Film Processing Module for Automated Fiber Placement

Bruce Hulcher
NASA Marshall Space Flight Center
NASA Technology Briefings
May 19, 2004
Marshall Space Flight Center
Engineering Directorate
Materials, Processes and Manufacturing Department

Outline

1. Introduction and Background
2. Fiber Placement Process Description
3. Technology Benefits
4. Technology Description
5. Technical Details
6. Technical Advantages
7. R&D Status
8. Remaining Work
9. NASA Plans/Options
10. NASA’s Tech Transfer Program
11. Acknowledgements

NASA Technology Briefings
May 19, 2004
Introduction and Background

- Composite Processes and Fabrication Team, MPM Dept.
- Recent work focused on 2nd Gen RLV & NGLT Technology
- Micro-cracking/Permeability Issues for Liquid Cryogen Tanks
- Fabrication Trade Studies for Very Large Composite Tanks
Marshall Space Flight Center
Engineering Directorate
Materials, Processes and Manufacturing Department

Introduction and Background: Genesis of Concept

Team Focus: Reusability of Propellant Tanks
- Micro-Cracking of Polymer Matrix Due to Thermal Cycling
- Manufacturability Issues: Out-of-Autoclave, Tooling Concepts, etc.
- Studies: Permeability of Various Polymers/Films to LOX, LH

Not Captured:
Fabrication of Structures Having Barrier Films/Foils and/or Core Adhesives ⇒ Scale: Technology for Manufacturing of Large (30 ft. x 90 ft.) Propellant Tanks
Fiber Placement Process Description

[Diagram showing components of fiber placement process]

- Individual tow payout with controlled tension
- Band collimator
- Tow cutters and clamp mechanism
- Compaction roller
- Part surface
- Direction of head travel

NASA Technology Briefings
May 19, 2004
Marshall Space Flight Center
Engineering Directorate
Materials, Processes and Manufacturing Department

Technology Benefits

- Enhancement of the Fiber Placement Process
- Simultaneous Placement of Films/Foils into Laminate During Ply Lay-up Cycle or as Separate Step
- Device May Be Designed as Add-On or Integrated into New Fiber Placement Machinery
- Ease of Attachment and Removal of Module to Host Machine
- Slave-Control Operation for Ease of Integration
- Reduction in Part Costs due to Reductions in Cycle Time
- Capability Extends to Automated Deposition of Core Adhesives

NASA Technology Briefings
May 19, 2004
Marshall Space Flight Center
Engineering Directorate
Materials, Processes and Manufacturing Department

Technology Definition: Module Specifications

Dimensions: 17in. x 8.5 in. x 10 in.
Weight: 12.5 lbs.

NASA Technology Briefings
May 19, 2004
Marshall Space Flight Center
Engineering Directorate
Materials, Processes and Manufacturing Department

Technical Details: Applications

- Titanium/Graphite Laminates (TiGr)
- Glass/Epoxy/Aluminum Laminates (GLARE)
- Embedded Lightning Strike Protection
- Liners/Permeation Barriers
- Embedded Sensor Arrays
- Adhesives
- Processing
Marshall Space Flight Center
Engineering Directorate
Materials, Processes and Manufacturing Department

Technical Details: Applications

Barrier Layers

Core Adhesives

NASA Technology Briefings
May 19, 2004
Marshall Space Flight Center
Engineering Directorate
Materials, Processes and Manufacturing Department

Technical Details: Attachment to FP Head

Film Module On Viper Placement Machine

NASA Technology Briefings
May 19, 2004
Technical Details: Attach Points
Marshall Space Flight Center
Engineering Directorate
Materials, Processes and Manufacturing Department

Technical Details: Controls

Electrical Controls Enclosure

Hand Pendant Control

NASA Technology Briefings
May 19, 2004
Technical Details: Prototype Specifics

- PLC-Based Controls (ladder logic)
- Fully-Adjustable Device Sequencing and Timing via Speed/Motion Sensor
- Pneumatic Material Feed and Cut System uses Shop Air
- Electrical Power: 120 VAC
- Variable Power IR Radiant Heat Source for Substrate/Film Heating
- Simple Guillotine-Style Material Cutting System with Vacuum Hold
- Uses Host Machine Compaction Roller: May be Designed with Independent Heated Roller and/or Heated Trailing Shoe
Simultaneous Placement

Shared Compaction Roller

Independent Compaction Rollers

Separate Placement

Independent Compaction Rollers

Composite

Film/Foil/Adhesive

NASA Technology Briefings
May 19, 2004
Marshall Space Flight Center
Engineering Directorate
Materials, Processes and Manufacturing Department

Technical Advantages
- Reduction or Elimination in Hand Lay-up
- Improvement in Quality
- Reduced Fabrication Costs
- Can Be Added to Existing FP Machines or Designed as Integral (fixed or detachable) for New Machines
- As an Add-On: Slave-Control for use of Existing Placement Files, Minimizing Integration Work
- Quick Attach and Removal from Host Machine
- May Process T/S or T/P Films & Metallic Foils
- Capable of Processing Variable Material Thicknesses and Widths (1in., 3 in., etc.)
Marshall Space Flight Center
Engineering Directorate
Materials, Processes and Manufacturing Department

R&D Status
Engineering Prototype Designed for Demonstrations
And Testing at MSFC

Prototype has been Bench-Tested and Fit-Checked to Viper Placement Machine

Remaining Work:
Full-Scale Processing Demonstrations
Marshall Space Flight Center
Engineering Directorate
Materials, Processes and Manufacturing Department

Remaining Work: Initiate Processing Trials

• Simultaneous and Separate Placement of Films and Composites
• Trials Using Materials of Different Thicknesses
• Trials with Metallic, Aluminized and Polymeric Films
• Overlap/Gap Studies
• Analysis and Mechanical Property Evaluations
• Publication of NASA Technical Memorandum
Marshall Space Flight Center
Engineering Directorate
Materials, Processes and Manufacturing Department

NASA Plans/Options

- Provisional Patent filed May ’04
- Non-provisional Patent to be filed June ‘04
- NASA Seeks Partners to License this Technology
Marshall Space Flight Center
Engineering Directorate
Materials, Processes and Manufacturing Department

NASA’s Technology Transfer Program

• Program seeks to stimulate commercial use of NASA-developed technology and infuse commercial technology into NASA missions.

• NASA is flexible in its agreements for licensing or partnerships for co-development. Opportunities in patent licensing include exclusive, non-exclusive, or exclusive field-of-use agreements.

• For more information, visit the NASA exhibit or contact Sammy Nabors: NASA/MSFC Technology Transfer, 256-544-5226, sammy.nabors@nasa.gov
Acknowledgements

Sammy Nabor, NASA MSFC Technology Transfer
Peter Liao, Research Triangle Institute
Fred Schramm and Stu Clifton, MSFC CDDF Program
Brian Waibel, Accudyne Systems Incorporated
Ray Grenoble, NASA LaRC