Advanced Spaceport and Range Technology Conference
Transformation Space Launch and Operations Conference

Strategic Research Directions in Microgravity Materials Science

Washington, D.C. May 24-26, 2004

Dr. R.G. Clinton, Jr., Manager
Microgravity Science and Applications Department
Marshall Space Flight Center
Co-Authors and Points of Contact

Dr. Michael J. Wargo Enterprise Discipline Scientist for Materials Science, Office of Biological and Physical Research, NASA HQ
Dr. Neville I. Marzwell Advanced Concepts/Technology Innovations – Jet Propulsion Laboratory
Gerald Sanders In Situ Resource Utilization Lead – Johnson Space Center
Ron Schlagheck In Situ Resource Utilization – Marshall Space Flight Center
Ed Semmes Space Radiation Shielding – Marshall Space Flight Center
Julie Bassler In Situ Fabrication and Repair; Materials Science for Advanced Life Support Systems – Marshall Space Flight Center
• Where We Were - Heritage
 - Microgravity Materials Science in Office of Biological and Physical Research (OBPR) Organizational Structure
 - Microgravity Materials Science Program Overview

• Where We Are Going - Exploration
 - Low Gravity Materials Research in Realigned Office of Biological and Physical Research Product Line Structure
 - Low Gravity Materials Research Directions
 • Space Radiation Shielding
 • In Situ Resource Utilization
 • In Situ Fabrication and Repair
 • Materials Science for Spacecraft and Propulsion Systems
 • Materials for Advanced Life Support Systems

• Summary
Office of Biological and Physical Research
Code U

- Office of Associate Administrator
 - Mission Integration Division
 - Resources and Business Management Division
 - Physical Sciences Research Division
 - Fundamental Space Biology Division
 - Bioaeronautics Research Division
 - Space Product Development Division

Physical Sciences Research Division
- Research Elements: Fundamental Microgravity Research
 - Combustion Science
 - Fluid Physics
 - Materials Science
 - Fundamental Physics
 - Exploration Research
- Biomolecular Physics and Chemistry
- Biotechnology and Earth-Based Applications
Classes of Materials

Materials Science

Themes
Sample Ampoule Cartridge Assembly

Sample Ampoule or Crucible

- Contains "Sample" to be processed
- Sealed
- PI provided

Cartridge

- Houses PI Sample Ampoule or Crucible
- Sensors for monitoring temperature and Cartridge integrity
- Loaded into the Module Insert by crew
- Sealed to provide one-level of containment

NASA or ESA Module Insert(s)

- Module Insert designed to accommodate investigation unique processing requirements
- Replaceable on-orbit
- Provides for 'Automatic' processing
- Vacuum or inert atmosphere

MSL Experiment Module
Accommodates Various Module Inserts

MSRR-1

ESA Provides:
- Power Supply
- Avionics Control System
- Data Electronics
- Core Facility
- Gas/Vacuum distribution sub-system
- Water pump package
- Gas Supply

- NASA provides Rack Subsystems
- NASA integrates the Rack Payload
Transitioning to Exploration
RESEARCH ELEMENTS

- **Human Adaptation and Countermeasures**
 - Exercise Systems
 - Equipment
 - Prescriptions
 - Integrative Physiology
 - Bone loss
 - Muscle alterations & atrophy
 - Neurovestibular adaptation (sensory motor)
 - Cardiovascular alterations
 - Pharmacology and nutrition
 - Immunology, infection & hematology
 - Artificial gravity prescriptions

- **Behavior and Performance**
 - Psychosocial adaptation
 - Sleep & circadian
 - Neuropsychological

- **Integrated Autonomous Medical Care**
 - Medical Prevention Systems
 - Medical Monitoring Systems
 - Medical Diagnosis Systems
 - Medical Treatment Systems
 - Medical Informatics

- **Shielding**
- Transport and modeling
- Radioprotectants
- Dosimetry and monitoring

- **Advanced life support**
- Environmental monitoring and control
- Contingency technologies
- EVA Technologies and Human-Robotic Interactions
- Space human factors
- Low gravity & exploration (ISRU-life support)

- Cross-cutting low gravity/fundamental research

PRODUCT LINES

- **Human Health And Performance**
 - Radiation Protection
 - Human Support System Technologies
OBJECTIVES

- Safely extend the duration of crew deployment and lifetime radiation exposure
- Enable deep space missions by safeguarding the crew against expected exposure

STRATEGY

- Accurately determine the interactions of space radiation with spacecraft materials:
 - Reduce the uncertainties
- Protect crew against space radiation:
 - Develop new multi-functional materials
 - Spacecraft structural elements
 - Extra Vehicular Activity (EVA) Suits
 - Regolith-based shielding systems
 - Monitoring and Dosimetry
 - Non-materials concepts
Space Radiation Shielding Program

Radiation Transport Codes
Development:
Simulation and characterization of shielding effectiveness

Cross Section Measurements

Deep Space Test Bed (DSTB)

Materials Design and Testing

Insertion Technologies

Radiation Transport Codes

Ground-based Accelerator Cross-Section Measurements:
Nuclear cross section measurements for simulation and validation purposes

Space-based Research:
Deep Space Test Bed facility to simulate the space radiation environment
- Transport Code Validation
- Radiobiology and biomolecular-based materials validation

Materials Research:
Design, fabricate, and test innovative shielding materials including multi-functional criteria for targeted applications: spacecraft structural elements; EVA suits; regolith-based shielding systems; radiation monitors

Insertion Technologies:
- Materials Maturation
- Integrated TPS and Shielding Materials
- Life Systems Integrated Shields
- Design Optimization and Tools
In Situ Resource Utilization (ISRU) is Enabling For Exploration

ISRU enables mass & cost efficient Near-Earth & Solar System Space Transportation

- Reduces Earth to orbit mass by 20 to 45%
- Estimated 300 MT/yr reduction in Earth logistics

Space Resource Utilization

- Reduces dependence on Earth supplied logistics
- Enables self-sufficiency
- Provides backup options & flexibility
- Radiation Shielding

- Develops material handling and processing technologies
- Provides infrastructure to support space commercialization
- Earth, Moon, & Earth-Moon space manufacturing, and product/resource development, resupply, & transportation

Expands Human Exploration & Presence

- Increase Surface Mobility & extends missions
- Habitat & infrastructure construction
- Propellants, life support, power, etc.

Enables Space Commercialization

- ISRU enables “Accessible” & “Sustainable” planetary surface exploration of Moon & Mars
<table>
<thead>
<tr>
<th>Possible Destinations</th>
<th>Common Resources</th>
<th>Core Building Blocks</th>
<th>Core Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moon</td>
<td>Water</td>
<td>• Atmosphere & Volatile Collection & Separation</td>
<td>- Microchannel Adsorption</td>
</tr>
<tr>
<td>Mars & Phobos</td>
<td>• Moon</td>
<td>• Regolith Processing to Extract O₂, Si, Metals</td>
<td>- Constituent Freezing</td>
</tr>
<tr>
<td></td>
<td>• Mars</td>
<td>• Water & Carbon Dioxide Processing</td>
<td>- Molecular Sieves</td>
</tr>
<tr>
<td></td>
<td>• Comets</td>
<td>• Fine-grained Regolith Excavation & Refining</td>
<td>- Carbothermal Reduction</td>
</tr>
<tr>
<td></td>
<td>• Asteroids</td>
<td>• Drilling</td>
<td>- Water Electrolysis</td>
</tr>
<tr>
<td></td>
<td>• Europa</td>
<td>• Volatile Furnaces & Fluidized Beds</td>
<td>- CO₂ Electrolysis</td>
</tr>
<tr>
<td></td>
<td>• Titan</td>
<td>• 0-g & Surface Cryogenic</td>
<td>- Sabatier Reactor</td>
</tr>
<tr>
<td></td>
<td>• Triton</td>
<td>• Liquefaction, Storage, & Transfer</td>
<td>- RWGS Reactor</td>
</tr>
<tr>
<td></td>
<td>• Human Habitats</td>
<td>• In-Situ Manufacture of Parts & Solar Cells</td>
<td>- Methane Reformer</td>
</tr>
<tr>
<td>Near Earth Asteroids & Extinct Comets</td>
<td></td>
<td></td>
<td>- Microchannel Chem/thermal units</td>
</tr>
<tr>
<td></td>
<td>Carbon</td>
<td></td>
<td>- Scoopers/buckets</td>
</tr>
<tr>
<td></td>
<td>• Mars (atm)</td>
<td></td>
<td>- Conveyors/augers</td>
</tr>
<tr>
<td></td>
<td>• Asteroids</td>
<td></td>
<td>- No fluid drilling</td>
</tr>
<tr>
<td></td>
<td>• Comets</td>
<td></td>
<td>- Thermal/Microwave Heaters</td>
</tr>
<tr>
<td></td>
<td>• Titan</td>
<td></td>
<td>- Heat Exchangers</td>
</tr>
<tr>
<td></td>
<td>• Human Habitats</td>
<td></td>
<td>- Liquid Vaporizers</td>
</tr>
<tr>
<td></td>
<td>Metals & Oxides</td>
<td></td>
<td>- O₂ & Fuel Low Heatleak Tanks (0-g & reduced-g)</td>
</tr>
<tr>
<td></td>
<td>• Moon</td>
<td></td>
<td>- O₂ Feed & Transfer Lines</td>
</tr>
<tr>
<td></td>
<td>• Mars</td>
<td></td>
<td>- O₂/Fuel Couplings</td>
</tr>
<tr>
<td></td>
<td>• Asteroids</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Planetary Resource Utilization Maximizes
Benefits, Flexibility, & Affordability

In-Situ Production Of Consumables for Propulsion, Power, & ECLSS

Life Support Systems for Habitats & EVA

Core Technologies
- CO₂ & N₂ Acquisition & Separation
- Sabatier Reactor
- RWGS Reactor
- CO₂ Electrolysis
- Methane Reforming
- H₂O Separators
- H₂O Electrolysis
- H₂O Storage
- Heat Exchangers
- Liquid Vaporizers
- O₂ & Fuel Storage (0-g & reduced-g)
- O₂ Feed & Transfer Lines
- O₂/Fuel Couplings
- Fuel Cells
- O₂/Fuel Igniters & Thrusters

Fuel Cell Power for Rovers & EVA

Water – H₂/O₂ Based Propulsion/Power

Non-Toxic O₂-Based Propulsion

0-g & Reduced-g Propellant Transfer

MG2212, Slide 13 Advanced Spaceport and Range Technologies Conference, May 2004
Possible ISRU Technology, Demonstration, & Mission Integration Roadmap

National Aeronautics and Space Administration • Marshall Space Flight Center

MSFC Microgravity Science and Applications Department

In-Situ Resource Excavation & Separation
- Regolith Excavation
- Thermal/Microwave Extraction
- H$_2$O Separation
- CO$_2$ & N$_2$ Separation

Resource Processing
- Carbothermal Regolith Processing
- CO/CO$_2$ Processing to Fuel
- H$_2$O Electrolysis
- Microchannel Chemical/Thermal Processing

Consumable Storage & Distribution
- Cryocoolers
- Light Weight Tanks
- Disconnects/pumps

In-Situ Manufacturing
- Solar cell production
- Metallic part fab
- Polymer part fab.

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospector Flt. Exp.</td>
<td>(Missions of opportunity)</td>
</tr>
<tr>
<td>Lunar Polar Water Explorer</td>
<td></td>
</tr>
<tr>
<td>Lunar Volatile & He3 Extraction</td>
<td>Mars Polar Water Extraction Demo</td>
</tr>
<tr>
<td>Resource Processing</td>
<td>Provides Information on Resources & Engineering Data for ISRU</td>
</tr>
<tr>
<td>Lunar O\textsubscript{2} Production Demo</td>
<td>Provides Water & Gases For Power, Propulsion, Life Support & Science</td>
</tr>
<tr>
<td>Mars O\textsubscript{2} Fuel Production Demo</td>
<td></td>
</tr>
<tr>
<td>Mars O\textsubscript{2} Fuel Production</td>
<td></td>
</tr>
<tr>
<td>In-Situ Manufacturing</td>
<td>Provides Logistics Reduction & Infrastructure Growth</td>
</tr>
<tr>
<td>Manufacturing Demo on ISS</td>
<td></td>
</tr>
<tr>
<td>Solar Cell Manufacturing Demo</td>
<td></td>
</tr>
</tbody>
</table>
OBJECTIVES

- Enable space exploration missions through development of autonomous, self reliant space-based assets, minimizing up mass needs.

STRATEGY

- Pursue research advancing three critical space-based capability themes:
 - **In Situ Fabrication**
 - Spare Parts and Tools
 - Valves, quick disconnects, filters, embedded electronics, medical instruments, wrenches, etc.
 - Structures
 - Solar panels from Lunar regolith
 - Habitats built from Lunar regolith
 - Thin film inflatable structures
 - Pressurized vessels
 - **In Situ Repair Techniques**
 - Soldering
 - Welding
 - Materials Joining
 - Self-healing Materials
 - **Recycling**
 - Cellulose to polymers
 - Human waste to bricks
OBJECTIVE

- Enable Spacecraft and Propulsion advancements through materials science research directed towards identified high-priority technology gaps.

STRATEGY

- Initiate research addressing key materials issues relating to the following in-space propulsion:
 - Advanced Chemical Propulsion
 - Electric Propulsion
 - Nuclear Electric Propulsion
 - Nuclear Thermal Propulsion
 - Propellantless Propulsion
 - Solar Sails
 - Aerocapture
 - Tethers
- Involve customers in identification of technology gaps that benefit from advancements in materials science.
- Cross-cutting research elements:
 - Advanced Materials for Space Propulsion Systems
 - Environmental Protection Materials
 - Vehicle Health Monitoring Materials
 - Spacecraft Materials
• **Human life support systems provide the basic functions to sustain life:**
 - Controlling pressure, temperature, and humidity; provide usable water and breathable air; supply food; and manage wastes.

• **Advanced Life Support element, of the Human Support Systems Technologies Product Line, must reduce dependence on resupply in space, by being more reliable and self-sufficient than life support systems for LEO missions.**

• **Technical challenges include:**
 - Heat transport
 - Heat rejection
 - Waste monitoring and control
 - Habitat monitoring

• **Materials Research focal areas include:**
 - Lightweight piping for heat management systems
 - Coatings for heat management systems
 - Enhanced flex-hoses
 - Hydrogen embrittlement control
 - Inflatable habitats
 - Environment monitoring utilizing Lab-on-a-Chip Applications Development (LOCAD) technologies
The Office of Biological and Physical Research (OBPR) is moving aggressively to align programs, projects and products with the vision for space exploration.

- Research in advanced materials is a critical element in meeting exploration goals
 - Crew health, safety, and life support systems
 - Significant reduction in mass to/beyond orbit
 - Commensurate cost reduction
 - Enables sustainable planetary surface exploration
 - Risk reduction

- Research in low gravity materials science in OBPR is being focused on top priority needs in support of exploration
 - Space Radiation Shielding
 - In Situ Resource Utilization
 - In Situ Fabrication and Repair
 - Materials Science for Spacecraft and Propulsion Systems
 - Materials Science for Advanced Life Support Systems

- Roles and responsibilities in low gravity materials research for exploration between OBPR and the Office of Exploration Systems are evolving.