A Project Report Submitted to:
National Aeronautics and Space Administration

by:
The University of Hawaii at Manoa
Honolulu, HI, 96822

Final Report: NAG5-9576

“The Diversity of Martian Volcanic Features as Seen in MOC Images and MOLA Topographic Data”

PRINCIPAL INVESTIGATOR:

Dr. Peter J. Mouginis-Mark
HIGP/SOEST
University of Hawaii
1680 East-West Road, POST Room 504
Honolulu, HI 96822
(808) 956-8760

Date Submitted

June 15th, 2004
1. OBJECTIVES OF COMPLETED RESEARCH

2. RESULTING PUBLICATIONS
 Papers Published
 Abstracts Published

3. IMPLICATIONS FOR FUTURE WORK

4. REFERENCES
1. Objectives of Completed Research

This project focused on the evolution of the summit areas of Martian volcanoes. By using data collected from the Mars Orbiter Camera (MOC) and Mars Laser Altimeter (MOLA) instruments, we tried to better understand the diversity of constructional volcanism on Mars, and hence further understand eruption processes. We investigated the styles of volcanism on the major volcanic constructs (Olympus, Arsia, Pavonis, and Ascreaus Montes), and also studied the role of magma-volatile interactions within the shallow subsurface of these volcanoes and the surrounding areas. Theoretical models for internal processes within volcanoes, including the thermal influences of dike intrusions on pre-existing volatiles, were developed based on our identification of landform distributions.

Volcanism represents one of the major geologic processes that have shaped the surface of Mars (Greeley and Spudis, 1981), and the new data being collected by Mars Global Surveyor (MGS) provide an unprecedented new opportunity to investigate the range of activity in space and time. Relating geologic observations to theoretical models is one of the prime objectives of the Planetary Geology and Geophysics Program, and so our work directly relates to this goal. By focusing our investigation on the role of volatiles as they may affect explosive volcanism, we hoped to enhance the community's knowledge of the distribution of water and ice on Mars during the recent geologic past. By "following the water" on Mars, our work is of relevance for future site selection and for the interpretation of imaging spectrometer data that show hydrothermal alteration of surface materials (e.g., within volcanic craters or the walls of the large canyons). Our calculations of eruption conditions were based on present day atmospheric conditions, so that we took the approach that if we were unable to adequately model the observed landforms this may be an indication that some property of the atmosphere (particularly the density) has changed.

Volcanism on Mars probably continued into the recent geologic past; indeed initial analysis of MOC data even suggests that volcanism could continue until the present (Hartmann, 1999). A number of young volcanic landforms appear to have formed by the interaction between subsurface volatiles (water and/or ice) and subsurface magma (e.g., see review by Chapman et al., 2000). Gaining a greater understanding of the distribution of volatiles on Mars, and how local heat sources may have remobilized water or ice within the crust, has important implications for the present day distribution of volatiles on Mars. Through our study of the landforms, which appear to result from the interaction of intrusions and subsurface volatiles, we hoped to be able to better quantify the volumes of volatiles involved. We tried to provide new information on their distribution as a function of depth beneath the surface, their rate of release following an intrusion, and the physical properties of the country rock. All of these factors have considerable relevance to future NASA missions to Mars (both orbital and lander missions), as they relate directly to the potential for hydrothermal activity on Mars, and the resultant implications this has for biological habitats.

Our work provided new insights into the diversity of volcanism on Mars, and the distribution of Martian volatiles in space and time. Highlights of our results include: (1) the identification of large ash deposits at the summit of Arsia Mons (Mouginis-Mark,
Final Report: NAG-9576

2002); (2) the study of a large flank eruption on Elysium Mons (Wilson and Mouginis-
Mark, 2001) and the estimation of the effusion rate needed to produce the observed lava
channel; (3) the quantitative description of dike intrusion into volatile-rich terrain to
explain the origin of Hrad Vallis (Wilson and Mouginis-Mark, 2003a); (4) the
identification of constructional ridges on top of very young lava flows from Olympus
Mons, with the interpretation that these ridges were formed by very recent phreato-
magmatic eruptions (Wilson and Mouginis-Mark, 2003b); and (5) the characterization
of the dimensions and slope distributions on 18 volcanic edifices on Mars (Kallianpur and

Central to the work was the development of numerical models to explain the
detailed morphology of features seen in the MOC data and the MOLA topographic
information. These models were in turn based on parametric data (depth and width of
depressions, existence of possible dikes on the floors of graben, and spatial distribution of
materials surrounding the depressions) collected from MOC and MOLA data. We used
our most recent re-assessments of the factors controlling the sizes, shapes and locations of
volcanic intrusions on Mars (Scott & Wilson, 1999, 2002; Scott et al., 2002; Wilson &
Mouginis-Mark, 2001, 2003a; Wilson & Head, 2000, 2001) to provide the inputs to
calculations of the way the internal structure and the process of magma ascent controls
the morphology of the summit area and the adjacent regions.

We also studied volcano edifices, where intrusions close to the summit may have
released volatiles. In particular, we identified an extensive area of fine materials,
interpreted to be the products of explosive volcanism, close to the summit of Arsia Mons
(Mouginis-Mark, 2002) (Fig. 1). We studied the geomorphic characteristics of the
possible source areas of these deposits and to model the range of possible explosive
eruptions that generated them. Theoretical models for internal processes within
volcanoes, especially the roles of dike and sill intrusion, were developed based on our
identification of the scales and locations of the resulting landforms (Wilson and
Mouginis-Mark, 2003b).

Many of the morphological data that we collected during this investigation were
also used in the quantification of volcanic processes on Mars. Fundamental volcanic
processes on Mars, and the internal structures of the resulting volcanic systems, generally
mimic those on Earth. Thus, shield volcanoes have multiple generations of sub-summit
magma reservoirs evidenced by the presence of collapse calderas (Crumpler et al., 1996;
Scott and Wilson, 1999; Wilson et al., 2001), summit eruptions occur due to near-vertical
dike migration to the surface (Wilson and Mouginis-Mark, 2001), rift zones are formed
by lateral dike injection and flank eruptions occur from points along those rift zones
(Crumpler and Aubele, 1978), and shallow sills form from the distal parts of rift zone
dikes (Scott and Wilson, 1999). On the larger scale, mantle plumes appear to have fed
magma laterally into giant dike swarms which approached close enough to the surface to
produce swarms of graben radial to the plume center (Scott et al., 2002; Wilson and
Head, 2002); some of these graben contain rimless craters caused by collapse after gas
release, dike roof stoping or possibly sustained local eruptions (Scott and Wilson, 2002).
Elsewhere, giant regional dikes appear to have injected shallow sills that interacted with
the cryosphere, in at least one case causing a major phreatomagmatic explosion (Wilson
and Mouginis-Mark, 2003a). The above evidence, together with theoretical appraisals of
volcanic processes on Mars (Wilson and Head, 1994; Head and Wilson, 2002), suggests that only a relatively small number of geometries needed to be considered in order to model these eruption or intrusion scenarios and their consequences.

The results from this grant include a greater understanding of the temporal and spatial variations in the eruptive history of volcanoes on Mars, and the impact of this activity on the volatile inventory within the top few kilometers of the crust. These results pertain to the availability of volatiles (both juvenile magmatic volatiles and ground water contained within the near-surface rocks) and to magma supply rates at appreciable distances (tens to hundreds of kilometers) from the centers of volcanoes. Both of these aspects are intimately connected to large-scale crustal evolution and to the temporal distribution of volatiles across the planet (McKenzie and Nimmo, 1999). Explosive volcanism on Mars, a major factor in the release of water at the surface, may have been driven not only by volatiles within the parental melt, but also by magma encountering water or ice at shallow depth (Mouginis-Mark et al., 1982; Crown and Greeley, 1993; Robinson et al., 1993). The depth of this permafrost layer is not known with certainty, but Squyres et al. (1992) have estimated the mid-latitude thickness to be ~2 km. Our work on the origin of Hrad Vallis (Wilson and Mouginis-Mark, 2003a) helped to refine this depth estimate.

Figure 1: An extensive layer of material (between arrows) covers parts of the summit of Arsia Mons (Mouginis-Mark, 2002). MOLA data (elevations at right are in meters) allow the layer to be estimated as being 45 - 50 m thick), indicating that this is not an eolian deposit.

2. Resulting Publications

The results from this grant are described in the following publications (6 papers and 12 abstracts):
Papers published:

Abstracts published:

3. Implications for Future Work

a) In our work on Hrad Vallis (Wilson and Mougins-Mark, 2003a) we identified a “mud phase” of ejecta deposition associated with the earliest phase of explosive volcanism that we interpreted to be the result of sill intrusion into volatiles. Further analysis of this deposit is warranted because it is, to date, the only deposit that has been identified at the source area of an outflow channel on Mars, and thus may indicate unique characteristics of the substrate. Inspection of MOC data suggests that, if this explosive phase was continuous throughout the eruption or an early phase event, we should be able to see if the unit has been eroded by later water flow from the source (i.e., explosive only in early phase) or no erosion (i.e., continuous explosive activity). Investigation of this area is continuing under our current MDAP grant (NAG5-13323).

b) We identified large areas of the summit of Arsia Mons that may be ash deposits (Mougins-Mark, 2002). Explosive volcanism on the Tharsis Montes had not been previously identified, and opens up the possibility of a greater range of eruption styles for these volcanoes. Our earlier work suggested that there could be spatial variations in deposit morphology as a function of elevation on the Tharsis volcanoes. Correlating MOC and THEMIS observations with the elevation data from MOLA, as well as looking at the other Tharsis volcanoes, may reveal systematic trends in the style(s) of volcanism. Again, we are conducting these follow-on investigations under our current MDAP grant.

4. References

