
NONLINEAR OBSERVERS FOR GYRO CALIBRATION 

Julie Thienel* and Robert M. Sannert 
Nonlinear observers for gyro calibration are presented. The first observer esti- 
mates a constant gyro bias. The second observer estimates scale factor errors. 
The third observer estimates the gyro alignment for three orthogonal gyros. The 
convergence properties of all three observers are discussed. Additionally, all three 
observers are coupled with a nonlinear control algorithm. The stability of each of 
the resulting closed loop systems is analyzed. Simulated test results are presented 
for each system. 

INTRODUCTION 

Gyroscopes, also known as Inertial Reference Units (IRU) or gyros, are part of the attitude 
control system of most three-& stabilized spacecraft. They measure the spacecraft angular rate. 
Unfortunately, the gyro measurements are corrupted by errors in alignment, scale factor, and bias, 
as well as random noise.' Several algorithms for estimating the errors, as well as the noise charac- 
teristics, are Most algorithms rely on linear techniques, and are not coupled directly 
with the spacecraft control. 

The published nonlinear methods tend to  follow a similar Lyapunov development to determine 
stability, most are driven by a measurable attitude error. Alonso, et al. in Ref. 9 develop a nonlinear 
observer for relative attitude and rate estimation with an application to spacecraft formation flying. 
Salcudean in Ref. 10 develops a nonlinear observer for angular rate estimation. Both observers 
are driven by a computed attitude error. However, in order to estimate the rate, both observers 
require knowledge or estimation of spacecraft torques. The stability of the observer developed by 
Salcudean requires an assumption that the system eventually behaves as a linear time invariant 
system. In Ref. 11, Vik, et al. develop an angular velocity observer, in addition to a position and 
velocity observer, for use in a Global Positioning System (GPS)/Inertial Navigation System (INS). 
The angular velocity observer is actually a nonlinear observer for gyro calibration. The observer 
is designed to estimate corrections to the gyro measurements, particularly misalignment and scale 
factor corrections, along with gyro biases. The misalignment and scale factor errors are assumed 
to be small. Ah the error terms are modelled as exponentially decaying, first-order equations. The 
Lyapunov analysis proves that the observer, given the above assumptions, is exponentially stable. A 
closed-loop analysis of the observer, coupled with a controller, is not presented. Nonlinear observers 
for gyro bias estimation are presented by Boskovic, et al. in Refs. 12 and 13. In Ref. 12, the 
bias is assumed to be constant, which differs from the exponentially decaying model of Ref. 11. 
However, the bias is assumed to lie in a small, bounded set. Second order terms are neglected in 
the observer development and in the Lyapunov proof of stability. The observer is coupled with a 
controller, designed to drive the spacecraft rates to zero, and the spacecraft body coordinates to 
the inertial coordinates. With the second order terms neglected, the closed loop system is stable 
for the single scenario presented. In Ref. 13, the gyro bias observer is designed for use in attitude 
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tracking. Here the bias observer is driven by a computed attitude error, as in Refs. 9, 10, and 
11. However, the attitude error is computed as a vector difference, rather than a rotational error, 
without consideration to the normality constraint of the attitude. An adaptive tracking controller is 
coupled to the observer. The convergence proof for this observer assumes that the vehicle attitude 
never passes through f180 degrees, and the stability of the coupled observer/controller/spacecraft 
dynamics is not formally established. 

As the above discussion indicates, combined observer-controller designs for the attitude control 
of rigid fiight vehicles are a subject of active research."-'3 Successful design of such architectures is 
complicated by the fact that there is, in general, no separation principle for nonlinear systems. In 
contrast to linear systems, 'certainty equivalence' substitution of the states from an exponentially 
converging observer into a nominally stabilizing, state feedback control law does not necessarily 
guarantee stable closed-loop operation for the coupled ~ y s t e m s . ' ~ ~ ' ~  In this work, one version of 
this problem is considered, in particular, the task of forcing the attitude of a rigid vehicle to asymp 
totically track a (time-varying) reference attitude using feedback from rate sensors with persistent 
nollzero errors. 

The next section introduces the terminology used throughout the document, as well as an 
overview of a nonlinear attitude control law. Next, the development of nonlinear observers for the 
case of constant gyro bias, constant scale factor error, and constant alignment error are presented. 
Each observer is combined with the nonlinear control scheme for attitude control of a spacecraft. 
Simulation results are presented for each of the observers and for each of the closed loop systems. 
The paper concludes with a summary and discussion of future work. 

TERMINOLOGY 

The attitude of a spacecraft can be represented by a quaternion, consisting of a rotation angle 
and unit rotation vector e, known as the Euler axis, and a rotation q5 about this axis so that16 

where q is the quaternion, partitioned into a vector part, E ,  and a scalar part, q. Typically, in 
spacecraft attitude applications, the quaternion represents the rotation from an inertial coordinate 
system to the spacecraft body coordinate system. Note that llqll = 1 by dehition. The rotation 
matrix for a specific attitude can be computed from the quaternion components asI6 

R(q) = (7' - E ~ E ) I  + ~ E E ~  - 2 $ 3 ( ~ )  (2 )  

where I is a 3x3 identity matrix and S(E)  is a matrix representation of the vector cross product 
operation. 

0 -Ez 

-Ey €2 

S(E) = [ EL 0 $1 
The rotation matrix is orthogonal, RTR = I. Note also that R(q)E = E .  

The relative orientation between two coordinate frames is computed as17 

Where c j  defines the rotation from the frame defined 
11el1= 0, f l =  f l  indicates that the frame 2 is aligned 
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The kinematic equation for the quaternion is given as 

where w ( t )  is the spacecraft angular velocity in body coordinates and 

where, by inspection, Ql(q( t ) )  = q(t)I + S ( E ( ~ ) ) .  The angular velocity, w ( t ) ,  is typically measured 
by a gyro, which can be corrupted from various sources, such as errors in bias, misalignment, and 
scale factor, and noise. The measured angular velocity can be written as1 

w g w  = rRT(Qg)W(t) + bg(t) + (6) 

where wg(t)  is the angular velocity in the gyro coordinate frame, I' is a diagonal matrix of scale 
factors, or more traditionally, a matrix containing scale factor errors (i.e. the main diagonal contains 
components 1 + ri, where yi is the scale factor error for gyro i) . This work considers only the case of 
three, orthogonal gyros. Therefore, R(qg) is an orthogonal gyro alignment matrix, a transformation 
from a gyro coordinate frame to the spacecraft body frame (note that for a non-orthogonal gyro 
triad, this matrix cannot be represented with a quaternion). The (possibly time varying) gyro bias 
is given by bg(t) ,  in the gyro coordinate frame, and finally, uwg(t) is a zero mean noise vector, also 
in the gyro coordinate frame. 

Solving (6) for w(t) ,  
4) = C(%(t) - bg(t) - v w g ( t > )  

w(t) = Cwg(t)  - b(t)  - v(t) 

(7) 

(8) 

where C = (rR(qg)T)- l  = R(qg)r-l for three orthogonal gyros. Rewriting (7) as 

where b(t)  = Cw,(t) is the effective gyro bias in the spacecraft body frame, and, similarly, u(t) is 
the effective noise in the spacecraft body frame. If I?, qg, and b( t )  are known, an unbiased estimate 
of w ( t )  is 

G(t)  = Cwg(t)  - b(t)  

This paper considers the case where I', qg,  and b(t)  are unknown and of arbitrary size. 

In this work, the gyro alignment and scale factors are assumed to  be constant. In other words, 

The bias is assumed to be constant. 
b(t)  = 0 

The effects of uniformly bounded noise on the bias and angular velocity are considered in Ref. 20. 

If L(t), tjg(t), and f l ( t )  are estimates of the unknown bias, alignment quaternion, and inverted 
scale factor matrix, respectively, an estimate of the angular velocity is given as 

= R(tjg(t))W)wg(t) - &t) (12) 

For the case of bias error only (assuming the alignment and scale factor matrices are known), (12) 
becomes 

G(t) = R(qg)r-lwg(t) - b(t) (13) 
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The equation is rewritten accordingly for a pure alignment estimate (with known scale factor and 
zero bias), as 

where R(tjg(t))  represents the rotation from gyro coordinates to an estimated body frame. Finally, 
for an estimate of the inverted scale factor matrix (12) (with a known alignment and zero bias) 
becomes 

o(t) = R(qg(t))r-Lg(t) (14) 

W) = R ( q g ) m w g ( t )  (15) 
or similarly for any other combination of terms. 

The error terms for each of the calibration parameters are defined as 

b(t)  = b - 6(t) 

!lg(t) = q g  Q 4 g ( t r 1  

71 (t) = 7 1  - i.1 (t) 

(16) 

(17) 

(18) 
where ? I ( t )  is a scale factor error vector defined as the difference between the inverted true scale 
factors and the estimates. This work examines each error source separately. 

Nonlinear Control Algorithm 

The attitude dynamics for a rigid spacecraft are given as 

H b ( t )  - S(Hw(t))w(t)  = u(t) (19) 

H is a constant, symmetric inertia matrix and u(t) is the applied external torque, for example, from 
attached rocket thrusters. The goal of the control law is to force the actual, measured attitude q(t) 
to asymptotidy track a (generally) time-varying desired attitude q d ( t )  and angular velocity U d ( t ) ,  

related for consistency by (4) as 
1 

Q d ( t )  = $ ( q d ( t ) b d ( t )  (20) 

It is assumed that W d ( t )  is bounded and differentiable with bd(t) also bounded. 

The commanded attitude tracking error is computed with (3) as 

Correspondingly, the rate tracking error is 

&(t) = w ( t )  - R(!lc(t))wd(t) (22) 

With these definitions, the tracking error obeys the kinematic differential equation" 

1 
&(t) = sQ(! l= ( t ) )&( t )  (23) 

A nonlinear tracking control strategy proposed by Egeland and Godhavn in Ref. 19 utilizes the 
control law 

u(t) = -K,s(t) +Ha&) - S(Hw(t))w,(t) 

s ( t )  = G,(t)t + &(t) = w ( t )  - wr(t)  

(24) 

(25) 

K D  is any symmetric, positive dehite matrix and s(t)  is an error defined as 
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where X is any positive constant. The reference angular velocity wr(t) is computed as 

4) = R(GC(t))Wd(t) - &(t) 

ar( t )  = &(t) = R(Gc(t))Gd(t) - s(ijc(t))R(Gc,(t))~d(t) - XQl(Gc(t))wc(t)t 

(26) 

(27) 
and 

Asymptotically perfect tracking, i.e. &(t) + 0, Gc(t) + 0, is obtained with the above control 
scheme, given noise free measurements of the states w(t) and q(t) .  In this work we investigate the 
application of this control algorithm, given the uncertainties in the angular velocity as quantified 
above. 

NONLINEAR OBSERVERS 

Following the observer proposed in Ref. 11, a state observer for the attitude in the case of either 
gyro bias or scale factor error is proposed as 

where O(t) is given in (13) for the case of gyro bias and in (15) for the case of scale factor error. 

The proposed observers for the gyro bias and scale factor errors are 

i 
2 

Gyro bias: 

b = --2,(t)sign(ij,(t)) 

In the case of alignment error, the proposed attitude observer 
attitude and alignment observers are given as 

(29) 

(30) 

contains an additional term. The 

For the gyro bias observer, the alignment and scale factor are assumed to be known. The same is 
true for the scale factor and alignment observers (the other components are assumed to  be known). 

Essentially, q(t) is a prediction of the attitude at time t, propagated with the kinematic equation 
using the measured angular velocity and the current estimate of the error source, either gyro bias, 
scale factor, or alignment estimate. The attitude error is the relative orientation between the pre- 
dicted attitude provided by (28) or (31) and the true attitude provided by the measured attitude, 
q(t). The attitude error is computed using (3) as 

In (28) and (31) the term R(ij,(t))T transforms the angular velocity terms from the body frame to 
the observer frame. 
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In the scale factor observer (30), E,,(t) are the three elements of &(t). The estimated scale factor 
components, ?I ; ( t )  with i = x, y, z, are estimates of the inverse of the true scale factor components. 
Only scale factor estimates corresponding to non-zero wg;(t) are included in (30). The components 
?~,(t)  form the main diagonal of the matrix in (15). Note that the estimated scale factors, 
q ~ ; ( t ) ,  are never inverted in the observer (or in the controller to follow), so dividing by zero is not a 
possibility. 

In the alignment observer (32), the quaternion, qg(t), is the estimated gyro alignment quaternion, 
transforming from gyro coordinates to an estimated body frame. The alignment error is given in 
(17). The term R(qg(t))T transforms the angular velocity term from the gyro frame to an estimated 
body frame. 

In the case of pure bias error, the kinematic equation for &(t) is given as 

where b(t) obeys the differential equation 

Note that the equilibrium states for (34) and (35) are 

[ fj,(t)' b ( t ) T  ] = [ 0 0 0 f l  0 0 0 ] 
Ref. 20 prnves that for my ~ E ~ S ~ D X I  mg&r ve!ocity, ~ ; ( t ) ,  the qzi!ibri=x stztes 3f the systen; 
(34) and (35) are exponentially stable. In particular, 6(t)  + b exponentially fast from any initial 
conditions q ( t 0 )  and h ( t 0 ) .  Additionally, Ref. 20 considers the effect of bounded noise on both the 
bias and angular velocity. Again, the observers are found to be exponentially stable to within a ball 
determined by the standard deviations of the noise terms. 

For pure scale factor errors, the derivatives of the attitude error, G,(t), and the scale factor error 
components are 

(37) 
1 

?~ti(t) = --woi(t)~,;(t)sign(ij,(t)) 2 

where again, i = x,y,z. is a diagonal matrix, containing the inverse of each of the true 
scale factors, defin-ed as TI,, on the main diagonal. The scale factor errors are defined as ?~; ( t )  = 
71, - ?I,(t), with I'l(t) given as 

The merence in angular velocity terms in (36) is then 

r-Lg(t) - FI(t)wg(t) = Fr(t)wg(t)  = n,(t).'yr(t) 

where fl,(t) is a diagonal matrix with the components of wg(t )  on the main diagonal and q ~ ( t )  is a 
vector containing the components ?I;( t ) .  (36) can then be rewritten as 
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Note that the equilibrium states for (37) and (38) are 

[ Go@)' ?r(t)' ] = [ o o o *I o o o 3 
In the case of alignment error, the kinematic equation for the attitude error quaternion is 

- kl (t>sign(~oo(t))sign(?o70(t)) (39) 
Since the true alignment is constant, the angular velocity associated with the kinematic equation for 
the true alignment quaternion is zero. The kinematic equation for the alignment error quaternion 
is therefore 

Since R(qg) = R(Gg(t))R(Gg(t)), where R(Gg(t)) represents the rotation from the estimated body 
frame to the actual body frame, (39) becomes 

- kl (t)sign(~o(t))sign(iio(t))l (41) 

Note that the equilibrium state for each of the error quaternions, a ( t )  in (41) and G g ( t )  in (40), is 
the identity quaternion, [0 0 0 f 11. 

Stability of Scale Factor Observer 

The proof follows that of the gyro bias observer.20 Chose a Lyapunov function as 

Vo(t) is continuous. Noting that Eo(t)'&,(t) + ijo(t)&(t) = 0, as with the gyro bias analysis, the 
derivative of Vo(t) (including the left and right derivatives of 7i,(t) = 0) yields, for all t 2 t o  

k 
2 

This establishes that Eo(t ) ,  7jo(t), and yri( t ) ,  are globally, uniformly bounded. Vo(t) is a continuous, 
twice differentiable function with Kit) bounded, given that wg(t)  is bounded. Barbalat's lemrnal5 
then shows that IIEo(t)ll -B 0 as t -B 00. 

If wg(t )  is bounded, all the signals in (37) and (38) are bounded. The system is, as in the gyro 
bias case, analyzed as a linear time varying system, i ( t )  = A(t)z(t).14 If all the components of 
wg(t)  are nonzero, A(t)  is given as 

Vo(t) = --zo(t)TZo(t) 

If any of the components of wg(t )  are zero, the system is reduced in dimension according to the 
non-zero components of wg ( t )  . 

The development proceeds like that for the gyro bias in Ref. 20, under the assumption that 
wg(t )  is at least bounded. The equilibrium point z(t) = 0 of the equivalent system is exponentially 
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stable if the pair ( A ( t ) ,  C) is uniformly completely observable (UCO). Rewriting Vo(t) as V,(t) = 

-z(t)'CTCz(t) _< 0, C is defined as C = [ & 0 1. Epuivalently to the gyro bias observer, the 
UCO property is examined with output feedback, resulting in a persistency of excitation condition. 
If the following is true for any bounded wg(t) ,  for any z in R3 

+' [ Jtt" Rg(7)2]r > 0 
t 

the system is UCO, and both Eo( t )  and T I ( t )  converge to zero exponentially fast. In other words, 
each component of wg(t )  must be nonzero for some nontrivial interval over any interval of length 
Tz. (43) establishes the persistency of excitation (PE) condition for the scale factor observer. 

Stability of Alignment Observer 

Chose a Lyapunov function as 

After considerable manipulation, with the choices k ( t )  = 411wg(t)ll+k' and h ( t )  = 611wg(t)ll+k;, 
with any k' > 0 and k; > 0, the derivative of K ( t )  can be written as 

V O ( t )  L - ~ ' l l ~ o ( t ) 1 I 2  - k',IIZo(t)ll L -k'll~o(t)l12 (45) 

If wg(t )  is bounded, Vo(t) is a continuous, twice differentiable function. Barbalat's lemma then 
shows that IIEo(t)II + 0 as t + 0 0 . ~ ~  

The system given by (40) and (41) is stable. If wg(t)  is bounded, all the signals are bounded. 
As with the gyro bias observer analysis, the system is cast as a linear timevarying system x(t) = 
A(t)x(t) where14 

x(t) = [ 2;;; ] 
In this case, developing A(t) is more involved. Again, after considerable manipulation, the matrix 
A(t) is written as 
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completely observable UCO). Rewriting Vo(t) as Vo(t) _< -z(t)'C'Cz(t) _< 0, the matrix is C 
is defined as C = [A 01. Examining the UCO properties, under output feedback, results in a 
persistency of excitation condition. Omitting the derivation details, if the following is true for a 
bounded wg(t ) ,  for any z in It3 

the system is UCO. In order to estimate the alignment errors, the angular velocity must change 
directions. Over any interval of length T2, the angular velocity must not remain in a plane. If (46) 
is satisfied, the system is UCO, and the errors converge to zero exponentially fast. (46) establishes 
the persistency of excitation condition for the alignment observer. 

CLOSED LOOP STABILITY 

The nonlinear tracking control strategy proposed in Ref. 19 and summarized above cannot be 
implemented because exact measurements of the angular velocity w ( t )  are not available. Instead, a 
certainty equivalence approach is proposed using estimates &(t) generated by the observer equations, 
resulting in 

where &(t) = &(t) - wr(t), & ( t )  = b(t) - R ( f j c ( t ) ) U d ( t ) ,  and 
u(t) = -K&) + H&(t) - S(H&(t))w,(t) (47) 

'%-(t) = R ( G c ( t ) ) k d ( t )  - s ( 3 c ( t ) ) R ( G c , ( t ) ) W d ( t )  - x Q l ( @ c ( t ) ) & c ( t )  

Substitution of (47) into (19), the attitude dynamics, results in the following closed loop equation2' 

H i ( t )  - s ( H W ( t ) ) S ( t )  + KDs(t) = A ( & - ( t ) , W d ( t ) ) s ( t )  (48) 

where A ( G c ( t ) ,  W d ( t ) )  = -S(wr(t))H - H S ( R ( d c ( t ) ) w d ( t ) )  + X H Q l ( G c ( t ) )  KD- A ( d c ( t ) , W d ( t ) )  is 
a bounded matrix over any solution of the coupled dynamics (28) or (31), (29) or (30) or (32), (19), 
and (47). 

In the case of gyro bias, the error term S ( t )  is written as 

Z ( t )  = w ( t )  - b(t) = -b(t) 

Hi(i!) - S ( H W ( t ) ) S ( t )  -f- KDs(t) = - A ( & ( t ) ,  W d ( t ) ) h ( t )  

The closed loop dynamics are then written as 

(49) 

The control law (47) results in global stability and asymptotically perfect tracking, Ildc(t)ll -+ 
0, Ili jc(t)l l  + 0. The proof is given in detail in Ref. 20. 

Closed Loop Stability with Constant Scale F'actor Error 

Given the Lyapunov function &(t) = s(t)'Hs(t), the derivative of V,(t), using (48), is 

%(t) = - S ( t ) ' K D S ( t )  + s ( t ) ' A ( G c ( t ) ,  W d ( t ) ) ( s ( t )  - i(t)) (50) 

Rewriting the error term 
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Since 
wg(t) = rw ( t )  = r(s(t) + wr(t)) 

equation 51 is rewritten as 

s(t) - q t )  = FI(t)r(s(t) + wr(t)) (53) 

The convergence of s( t )  to zero depends on the exponential convergence of the scale factor errors, 
which in turn depends on the angular velocity wg(t)  generated by the applied control. The derivative 
of Vc(t) can be written, after some manipulation, as 

where k ,  is the smallest eigenvalue of K,, 

C = SUP SUP IlA(dc(t),wd(t))ll < 03 
e t 0  IIC(t)ll=l 

andw,maz is the upper bound of IIwr(t)II = IIR(qc(t))wd(t)-xZc(t)ll 5 llwd(t)ll+k since II&(t)ll 5 1 
and IIR(qc(t))ll = 1 .  If k ,  is sufEciently large, the closed loop system is uniformly, ultimately 
bounded. If the angular velocity, wg(t), in addition to being bounded (which ensures that the 
observer error terms are at least bounded), satisfies (43) ,  the system is UCO and the scale factor 
errors converge to zero exponentially fast. In this case Theorem B.8 of Ref. 15 applies. Vc(t) 
converges to zero exponentially fast, which means s ( t )  converges to zero exponentially fast, regardless 
of the choice of kD. With the convergence of s ( t )  -+ 0, the proof of convergence of the actual attitude 
and rate errors follows exactly as in the gyro bias analysis of Ref. 20. The end result of which is 
[&t+m!lgc+)i! = pGc+w/i,-. / + \ I 1  - n =c\c)II - u- 

Closed Loop Stability with Constant Alignment Error 

Again, using the Lyapunov function K ( t )  = $s(t)THs(t), the derivative of K(t )  is 

K(t) = - s ( t ) T K ~ s ( t )  + s(t)TA(6c(t), W d ( t ) ) g ( t )  (55)  

The error term Z ( t )  is rewritten as 

s(t )  - i ( t )  = w(t)  - &(t) = w(t )  - R($(t))w,(t) = (I - R(dg(t))=)w(t)  

Substituting w ( t )  = s ( t )  + wr(t)  from equation 25, B(t) is 

The convergence of s( t )  to zero depends on the exponential convergence of the alignment errors, 
which in turn depends on the angular velocity w ( t )  generated by the applied control. The derivative 
of Vc(t) can be written, again, after some manipulation, as 

where k,, C, and w,,,,, are defined above. Again, if k, is sufficiently large, the closed loop system is 
uniformly, ultimately bounded. If the angular velocity, w(t), in addition to being bounded, satisfies 
(46) ,  the system is UCO and the alignment errors, Eg( t ) ,  converge to zero exponentially fast. As in 
the case of scale factor error, Theorem B.8 of Ref. 15 applies. K ( t )  converges to zero exponentially 
fast, which means s ( t )  converges to zero exponentially fast, regardless of the choice of kD. With 
the convergence of s ( t )  + 0, the proof of convergence of the actual attitude and rate errors follows 
exactly as in the gyro bias analysis of Ref. 20. The end result of which is l i i ~ - , m ~ ~ E c ( t ) l ~  = 0 and 
limt.-+m Ill;lc(t) II = 0. 
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OBSERVER SIMULATION RESULTS 

The observers are tested with a Matlab simulation. Table 1 lists the initial conditions for each 
observer, as well as the true states. The initial attitude quaternion and initial estimated attitude 
quaternion are the same for each observer test. 

Observer State Value h e  State Value 

4@0) [0,1,0, OIT 9(to) [O, 0,1, OIT 
%to) [0, 0, OIT$ b(t)  [2.9, -2.9, 1.9IT$ 

W )  11, 1 7 1 1  7 [3, -5,4] 
49 (t) 107 o,o, 11 99 [O,O, 1101 

Thble 1 Observer Simulation Initial Conditions 

First, results from the gyro bias observer are presented. The scale factors and alignment are 
known (and, without loss of generality, are each set to identity). The gain chosen as k = 1. The 
angular velocity is w( t )  = [-5.7, 11.4, -22.91 deg/sec. Figure 1 shows Ilb(t)II converges to zero 
exponentially fast. 

'0 70 40 6 0  I O  100 170 
time (sec) 

Figure 1 Observer Gyro Bias Error 

Next, results from the scale factor observer are presented. Here the gyro bias is zero, and the 
alignment matrix is the identity matrix. In the first case, the angular velocity is the same as in 
the gyro bias observer tests with w(t)' = [-5.7,11.4, -22.91 deg/sec. Figure 2(a) shows that the 
scale factor errors, 71 - T I ( t ) ,  converge to zero. (Note that the inverse of the scale factor errors are 
plotted. Only the inverse of the estimate is used in the observer.) 

In the second caw, the x and y angular velocity components are as in the first case, but the 
z component is zero, w(t )  = [-5.7,11.4,0] deg/sec. Recall that the PE condition requires that all 
components of w(t )  be nonzero for UCO. Figure 2(b) shows that the scale factor errors for the x 
and y axes converge to zero, but the scale factor error for the z axis remains constant. 

In the next case, the angular velocity components decrease exponentially w ( t )  = [-5.7,11.4, -22.9]e-t 
deg/sec. This angular velocity does not meet the persistency of excitation condition of (43). Figure 
2(c) shows that the scale factor errors do not converge to zero, but rather to constants. 
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In the last case, angular velocity components switch between zero and wg(t)  = [-5.7,11.4, -22.91 
deg/sec. A simple time interval is set up as 

[-5.7,11.4, -22.91 deg/sec t E [n, n + l /(n + l)] 
[O, 0701 deg/= t E [n + l/(n + l ) , n  + 11 

t ,  = n, n = 1,2,. .200 

{ wg(t) = 

where 
. 

This case also does not meet the UCO requirement of (43), since the angular velocity components 
are zero for progressively longer intervals. Figure 2(d) shows that the scale factor errors do not 
converge to zero, but rather are converging to constants. 
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Figure 2 Scale Factor Observer Inverse Scale Factor Errors 

Finally, results from the alignment observer are presented. The gyro bias is zero, and the scale 
factor matrix is the identity matrix. In the first case, the angular velocity is constant, with w(t)' = 
[0.1,0.1,0.1] deg/sec. The gains are chosen as k' = 1, = 0.001. Figure 3(a) shows that the 
alignment errors converge to a constant, since a constant angular velocity does not meet the PE 
condition required by (46). 

Next, the angular velocity is time varying. The angular velocity is 

w(t)' = [cosumt, sinw,t, cos 2w,t]deg/sec 

where w, = 2 rad/sec. The gains are chosen as k' = 0.001 and ki = 0.1. It can be shown that 
this angular velocity does meet the persistency of excitation condition of (46) for alignment errors. 
Figure 3(b) shows that alignment errors converge to zero. 
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Figure 3 Alignment Observer Alignment Error 

CLOSED LOOP SIMULATION RESULTS 

The combined observers and controllers are also tested with a Matlab simulation. The inertia 
matrix is a diagonal matrix with principal moments of inertia chosen arbitrarily as [go, 100,70] kg ma. 
The size of the principal moments of inertia is comparable to that of a small satellite. Table 2 lists 
the initial conditions for the observer and controller, as well as the true states. All the tests start 
with the same initial attitude quaternion, initial observer attitude quaternion, and initial desired 
attitude quaternion. 

The combined observer/controller is first tested with a gyro bias. The gains are chosen as k = 1, 
KD = k,I, k, = 6, and X = 3. T h e  desired trajectory is to track a 6.3 deg/sec rotation about 
the y-axis. The initial angular velocity is w(t0) = [-5.7, 11.4, -22.91' deg/sec. Figure 4(a) shows 
that Il&(t)II converges exponentially to zero. Figure 4(b) shows the tracking error, II&(t)ll, converges 
asymptotically to zero. Figure 4(c) similarly shows that the rate tracking errors converge to zero. 
Without correcting for the bias, the tracking error has a steady state error of approximately 30 
degrees, as shown in Figure 4(d). 

Next, the coupled observer/controller is tested with a scale factor error. The gains are chosen 
as k = 1, K D  = kD& (where 13 indicates a 3x3 identity matrix), k, = 20, and X = 0.1. Here the 
initial angular velocity is ~ ( 0 ) ~  = [ O , O , O ] ,  and the desired angular velocity is constant, wd(t)' = 
[2.8,2.8,2.8] deg/sec. Figure 5(a) shows that the scale factor errors converge to zero. Figures 5(b) 
and 5(c) show that both the tracking attitude error and the tracking angular velocity error converge 
to zero. The controller is then run without correcting for the scale factor. Figure 5(d) shows the 
attitude tracking error, with the true scale factor reduced by a factor of 100 (the scale factor given 
in Table 2 produced tracking errors considerably larger). Without correcting for the scale factor, 
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(a) Bias Error 
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Correcting for Bias 

Figure 4 Coupled Observer/Controller With Gyro  Bias 

the tracking errors do not converge. 

Finally, the coupled observer/controller is tested with a constant alignment error. The gains are 
chosen as k' = 0.1, = 0.1, K D  = kJ3 (where 13 indicates a 3x3 identity matrix), k, = 20, and 
A = 3. The initial angular velocity is ~ ( 0 ) ~  = [O,O,O]. The gyro coordinate frame is rotated by 
45 degrees from the body frame, about the z-axis. The desired angular velocity changes direction, 
similarly to that used above to test just the observer, wd(t)= = 5.73[cosw,t,sinw,t,sin2w,t] 
deg/sec, with w, = 1 deg/sec. Here, all the errors converge to zero. Figure 6(a) shows that the 
alignment errors converge to zero. Figures 6(b) and 6(c) show that that attitude and rate tracking 
errors converge to zero. Without correcting for the alignment, the attitude tracking error does not 
converge to zero, as shown in 6(d). 

CONCLUSIONS 

Three nonlinear observers for estimation of gyro bias, scale factor error, and alignment error 
are presented. All the observers are stable. The bias observer is exponentially stable. Both the 
scale factor and alignment observers are exponentially stable, but only under the condition that 
the angular velocity is bounded and meets a persistency of excitation condition. The persistency of 
excitation conditions are different for the scale factor observer and the alignment observer. For the 
scale factor observer, the angular velocity must be bounded and at least constant for regular time 
intervals. For the alignment observer, the angular velocity must be bounded, and must also change 
direction sufficiently in order to estimate the alignment. 

Each observer is also coupled with a nonlinear control algorithm for attitude control of a rigid 
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Figure 5 Coupled Observer/Controller with Scale lhc to r  Error 

spacecraft. The coupled observer/controller in the case of bias error is stable. The tracking attitude 
and rate errors converge asymptotically to zero, and the bias errors converge exponentially to zero. 
The coupled observer/controller in the case of scale factor errors is stable, and converges asymptoti- 
cally if the angular velocity is bounded and satisfies the pertinent persistency of excitation condition. 
The same is true for the coupled observer/controller in the case of an alignment error. The closed 
loop system is asymptotically stable if the angular velocity is bounded and meets the persistency of 
excitation condition for the alignment observer. 

In this work, the three gyro observers are developed and tested independently. Since they 
are stable (exponentially stable under certain conditions) when examined alone, the next step is 
to understand the stability of simultaneously estimating combinations of bias, scale factor error 
and alignment error using the observers presented here. Future work will examine the stability of 
combining the observers, as a potential nonlinear gyro calibration utility. Additionally, the stability 
of combinations of the observers, coupled with a control algorithm, will be assessed. Uniformly 
bounded noise a also be considered in the analysis of the combined observers. 
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