NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The Eastern Pacific ITCZ during the Boreal SpringThe 6-year (1998-2003) rainfall products from the Tropical Rainfall Measuring Mission (TRMM) are used to quantify the Intertropical Convergence Zone (ITCZ) in the eastern Pacific (defined by longitudinal averages over 90 degrees W-130 degrees W) during boreal spring (March-April). The double ITCZ phenomenon, represented by the occurrence of two maxima with respect to latitude in monthly mean rainfall, is observed in most but not all of the years studied. The relative spatial locations of maxima in sea surface temperature (SST), rainfall, and surface pressure are examined. Interannual and weekly variability are characterized in SST, rainfall, surface convergence, total column water vapor, and cloud water. There appears to be a competition for rainfall between the two hemispheres during this season. When one of the two rainfall maxima is particularly strong, the other tends to be weak, with the total rainfall integrated over the two varying less than does the difference between the rainfall integrated over each separately. There is some evidence for a similar competition between the SST maxima in the two hemispheres, but this is more ambiguous, and there is evidence that some variations in the relative strengths of the two rainfall maxima may be independent of SST. Using a 25-year (1979-2003) monthly rainfall dataset from the Global Precipitation Climatology Project (GPCP), four distinct ITCZ types during March-April are defined, based on the relative strengths of rainfall peaks north and south of, and right over the equator. Composite meridional profiles and spatial distributions of rainfall and SST are documented for each type. Consistent with previous studies, an equatorial cold tongue is essential to the existence of the double ITCZs. However, too strong a cold tongue may dampen either the southern or northern rainfall maximum, depending on the magnitude of SST north of the equator.
Document ID
20040081152
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
Authors
Gu, Guojun
(Maryland Univ. Baltimore County)
Adler, Robert F.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Sobel, Adam H.
(Columbia Univ. New York, NY, United States)
Date Acquired
September 7, 2013
Publication Date
March 1, 2004
Subject Category
Meteorology And Climatology
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available