
A Comparisoii of Techniques for Scheduling Earth-Observing Satellites 

AI Globus James Crawford Jason Lohn Anna Pryor 
CSC at N-GA Ames NASA Ames NASA Ames XASA Ames 

Abstract 

Scheduling observations by coordinated fleets of Earth 
Observing Satellites . (EOS) involves large search 
spaces, complex constraints and poorly understood 
bottlenecks, conditions where e\*olutiona.ry and related 
algorithms are often effective. However, there are 
many such algorithms and the best one to use is not 
clear. Here we compare multiple variants of the ge- 
netic algorithm: stochastic hill climbing, simulated an- 
nealing. squeaky wheel opt.imization and iterated sam- 
pling on ten realistically-sized EOS scheduling prob- 
lems. Schedules are represented by a permutation 
(non-temperal ordering) of the observation requests. 
A simple deterministic scheduler assigns times and re- 
sources to each observation request in the order indi- 
cated by the permutation, discarding tkiose that violate 
the constraints created by previously scheduled obser- 
vations. Simulated annealing performs best. Random 
mutation outperform a more ‘intelligent’ mutator. Fur- 
thermore, the best niutator, by a small margin, was 
a novel approach we call ’temperature dependent ran- 
do= sm-ap’ that makes large changes in the early stages 
of evolution and smaller changes towards the end of 
search. 

Introduction 
Approximately 60 scientific and commercial Earth Ob- 
serving Satellites (EOS) circle the globe collectin, lm- ‘ 

ages. Xearly all of these satellites are chronically over- 
subscribed, Le.. t here are far more observation requests 
than can possibly be satisfied. Scheduling systems are 
used to satisfy as many of these requests as possible, 
favoring higher priority requests. The EOS observation 
scheduling problem is also characterized multiple com- 
plex constraints. including power, thermal, data capac- 
ity, and the limited time each satellite spends over each 
target. Some EOS satellites can make hundreds of ob- 
servations per day, each observation may have dozens of 
short. fixed, predictable imaging opportunities a week. 
and request backlogs often number in the thousands. 
Thus, finding an optimal or near-optimal schedule in- 
volves searching a very large space. In general, the size 
of the search space precludes a complete search requir- 
ing some form of random. albeit directed, search. 

EOS scheduling is an example of an oversubscription 

scheduling problems n-here there are more requests for 
a resource than can be satisfied. insuring that some re- 
quests remain unfulfilled. Such problems also include 
scheduling planetary probes, telescopes, the deep space 
network, u-ind tunnels and other test facilities. These 
problems involve allocation of expensive resources. of- 
ten with complex constraints and prioritized tasks. 
Poor schedules will result in under-utilization of expen- 
sive facilities and thus a substantial waste of money. 
often taxpayer dollars. There are a number of schedul- 
ing algorithms that address oversubscription problems 
in general or €OS scheduling in particular. but few s y s  
tematic comparisons between them. 

Our study compares thirteen scheduling algorithms 
including variants of stochastic hill climbing (Baluja 
1995), simulated annealing (Kirkpatrick, Gelatt. & 
AndVecchi 1983). genetic algorithms (GX) (Holland 
1975), squeaky wheel optimization ( J o s h  & Clements 
1999), and iterated sampling (ISAMP) (Crawford & 
Baker 1994). Hnl climbing and simulated anneal- 
ing mutate a single schedule looking for an opti- 
mum. the difference being that hill climbing is strictly 
greedy whereas simulated annealing m-ill occasionally 
take backwards steps attempting to avoid local optima. 
IVe test both steady-state and generational genetic 
algorithms, both population-based techniques. Ran- 
dom mutation and crossover operators are used as well 
a s  ’squeaky’ mutators which try to make intelligent 
changes to  the schedule. One of the mutation oper- 
ators, temperature dependent random swap described 
below. is novel. It mar,@nally outperformed purely ran- 
dom mutation. ISAMP is effectively random search. 

Evolutionary algorithms, particularly the genetic al- 
gorithm (GA), have been used to schedule a wide va- 
riety of tasks. For example, Syswerda and Palmucci 
scheduled the U.S. Navy% System Integration Test Sta- 
tion laboratory for F-14 jet fighters using a G A  with a 
permutation of tasks representation and a fast greedy 
scheduler to  place tasks. one at a time, in the schedule 
(Syswerda & Palmucci 1991). This work motivated our 
research. Philip Husbands provides a good. if somewhat 
dated, survey of GA for scheduling problems (Husbands 

Computational scheduling techniques have been a p  
1994). 



plied to  the EOS schediiliiig pro1)leni by scvc:r;i.l a.?ithors, 
inrluding: 

1. Sherwood (Shern-ood e t  nl. 1998) i i s ~ d  ASPEN. 
a general purpose scheduling system, t,o aut.omate 
scheduling of XA4SA's €0-1 sat,ellite. 

2. Potter and Gasch (Potter & Gasch 1998) described 
a clever algorithm for scheduling NASA's Landsat 7 
sa,tellit,e featuring greedy search forward in time n:it,h 
Lsup to free resources for high priority observation. 

3.  Lamaitre's group has examined EOS scheduling is- 
sues including comparison of multiple techniques. 
See, for example, (Lamaitre, Verfaillie, & Bataille 
1998): (Bensana, Lemaitre, 8z Verfaillie 1999) and 
(Lamaitre et al. 2000). 

4. Wolfe and Sorensen (Wolfe & Sorensen 2000) com- 
pared three algorithms on the window-const,rained 
packing problem, which is related to EOS scheduling. 
They found that the genetic algorithm produced the 
best schedules, albeit at a significant CPU cost. 

5. Our group has published earlier results in (Globus et 
al. 2002) and (Globus et al. 2003). 

In the next section we describe the scheduling prob- 
lem and our model. description of the scheduling 
techniques follows. The nature and results of our com- 
putational experiments are then preserked along with a 
discussion of results and conclusions. 

EOS Scheduling Problem 
We first describe the real EOS scheduling problem. 
Then we describe the model problems used in this ex- 
periment ~ 

EOS scheduling attempts to take as many high- 
priority observations as  possible within a fived period 
of time with a k e d  set of satellite-born sensors. For 
example, the Landsat 7 satellite scheduler is considered 
to have done a good job if 250 observations are made 
each day. EOS scheduling is complicated by a number 
of important constraints. Potin (Potin 1998) lists some 
of these as: 
1. Revisit limitations. Observation targets must be 

within sight of the satellite. EOS satellites travel in 
&sed orbits, usually about 800 km up and 100 min- 
utes per orbit. These orbits pass over any particular 
place on Earth at limited tinies so there are only a 
fen; observation windows (and sometimes none) for a 
given target within a given time period. 

2 .  Time required to take each image. Most Earth ob- 
serving satellites take a one-dimensional image and 
use the spacecraft% orbital motion to  sweep out the 
area to be imaged. For example, a Landsat image 
requires 24 seconds of orbital motion. 

3.  Limited on-board data storage. Images are typically 
stored on a solid state recorder (SSR) until they can 
be sent to the ground. 

4. Ground st,ation availability. The da.rii in the SSR. is 
sent tau the ground (SSR dumps) ~vllell t.he satellit,e 
passes over a. ground station. Ground sta.tion win- 
dows are limited as wixh any other t,arget. 

5. Transit,ion time between look angles (slewing). Some 
iiistrumerlts are mouiited on motors that can point 
side-to-side (cross-track). These motors can wear out 
so slewing should be minimized. 

The highest resolution images are 
taken when the target is directly below the satellite 
(nadir pointing). Other pointing angles are soine- 
t,imes required for special purposes. 

7. Power availability. Most sat(el1ites have very restric- 
tive power budgets. 

8. Thermal control. As satellites pass in and out of 
the Earth's shadow the thermal emironment changes 
radically. This places constraints on sensor use. 

9. Coordination of multiple satellit,es. In particular, as- 
signing image collection responsibility appropriately. 

10. Cloud cover. Some sensors cannot see through 
clouds. 

11. Stereo pair acquisition or multiple Observations of the 
same t,arget by different sensors or tshe same sensor 
at different times. 

To make confident statements about the best method 
to solve a set of real-world problems it is not enough to 
solve random relat,ed problems. Watson and his col- 
laborators at Colorado State University (Watson et d. 
1999) examined the performance of a number of algo- 
rithms on model job-shop problems. They found that 
although sophisticated algorithms performed very well 
on random problems: they did poorly if the problems 
were modified to exhibit structure based on real-world 
problems. Simple algorithms performed better on the 
more realistic problems. To take this effect into ac- 
count, although our model problems contain randomly 
generated observakion targets, these are limited to land 
areas, the satellites are in realistic orbits, and our model 
problems exhibit all of Potin's constraint,s except the 
last two. 

Table 1 contains the variable parameters of the model 
problems. Each problem consist of one to three satel- 
lites in Sun-synckronous orbits (orbits in which t,he 
equator is crossed at the same local time each orbit) 
for one week. Multiple sat.ellites are spaced ten minutes 
apart along the same orbit. Each sate1lit.e carries one 
sensor mounted on a cross-track slewable motor that 
can point up to 24 degrees to either side of nadir (nadir 
is straight down). 

Each problem is assigned 2100numbero f Satellites 
observation targets randomly generated on land. Each 
target is assumed to lie in the center of a rectangle who's 
size depends on the observing time. Not all of these 
targets will be visible during the one week period. The 
longer the required observation time the fewer targets 
will be observable. Any satellite is allowed to make any 

6. Pointing angle. 



j problem / /  sateliit,es I 
I name / I  number SSR. 1 slew ("Isec,! 

13 I 2 
2 1 3  50 1 2 

$ 1 3  ( 3  1 2 
3 

5 1 3  50 10 
6 3 I 75 2 

-- 
1 I1 1 

3 1 5 0 1  2 1 -- 

7 3 I i 5  2 
8 3 75 2 
9 2 75 2 
10 3 100 1 

observation. Each obsenation target counted in table 1 
is within view of a satellite at least once, usually several 
times and sometimes over 20. Orbits and observation 
windows were determined by the free version of the -4n- 
alytical Graphics Inc.'s Satellite Tool Kit, also known 
as the STK (see www.stk.com). The STK uses highly 
accurate orbital determination methods. 

There is one ground station in Alaska. Whenever a 
satellite comes within sight of the ground station it is 
assumed to completely empty its SSR which is then 
available for additional observation storage. There are 
approximately 73 SSR dumps per spacecraft during a 
week. Since some orbits are over oceans and all targets 
are on land, some SSR dump opportunities are wasted 
on an empty, or nearly empty. SSR. 16-e model power 
and thermal constraints using so-called duty cycle con- 
straints. the approach taken by Landsat 7. A duty cycle 
constraint requires that the sensor not be turned on for 
longer that a maximum time within any interval of a 
certain length. Our model problem uses the Landsat 7 
duty cycles. Specifically, a sensor may not be used for 
more than: 

1. 34 minutes in any 100 minute period, 
2. 52 minutes in any 200 minute period, or 
3. 131 minutes in any 600 minute period. 

The fitness (quality) of each schedule is determined 
by a weighted sum (smaller values indicate better fit- 
ness) : 

F = w p C  Po + w,S -t w,A (1) 
0, 

where F is the fitness. 0, is the set of unscheduled 
observation. Po is an observation's priority, S is the 
mean time spent slewing per scheduled observation, A 

observations I Wights 
number time (secj 1 SSR i x e  1 pri0rit.y I w P  i ii', 1 va 1 

1931 24 1 1 I 1-6,50 1 I 0.01 I 0.02 1 
6041 36 I 1.3.5 1 1-6,50 1 0.01 1 0.50 

6114 24 1 1.3,s j 1-6,50 1 ' 0.01 0.02 

6114 24 1,5,8 1-16;50 1 0.10 I 0.20 

6111 24 j 1,3..? 1 1-6.30 1 1 0.01 0.00137 

6041 36 1,3,5 I 1-51,5 1 0.5 0.02 

5465 45 1,3,8 1-16,50 1 0.10 0.20 
5465 45 1,3,3 1-6,50 1 0.01 0.02 
3995 24 13 1-6,50 1 0.01 0.02 
6041 36 1,10,25 1-6,50 1 0.1 0.7 

is the mean off-nadir pointing angle for all scheduled 
observations, w stands for weight. 

Scheduling Algorithms 
This study compares thirteen search algorithms applied 
to ten EOS scheduling problem. The search techniques 
were hill climbing. simulated annealing. steady state 
and generational genetic algorithms, and ISAMP (es- 
sentially random search). By using a more intelligent 
mutation operator, these algorithms (except ISAMF') 
become variants of squeaky wheel optimization ( J o s h  
& Clements 1999). In squeaky wheel optimization, 
those observations that are not scheduled are given a 
high likelyhood of being involved in mutation. 

Our work focuses on permutatzon-based (Sysm-erda 
Si Palmucci 1991) approaches to scheduling problems. 
The key insight underlying such approaches is that if 
we could greedily schedule EOS observation requests 
in an optimal order then we would produce an o p  
timal schedule-l Thus, a greedy scheduler allows us 
to search the space of permutations rather than the 
space of schedules. This change of representation has 
two key advantages: First. and most important, the 
greedy scheduler can take any permutation and pro- 
duce a feasible (though generally sub-optimal) sched- 
ule. This means that mutation and crossover operations 
never stray into infeasible space. This is in contrast to  
methods that search in the space of schedules. These 
must work hard to maintain feasibility. or find ways to 
assign infeasible schedules a fitness that guides evolu- 
tion (Le., infeasible schedules cannot all be assigned the 

'We should note that proving optimality for a 
permutation-based method requires a detailed analysis of 
the constraints and optimization criteria of the domain as  
well as the details of the greedy scheduler. 



sa.me fitncss). Second, if there are many bossible tinies 
at which observations can be scheduled it, is oft,en the 
case that the space of possible permut,ations is signifi- 
cantly smaller than t,he space of possible schedules. 

Thus, me represent a schedule as a permutation or 
arbitrary, non-temporal ordering of the observakions. 
The observations are scheduled one at  a time in the 
order indicated by the permutation. In psuedecode: 

i n t  [I permutation = permute 1-numObservations 
f o r ( i n t  i = 1; i <= numObservations; i++) 

i f  (observation a t  permutation[il 
not v io l a t e  current  cons t ra in ts )  

schedule observation a t  permuta t ionbl  
A simple, greedy, deterministic scheduler assigns re- 

sources to observations in the order indicated by- the 
permutation. This produces a set of timelines with all 
of the scheduled observations: the time they were taken, 
and the resources (SSR, sensor, slew motor setting) 
used. The greedy scheduler assigns times and resources 
to observat,ions using earliest-first scheduling heurist,ics 
without violating constraints. If an observation cannot 
be scheduled without violating the current const,raints 
(those created by scheduling observations from earlier 
in the permutation), the observation is left unscheduled. 

The first greedy scheduler we implemented employed 
earliest-first heuristics starting at time = 0. For obser- 
vations that could be taken at several different times 
(windows) the earliest window that did not violate cur- 
rent constraints was chosen. We discovered that bet- 
ter schedules are generated if: for each observation: 
'earliest-first' starts at some initial time chosen by evo- 
lution rather than time = 0. 

The initial time, set randomly at first, is generally dif- 
ferent for each observation. The greedy scheduler starts 
at the initial time and looks forward for a constraint- 
free window where the Observation can be scheduled. 
If none is found before t.he end of time, the scheduler 
wraps around to time = 0 and continues. The time each 
observation is scheduled (or, if unscheduled, what time 
'earliest-first' search started) is stored and preserved by 
mutation and crossover. The extra scheduling Bexibil- 
ity may explain why this approach works better than 
earliest-first starting at time = 0. 

Constraints are enforced by representing sensors; 
slew-motors and S S b  as timelines. Scheduling an ob- 
servation causes timelines to take on appropriate values 
(i.e., in use for a sensor, slew motor setting, amount of 
SSR memory available) at appropriate times. These 
timelines are checked for constraint violations as the 
greedy scheduler attempts to schedule additional ob- 
servations. 

The simplest search technique tested was ISAMP, 
which is essent,ially a random search. With ISAMP, 
each schedule is generated from a random permutation 
with random start times for the greedy scheduler. The 
rest of the search techniques start with random permu- 
tations and generate new permutations with mutation 
and/or crossover. The techniques tested were: 

1. Hill climbing (Hc)?; which starts xvith a single ran- 
domly generat.ed permutation. This permutation 
(the parent) is mut.ated to produce one new permu- 
tation (a child) xvhich; if the child represents a more 
fit schedule than the parent,, repla.ces the parent,. 

2. Simulated annealing (Sa), which is similar to hill 
climbing except that less fit children replace the par- 
ent with probability p = e* where AF is the fit- 
ness and T is an artificial temperature. The temper- 
ature starts at 100 (arbitrary units) and is multiplied 
by 0.92 every 1000 children (103,000 children are gen- 
erated per job). 

3. A steady-stat,e tournament selection genetic algo- 
rithm (Gs), which is similar to hill climbing except 
that parents are chosen from a population of 100 
schedules. Parents are chosen by a tournament where 
the most fit of t,wo randomly selected schedules be- 
comes the parent. Children replace one member of 
the population, chosen by randomly selecting two 
schedules and replacing the least fit. 

4. A generational elitist genet,ic algorithm (Gg): which 
is identical to Gs except that each generation, the 
best 10 scheduIes are copied into a second popula- 
tion. Then another 130 schedules are generated and 
placed in the new population choosing parents with 
the same tournament selection method. Once the 
new population is complete, the old is disca.rded and 
the process repeated. 

Each search technique (except ISAMP) was tested 
with three mutation operators: 

1. Random swap (Sr) '. Two permutation locations are 
chosen at random and the observations are swapped, 
with 1-15 swaps (chosen at, random) per mutation. 
Earlier experiments (Globus et al. 2003) determined 
that allowing more than one swap improved schedd- 
ing. 

2. Temperature-dependent swap (Td). Here the num- 
ber of swaps (1-15) is still chosen at  random but with 
a bias. Early in evolution a larger number of swaps 
tend to be used, and later in evolution fewer swaps are 
performed. This is analogous to the 'temperature' de- 
pendent behavior of simulated annealing. The choice 
of the number of swaps is determined by a weighted 
roulette wheel where the weights vary linearly as evo- 
lution proceeds. Weights start at n and end at  16 - n 
where n is the number of swaps. In the beginning 
of search temperahre dependent swap allows large 
jumps to find a deep local well. Near the end of 
search the schedule is close to the minima and the 
smaller mutations are more likely to move downhill. 
This is the one novel technique we examine. 

'These abbreviations are used in the figures. 
3Abbreviations are concatenated to indicate the com- 

plete technique. For example, HcSr indicates hill climbing 
using random swap mutation. 



,. , 
.I : 

1. L: c .. 

i: 

.-. r.2 

S.’ 

A .  u- 

3.3 

0’ 

G.i 

c 

Fibwe 1. RelatiTe fitness of all techniques on all problems normalized by IS-AlfP fitness. The vertical axis is 
the mean of of the fitness divided by ISAMP fitness for the same problem. The mean is taken from the most fit 
schedules for each of 3’2 jobs for each technique. Lower values indicate better fitness. The horizontal axis is the 
technique. Color/shade indicates the problem. Sa = simulated annealing. Hc = hill climbing. Gs = steady state 
genetic algorithm. Gg = generational genetic algorithm, Td = temperature dependent swaps, Sr = random swaps. 
Ss = squeakv shifts. For example, on problem 9 simulated annealing with temperature dependent swap (SnTd) had 
a 

3.  

mean-best-fitness 53% of IS-kMP on-the same problem. whereas x problem the fitness was 71% ofISA4MP. 

SqueaAT shift (Ss). This implements squeaky wheel 
optimization. The mutator shifts 1-15 (randomly 
chosen) ’deserving‘ observations earlier in the per- 
mutation. Early in the permutation an observation is 
more likely to be scheduled since fewer other observa- 
tions will have been scheduled to create constraints. 
Each observation to shift forward is chosen by a tour- 
nament of size 50, 100, 200, or 300 (chosen at ran- 
dom each time). The observation is always chosen 
from the last half of the permutation. The position- 
to-shift-in-front-of is chosen by a tournament of the 
same size (each time) and is guaranteed to be at a 
location at least half wav towards the front of the 
permutation (starting at the ‘deserving’ observacion). 
The observation most deserving to move earlier in the 
permutation is determined by the following charac- 
teristics (in order): 

fa) unscheduled rather than scheduled 
(b) higher priority 
(c) later in the permutation 

The position-to-shift-in-front-of tournament looks for 
the opposite characteristics. 
We tested a number of other mutation operators in 

preliminary experiments (Globus et al. 2003). The ones 
examined in this e-xperiment performed the best. 

In the case of the genetic algorithms, half of all chil- 
dren are created by mutation and the other half by 
crossover. Crossover combines two parents to create 
a child. The crossover operator is called position-based 
crossover (Syswerda & Palmucci 1991). Roughly half of 
the permutation positions are chosen at random (50% 
probability per position). The observations in these po- 
sitions are copied from the father to the same permuta- 
tion location in the child. The remaining observations 

fill in the child’s other permutation positions in the or- 
der they appear in the mother. For example: 

mother: 5 4 3 2 1 
father:  1 2 3 4 5 
choose: x x x  
child: 1 3 2 4 5 

We also tested heuristic-biased stochastic sampling 
(HBSS) (Bresina 1996) with contention heuristics 
(Frank et  al. 2002). an algorithm proposed for the 
EOS observation scheduling problem. This technique 
is not permutation based, it uses heuristics to repeat- 
edly choose the next observation request to place in the 
timelines and which obserx-ation window to use. The 
contention data from which the heuristics are calculated 
must be updated as observations are scheduled, an ex- 
pensive process. HBSS a-as hundreds of times slower 
than the evolution-based techniques, required far more 
memory, and produced very poor schedules. 

Experiment 
To find the best algorithm for the model problems we 
compared a total of thirteen techniques. These were 
ISAkP  and every combination oE four search techniques 
- hill climbing, simulated annealing, st.eady stmate GA, 
and generational GA - crossed with three mutation op- 
erators - 1-15 random swaps, 1-15 temperature depen- 
dent. swaps, and 1-15 squeaky shifts. Thirty-two jobs 
with identical parameters (except the random number 
seed) were run for each algorithm. Each job generated 
approximately 100,000 schedules (the GA jobs gener- 
ated slightly more). Most jobs ran in 2-3 hours on a 
modern L inw Pentium processor with plenty of mem- 
ory (no swapping or paging to  disk). 



Figure 2:  Fitness hstribution comparison for all techniques on problem 4. The vertical axis is fitness (lower values 
are better), the horizontal axis technique. The boxes indicate the second and third quartiles. The line inside the box 
is the median and the whiskers are the extent of the data. Out,liers are represented by small circles. 

In ariy st,ridy of this kind it is always possible that the 
resu1t.s would have been different if one algorithm or an- 
other had used a different set of parameters (population 
size: temperature schedule, hill-climbing restarts, etc.). 
The number of potential combination is literally astro- 
nomical and one must: in the interest finishing within 
the lifetime of the universe; chose some set to test. For 
the same reason; the reader’s favorite technique may 
haxe been left out. 

We spent considerable time in preliminary esperi- 
ments searching for good GA parameters’ and some 
time looking for the best restart schedule for hill climb- 
ing, but the simulated cooling schedule wits the first we 
tried. The populat,ion size of 100 was chosen after many 
jobs with random population sizes were examined and 
the best result,s appeared around 100. Several rest.art 
regimes where examined for hill climbing but the dif- 
ferences were generally not statistically significant. The 
simulated annealing cooling schedule was set such that 
considerably less fit schedules could win near the be- 
ginning of search but by the end of search simulated 
annealing became almost pure hill climbing. From the 
beginning simulated annealing out-performed all other 
t,echniques so we never felt a need to improve the cooling 
schedule; this could only increase simulated annealing’s 
lead. We also ran preliminary experiments to chose the 
number of mut,ation swaps and other parameters com- 
mon to  several techniques. 

Most of the differences observed in the results were 
statistically significant by both t-test and ks-test, wit.h 
confidence levels usually far above 99%. The raw data 
is available on request. 

Results and Discussion 
Figure 1 compares the algorithm’s fitness performance 
for all problems, normalized by ISAbP’s performance 

so all results arc in the range 0-1. The rising slope of the 
bars within each probiem indicates that simulated an- 
nealing n-as best. followed by hill climbing. The genetic 
algorithms performed worst on all problems. The differ- 
ences are not academic. The best techniques schedule 
hundreds more observations than the worst on most of 
the model problems. 

Figure 2 compares fitness for all jobs and all tech- 
niques on problem 4. Results for the other nine prob- 
lems are similar. Note that the range of fitness values 
within jobs running the same technique is very small. 
Thus, almost all all of the differences are statistically 
significant by the t-test and ks-test. In most cases, 
the probability that the distributions are different is 
>> 99%. 

Simulated annealing performance benefits from a 
proof of optimality, at least for an infinitely slow cool- 
ing schedule. Hill climbing is vulnerable to local inin- 
ima, but performs nearly as well as simulated anneal- 
ing anyway, suggesting that there are local optima but 
their depth is not greatly different. Both hill climb- 
ing and simulated annealing outperform both variants 
of the genetic algorithm. This does not appear to be 
caused by poor choice of GA parameters. Rather, the 
EOS scheduling problem appears to favor exploitation 
over exploration. 

The tight distribution of fitness values around the 
median also suggests that all jobs found the same min- 
imum or that, if the fitness landscape is multi-modal 
a s  the Sa vs Hc results suggest. most minima must be 
about the same. Since both hill climbing and simulated 
annealing spend all of their time on a single individual 
and the GA must spread its search over a population, 
GA does less expIoitation and loses. It is possible that a 
smaller population and/or larger tournament size could 
reduce this effect. The population size was, however, 
selected on the basis of preliminary experiments. 



1 .  . 

0 20 40 &a 80 1M 
1000 children 

F i p r e  3: Evolutionary history on problem 1. The vertical axis is the median fitness of the best individual for 32 jobs 
for each technique. The horizontal axis is the number of schedules generated (children). The lines are the techniques. 
ISARE’. SaTd. and SaSr are labeled. Note that the best techniques (simulated annealing with variations of random 
swap) do poorly after only 20-50 thousand children, but are by far the best by 100.000 children. 

Examining figures 1 and 2 carefully. we see that tem- 
perature dependent random swaps performs better than 
random swaps for simulated annealing and hill climb- 
ing and worse for steady state genetic algorithm and 
generational GA, although not by much. In units of 
ISAMP mean fitnes, the daerences were 0.01 for simu- 
lated annealing. 0.0067 for hill climbing, 0.01 for steady 
state GA, and 0.027 for generational G4 averaged over 
all problems. Thus, temperature dependent swaps are 
a bad idea for the population based techniques but of 
some value on the others. These differences were usu- 
ally. but not aha>-s. statistically si ,dcant.  

The squeaAy shift mutator performs worse than the 
other mutation operators, particularly for the genetic 
algorithms. Relative to temperature dependent swaps 
in units of ISAMP mean fitness: 0.024 of I S A l P  for 
simulated annealing. 0.015 for hill climbing. 0.05 for 
steady state GX and 0.02-2 for generational GA. This 
suggests that squeaky shift is smart in the wrong way. 

In preliminary experiments we also tried swapping. 
rather than shdting, observations. The shift operator 
performed the best. but still not as well as the random 
swap mutator. If random outperforms intelligent, then 
clearly intelligence is being poorly applied. We do not 
understand the dynamics of permutation-space schedul- 
ing in any fundamental way, and we don‘t even know 
if the dynamics are similar for different problems. Un- 
til a better understanding is reached, the random swap 
operators - with a optional decrease in the number of 
swaps as  evolution proceeds - appear best. 

Figure 3 shows the fitness evolution history for all 
techniques as a function of the number of children gen- 
erated for problem 1. Note the rapid improvement for 
all techniques in the beginning, with IS~AMP quickly 
leveling out. 

Most techniques then show an elbow shape, rapid 

improvement followed by a quick transition to very 
slow improvement. However. the best two techniques, 
simulated annealing with random swaps or tempera- 
ture dependent swaps, have a different evolutionary 
shape. They actually perform n-orse than everything 
but ISAMP between 20.000 and 50,000 children. Thus, 
if we had run our experiment for 50,000 children we 
would have quite different results. All techniques have 
small slopes at 100,000 children so we do not expect 
the results to change with longer runs. The evolution- 
ary curves for most other problems had a similar shape, 
although the best simulated annealing techniques were 
rarely worse than all others (except ISAMP) in the 
20,000-50.000 children range. 

Conclusioiis 
We compared thirteen different permutation-space 
search techniques on ten realistically-sized EOS 
scheduling problems. Simulated annealing outper- 
formed hill climbing which, in turn, greatly outper- 
formed the genetic algorithm. Simple random swap 
mutation outperformed the more ’intelligent’ squeahy 
mutation. Reducing the number of random swaps as 
evolution proceeds further improved performance for 
simulated annealing and hill climbing, but only slightly. 
Essentially the same results have been observed in pre- 
liminary experiments. 

Future EOS scheduling applications, a t  least those 
choosing a permutation representation, should strongly 
consider simulated anneal with either random m a p  or 
temperature dependent swap mutation. These are sim- 
ple to implement, fast, and appear to be superior for 
EOS observation scheduling. 

An important follow-up to our work would be an 
equally thorough study of non-permutation methods; 



t.liose tliat search in the space of al! possible sclied- 
des .  \A-e conjecture that the sirnp1icir.y of local searcli 
in permutation-space (particularly the fact, that we 
do not need t.o search iii infeasible space) will lead 

8 perinutation-based methods to dominat,e. Honrever: 
this conject.ure can only be evaluated by a head-t.0- 
head comparison of t,he best permutation-based and 
schedule-based sea.rch algorithms. 

Acknowledgements 
This work was funded by NAS.4's Computing, Infor- 
mation. & Communications Technology Program, Ad- 
vanced Information Systems Technology Program (con- 
tract XIST-0042). and by the Intelligent Systems Pro- 
gram. Thanks to Greg Hornby and Bonnie Klein for 
reviewing this paper and to Jennifer Dungan. Jeremy 
Frank, Robert Sforris and David Smith for many helpful 
discussions. Finally. thanks to the developers of the ex- 
cellent Colt open source libraries for high performance 
scientific and technical computing in Java. 

References 
Baluja, S. 1995. -4n empirical comparison of seven it- 
erative and evolutionary function optimization heuris- 
tics. Technical Report CMU-CS-95-193, Carnegie Mel- 
lon University. 
Bensana, E.; Lemaitre, M.; and Verfaillie, G. 1999. 
Earth observation satellite management. Constraints 

Bresina; J. 1996. Heuristic-biased stochastic sampling. 
In Proceedings of the Thirteenth National Conference 
on Artificial Intelligence. 
Crawford; J. M., and Baker, A. B. 1994. Experimental 
results on the application of satisfiabilit,y algorithms 
to scheduling problems. In Proceedings of the T,welfth 
hTational Conference on Artificial Intelligence. 
Frank, J.; Jonsson, A.; Morris, R.; and Smith, D. 2002. 
Planning and scheduling for fleets of earth observing 
satellites. In Proceedings of the 6th International Sym- 
posium on Artificial Intelligence, Robotics, Automa- 
tion and Space 2002. 
Globus, -4.; Crawford, J.; Lohn, J.; and Morris, R. 
2002. Scheduling earth observing fleets using evo- 
lutionary algorithms: Problem description and ap- 
proach. In Proceedings of the 3rd International NASA 
Workshop on Planning and Scheduling for Space. 
Globus, A.; Crawford, J.; Lohii, J.; and Pryor, A. 
2003. Scheduling earth observing satellites with evo- 
lutionary algorithms. In Conference on Space Mission 
Challenges for Information Technology (SMC-IT). 
Holland, J. H. 1975. Adaptation in Natural and Ar- 
tificial Systems. Oakland,CA: University of Michigan 
Press. 
Husbands, P. 1994. Genetic algorithms for scheduling. 
AISR Quarterly (89). 

4( 3): 293-399. 

Joslin. D. E.. and C!emcuts. D P. 1999 Squeaky 
xi-heel optimization. J O 7 ~ 7 . n d  of 4rtiJicitd hLtell?gmce 
Research 10:353-373. 
Kirkpatrick. S.; Gelatt, C. D.; and AndVecchi. $1. 
1983. Optimization by simulated annealing. Science 

Lamaitre, M.; Verfaillie, G.; Frank, J.; Lachiver, J.; 
and Bat,aille, N. 2000. How to manage the new gen- 
eration of agile earth observation satellites. In Pro- 
ceedings of the International Symposium on Artificial 
Intelligeme, Robotics and Automation in Space. 
Lamaitre, M.; Verfaillie, G.; and Bataille, N. 1998. 
Sharing the use of a satellite: an-overview of methods. 
In SpaceOps 1998. 
Potin, P. 1998. End-to-end planning approach for 
earth observation mission exploitation. In SpaceOps 
1998. 
Potter, W.; and Gasch, J. 1998. A photo album of 
earth: Scheduling landsat 7 mission daily- activities. 
In SpaceOps 1998. 
Sherwood, R.; Govindjee, A . ;  Yan, D.; Rabideau, G.; 
Chien, S.; and Fukunaga, A .  1998. Using aspen to 
automate eo-1 a.cti-vity planning. In Pr0ceedin.g.s of the 
1998 IEEE Aerospace Conference. 
Syswerda, G., and Palmucci, J. 1991. The applica- 
tion of genetic algorithms to  resource scheduling. In 
Proceedings of the Fourth International Conference on 
Genetic Algorithms, 502-508. 
Watson, J.-P.; Barbulescu, L.; Howe, A. E.; and Whit- 
ley, D. 1999. Algorithm performance and problem 
structure for flow-shop scheduling. In AAAI/IAAI, 

Wolfe: W. J., and Sorensen, S. E. 2000. Three schedul- 
ing algorit,hms applied to the sa.rth observing systems 
domain. Management Science 46( 1):148-168. 

220(4598):671-680. 

688-695. 


