Overview of MSFC’s Applied Fluid Dynamics Analysis Group Activities

Roberto Garcia/TD64
Lisa Griffin /TD64
Robert Williams/TD64
Space Transportation Directorate

Presented at:
MSFC Spring Fluids Workshop
Marshall Space Flight Center, AL
April 13, 2004

Overview

- Introduction
 - Status of programs at MSFC
 - Fluid Mechanics at MSFC

- Relevant Fluid Dynamics Activities at MSFC
 - Combustion devices
 - Turbomachinery
 - Nozzles

- Shuttle Return to Flight
 - SRB Boost Separation Motor
 - External Tank redesign
 - Fuel Feedline Flowliner
 - On-pad debris transport

- Concluding Remarks
Status of programs at MSFC - Prometheus

- Prometheus/JIMO (Jupiter Icy Moon Orbiter)
 - Project lead by JPL.
 - Current in a black-out period due to RFP.
 - Develop nuclear-electronic propulsion systems to provide greater energy for science on-site.
 - JIMO is a nuclear electric pathfinder vehicle.
 - Utilize a nuclear reactor to heat some sort of fluid.
 - Fluid used to generate electricity (Brayton cycle, Stirling cycle, etc.).
 - Electric thrusters provide thrust for delta-V.
 - Excess power is radiated into space.
 - Launch 2011 - 2015, 3-5 year transit to Jupiter.
 - Within Prometheus there are also studies for other, nuclear based propulsion concepts (i.e., nuclear thermal).

Office of Exploration Systems created to implement the President's vision for human space exploration
- "returning to the Moon"
- Code T

- Major Milestones
 - 2008: Initial flight test of CEV
 - 2008: Launch first lunar robotic orbiter
 - 2011 First Unmanned CEV flight
 - 2014: First crewed CEV flight
 - 2015: Jupiter Icy Moon Orbiter (JIMO)/Prometheus
 - 2015-2020: First human mission to the Moon

- HQ centric program, getting engineering support from field centers
- A "mission pull" initiative
 - Technology only if the mission needs it.
Status of programs at MSFC - Code T

- Conducting studies to aid in the establishment of requirements
- Going through the process of reviewing projects that it inherited for relevance to Exploration System needs
 - Relevance review has resulted in cancellation of several former NGLT projects
 - Redirection of others
 - There will be some low level, very focused near term technology activities
- Code will have to live with the same metrics as other programs
 - Support universities, small businesses, etc.
- SBIR program topics being restructured in line with the initiative and consistent with the "mission-pull" concept
- Centennial challenges could be the source of very interesting and spirited competitions
 - Allows NASA to award prize money to individuals/teams that are first in achieving certain technology/capability goals

Status of programs at MSFC - Shuttle RTF

- NASA is being very thorough in its return to flight (RTF) activities
 - It is implementing the CAIB recommendations and beyond
 - Aiming for RTF in March of 05
- You get relatively recent RTF information on the web
- RTF activities are impacting all the code M and code R centers
- Major activities being worked (not all inclusive)
 - Redesigning the ET to eliminate all sources of debris
 - Hardening the shuttle to be more tolerant of debris
 - Improving the orbiter's ability to re-enter safely with minor wing damage
 - TPS on-orbit inspection and repair capability
 - Developing a better RCC properties database
 - Developing a physics based, disciplined debris assessment process
 - Redesign solid rocket booster bolt catcher
 - Improving the film system for improved monitoring of launches (ground and on vehicle)
 - Has established and independent engineering technical authority
 - Reorganized to allow for more effective integration of the shuttle elements
- All activities being performed with extensive testing and analysis support
High-fidelity fluids design & analysis expertise at MSFC focused in the space transportation directorate
- CFD (TD64), induced environments (TD63), cold flow testing (TD62, TD63, TD74), and functional design (TD61)

Fluid dynamics expertise a core competency at MSFC

Support focused in two broad areas
- Space Shuttle propulsion (Shuttle return to flight)
 - SRB office, ET office, and Shuttle Integration Office
- Next Generation Launch Technologies
 - Projects/tasks that survive Office of Exploration Systems (Code T) Relevance Review

Introduction: Role of Fluid Mechanics Expertise

Fluid mechanics applications at MSFC focused on improving the safety, reliability, & cost of space transportation systems

We define geometry, quantify environments, and predict performance
- Incident investigation support (analysis and test)
- Environments and performance definition (analysis and test)
- Develop advanced hardware concepts and designs (analysis and test)

We support the programs in meeting their goals
- Assist the programs in being "smart buyers"
- Provide innovative technical solutions

We work with external partners who possess key capabilities
- Other NASA centers, other government agencies, industry, academia
Introduction: CFD Goals

- Provide personnel with the tools to succeed
 - Maintain and enhance civil service personnel capabilities
 - Provide challenging work, hands-on experience, training
 - Continuously improve analysis techniques, computing resources, and test facilities, reduce cost/analysis

- Acquire/develop capability to perform broad, CFD-based parametric design concept studies
 - Spend more time engineering, less time "CFDing"
 - More efficient use of available computing resources
 - Requires automation in all phases: grid generation, flow solver, post-processing

- Expand range of CFD applicability
 - Improved models, combustion, transient processes, relative motion, cavitation, multi-component, multidisciplinary,
 - Greater efficiency and robustness in flow solvers

CFD Software/Hardware in Use at MSFC

- Grid generation
 - Gridgen, Solid Mesh, Corgrid, CFD-Geom, CORGRID

- Post Processing
 - Fieldview, Ensight, Flowshow, Animator, Autoplot

- Flow Solvers
 - FDNS, LOCI-Chem, Corsair, Phantom, Overflow, UNIC

- Computer Hardware
 - Access to NASA-Ames SGI based compute clusters (512p & 1024p)
 - Local PC-based clusters and SGI systems
 - Access to local Army compute clusters

<table>
<thead>
<tr>
<th>Computers</th>
<th>Processors</th>
<th>Processor Speed</th>
<th>RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nexus</td>
<td>16</td>
<td>250 MHz, R10k</td>
<td>8.5 GB</td>
</tr>
<tr>
<td>Korben</td>
<td>8</td>
<td>300 MHz, R12k</td>
<td>4 GB</td>
</tr>
<tr>
<td>Neo</td>
<td>16</td>
<td>500 MHz, R14k</td>
<td>16 GB</td>
</tr>
<tr>
<td>Hydra</td>
<td>36</td>
<td>600 MHz - 933 Mhz PIII</td>
<td>10 GB</td>
</tr>
<tr>
<td>Chimaera</td>
<td>200</td>
<td>1500 Mhz, Athlon MP</td>
<td>100 GB</td>
</tr>
<tr>
<td>Cerberus</td>
<td>336</td>
<td>2100 MHz, AMD 2600</td>
<td>689 GB</td>
</tr>
<tr>
<td>Tyrell</td>
<td>32</td>
<td>250 MHz, R10k</td>
<td>32 GB</td>
</tr>
<tr>
<td>Desktops</td>
<td>2</td>
<td>400 MHz, R12k</td>
<td>.5 - 2 GB</td>
</tr>
<tr>
<td>VMCS</td>
<td>32</td>
<td>600 MHz R14KA</td>
<td>32 GB</td>
</tr>
<tr>
<td>VMFS</td>
<td>16</td>
<td>300 MHz, R12k</td>
<td>8 GB</td>
</tr>
</tbody>
</table>
Combustion Devices

- **Technology need**
 - Contemporary rocket engine combustion devices similar to 1960s-1970s designs
 - Longer life (robust), higher T/W designs required
 - Experimental demonstration of design robustness/life is cost prohibitive
 - Application of CFD in design of combustion devices hampered by real limitations
 - Inadequate accuracy (lack of physical modeling)
 - Inadequate turn-around time
 - Inadequate validation and verification where required physics are included in the CFD tools
 - Current focus at MSFC is in rocket chamber combustion
 - High pressure, all-speed, reacting flows

Combustion Devices - The Challenge

- We must support programs with the current, limited capability for injector design
- Concurrently, CFD simulation capability improvements must be made in at least 3 areas
 - Fidelity—the ability to model the key details of the physics and geometry
 - Robustness—solution turnaround must be sufficient to cover a large parametric space of independent design variables and operating conditions
 - Accuracy (demonstrated)—we must be able to quantify accuracy; both current and threshold level for design

At MSFC, we must maintain 2 parallel thrusts

| Program Support |
| Technology Development |
Key Concept—Simulation Readiness Level

Simulation Readiness Level (SRL) = (f, r, a)

<table>
<thead>
<tr>
<th>Level</th>
<th>Fidelity</th>
<th>Robustness</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Extremely simple physics, boundary conditions and geometry</td>
<td>Have not completed any simulations</td>
<td>Not evaluated other than historical quality of simulation tool</td>
</tr>
<tr>
<td>1</td>
<td>Reasonably precise geometry and boundary conditions, extremely simple physics</td>
<td>Have completed some simulations</td>
<td>Qualitative agreement with existing results of related problems</td>
</tr>
<tr>
<td>2</td>
<td>Reasonably precise physics with extremely simple boundary conditions and geometry</td>
<td>Simulations with proven convergence and conservation</td>
<td>Quantitative agreement with existing results of related problems</td>
</tr>
<tr>
<td>3</td>
<td>Reasonably precise physics, boundary conditions and geometry ***</td>
<td>Simulations with proven convergence, conservation and grid independence</td>
<td>Qualitative agreement of relevant measures for one representative problem ***</td>
</tr>
<tr>
<td>4</td>
<td>Reasonably precise physics, completely precise boundary conditions and as-built geometry</td>
<td>Fire and Forget (95%) simulations with convergence, conservation and grid independence ***</td>
<td>Qualitative agreement of relevant measures over parametric space of actual problems</td>
</tr>
<tr>
<td>5</td>
<td>Completely precise physics, completely precise boundary conditions and as-built geometry</td>
<td>Fire and Forget (95%) simulations with convergence, conservation and grid independence ***</td>
<td>Quantitative agreement of relevant measures over parametric space of actual problem</td>
</tr>
</tbody>
</table>

Minimum level for significant design impact: 3

Combustion Devices

- **Focus of groups combustion devices activities has been the staged combustion injector technology (SCIT) task**
 - Task objective is to develop, validate, and verify a CFD based injector design process
 - Develop required CFD capabilities for supporting large design parametrics
 - Robustness, physical models, turnaround time
 - Generate validation data sets
 - Gas-gas, liquid-gas, liquid-liquid, H₂-O₂, HC-O₂
 - Verify by testing injector designed using new process

- **Result of relevance review by Code T is to narrow the focus of the task**
 - Program priority will change to advancing design concepts, with CFD capability advancement being secondary
 - Focus on H₂-O₂ injectors, chamber compatibility for expander engines
 - Initial approval for continuation for 3 years
Validation Data Acquisition -- GO2/6H2 at Penn State

- Have tested initial gas-gas elements at PSU (code validation)
- Initial CFD comparisons have been completed
- Additional testing to focus on advance concepts
 - Probably gas-liquid injectors

OBJECTIVE
- To acquire data to validate codes for coaxial GO2/6H2 elements (Model Problem 9.1.1.1)
- To verify validated CFD codes and optimization techniques

CFD used extensively in concert with PSU testing

- Oxidizer tip location study demonstrates importance of pre-test simulations
 - Also shows knowledge of tip location to be critical
- Application of CFD reinforced need for detail data uncertainty analyses

Pre-Test CFD Temperature Fields for 5 Different Tip Locations

Wall Temperature Profiles for 5 Different Tip Locations
Liquid-liquid injector testing at facility TS-115
- 7-element, shear coax, LH2-LOX, preburner conditions
- Testing is underway and data is being reviewed
- Attempts to obtain multi-element CFD simulations have been hampered by several issues, most notably CPU time required to develop solutions

Configuration 1:
Shadowgraph Imaging of Propellant Injection Region & Flame Front

Configuration 2 & 3:
Thermocouple Rakes Provide Measurement of Flow Field Temperatures

Configuration 4: Colorimeter Chamber Measures Wall Heat Rate at 14 Axial Locations

Configuration 5: In-Chamber Raman Measurements Yield Species & Temperature

These layouts assume that the igniter spool can be placed far downstream; this remains to be demonstrated.
• Under SCIT there have been several parallel efforts for code improvement
 - FDNS real fluids development and implementation
 - FDNS robustness and efficiency improvements
 - Chenoweth presentation to discuss in more detail

• Development of LOCI-Chem for reacting flows applications (MSU)
 - Density based, generalized grid capability
 - Developed within multi-disciplinary framework
 - Ed Luke presentation

• Development of LOCI-Stream (UF and Stream Numerics)
 - Pressure based code within LOCI
 - Jeff Wright presentation

• All Three codes undergoing nearly constant validation against suite of test cases

Example: Initial validation of LOCI-Chem unsteady capabilities validated against classic vortex shedding cylinder
 - Validation performed by Bryan Robles (new-hire) as part of familiarization w/Chem
 - Results are pretty good but show dependency with Mach number
Combustion Devices - IPD Support

- **Objective:**
 - Construct a model to evaluate Main Injector and Chamber Wall Environments
 - IPD utilizes (hot) gas-gas H2-O2 main injector

- **Approach is to build on experience with PSU gas-gas injector analyses**
 - Apply Chem’s capabilities to basically a (large) reacting ideal gas problem
 - "Smart" modeling of the multi-element configuration

![Initial IPD multi-element simulation](image1)

![Wall Heat Flux Distribution](image2)

Combustion Devices - RS-84 Support

- **OBJECTIVE**
 - Mitigate design risk by better characterization of thermal environments on baffle elements and on chamber wall

- **APPROACH**
 - Start with Single Element, axisymmetric geometry
 - Finite rate multi-step chemistry, RP-1 modeled as ideal gas
 - Evaluated different GOX injection schemes
 - Evaluated different turbulence models

![Asymmetric simulations of an equivalent baffle (mid-chamber) element and a near wall element were performed](image3)
Example results:

Impact of Turbulence Model on RS-84 Heat Flux

- Objective: Construct subscale models to be validated for simulation of large scale combustors
- Approach: Start with Single Element, axisymmetric geometry, RP-1 modeled as ideal gas, Finite rate multi-step chemistry

Impact of GOX swirl RS-84 Heat Flux

- GOX swirl promotes mixing, thus increasing the near-injector wall heat flux.
Nozzle Activities

- **Recent/Ongoing Nozzle Technology Activities**
 - Documentation of test and analysis results from recent altitude compensation nozzle activities continues.
 - Nozzle Sideload activity approved for FY04.
 - Delayed one year due to Columbia investigation support.
 - Task includes:
 - Development of CFD based nozzle sideload prediction approach.
 - Development of experimental sideload measurement approach.
 - Testing of different bell nozzle designs in wind.

Turbomachinery Activities - TPO

- **Turbopump optimization task**
 - 2 stage supersonic turbine, instrumented rotor.
 - Tool improvements, design process improvements, rig design, manufacture, and testing.
 - First entry testing completed in Feb 2003, preparing for second entry into facility.
 - Test data has been used to make improvements to meanline code.
 - Comparisons of Corsair results are very encouraging.

Optimized 2 stage supersonic turbine w/ instrumented first stage blades
Turbomachinery Activities - TPO

Steady state data obtained at all planned set points

Efficiency comparisons

PR_{in} = 8.71

Nozzle pressure distributions comparisons to Corsair results

Blade suction side pressure distributions comparisons to Corsair results

Turbomachinery Activities - TAFT

- TAFT - Turbine AirFlow Tester
- RS-84 turbine airflow test rig
 - Subsonic, high flow turbine, out of U.S. industry
 - Design, analysis, manufacture, testing
 - Instrumented rotor for code validation
 - Testing completed, initial comparisons to data

Test rig installed in facility, initial test run completed

Pretest unsteady CFD analysis of key test points completed

Instrumented blades & nozzles at high freq. p measurements
Perfumed CFD analyses of RS-84 main oxidizer pump feedline
- Concerns with pump inlet velocity profile
- Predicted large distortions with baseline pipe geometry
- Began initial activities towards a redesign when project canceled
- Rothermel presentation
Turbomachinery Activities RS-84 LPOT

- Performed CFD analyses of the RS-84 LPOT
 - 6-stage hydraulic turbine
 - Analyzed with Phantom (unsteady, real LOX properties)
 - Provide steady and unsteady loads, provide insight into unsteady flows
 - Vortex shedding, boundary layer separation, etc.
 - Provide performance predictions

2D results for LPOT, first 3 stages shown

Instantaneous velocity at the trailing edge of vane 2 (ft/sec)

Turbomachinery Activities - Throttling TP Dev.

- Task to develop deep throttling diffuse concepts was not selected for continuation
 - Task included development of advanced pump diffuser concepts
 - Not completed
 - Task also included development of validation database and validation of codes - task was completed
 - Phantom (MSFC), Enigma (Rkdn), and INS3D (Ames) validated against experimental data set

CFD predictions comparison with test data
Impeller exit radial velocity profile

Experimental pump stage geometry and sample, time-averaged result

Diffuser pressure recovery at various Q/N
Shuttle Return to Flight

- As part of the Shuttle return to flight activities all the elements are attempting to address areas of concern
 - Even if not related to the Columbia mishap
- CFD is being utilized at MSFC in several areas in support of returning the shuttle to flight
 - External tank (ET) redesign
 - Solid rocket booster separation motors igniter
 - Orbiter fuel feedline liner cracking (again)
 - Shuttle on-pad debris transport process
- Other shuttle support
 - SSME LPOT potential redesign assessment

Shuttle Return to Flight - ET support

- CFD has been heavily utilized in the redesign of the bipod ramp on the external tank
 - Foam loss from the ET bipod ramp led to Columbia mishap
 - CFD used to assess the various redesign candidates
 - CFD utilized heavily in support of the testing of the redesigns
 - Key to designing the test plan
 - MSFC utilized LOCI-Chem exclusively for this work
 - D’Agostino presentation

Columbia ET bipod ramp configuration
Redesign ET bipod ramp region

Chem comparisons to wind-tunnel data are excellent
- Currently supporting project office assessing redesign of PAL ramps
 - There are two large ramps that shield the cable trays on the exterior of the ET
 - MSFC performing shuttle stack simulations with overflow to generate flight environments
 - CFD predicted flight environment used to design ground tests of potential redesigns
 - CFD also used to understand results from ground tests
 - In this and other Shuttle RTF activities there has been excellent cooperation in the CFD arena between MSFC, JSC, ARC, and LaRC
 - Reed presentation

\[\text{ET LOX PAL ramp} \]

\[\text{AEDC ground test configuration} \]

2D CFD analyses of cable tray and repress line at \(M = 0.70 \)
Flow field unsteady, vortex shedding

Possible solution involves addition of "fence" under the trailing edge of the cable tray to stabilize the flow

\[\text{PAL ramp approximate height} \]

Complex, 3D local flow (flow in vicinity of the PAL ramps) make simulation in wind tunnel nearly impossible.
Shuttle Return to Flight - SRB support

- Boost separation motors ignition must occur over a very narrow time band in order to separate solid rocket motors from ET safely
 - Erratic behavior in ground test units traced to potential igniter grain cracking during ignition
 - Structural analysis using CFD results pinpointed failure mechanism
 - Lifting of the igniter band line due to excessive flow induced load
- Testing utilized to assess redesign concepts
 - CFD used to provide insight into flow induced loads
 - Several limitations in CFD code prevented delivery of quantitative results
 - CFD results used for relative comparisons

Orbiter fuel feedline liner cracking

- Orbiter fuel feedline liner cracking caused a grounding of the fleet approximately one year prior to Columbia mishap
- A second look after the mishap has led to re-opening of the investigation to assure that the flow liner will survive at least one mission in the event of an engine out abort
- CFD is being performed by MSFC, Rkdn, and Ames in support of the ground-test program
 - Goal of the testing is to provide data needed to reduce generous conservatism in life prediction tools
 - Simulations are being performed to support water flow testing, airflow testing, and LH2 testing
- CFD simulation that include cavitation is most useful
 - Cavitation model being added to Phantom
 - Craft to perform some cavitating simulations
Prior to returning to flight, NASA committed to having in place a discipline process for dealing with debris during a mission:

- All the shuttle elements are generating list of possible debris
- The potential for that debris to cause damage to the shuttle system is evaluated in a two parts process:
 - Debris transport and debris impact
 - Impact testing of key components is being used to determine what is the allowable debris

- CFD is being utilized heavily in the debris transport process
 - Overflow is used to calculate the flow field about the shuttle at specified flight conditions
 - The trajectory that a specific piece of debris will follow is then calculated using a decoupled code
 - As necessary, coupled 6-DOF simulations of debris and shuttle are performed

- JSC has responsibility for the "ascent" debris transport
- MSFC is responsible for the "on-pad" debris transport
- There is a strong incentive for utilizing the same codes at MSFC and at JSC.
There are several risks associated with performing the "on-pad" debris transport calculation:
- Risk that Overflow will not predict the on-pad flow fields
 - Flows dominated by plume induced aspiration
- Risk that the complex geometry of the launch pad/shuttle stack may make the grid generation impractical and/or lead to unacceptable solution run times
- West presentation

Current SSME LPOT has experienced cracking of the 1st stage nozzle:
- Caused by coupling between vortices shedding and structural mode
- After extended test time exposure

The project has requested that potential redesigns that eliminate the potential for nozzle failure be developed.
- MSFC has supported Rocketdyne and Ames with CFD analyses of the baseline design and potential redesigns
- Dorney/Marku presentation
Concluding Remarks

- TD64 focused on supporting the space transportation programs
 - Shuttle return to flight
 - Applying capabilities/technologies to Office of Exploration System needs
- Design and analysis tools being applied and/or under development in the major hardware areas
 - Turbines, pumps, combustion devices, engine systems, propulsion-to-airframe integration, and MDA capabilities continuously being improved
- Increasing the design process efficiency and fidelity is paramount
- Code validation, robustness, reliability key to meeting CFD's promise
- Achieving goals depends on our ability to get maximum return on research investments