Washington, D.C. May 24-26, 2004

Dr. R.G. Clinton, Jr., Manager
Microgravity Science and Applications Department
Marshall Space Flight Center
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael J. Wargo</td>
<td>Enterprise Discipline Scientist for Materials Science, Office of Biological and Physical Research, NASA HQ</td>
</tr>
<tr>
<td>Dr. Neville I. Marzwell</td>
<td>Advanced Concepts/Technology Innovations – Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>Gerald Sanders</td>
<td>In Situ Resource Utilization Lead – Johnson Space Center</td>
</tr>
<tr>
<td>Ron Schlagheck</td>
<td>In Situ Resource Utilization – Marshall Space Flight Center</td>
</tr>
<tr>
<td>Ed Semmes</td>
<td>Space Radiation Shielding – Marshall Space Flight Center</td>
</tr>
<tr>
<td>Julie Bassler</td>
<td>In Situ Fabrication and Repair; Materials Science for Advanced Life Support Systems – Marshall Space Flight Center</td>
</tr>
</tbody>
</table>
• **Where We Were - Heritage**
 - Microgravity Materials Science in Office of Biological and Physical Research (OBPR) Organizational Structure
 - Microgravity Materials Science Program Overview

• **Where We Are Going - Exploration**
 - Low Gravity Materials Research in Realigned Office of Biological and Physical Research Product Line Structure
 - Low Gravity Materials Research Directions
 • Space Radiation Shielding
 • In Situ Resource Utilization
 • In Situ Fabrication and Repair
 • Materials Science for Spacecraft and Propulsion Systems
 • Materials for Advanced Life Support Systems

• **Summary**
Office of Biological and Physical Research

Code U

- Office of Associate Administrator
 - Mission Integration Division
 - Resources and Business Management Division
 - Physical Sciences Research Division
 - Fundamental Space Biology Division
 - Bioastronautics Research Division
 - Space Product Development Division

Physical Sciences Research Division
- Research Elements: Fundamental Microgravity Research
 - Combustion Science
 - Fluid Physics
 - Materials Science
 - Fundamental Physics
 - Exploration Research
- Biomolecular Physics and Chemistry
- Biotechnology and Earth-Based Applications
Sample Ampoule Cartridge Assembly

- Contains "Sample" to be processed
- Sealed
- PI provided

Sample Ampoule or Crucible

Cartridge

- Houses PI Sample Ampoule or Crucible
- Sensors for monitoring temperature and Cartridge integrity
- Loaded into the Module Insert by crew
- Sealed to provide one-level of containment

MSL Experiment Module
Accommodates Various Module Inserts

NASA or ESA Module Insert(s)

- Module Insert designed to accommodate investigation-unique processing requirements
- Replaceable on-orbit
- Provides for 'Automatic' processing
- Vacuum or inert atmosphere

MSRR-1

- NASA provides Rack Subsystems
- NASA integrates the Rack Payload

ESA Provides
- Power Supply
- Avionics/Control System
- Data Electronics
- Core Facility
- Gas/Vacuum distribution sub-system
- Water pump package
- Gas Supply

MSFC Microgravity Science and Applications Department
Transitioning to Exploration
RESEARCH ELEMENTS
- Human Adaptation and Countermeasures
 - Exercise Systems
 - Equipment
 - Prescriptions
 - Integrative Physiology
 - Bone loss
 - Muscle alterations & atrophy
 - Neurovestibular adaptation (sensory motor)
 - Cardiovascular alterations
 - Pharmacology and nutrition
 - Immunology, infection & hematology
 - Artificial gravity prescriptions
- Behavior and Performance
 - Psychosocial adaptation
 - Sleep & circadian
 - Neuropsychological
- Integrated Autonomous Medical Care
 - Medical Prevention Systems
 - Medical Monitoring Systems
 - Medical Diagnosis Systems
 - Medical Treatment Systems
 - Medical Informatics

- Shielding
- Transport and modeling
- Radioprotectants
- Dosimetry and monitoring
- Advanced life support
- Environmental monitoring and control
- Contingency technologies
- EVA Technologies and Human-Robotic Interactions
- Space human factors
- Low gravity & exploration (ISRU-life support)
- Cross-cutting low gravity/fundamental research

PRODUCT LINES

Human Health
And Performance

Radiation Protection

Human Support System Technologies
OBJECTIVES
- Safely extend the duration of crew deployment and lifetime radiation exposure
- Enable deep space missions by safeguarding the crew against expected exposure

STRATEGY
- Accurately determine the interactions of space radiation with spacecraft materials:
 - Reduce the uncertainties
- Protect crew against space radiation:
 - Develop new multi-functional materials
 - Spacecraft structural elements
 - Extra Vehicular Activity (EVA) Suits
 - Regolith-based shielding systems
 - Monitoring and Dosimetry
 - Non-materials concepts
Space Radiation Shielding Program

Radiation Transport Codes
Development:
Simulation and characterization of shielding effectiveness

Cross Section Measurements

Deep Space Test Bed (DSTB)

Materials Design and Testing

Insertion Technologies

Radiation Transport Codes

Ground-based Accelerator Cross-Section Measurements:
Nuclear cross section measurements for simulation and validation purposes

Space-based Research:
Deep Space Test Bed facility to simulate the space radiation environment
- Transport Code Validation
- Radiobiology and biomolecular-based materials validation

Materials Research:
Design, fabricate, and test innovative shielding materials including multi-functional criteria for targeted applications: spacecraft structural elements; EVA suits; regolith-based shielding systems; radiation monitors

Insertion Technologies:
- Materials Maturation
- Integrated TPS and Shielding Materials
- Life Systems Integrated Shields
- Design Optimization and Tools
In Situ Resource Utilization (ISRU) is Enabling For Exploration

ISRU enables mass & cost efficient Near-Earth & Solar System Space Transportation

- Reduces Earth to orbit mass by 20 to 45%
- Estimated 300 MT/yr reduction in Earth logistics

Space Resource Utilization

- Reduces dependence on Earth supplied logistics
- Enables self-sufficiency
- Provides backup options & flexibility
- Radiation Shielding

- Expands Human Exploration & Presence
- Increases Surface Mobility & extends missions
- Habitat & infrastructure construction
- Propellants, life support, power, etc.

Risk Reduction

- Enables Space Commercialization
- Develops material handling and processing technologies
- Provides infrastructure to support space commercialization
- Earth, Moon, & Earth-Moon space manufacturing, and product/resource development, resupply, & transportation

ISRU enables "Accessible" & "Sustainable" planetary surface exploration of Moon & Mars
Possible Destinations

- Moon
- Mars & Phobos
- Near Earth Asteroids & Extinct Comets
- Europa
- Titan

Common Resources

- **Water**
 - Moon
 - Mars
 - Comets
 - Asteroids
 - Europa
 - Titan
 - Triton
 - **Human Habitats**

- **Carbon**
 - Mars (atm)
 - Asteroids
 - Comets
 - Titan
 - **Human Habitats**

- **Metals & Oxides**
 - Moon
 - Mars
 - Asteroids

- **Helium-3**
 - Moon
 - Jupiter
 - Saturn
 - Uranus
 - Neptune

Core Building Blocks

- Atmosphere & Volatile Collection & Separation
- Regolith Processing to Extract O₂, Si, Metals
- Water & Carbon Dioxide Processing
- Fine-grained Regolith Excavation & Refining
- Drilling
- Volatile Furnaces & Fluidized Beds
- 0-g & Surface Cryogenic Liquefaction, Storage, & Transfer
- In-Situ Manufacture of Parts & Solar Cells

Core Technologies

- Microchannel Adsorption
- Constituent Freezing
- Molecular Sieves
- Carbothermal Reduction
- Water Electrolysis
- CO₂ Electrolysis
- Sabatier Reactor
- RWGS Reactor
- Methane Reformer
- Microchannel Chem/thermal units
- Scoopers/buckets
- Conveyors/augers
- No fluid drilling
- Thermal/Microwave Heaters
- Heat Exchangers
- Liquid Vaporizers
- O₂ & Fuel Low Heatleak Tanks (0-g & reduced-g)
- O₂ Feed & Transfer Lines
- O₂/Fuel Couplings
In Situ Resource Utilization: Core Technologies Enable Multiple Applications

Planetary Resource Utilization Maximizes Benefits, Flexibility, & Affordability

In-Situ Production Of Consumables for Propulsion, Power, & ECLSS

Fuel Cell Power for Rovers & EVA

Core Technologies
- CO₂ & N₂ Acquisition & Separation
- Sabatier Reactor
- RWG3 Reactor
- CO₂ Electrolysis
- Methane Reforming
- H₂O Separators
- H₂O Electrolysis
- H₂O Storage
- Heat Exchangers
- Liquid Vaporizers
- O₂ & Fuel Storage (0-g & reduced-g)
- O₂ Feed & Transfer Lines
- O₂/Fuel Couplings
- Fuel Cells
- O₂/Fuel Igniters & Thrusters

Life Support Systems for Habitats & EVA

Water – H₂/O₂ Based Propulsion/Power

Non-Toxic O₂-Based Propulsion

0-g & Reduced-g Propellant Transfer

MG2212, Slide 13 Advanced Spaceport and Range Technologies Conference, May 2004
Possible ISRU Technology, Demonstration, & Mission Integration Roadmap

National Aeronautics and Space Administration • Marshall Space Flight Center

Prospector Flt. Exp. (Missions of opportunity)

Provides Information on Resources & Engineering Data for ISRU

In-Situ Resource Excavation & Separation
- Regolith Excavation
- Thermal/Microwave Extraction
- H₂O Separation
- CO₂ & N₂ Separation

Resource Processing
- Carbothermal Regolith Processing
- CO/CO₂ Processing to Fuel
- H₂O Electrolysis
- Microchannel Chemical/Thermal Processing

Consumable Storage & Distribution
- Cryocoolers
- Light Weight Tanks
- Disconnects/pumps

In-Situ Manufacturing
- Solar cell production
- Metallic part fab
- Polymer part fab.

Manufacturing Demo on ISS

Provides Logistics Reduction & Infrastructure Growth

Lunar Polar Water Explorer

Lunar Volatile & He³ Extraction

Mars Polar Water Extraction Demo

Lunar O₂ Production Demo

Lunar O₂ Pilot Plant

[H₂O]

[Si, Al, etc.]

Mars O₂ Fuel Production Demo

Mars O₂ Fuel Production

Provides Water & Gases For Power, Propulsion, Life Support & Science

Provides O₂ & Reactants Power, Propulsion, Life Support & Science

MG2212, Slide 14 Advanced Spaceport and Range Technologies Conference, May 2004
OBJECTIVES

- Enable space exploration missions through development of autonomous, self reliant space-based assets, minimizing up mass needs.

STRATEGY

- Pursue research advancing three critical space-based capability themes:
 - In Situ Fabrication
 - Spare Parts and Tools
 - Valves, quick disconnects, filters, embedded electronics, medical instruments, wrenches, etc.
 - Structures
 - Solar panels from Lunar regolith
 - Habitats built from Lunar regolith
 - Thin film inflatable structures
 - Pressurized vessels
 - In Situ Repair Techniques
 - Soldering
 - Welding
 - Materials Joining
 - Self-healing Materials
 - Recycling
 - Cellulose to polymers
 - Human waste to bricks
In-Situ Resource Extraction & Separation/Recycling
- Regolith Excavation
- Extracted Materials
- Recycled Materials

In Situ Fabrication
- Spare Parts and Tools
- Habitats
- Solar Panels
- Inflatables
- Pressure Vessels

In-Situ Repair
- Soldering
- Welding
- Materials Joining
- Self Healing

Solar Cell Fabrication

In Situ Lunar Habitat

Concrete Walls/Habitats

Metal Structures
OBJECTIVE

- Enable Spacecraft and Propulsion advancements through materials science research directed towards identified high-priority technology gaps.

STRATEGY

- Initiate research addressing key materials issues relating to the following in-space propulsion:
 - Advanced Chemical Propulsion
 - Electric Propulsion
 - Nuclear Electric Propulsion
 - Nuclear Thermal Propulsion
 - Propellantless Propulsion
 - Solar Sails
 - Aerocapture
 - Tethers
 - Involve customers in identification of technology gaps that benefit from advancements in materials science.
 - Cross-cutting research elements:
 - Advanced Materials for Space Propulsion Systems
 - Environmental Protection Materials
 - Vehicle Health Monitoring Materials
 - Spacecraft Materials
Human life support systems provide the basic functions to sustain life:
- Controlling pressure, temperature, and humidity; provide usable water and breathable air; supply food; and manage wastes.

Advanced Life Support element, of the Human Support Systems Technologies Product Line, must reduce dependence on resupply in space, by being more reliable and self-sufficient than life support systems for LEO missions.

Technical challenges include:
- Heat transport
- Heat rejection
- Waste monitoring and control
- Habitat monitoring

Materials Research focal areas include:
- Lightweight piping for heat management systems
- Coatings for heat management systems
- Enhanced flex-hoses
- Hydrogen embrittlement control
- Inflatable habitats
- Environment monitoring utilizing Lab-on-a-Chip Applications Development (LOCAD) technologies
The Office of Biological and Physical Research (OBPR) is moving aggressively to align programs, projects and products with the vision for space exploration.

Research in advanced materials is a critical element in meeting exploration goals
- Crew health, safety, and life support systems
- Significant reduction in mass to/beyond orbit
- Commensurate cost reduction
- Enables sustainable planetary surface exploration
- Risk reduction

Research in low gravity materials science in OBPR is being focused on top priority needs in support of exploration
- Space Radiation Shielding
- In Situ Resource Utilization
- In Situ Fabrication and Repair
- Materials Science for Spacecraft and Propulsion Systems
- Materials Science for Advanced Life Support Systems

Roles and responsibilities in low gravity materials research for exploration between OBPR and the Office of Exploration Systems are evolving.