ih)= ppmco
   WRITE(12,102) phi, hf, tt(3), o2, o2cor, ppmno, cwcd
102 format(2f8.3,f7.1,f8.3,1p3e10.2)
c   WRITE(13,113) phi, (rnox(ir), ir=1,4)
   1 continue
   Tf= tt(3)*1.8-460.
   WRITE(13,113) tf, (hn(in), in=1,4)
   WRITE(14,113) tf, (rnox(in), in=1,4)
   WRITE(15,113) tf, (melissa(in), in=1,4)
11 continue
500 stop
End
APPENDIX G

FORTRAN CODE FOR MODEL SIMULATION OF GLSENS CONSTANT TEMPERATURE AND PRESSURE PLUG FLOW REACTOR

C Moder Ch4 reaction
OPEN(6,FILE='MELISSA.OUT',FORM='FORMATTED')
foa=0.05263
TK=2000.
P=2.
rho=P/82.056/TK
yfo=foa/(foa+16./29.)
fo=yfo*rho
C Step one equation - lean
tauf1=2.09e-4*P**(-1.07)*foa**(0.222)*exp(22625./TK)
TMIN=-TAUF1*LOG(1.-1.E-20/2./FO)
WRITE(6,1)TMIN,TAUF1,fo
1 FORMAT(' TMIN MS ',E12.4,' TAUF1 MS ',E12.4,' fo ',E12.4)
write(6,2)
2 format(8X,' TIME SEC  FUEL    H2O     TAUF MS ')
C CH4+2.O2=CO2+2.H2O
NT=0
F=FO
H2O=0.
TIME=0.
TAUF=TAUF1
DTIME=1.E-5
DO 6 IT=1,50000
TIME=TIME+DTIME
DF=F*DTIME/TAUF
F=F-DF
H2O=H2O+2*DF
C step two equation
IF(H2O.GT.1.E-20)TAUF=3.5E-9*P**(-0.0713)*F**(-0.307)*
2H2O**(-0.465)*(1.+H2O/F)**(-0.221)*EXP(14149/TK)
TSEC=TIME*1.E-3
NT=NT+1
IF (IT/100*100.EQ.IT)WRITE(6,10)NT,TSEC,F,H2O,TAUF
10 FORMAT(I8,1P4E12.4)
6 CONTINUE
STOP
END
REFERENCES


Figure 1
Magnussen Mixing Model

Rate
Mixing Rate
Chemical Kinetic Rate
Transition Temperature

Temperature
Figure 2
Equilibrium Jet A Water Injection COeq Parity
0.2 < Eratio ≤ 1.0
(lean)
Figure 3
Kinetic Jet-A Water Injection Fuel Tau Parity
Step One
(lean)

Tau fuel GLSENS (milliseconds)

1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00
1.00E+01
1.00E+02

0.0001 0.001 0.01 0.1 1 10 100

0.0001
0.001
0.01
0.1
1
10
100

Tau fuel calc (milliseconds)
Figure 5
Kinetic Jet-A Water Injection Nox Tau Parity
Step One
(lean)
Figure 6

Jet-A Fuel Step One Lean Model

\[ f/a = 0.238P^{-0.60}\exp\left(\frac{14202}{T}\right) \]

\(h/f=0\)
\(h/f=0.5\)
\(h/f=1.0\)
\(h/f=1.5\)
\(h/f=2.0\)

No Water Injection
Figure 7
Kinetic Jet-A Fuel Tau Parity
Step Two
(lean)

![Graph showing the comparison between Tau fuel GLSENS (experimental) and Tau fuel (predicted). The graph is a log-log plot with the x-axis labeled as Tau fuel GLSENS (experimental) and the y-axis labeled as Tau fuel (predicted). The data points are scattered across the graph with a trend line indicating the parity between the two values.](image-url)
Figure 8
Kinetic Jet-A CO Tau Parity
Step Two
(lean)
Figure 9
Kinetic Jet-A NOx Tau Parity
Step Two
(lean)

1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10 1.0E+11 1.0E+12 1.0E+13 1.0E+14 1.0E+15 1.0E+16

Tau NOx GLSENS (experimental)

Tau NOx (predicted)
Figure 10
Equilibrium Methane CO Parity (rich)
Figure 11
Kinetic Methane Fuel Tau Parity
Step One
(lean)
Figure 13
Kinetic Methane NOx Tau Parity
Step One
(lean)
Figure 15
Kinetic Methane Tau Fuel Parity
Step Two
(lean)
Figure 17
Kinetic Methane NOx Tau Parity Step Two (lean)

Tau NOx (explained)

NASA/TM—2004-213046
Figure 18

NOx water/NOx no water for Jet-A at f/a=0.06
Figure 19
Methane Data Comparison (f/a=0.055)

Nox water/Nox no water

Nox/Nox no water

Time Corrected

T Constant

Data

NASA/TM—2004-213046
Figure 20 Methane
Tanks in Series, $fa < 0.059$
Figure 21

Equivalence Ratio

CO (ppm)

H=0.0 (prediction)
H=0.05 (prediction)
H=0.10 (prediction)
H=0.15 (prediction)
H=0.0 (data)
H=0.05 (data)
H=0.10 (data)
H=0.15 (data)
Figure 22 Methane

Nox versus Temperature

Temperature (F)

NOx (ppm)

- H=0.0
- H=0.05
- H=0.1
- H=0.15

H=0.0 (data)
H=0.05 (data)
H=0.10 (data)
H=0.15 (data)
Figure 25

CH4 T=2000 P=2 atm Phi=0.8915 Gri-mech viet

CH4 model
CH4 glsens

cfuel mole/cc

time - sec

NASA/TM—2004-213046

Melissa Molnar and C. John Marek

A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1/H11003 ÷10–20. The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx were obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA’s Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering the turbine (T4) was also correlated as a function of the initial combustor temperature (T3), equivalence ratio, water to fuel mass ratio, and pressure.

Combustion; Chemical kinetic times; Jet-A; Methane; Nitrogen oxides; Carbon monoxide