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1 Overview 

This report summarizes the activities on NASA Grant NAG-1-2249 during the past year. 

The work summarized below consists of two parts. The first part concentrates on the lumped 

element model of synthetic jets, while the second part focuses on the structural dynamic 

modeling of piezoceramic flap actuators. 

1.1 Objectives 

Develop coupled electro/fluid/structural lumped-element model (LEM) of a prototypical 

flow-control actuator 

Validate the coupled electro/fluid/structural dynamics lumped-element models 

Develop simple, yet effective, design tools for actuators 

Develop structural dynamic models that accurately characterize the dynamic response of 

piezoelectric flap actuators using the Finite Element Method (FEW as well as analytical 

methods 

Perform a parametric study of a piezo-composite flap actuator. 

Develop an optimization scheme for maximizing the actuator performance. 

1.2 Progress 

Developed electro/fluid/structural models of piezoelectric-driven synthetic jet actuators using 

lumped-elements modeling 

Designed and fabricated a modular setup of a synthetic jet actuator driven by a piezoelectric- 

diaphragm to conduct careful experiments to isolate model components 

Designed optimized piezoelectric-diaphragms 



Developed structural dynamic model based on FEM for the design of piezoelectric flap 

actuators 

Designed, fabricated, and characterized the flap actuators 

Developed an analytical scaling method and an optimization scheme that enables to select the 

actuator parameters to maximize its performance for a given bandwidth. 

2 Synthetic Jet Actuators 
2.1 Theoretical Model of a Piezoelectric-Driven Synthetic Jet Actuator 

A coupled electro-mechanical-acoustic model of a synthetic jet with piezoelectric- 

diaphragms was developed. The main assumption employed in lumped-element modeling 

(LEM) is that the characteristic length scale@) of the governing physical phenomena are much 

larger than the largest geometric dimension. The governing equations for the distributed system 

are "lumped" into a set of coupled differential equations. Device components are represented by 

an equivalent circuit element and are connected by following specific rules based on the effort or 

flow variable type they share. The benefit of the LEM lies in the explicit relationship between 

each device component and the fi-equency response of the system. Such an approach provides a 

simple method to estimate the dynamic response of a synthetic jet and ultimately to design it. 

The actuating diaphragm consists of a clamped axisymmetric piezoelectric unimorph actuator 

in which a piezoceramic is bonded to the central portion of a metal diaphragm. The composite 

diaphragm is driven into motion via an applied AC voltage. This represents a conversion fi-om 

the electric to the mechanical domain. Since the primary purpose of the diaphragm is to produce 

large volume displacements, we focus on the first axisymmetric vibration mode of the composite 

diaphragm. To accomplish this, the diaphragm is lumped into an equivalent mass representing 

the stored kinetic energy and a compliance representing the stored potential energy. The 
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effective mechanical mass and compliance can be easily converted to their acoustic counterparts, 

and so it is convenient to treat the entire device as a couple electroacoustic system. Since the 

cavity contains a compressible gas, it too stores potential energy and it is modeled as an acoustic 

compliance. Finally, the orifice is a viscous region associated with motion of a fluid mass. 

Therefore, there will be an effective mass and a resistance associated with the orifice neck. The 

neck acoustic resistance takes into account the viscous loss in the neck and the non-linear 

discharge coefficient of the jet exit that is approximated by modeling the orifice as a generalized 

Bernoulli obstruction. For a first assumption, fully developed laminar pipe flow with oscillating 

pressure gradient is investigated to model the flow in the orifice. In addition, for low operational 

frequencies, a radiation mass is modeled, to first order, as a piston in an infmite baffle if the 

circular orifice is flush-mounted in a plate that is much larger in extent than the orifice radius. 

The equivalent circuit representation of a synthetic jet is shown below. Md and C,M are the 

acoustic mass and compliance of the piezo-diaphragm, respectively. C d  is the acoustic 

compliance of the cavity, while R,o and Moo are the acoustic resistance and mass of the orifice, 

respectively. R u m  and M u m  are the acoustic resistance and mass associated with the orifice 

radiation, respectively. The conversion from the electrical to the acoustic domains is accounted 

for via a transformer with a turns ratio &. This converts the driving current to a volume velocity 

of the diaphragm. The goal of the design is to maximize QOUP/VAc (i-e., the volume flow rate 

through the orifice per applied voltage). 
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Figure 1: Acoustical equivalent circuit representation of a piezoelectric-driven synthetic jet, 

The transfer function of the whole equivalent circuit is given by 

, where -- Q,, - s k  c, 
v,, ads4 + a,~'  + a2s2 + a,s + 1 

synthetic jet. First, the fiequency response function is the ratio of volume velocity to the applied 

voltage. Since volume velocity is the derivative of the volume displacement, we see that for low 

frequencies (s + 0), the volume velocity is zero and the volume displacement is q& Co~=-da, as 

expected. Second, the denominator is a 4*-order polynomial in s, indicating two resonance 

fiequencies. It can be shown that these two resonance frequencies are controlled by the 

diaphragm natural fiequencyfd and the Helmholtz fiequency of the cavityf,, given by 

A=-+ 1 1 

21c M,C, 

such that 
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f I f 2  = f d L  (3) 

2.2 Design of Modular Synthetic Jet Actuator 
A modular apparatus of a piezoelectric-driven synthetic jet with cylindrical orifice was 

designed and constructed in order to perform careful experiments of each device component. 

The modular design allows for the interchanging of parts to test a variety of geometries, 

including the orifice, cavity, and different piezoelectric-diaphragms. Two mounts accommodate 

different composite piezoelectric-diaphragms (diameter of 27 mm or 41 mm, along with various 

thickness for both the piezoceramic and the shim). In addition a dual configuration can be 

obtained that is, two piezo-diaphragms are mounted face-to-face. The size of the cavity is 

modular in the same way with its height varying from 2 to 6 mm. Finally, various orifice plates 

provide an orifice with a diameter ranging from 0.28 mm to 0.78 mm and a depth from 0.5 to 2 

111171. To mount the microphone flush against the bottom of the body plate, a tapered hole was 

machined from the end of the mount up to the cavity, which permitted insertion of the 

microphone without allowing air to escape. The basic device is shown below in Figure 2, along 

with one picture in Figure 3. 

I Orifice plate 

Top plate Body plate D Bottom 
C PI8 

Access hole 
for 

. microphone . 
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Figure 2: Schematic of the modular synthetic jet apparatus. 

Figure 3: Picture of the synthetic jet tested. Figure 4: NASA synthetic jet device, courtesy 
of Dr. Michael Kegerise. 

In addition to this modular design, Dr. Michael Kegerise of NASA Langley provided us with 

the design drawing of a synthetic jet device that is currently under investigation, as shown above 

in Figure 4. This one differs essentially from the previous device by its rectangular slot, 

compared to the cylindrical orifice. 

2.3 Experimental Procedures 

In order to verify each component of the LEM, the experimental apparatus built permits a 

systematic parametric study of the synthetic jet design. The procedures are as follows: 

0 Piezoelectric-diaphragm excitation in a vacuum chamber to isolate the 

electromechanical coupling 

Oscillatory pressure in a sealed cavity to eliminate orifice effects 

Behavior of synthesized jets versus various orifice geometries to determine the orifice 

impedance in ambient flow conditions 
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2.4 Experimental Results 
To gain confidence in the use of LEM as a potential tool to optimize the design of synthetic 

jets, we applied the above LEM approach to the NASA synthetic jet design since preliminary 

performance data was already available for that device. The predicted frequency response 

function between the applied voltage and the output volume flow rate is shown in Figure 5. The 

predicted resonant frequencies are 435 and 1557 Hz, while the estimated natural frequencies of 

the cavity and diaphragm are 443 and 1527 Hz. 

Figure 6 shows the results of hot-wire measurements conducted by NASA to characterize the 

maximum velocity. Two curves are shown, one each for the maximum RMS and maximum 

amplitude of the velocity measured near the slot. The agreement between the LEM and the 

experiment is quite promising. It can be noted that, due to the lumped nature of the LEM, only 

the average velocity can be estimated. Clearly, the magnitude of the response at the resonance 

frequencies is not predicted correctly. This is undoubtedly due to the oversimplification of the 

resistance terms in R,o. Nonetheless, the LEM predicts, using a driving AC voltage of 112 V, an 

average velocity in the range of 800-1000 Hz of approximately 8 ds. This is in good agreement 

with experiment. 
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Figure 5: LEM prediction of the frequency response of the synthetic jet 
actuator. 
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Figure 6: Hot-wire measurment of the velocity response of the synthetic jet 
actuator. (Courtesy of Dr. Michael Keregise, NASA LaRC). 
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Also, experiments of the piezoelectric-diaphragm itself were conducted to validate the 

composite linear plate theory used to model it. A maximum input voltage of 5 V drove the 

piezoelectric-diaphragm into motion, at a frequency on the order of 100-200 Hz, and the 

deflection of the diaphragm were measured by a scanning laser vibrometer. Figure 7 below 

shows the comparison between the experiment and the theory. 

Displacement profile of the piero-diaphragm vs radius 
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Figure 7: Volume displacement of the piezoelectric-diaphragm by applied voltage. 

Similarly, to test the theory on the cavity acoustic compliance, the orifice was replaced with a 

solid cap to provide a closed cavity and all leaks were carefully minimized. The piezoceramic 

was then driven with a nominal 1 V amplitude sinusoid, and the displacement of the vibrating 

diaphragm was measured with a laser displacement sensor (Micro-Epsilon Model ILD2000-10). 

A 1/8 in. Briiel & Kjzer (B&K) type 4138 condenser microphone with B&K type 2669 

preamplifier measured the fluctuating pressure in the closed cavity. The amplitude of the 

sinusoid was adjusted to avoid harmonics. The fiequency response function between the 

pressure and displacement signal at the diaphragm center wo was used to measure P/wo at 

several frequencies and calculate C,,, , as shown in Figure 8. Using the average measured value 

of 9.89 MPa/m and the measured mode shape, the cavity volume was determined to be 
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2.53~10-6 m3 k 12%. This nominal value is within -1% of the cavity volume calculated from 

the geometry. 

100 200 300 400 600 700 800 
Frequency 

Figure 8: Measured acoustic compliance c,, vs. frequency in closed cavity of synthetic jet. 

Finally, the lumped element model is used to predict the fiequency response of two 

prototypical synthetic jet actuators. The dimensions and material properties of the piezoceramic 

diaphragms and actuator devices, along with the pertinent lumped element parameters, can be 

found in details in Gallas et al. (2003). Figure 9 show the model prediction of the centerline 

velocity compared to phase-locked LDV measurements versus frequency. 

0 l m o l 5 0 0 ~ 2 5 M ) 3 0 0 0  0 500 1500 

Figure 9: Comparison between the lumped element model and experimental frequency response measured 
using phase-locked LDV for two prototypical synthetic jets (Gallas et aL 2003). 

2.5 Future Work 
Future work will focus on the validation of each device component. Furthermore, we need to 

look in the acoustic liner literature for model improvement 
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nonlinear and grazing flow effects. In the same way, experiments and LEM results will be 

comparing with ongoing CFD simulations of the orifice flow conducted by Dr. Rajat Mittal of 

GWU. Once the LEM approach is validated, it will be used as basis for a synthetic jet design 

tool for end users utilization. 

2.6 PublicationsLPresentations 
Gallas, Q., Holman, R., Nishida, T., Carroll, B., Sheplak, M., and Cattafesta, L., “Lumped 

Element Modeling of Piezoelectric-Driven Synthetic Jet Actuators,” AL4A JoumaZ,.Vol. 

41, No. 2, pp. 240-247, February 2003. 

Gallas, Q., Mathew, J., Kaysap, A., Nishida, T., Sheplak, M., and Cattafesta, L., “Lumped 

Element Modeling of Piezoelectric-Driven Synthetic Jet Actuators, AIAA Paper 2002- 

0125,40th AIAA Aerospace Sciences Meeting & Exhibit, January 2002. 

Gallas, Q., Sheplak, M., and Cattafesta, L., “Lumped Element Modeling of Synthetic Jets, Ultra- 

Efficient Engine Technology Forum, NASA Glenn Research Center, September 2001. 

3 Piezoelectric Flap Actuators 
Piezoelectric flap actuators are desirable for active flow control applications. An 

understanding of their characteristics is essential prior to using them in a fluid flow. This portion 

of the report summarizes the theoretical modeling and experimental validation of the dynamic 

response of piezoelectric unimorph actuators. Two different finite element models (FEM) of a 

piezoelectric unimorph actuator are developed. One is a beam model that assumes a perfect 

bond exists between the piezoelectric patch and the shim, and the second extends the perfect 

bond model by incorporating a linear elastic shear element for the bond layer. These models are 

then used to predict the magnitude of the dc response (i.e., tip displacement per unit applied 

voltage) and the natural frequency of a piezoelectric flap. Also an approximate analybcal static 
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model was developed to determine the functional dependence of the system response on the 

actuator parameters. The analyhcal model was also extended to study the response of bimorph 

actuators. The results are compared with experimental data obtained fiom a parametric study, in 

which ten otherwise identical piezoelectric flaps with varying piezoelectric patch sizes are 

fabricated and characterized using a laser displacement sensor. The results indicate that the 

theoretical models provide good estimates for the dc response and for the natural frequency when 

a linear elastic bond layer is used and a clamped boundary condition is realized. In particular all 

models produce estimates that are accurate to within 15% and 10% for the dc response and 

natural frequency, respectively. Finally a design procedure for developing actuators with 

optimum performance is briefly summarized. 

3.1 Theoretical Model of a Piezoelectric-Driven Flap Actuator 

A parametric study was carried out in which the geometry of a piezoelectric-shim was varied 

fiom approximately 10% to 100% of the total beam length in ten equal steps (while all other 

variables were fixed). The flaps were constructed of an aluminum alloy shim, with the 

piezoelectric material firmly affixed to its surface using an epoxy adhesive to form a piezo- 

composite beam. Figure 3 shows the schematic of a piezoelectric flap unimorph actuator. The 

total length of the shim is 4 (-70 mm), the width is b (-26 mm), and the thickness is t, (508 

pm). A piezoceramic of length L, (variable) and thickness t, (254 pm) is bonded to the shim 

using an epoxy adhesive of thickness tb (13-25 pm). A small gap of length Lgq (< 1 mm) is 

maintained between the clamp and the piezoelectric to eliminate stress concentrations and to 

prevent an electrical short circuit. Upon application of an external voltage to the piezoelectric 

electrode, the flap deflects in a direction determined by the orientation of the piezoelectric 

polarization vector with respect to the electric field. 



In order to characterize piezoelectric flap actuators, a structural dynamics model is required 

that can accurately predict the frequency response of the flaps. Since flow-control applications 

of interest typically demand a large volume displacement, attention is restricted to the first 

bending mode only, which corresponds to the maximum volume displacement. Below, a 

“perfect bond” model and a “shear lag” model, both of which utilize finite element 

methodologies are used to calculate the frequency response of the actuators to an applied 

voltage. A simpler analytical static analysis is then described that is suitable for design. 

The quantities of interest, namely the dc response and natural frequency of the actuator were 

calculated using the FEM and scaling analysis, and compared with the experimental results. 

‘ I  SHIM I ts 
JL 

I 

CLAMP 
Figure 3: Flap actuator model. 

3.2 Perfect Bond Finite Element Model 
A simple schematic of the perfect bond model is shown in Figure 4. This assumes an 

infinitely rigid bond exists between the piezoelectric and the shim. All loads applied to the bond 

by the piezoelectric are transmitted fully to the shim. 
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Crawley and de Luis [1987] showed that a perfect bond between the piezoelectric and the 

shim leads to a concentrated couple or moment M, at the edges of the piezoelectric patch 

n = Lgap and Lp + L g ,  . As described in Cattafesta et al. [ 19971, a relationship can be obtained 

between the applied voltage and M ,  , assuming that the actuator is in pure bending, and is given 

bY 

1 
M, =--E d E btP(2c2- tp)  (4) 2 31 field 

where Ep is the elastic modulus of the piezoelectric, d31 is the appropriate piezoelectric constant 

for a bender configuration, Ewd is the magnitude of the applied electric field, b is the width of 

the flap, tp is the piezoelectric thickness, and c2 is the location of the neutral axis in the 

composite section with respect to the bottom surface of the piezoelectric and is given by 

where E, is the elastic modulus of the shim and t, is the shim thickness. 
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CLAMP 

Figure 4: Perfect bond model. 

It is important to note that a perfect bond cannot be achieved in practice because of the finite 

stifkess of the bond. Hence, a shear stress exists at the bond interface. This situation is 

considered in the next section. 

A standard Euler-Bernoulli beam finite element model was developed to calculate the grid- 

resolved frequency response function for the piezoelectric actuators. The details of the finite 

element modeling scheme are given in Cattafesta et al. [2001]. The material properties of the 

flap are summarized in Table 1. 



Table 1: Flap Actuator Properties. 

Property 

Elastic Modulus 

AL-2024 

(Aluminum 

shim) 

7.33.10’’ 

I 

Density 

PZT-5H 

(piezoceramic) 

Piezoelectric 

constant (m/V) 

Shear Modulus 

NIA 

NIA 

Eccobond 45 

(Adhesive) 

-274 1 0-l2 NIA 

3.3 Shear Lag Finite Element Model 

The perfect bond model described above results in an artificially stiff model for the flap 

actuator, causing predicted values for the natural fiequency that are higher than the 

corresponding measured values (Cattafesta et al. [2001]). A more realistic model for the bond is 

thus sought to obtain better quantitative predictions for the flap characteristics. 

A perfect bond model neglects the presence of the bonding adhesive layer between the 

aluminum shim and the piezoelectric. The bond layer is viscoelastic to some extent and 

possesses a finite stiffness. Some amount of strain will occur in the bond layer, resulting in a 

shear lag between the induced strain by the piezoelectric and the strain actually transmitted to the 

shim via the bond layer. 



Crawley and de Luis [ 19871 showed that the maximum shear stress occurs near the two edges 

of the piezoceramic patch, whereas the shear stress distribution is almost zero for the remaining 

regions of the bond. The stress distribution also has opposite signs at the two edges of the bond. 

The shear-lag model described below represents an extension of their work to investigate the 

effect of the bond layer on the dynamic response of the actuators. 

A schematic of the shear lag model is shown in Figure 5. Due to the deformation of the 

piezoelectric induced by the application of an external electric field, a horizontal 

electromechanical force of magnitude f = d3iEfie,dEpA acts on the front and back faces of the 

piezoelectric section, where Ep is the elastic modulus and A = bLp is the cross-sectional area of 

the piezoelectric. A shear stress t ( x )  acts at the interface between the bond and the 

piezoelectric (and the bond and shim), as shown in Figure 5.  A free-body diagram of the 

piezoelectric reveals the relationship between the magnitudes of f and z(x), 

f = $” z ( x )  bdx . An inspection of Figure 4 for the perfect bond case reveals the effect of this 

force is to produce an induced couple in Eq. (4). The relation between the horizontal 

electromechanical force and the induced couple can be obtained by combining Eq. (4) with the 

definition for f and is given by the formula 

Thus, the flap deflects or bends upon application of a voltage, and the direction of motion is 

determined by the orientation of the piezoelectric polarization vector with respect to the electric 

field. The net effect is that a finite shear stress or shear lag, ~ ( n )  = G(&/&), is induced in the 

bond layer due to the deformation of piezoelectric, resulting in a decreased induced strain being 



transmitted to the shim. Here, u is the displacement in the x direction and G is the rigidity 

modulus. 

A finite element model, similar to the one used for the perfect bond model, was developed. 

The solution procedure is same as that for the perfect bond model, the details of which are given 

in Mathew et al. [2001]. 

rhlm 

A 
clamp 

Figure 5: Shear lag model. 

3.4 Analytical Scaling Analysis 

1 
X 

SHIM Mo 

CLAMP APPLIED VOLTAGE 
Figure 6: Schematic of unimorph piezoelectric flap composite beam. 
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In order to obtain the functional dependence of the critical quantities like dc response and 

natural frequency on the flap design parameters, an analytical scaling analysis was undertaken. 

The sections below briefly summarize the modeling scheme used. 

3.4.1 Calculation of dc response 
The Euler-Bernoulli beam equation for the flap was solved for an applied external voltage. 

Figure 6 shows the arrangement of a unimorph piezoelectric patch that is perfectly bonded to a 

shim material. The application of a voltage produces a couple that acts at the edges of the 

piezoelectric patch, as described in the perfect bond model. The composite beam is split into 

three sections. Section 1, of length Lgq , is the small gap region between the clamp and the 

piezoelectric. Section 2, of length Lp , is the composite section. Section 3, of length L, , is the 

second shim section. 

In Section 1, the governing static equilibrium equation for the vertical deflection of the beam 

is 

In Section 2, the governing static equilibrium equation is given by 

where M,, is due to the applied voltage and is given by Eq. (4). In Section 3, the governing 

static equilibrium equation is given by 

d’w, EsIq - M 3  - =o. (9) 

To find the beam deflection as a result of an applied electric field, we use the following four 

boundary conditions for a cantilever beam 
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w,(x=O)=O, 

w((x = 0 )  = 0, 

w;(x = 4) = 0, 

and 

$(x = 4)  = 0. (10) 

These boundary conditions states that the deflection and slope are zero at the clamped edge and 

the force and moment are zero at the fiee edge. The matching condition matches the deflection 

and slope at the interface between sections 

w*(x = Lgw) = w2(x = LgJ, 
w;<x = Lw) = w;<x = Lgw), 

w2(x = Lm + L,) = w3(x = Lgw + L,), 

and 

Wi(X = L- + L p )  = w;(x = Lgq + L,). (1 1) 

In the ideal case the gap region is negligible in size and neglected, Lgw + 0, so we can write 

the piecewise continuous beam deflection equation as 

and 

w3 ( x )  z ””( x-+). Lgw + Lp I x 5 L, 

To obtain the tip deflection, we substitute for x = &, (EI)c  = E,IS2 + EpIa , and the expression 

for M2 from Eq. (4) into the expression for w,(x) 



- -3Epf~ (5 +tp)EsLp (Lp - 2 h ) d 3 1 v  

W*@ = - ( ES2fs4 + 4E,f:E,tp +6Epf~Esfs2 + 4EpflEsts + E, 2 4 '  f ,  ) 

It can be shown that the dc response depends on non-dimensional parameters like tp It, , L, I LT , 

E,/E,, t , l~ , andd3 ,Vl tp ,where  EJFcld=V/tp. DefheT=fpl tS,  z = L p l L ,  andE=E,lE,  

for the purposes of scaling the dc response. Substituting these into Eq. (13) and dividing by 

d3,VL, It, gives 

The above expression gives the tip deflection for a given piezoelectric material of a specified 

total length for an applied electric field. The implications of the above expression will be 

discussed at a later stage in this report. 

A similar analysis as above can be done for a symmetric bimorph actuator. A bimorph 

actuator has oppositely poled piezoelectric patches attached to both sides of the shim and is used 

in applications that require greater volume displacements. The schematic of a bimorph actuator 

is shown in Figure 7. The dimensioning convention is same as that for the unimorph actuator. 

CLAM 

/ 
/ 
/ 
/ 
/ 

LINE 
+ X  

Figure 7: Schematic of a bimorph actuator. 

The induced moment at the piezoelectric shim interface is given by the general expression 
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MO = l y a ( Y p  (15) 

where y is the coordinate along the cross section measured from the neutral axis, o ( y )  is the 

normal stress distribution, and dA is the area element for integration. Eq. (1 5 )  can be simplified 

to 

Note that the neutral axis passes along the centroid of the cross-section. Following the same 

procedure as that for the unimorph, the non-dimensional tip deflection can be expressed as 

3.4.2 Calculation of natural frequency 

The natural frequency of the composite beam is calculated based on the static deflection of 

the composite beam under self load (Le., weight). For simplicity, the gap region is neglected in 

this analysis. The schematic of the beam is given in Figure 8. In the figure, q2 and q3 are the 

load per unit length of the composite section and the shim section respectively. 

Y A SHIM I 

I 

Figure 8: Schematic of the beam under self load. 

A free body analysis of the beam gives the force and moment acting at the clamp point as 
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Using the same nomenclature described in the previous analysis, the governing equation for 

vertical deflection in Section 2 is given as 

In Section 3, the governing static equilibrium equation is given by 

To find the beam deflection as 

d2w3 ( X - L J  
ESIS3 - --43 

a result of an applied electric field, we use the same boundary 

conditions, Eq. ( l o ) ,  and matching conditions, Eq. ( 1  1 ) .  This result in the following piecewise 

continuous beam deflection relation: 

and 

-1 ( h 4 + B - x 3 + C - x 2 + D x + E ) ,  
w3 ( x )  = 24 ( E I )  

where 
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As a check, note that Eq. (25) reduces to -3q2h4 / (24 ( , which is the tip deflection of a 

cantilever beam under self load, for the limiting cases when (El) = ( E I )  and Lp = 0.  The 

potential energy associated with the deflection in the beam is given by the expression 

Similarly, the kinetic energy is given by the expression 

1 LT 

2 0  
T =- ~nzl(x)(W(x))z  dx. 

where m,(x) is the mass per unit length of the actuator. Integrating Eq. (26) and Eq. (27) using 

the piecewise continuous solution, Eq. (22)- Eq. (23), we obtain the total potential and kinetic 

energy of the beam. Lumping the potential energy and the kinetic energy at the tip, we can 

obtain the effective compliance and mass of the composite beam. 

The effective compliance of the composite beam is 

C&=-. ( WtiP r 
2 u  

Similarly, the effective mass for the beam is obtained by the expression 

2T M g = - .  r 
The first resonant frequency of the composite beam is estimated by 
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The natural frequency is estimated for both the unimorph and bimorph actuators. The 

expression for the natural frequency is very long and is therefore not listed here. The natural 

frequency can be normalized by the natural fiequency of a homogenous beam under self load 

and is given by the formula 

It can be shown that the non-dimensional natural fiequency is a function of non-dimensional 

parameters like tp It, , Lp I LT , Ep I E,, and pp I p, . 

3.5 Experimental Setup and Procedure 
Experiments were conducted to characterize the piezoelectric actuators and obtain their 

natural fiequency and dc response. The response of the actuators to an applied input voltage was 

measured. A laser displacement sensor was used to obtain the fiequency response function 

between input voltage and output tip displacement. 

The set of actuators designed had a typical length of 70 mm and a width of 26 mm. The shim 

was 508 pm thick, while the piezoelectric was 254 pm thick. The piezoelectric patch was f d y  

bonded to the shim using Eccobond 45 epoxy adhesive. Eccobond 45 epoxy has a glass 

transition temperature of 48' and is not very viscoeleastic leading to minimal dissipation of 

energy as heat. The thickness of the bond layer varied slightly from 13-25 pm over the bonding 

area. Ten of these actuators were built, where the length of the piezoelectric patch was increased 

in steps of 10% between the successive actuators. The actuators were clamped at one end on a 

test apparatus to approximate a clamped-free boundary condition. Care was taken to ensure the 

rigidity of the clamp so that there is minimal motion at the base of the clamp when the actuator is 
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vibrating. The actuators were mounted vertically on the test apparatus and the electric lead 

connections were realized via low resistance ( 4 0  ohms) strain-relieved, conductive copper tape 

attached to the piezoelectric patch as well as to the grounded apparatus. 

A periodic sweep excitation signal was generated using a function generator (HP model 

E1441 A). The sweep signal spanned a frequency range fiom 0.1 to 200 Hz with amplitude of 

0.05 V. The voltage signal was amplified by a nominal gain of 30 using a piezoelectric amplifier 

(PCB Model 790A06). The period of the c@ was set at 4 seconds to provide good fiequency 

resolution ( Af = 0.25 Hz) for the spectral analysis. The output data was acquired using a 16-bit 

data acquisition system (HP model E1433A). Fifty block averages of the spectral data were 

found suitable to reduce the random error component to negligible levels. The laser beam was 

focused at a point approximately 1 mm fiom the midpoint of the tip of the flap. The schematic 

of the experimental setup is shown in Figure 9. 

Function 
Generator 

Data 

Figure 9: Schematic of the experimental setup. 
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3.6 Results and Discussion 
A laser displacement sensor was used to characterize the actuators. The frequency response 

function of the actuators was measured and the natural frequency and dc response was calculated 

from the frequency response. The results were compared with the values obtained from the two 

finite element models as well as the analytical model described previously. The dc response was 

calculated from a Pd-order system fit as well as fiom an average of first ten frequency response 

function magnitude values. The mathematical expression for the fit is given as 

1 H(w)  = - a@> - - 
Y - M u 2 + C j w + K  

where the frequency response function fit, H(w) , is defined as the ratio of the tip displacement 

X ( w )  to the applied voltage V , for each frequency w . The coefficients M , C,  and K are the 

effective mass, damping and stifiess for the system respectively. The natural frequency was 

calculated from a 90' phase angle, the fiequency corresponding to the peak of the power spectral 

density, theoretical fit, and an impact hammer test. The response of the actuators was calculated 

using multiple methods to obtain a good agreement between experiment and theoretical values. 

The details of these multiple methods for the calculation of dc response and natural frequency 

are given in Mathew [2002]. 

A comparison of the natural frequency for the flaps between experiment and theoretical 

values is plotted versus normalized piezoelectric length in Figure 10. The experimental results 

agree well with the theory to within +/- 10%. Theoretical values include predictions from the 

analytical model, perfect bond finite element model analysis and shear-lag finite element model 

analysis. The prediction from the shear lag model is closest to the experimental values. The 

perfect bond frequency predictions are higher than the shear lag values, while the static analysis 

data serves as an upper limit for the theoretical predictions. Note that analytical model gives 
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identical results to the perfect bond finite element model if Lg ;IS 0 is not assumed. A peak in the 

system bandwidth is observed for L,/& z 0.5. For low values of L,/L, , increasing Lp/L ,  has 

a greater impact on the stiffness than on the mass of the actuator. However, at higher values of 

L,/L, , increasing L,/L, has a greater impact on the mass than on the stifkess of the actuator. 

Thus, there is some length L p / L ,  that balances these two competing effects. This gives an idea 

of the optimum piezoelectric patch length for maximizing the natural frequency of the present 

piezoelectric actuator. 

Figure 11 shows the dc response comparison between experiment and theoretical models. 

All theoretical models predict the dc response to a reasonable accuracy of +/- 15%. The dc 

response increases monotonically with increasing piezoelectric length and saturates around a 

value of L p / L ,  = 0.9. It is clear that increasing the piezoelectric length induces more strain, 

which leads to larger tip displacements and hence a larger dc response. It can also be observed 

that the dc response predicted by the perfect bond finite element model nearly matches that 

predicted by the analyhcal model. Thus the experimental data presented here give confidence in 

the theoretical predictions by the models developed, with the shear lag finite element model 

being the most accurate, while the analytical model is the simplest. 

The analytical and finite element formulation treats the actuators as a beam model. Actuator 

dimensions resemble that of a plate, which has less stiffness than a beam. Leissa [1993] defined 

a frequency parameter given by m12,/( 12p/Et2) ,  where w is the natural frequency in radians, 1 

is the total length, p is the density, E is the elastic modulus and t the thickness of a 

homogeneous cantilever plate. Approximating the actuator designs by homogeneous plates, and 

calculating the frequency parameters yielded values of 3.63. However the frequency parameter 
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value for a homogeneous cantilever beam is 3.52 (Thomon [1993]). Since the frequency 

parameter values are within 3 %, approximating the actuator design by a beam model is justified. 

Figure 10: Comparison of natural frequency between experiment and theory. 

"0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.8 0.9 1 

L P R T  

Figure 11: Comparison of dc response between experiment and theory. 
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3.7 Actuator Design Considerations 
It can be observed fiom the experimental results that the dc response increases monotonically 

with the piezoelectric patch length and there is an optimum piezoelectric length that maximizes 

the system bandwidth. The study revealed the dependence of the dc response and the natural 

frequency of the actuator on only one parameter, the ratio of the piezoelectric patch length to the 

total length of the actuator, LP/& . However, the analyhcal static analysis, described earlier, 

showed that the nondimensional dc response depends on non-dimensional parameters like tp lt, , 

Lp / LT,  Ep /E , ,  t, I 4  and the nondimensional natural fiequency is a function of non- 

dimensional parameters like tp  / t, , Lp / LT , Ep /E,,  and pp  / p, . 

A nominal design with Lp lL, = 0.5, tp lt, = 0.5, Ep /E ,  = 0.85, t, IL, = 0.0073, and 

p p  / p, = 2.48 is selected to study the dependence of both non-dimensional dc response, W , and 

natural frequency, F ,  on the actuator parameters. Figure 12 (a-d) shows the variation of the 

non-dimensional dc response. For each plot only the parameter along the x axis is varied while 

all other parameters are fixed at their nominal value. 

W increases monotonically with the stifhess of the piezoelectric patch as well as its length, 

and sathates for a value of Lp I& = 0.9. However, W increases initially as the thickness of the 

piezoelectric is increased until a value of tp / t s  = 0.54, and then decreases on further increasing 

the thickness ratio. As t5/LT ratio is increased, W drops. The same behavior is shown by 

bimorph actuator in Figure 13 (a-d), only difference being that W peaks at t p / t s  = 0.39. Also as 

shown in plots 11 c) and 11 d), W drops with increasing t , /LT and increases with increasing 

Lp / L, , until it saturates around a value of L, / LT = 0.9. 
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The variation of non-dimensional natural frequency with the design parameters for a 

unimorph is shown in Figure 14 (a-d). It can be seen that F increases with increasing stiffness 

ratio and thickness ratio but drops with increasing density ratio. F peaks at a length ratio of 

Lp / LT = 0.53 and then drops on further increasing the piezoelectric patch length. The same 

behavior is exhibited by bimorph in Figure 15 (a-d). Here F peaks for a length ratio of 

Lp 1 LT = 0.55. 

0 0.2 0.4 0.6 0.8 1 

a) Ep'E, 

I 
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L p k t  
d) 

Figure 12 (a-d): Variation of non-dimensional dc response with the design parameters for a unimorph. 
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Figure 14 (a-d): Variation of non-dimensional natural frequency with the design parameters for a unimorph. 
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Figure 15 (ad): Variation of non-dimensional natural frequency with the design parameters for a bimorph. 

It is clear from the above plots that since the actuator performance depends on a number of 

design parameters, a design optimization has to be performed in order to develop an actuator that 

gives the best performance. We are specifically interested in designing an actuator that gives the 

maximum tip deflection for a given system bandwidth, which is approximated by the natural 

frequency of the actuator. Consider the case of one of the unimorph actuators developed that has 

a total length of 70 mm, piezoelectric patch length of 35 n m  (L ,  I& = 0.5), shim thickness of 

508 pm, and piezoelectric thickness of 254 pm. The natural frequency of this actuator calculated 

from analytical scaling analysis is 137 Hz and its non-dimensional dc response, W is 44.2. For 

the same total length (4  ), applied electric field ( V / t ,  ), and the piezoelectric material constant 

( d 3 , )  as this nominal actuator, we are interested in developing an unimorph actuator that will 

maximize the value of the non-dimensional dc response, W , while maintaining a minimum value 
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of the natural frequency at 137 Hz. This can be achieved by optimizing the piezoelectric 

thickness ( t ,  ), the shim thickness ( ts ), and the length of the piezoelectric patch ( Lp ). We are 

also interested in estimating the gain in W that can be achieved by developing an optimized 

bimorph actuator that has the same total length, piezoelectric constant and the applied electric 

field as the nominal design, at the same frequency. Therefore an actuator optimization scheme 

based on Matlab@ was implemented to maximize the nondimensional dc response, W. The 

‘finincon’ function in Matlab@ minimizes the cost function subject to a set of constraints on the 

actuator design parameters, thus giving the maximum attainable value for the cost hc t ion .  The 

negative of non-dimensional tip deflection, -W was chosen to be the cost function for the 

optimization. The cost function is expressed as, 

Similarly, the cost function for the bimorph can be expressed as 

To gain more insight into the choice of optimization function, let us examine the terms on the 

LHS of Eq. (34) used to non-dimensionalize the tip deflection, wtip . The piezoelectric constant 

d3, is a constant for a given piezoelectric material. Similarly the total length of the piezoelectric 

actuators L is also a constant. That leaves the electric field, V l t ,  , where Y is the applied 

external voltage and t, is the thickness of the piezoelectric patch. It can be seen easily that 

maximum deflection can be achieved when the value of the electric field equals the value of the 



coerecive field of the piezoelectric. Thus the choice of the optimization function W or w+ , is 

not crucial. 

The design variables involved in the optimization are the thickness of the piezoelectric ( tp ) 

and shim ( t, ) as well as the length of the piezoelectric ( Lp ). An optimum design for an actuator 

that has a natural frequency value that is at least 137 Hz, is sought. This constraint can be 

represented in the mathematical form as 

f, > 137Hz (35) 

The maximum patch length of the piezoelectric should not exceed the total length of the actuator 

and the design parameters should always be non-negative, giving rise to the remaining inequality 

constraints, 

Lp (36) 

Lp > 0, tp > 0, f, > 0 (37) 

The optimization scheme seeks the values of tp , t, , and Lp that maximizes the value of W . The 

result of the optimization study along with the result of the analytical static analysis of the 

nominal design is summarized in Table 2. 
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Parameter 

4 

t s  

tP 

L P  

f ,  

W 

It can be seen fiom the table that optimizing the design variables can increase V 1.5 times 

the nominal design. The value of V obtained fiom the optimized bimorph case is almost the 

double of that for the optimized unimorph. In order to validate the choice of the optimization 

function chosen, a separate optimization for a unimorph actuator was done where the cost 

function was wtip instead of W , with the additional constraint that V / tp = 5 ,  where V,  is the 

coercive field and has a value of 30 V/mil. The resulting tip deflection wtip had a value of 

0.00142 m which is the same value for wtip obtained fiom optimizing V . 

Optimized Unimorph Optimized Bimorph Nominal design 

70 mm 70 mm 70 mm 

309 pm 98.5 pm 508 pm 

404 pm 305 pm 254 pm 

44.5 mm 46 mm 35 ITlfn 

137 Hz 137 Hz 137 Hz 

63.1 127.9 44.2 

Thus, by constructing an actuator based on the optimized dimensions, maximum tip 

deflection can be attained for a prescribed natural fiequency. This result is of particular 

importance in flow control applications, which makes use of large volume displacements of the 

actuator, while placing constraints of the bandwidth of generation. 
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3.8 Conclusions 
An analytical static analysis, and two Finite Element Models, one using perfectly bonded 

shim and piezoelectric elements and the other using a shear element for the bond between the 

shim and the piezoelectric were developed and compared to tip displacement frequency response 

measurements of piezoelectric unimorph flaps. A parametric study was conducted in which the 

size of the piezoelectric patch was systematically varied from 10% to 100% of the entire beam 

length in approximately ten equal steps (while all other variables were fixed). The purpose of 

the study is to develop and validate a design tool, which will ultimately be used to design such 

actuators. 

The dc response as well as the natural frequency of the actuators were extracted fiom the 

frequency response function plots and compared to that obtained fiom the models. All models 

predicted the dc response accurately. The analytical natural frequency served as an upper limit 

for the theoretical predictions, the best estimate of which was obtained by the shear lag model. 

The benefit of the analytical model is that it describes the functional dependence of the non- 

dimensional dc response on design parameters like t ,  lt,, L, l LT, E, / E , ,  t, I 4  and the 

dependence of non-dimensional natural frequency on design parameters like t ,  lt, , L, I&, 

E, /E, ,  and p p  lp, for both unimorph and bimorph actuators. The analyhcal model is much 

simpler than both the finite element models and it predicts the response to a reasonable accuracy 

of better than 15%. The analytical model was also used to formulate an optimization procedure 

that maximized the non-dimensional dc response, for a given system bandwidth. 

An in-depth understanding of the structural dynamic characteristics of piezoelectric actuators 

will enable us to reliably utilize them in the design of actuators for flow-control applications. In 
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addition, the important question of coupling between the actuator and fluid motions can be 

rigorously studied. 
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Appendix A - F’EM Formulation for the Shear Lag Model 

A schematic of the model is shown in Figure A-1. The flap is discretized into n, elements in 

the gap region, 3n, elements in the composite region (Le., one each for the shim, bond, and piezo 

portions), and n, elements in the shim region. 

Figure A-1: Node-numbering scheme for the fmite-element, shear lag model. 

The piezo and shim elements are similar to the “Hermitian” beam elements used in the 

perfect bond FEM [Cattafesta et al. 20001, having 2 nodes and 3 degrees of freedom (u, w,8) at 

each node. Here, u is the horizontal or x displacement of the nodes, w is the vertical or z 

displacement, and 8 is the angular displacement. Each element in the bond layer has four nodes 

with two degrees of freedom (u,w) at each node. In the perfect bond model, the nodes are 

defined at the midpoint of the element faces (i‘, j’,  k‘, Z‘) . However as shown in Figure A-1, for 

the shear lag model, the nodes need to be offset downwards (upwards) for the shim (piezo) 

elements to allow these nodes to coincide with the four nodes of the bond element (i, j ,  k,Z) . A 

schematic of the element nodes, degrees of freedom, and transformation is shown in Figure A-2. 
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Figure A-2: Schematic of the discretized flap elements. 

The node offset is achieved by defining a transformation matrix T 

T =  

t 

2 
1 O f - 0 0  0 

0 1  0 0 0  0 
0 0  1 0 0  0 

t 
0 0 0  l o + -  

2 
0 0 0  0 1  0 
0 0 0  0 0  1 

where the "+" and " - " signs are used to shift the shim and piezo elements, respectively, and t is 

the thickness of the element. 

The elemental mass matrix is derived from the equation for kinetic energy of an element. 

For shim and piezo elements, the transformed elemental mass matrix is given by 
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0 156 221 0 54 -131 O l  
140 0 0 70 0 

- ml m=- 
420 

0 221 412 0 131 -312 
70 0 0 140 0 0 

0 -131 -312 0 -221 412 
0 54 131 0 

where the superscript “T ” denotes “transpose,” m is the mass per unit length, and 1 is the 

EI 

length of the element. The mass of an individual bond element is lumped into equal masses at 

0 12 61 0 -12 61 
O 61 412 O -61 2Z2 

the four nodes of the element, giving rise to an 8 x 8  diagonal matrix with m1/4 along the 

diagonal. 

The element stiffness matrix is determined from the strain-energy relation. For the piezo and 

shim elements, it has the form 

kc = TTkT 

I 0 -12 -61 0 12 -61 
1 0 61 212 0 -61 412 

where E =(Es or E p )  is the elastic modulus, A is the area, and I is the moment of inertia 

about the local neutral axis. The elemental stiffness matrix for the bond layer is given by 
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. 

0 0 0 0 0 - G O  
Eb 0 0 0 0 0 -Eb 
O G O - G O 0 0  
0 0 Eb 0 -Eb 0 0 
0 - G O  G O  0 0 
0 0 -Eb 0 Eb 0 0 
O O O O O G O  

-Eb 0 0 0 0 0 E b .  

where G and Eb are the bond shear and elastic modulus, respectively, 1 is the length, b is the 

width, and t,, is the thickness of the bond layer. 

There are no external loads of interest acting on the shim and bond regions. However, for the 

piezo element, the load vector is given by 

FE = TTF 

As usual, the elemental mass and stifkess matrices are then combined to obtain the global 

mass and stiffness matrices M and K, and the boundary conditions are imposed. To include 

the effects of damping, we use Rayleigh proportional damping (see Thomson, p. 191 for details). 

The fiequency response of the actuator may then be calculated by assuming a solution of the 

form Y = qeat subject to harmonic forcing F = &e’”, where [ y o ]  is the nodal displacement 

vector. The governing matrix equation becomes 
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MY +CY +KY = F  (A91 

The solution to the undamped, fiee vibration problem is an eigenvalue problem 

[K-w2A4]Y,  = O  (A. 10) 

in which the natural frequencies of the beam are defined by the square root of the eigenvalues of 

[K -w2M] (A.11) 

The solution to the damped, forced vibration problem is given by the matrix solution 

Y, = [ K + i d  - w’M1-l 4 
where o is varied fiom zero to a specified fiequency in discrete steps. 

(A. 12) 
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