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ABSTRACT 
The Magnetospheric Multiscale Mission (MMS) is a NASA mission intended to make fundamental 
advancements in our understanding of the Earth’s Magnetosphere. There are three processes that 
MMS will study including magnetic reconnection, charged particle acceleration, and turbulence.’ 
There are four phases in the nominal mission and this work addresses some of the outstanding 
issues in phase I. The nominal phase I orbit is I 1.2 x 12 .Ee highly elliptic orSit -yvith fvi apzeciaft 
nominally forming a regular tetrahedron. In this paper we investigate the relative dynamics of the 
four MMS spacecraft about an assumed reference orbit. There are several tetrahedron dimensions 
required in Ph&e I of the mission and in this work we design optimal tetrahedrons for the 10 km 
baseline. The performance metric used in the optimization process is directly related to  the science 
return, and is based on an extension of previous work performed by Glassmeier.2 The optimizer we 
use is a commercially available Sequential Quadratic Programming (SQP) routine. Multiple opti- 
mal solutions are found, and we characterize how the performance of the formation varies between 
different regions of the reference orbit. 

INTRODUCTION 
The MMS mission is one of several missions in NASA’s Solar Terrestrial Probe (STP) program. The 
goal of MMS is to make fundamental advancements in our understanding of the Earth’s magneto- 
sphere and it’s dynamic interaction with the solar wind. Previous research has been limited due 
to the reliance on single-spacecraft measurements which are not adequate to reveal the underlying 
physics of highly dynamic, highly structured plasma processes. By taking advantage of the latest 
multi-spacecraft mission technology, MMS will be able to differentiate between spatial and temporal 
effects and to determine the three-dimensional geometry of the plasma, field, and current structures 
under study.l 

The nominal orbital configuration of the four spacecraft is a regular tetrahedron and the size of 
the tetrahedron is to be varied to  allow insight into the different scales at which plasma processes 
occur. The reference orbit for phase I is nominally a 1.2 x 12 R e  Highly Elliptic Orbit (HEO), 
but detailed phase I reference orbit design is a topic of current and future research. The orbit 
design work presented here only addresses the tetrahedron design for phase I. Ideally the spacecraft 
should maintain a regular tetrahedron for the entire orbit. However, this is not possible within the 
constraints of Keplerian dynamics, and active control is prohibitively expensive. Our goal in this 



work is to quantlfy the level of performance that we can provide using Keplerian orbits. Orbits 
that perform well yield a large quantity of useful science data, and orbits that perform poorly yield 
less useful science data. As the shape of the tetrahedron evolves over an orbit, the ability of the 
configuration to provide adequate science return will vary. It is important to note that a regular 
tetrahedron need not ever be actually achieved; however, it is desirable that the geometries are as 
near regular as possible. With this work we wish to determine how long we can maintain useful 
tetrahedron configurations, and determine what parts of the orbit near-regular tetrahedrons can be 
maintained for the longest duration. 

Our approach to the formation design is to develop a performance metric that is related to the 
science return provided by a particular formation configuration, and then use Sequential Quadratic 
Programming (SQP) to find optimal solutions. We begin by developing a function that allows a 
measure of performance for a given formation at a particular instant. Then we formulate a compos- 
ite metric that provides a performance measure over different regions of interest along the reference 
orbit. The instantaneous metric is formulated to reflect both the quality of the shape of the tetra- 
hedron, as well as the size of the tetrahedron. We parameterize the performance metric in terms 
of the orbital elements, where all orbits have a common semimajor axis to ensure equal periods. 
Eoiind cmstriiits =e applied tu eilsuxe that t h e  soiutions are in the vicinity of the current nominal 
reference orbit for phase I. 

Multiple solutions are presented for optimal tetrahedron configurations. The solutions are gen- 
erated by optimizing over different regions of the reference orbit. The regions of interest are defined 
by two variables. The first is the reference true anomaly, vc, that defines the center of the region 
of interest. The second independent variable is the width of the region of interest, in terms of a 
change in true anomaly Au. For example, one optimal solution is centered at a true anomaly of 180 
so v, = 180, and the width of the region of interest is 60 degrees, so Av = 60. Several solutions axe 
presented in detail to illustrate the nature of the results found using the approach developed in this 
work. Secondly, a contour plot of the orbit performance vs v, and Au is presented to enable some 
general conclusions about which parts of the orbit we can provide the best science return, and how 
long we can realistically maintain useful tetrahedron geometries. 

ORBIT DESIGN 
The orbit design for phase I of the MMS mission can be broken down into two parts. One part 
is designing the optimal reference obit. The second p a t  is designing the optimal relative motion 
about the reference. In this work we only focus on designing formations that provide op.timal rel- 
ative motion between the four spacecraft. Optimal reference orbit design is a topic of current and 
future research. To maximize science return it is desirable to maintain a regular tetrahedron over 
the entire orbit. However, as previously mentioned, this is not possible using Keplerian orbits and 
using active control to maintain a regular tetrahedron is prohibitively costly. In this work we design 
orbits that provide the maximum performance possible with Keplerian orbit dynamics. Our goal is 
to characterize the performance that we can provide by carefully optimizing the relative motion of 
the four spacecraft. In general the performance will vary in time and it is important t o  determine 
for which regions of the reference orbit we can provide acceptable science return. 
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In the following few subsections we present the approach used to determine optimal relative 
motion solutions for phase I of the MMS mission. We begin by discussing basic geometric properties 
of tetrahedrons, including the surface area and volume. Next we develop an orbit performance 
metric that is used in the optimization process. The performance metric is directly related to 
the science return and is an extension of work performed by Glassmeier.2 We also describe the 
independent variables chosen for this work and discuss the bound constraints we apply to ensure 
that the dimensions of the orbit solutions are in the vicinity of the desired reference orbit. We 
conclude the section with a discussion of an algorithm to provide initial guesses to the optimization 
process, and the type of numerical optimizer used in this work. 

Tetrahedron Geometry 

To provide the maximum science return, the spacecraft should form a regular tetrahedron for the 
entire orbit. Although this is not physically possible without considerable fuel expenditure, it is 
useful to discuss some properties of regular tetrahedrons because it is possible to provide near- 
regular tetrahedron formations for large portions of an orbit by appropriately designing Keplerian 
orbits. One possible parameterization for a regular tetrahedron is given by 
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where L is the length of the sides of the tetrahedron. The tetrahedron volume is given by 
1 

V = -]Id1 (d2 x 6 
The tetrahedron surface area is given by 
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The expressions for the volume and area of a tetrahedron will be particularly useful in defining a 
performance metric in the next section. 

Performance Metrics 

Developing a useful performance metric for a mission such as MMS is non-trivial. However, signifi- 
cant work can be found in the literature and Paschmann’ provides a good review. First we require 
a measure that allows us to ascertain the science return provided by a particular relative geometry 
at a given instant. Then, given an instantaneous performance metric we need a way to determine 
the performance of a particular orbit design over a specific region of interest in the orbit. 

There are many different possible formulations for an instantaneous tetrahedron quality metric, 
and we have chosen one based on work by Glassmeier.2 Glassmeier’s metric is written as 



where Va is the actual volume of a given tetrahedron, Sa is the actual surface area of a given 
tetrahedron, V* is the volume of a regular tetrahedron with sides equal to the average side length of 
the actual tetrahedron, and S* is the area of a regular tetrahedron with sides equal t o  the average 
side length of the actual tetrahedron. It i s  important to note that the following two relations are 
always true: 

v, 5 v* (8) 
and 

sa 5 s (9) 
Hence, the maximum d u e  of QGM is three and this occurs when the formation is in a regular 
tetrahedron configuration. The d u e  of QGM is one when the formation is collinear, or collocated. 
Glassmeier’s quality metric provides a way of determining the regularity of a tetrahedron. However, 
it is important to note that it does not give any information about the size of the tetrahedron. All 
regular tetrahedrons, regardless of the side length L, have the property QGM = 3. This is a concern 
because the size of the tetrahedron formation is important for MMS. 

We propose a modification to Glassmeier’s metric to allow it to contain information on not only 
the tetrahedron shape, but also its size. There are many ways in which we can modify &c?.f to 
include information on the tetrahedrons size. Before we mocfify the metric QGM, we define a simple 
function S(L*) defined a s  follows: 

0 L* < e, 
(L* - Q ~ ( L *  +el - 2e2)2/(e2 - e1)4 et < L* < e2 

(L* -e,>“(,* - 2 3  + e 4)”l(e4 - e3) 4 e 3 ~ ~ < e 4  i 0 L* > e4 
S(L*)= 1 e2 L* < e, (10) 

where L* is the average side length, and el = 2, e2 = 4, e3 = 18, and e, = 20. A graph of S(L*) is 
shown in Figure 1 and provides an intuitive description of the function. Recall that we are interested 
in providing tetrahedrons with dimensions on the order of 10 km. For this reason, we have designed 
S(L*) to be zero when the average side length is not near 10 km. The limits chosen here are that 
S(L*) is zero for tetrahedrons with average side lengths of less than 2 km, or greater than 20 km. 
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Figure 1: Plot of S(L*) 

By posing a composite quality metric Qc defined as 

Qc = QGM * S(L*) 



we have a metric that contains information on both the size and shape of the tetrahedron. When 
the value of Qc is three, we know that the formation is in a regular tetrahedron configuration, and 
that the side length is somewhere between 4 and 18 km. 

Given an instantaneous measure of performance, we need to formulate a general expression to  
provide a measure of performance over a region of interest. One possible general expression for a 
performance metric of this type is 

where c1 is a scale factor, and v is the true anomaly of the reference orbit. The metric in Eq. (12) 
is simply the average of the instantaneous performance over a region of interest. The minus sign is 
included because we assume that the optimizer will attempt to minimize the function. While this is 
an intuitive metric, the numerical optimization approach used for this work performed poorly due 
to numerical reasons. Hence, we formulate a second metric written as 

"1 
J = (3 - QGMS(L*)) dv 

J 

This metric is simply the area between the ideal performance and actual performance curves, be- 
cause according to Eq. (11) the ideal instantaneous performance is always three. When the integral 
in &. (13) is zero, then the performance is ideal over the entire region of interest. 

The performance metric defined in Eq. (13) is used to generate all of the solutions presented in 
this paper. In the next few sections we discuss some remaining issues that must be addressed in 
order to  completely pose the optimization problem. The first is the choice of independent variables. 
The second is the development of a good initial guess. 

Independent Variables 

The choice of independent variables is important in the success of an optimization process and can 
affect the final solution and the time to reach convergence if using an iterative method. In this 
section we discuss the parameterization chosen for this work. 

There are many possibilities for choosing independent variables for the orbit optimization inves 
tigated here. Recall that there are four MMS spacecraft. There are six state variables associated 
with the orbit state of each spacecraft. In this work we assume Keplerian motion, so the orbit 
dynamics are not explicit functions of time. Hence, there is a maximum of 24 independent variables 
for describing the motion. However, we require that the periods of all the orbits must be equal. 
This is equivalent to the following three constraints 

a1 = a2 

a2 = a3 

a3 = a4 

where a1 is the semimajor axis of orbit one and so on. If we choose the independent variables 
carefully these constraints can be satisfied implicitly. Hence we choose to work with the Keplerian 



orbital elements. The vector of independent variables chosen for this work is 

where a is the semimajor axis of all orbits, e is the eccentricity, i is the inclination, w is the argu- 
ment of periapsis, R is the right ascension of the ascending node, Y is the true anomaly, and the 
subscripts represent the spacecrdt number. 

Recall that for phase one, the desired orbit dimensions are 1.2 x 12 Re. We must impose ad- 
ditional constraints to ensure that the orbit solutions have dimensions similar to 1.2 x 12 Re. In 
this work we have not tried to meet these constraints exactly. Rather, we wish to characterize the 
performance possible using orbits with dimensions near 1.2 x 12 Re. There are several motivat- 
ing factors for this work. First, the solutions are computationally demanding and relaxing some 
constraints is helpful to find solutions efficiently. Secondly, the allowable tolerances on the orbit 
dimensions have not been specified by the MMS Project. Reasonable constraints to bound the orbit 
dimensions are 

1.15 Re < ~p < 1.31 Re (15) 
11.82 Re < T, < 12.36 R, (16) 

where R, is the radius of the earth, T,  is the radius at apogee, and T~ is the radius at perigee. The 
upper bound constraints on the independent variable vector, X, are given by 

41905 km < a < 43095 km 
.80 < ei < -83 

85.293" < wa < 95.293" 
--03 < R a <  00 

-m < V i <  00 

9.5" < i, < 10.5" 

where the subscript i denotes the spacecraft number. 

The last remaining issue to  resolve before solving the optimization problem is to develop an 
algorithm that provides good initial guesses. This is addressed in the next section. 

Initial Guess 

Providing a good initial guess is essential to finding optimal solutions and especially when using 
a method such as SQP that converges to locally optimal solutions. Here we develop an algorithm 
that provides a good initial guess given a few user-defined parameters. The first parameter is the 
side length, L, of the desired tetrahedron. The second parameter is the true anomaly at which we 
desire the orbit to be in a regular tetrahedron, v,. 

We begin with the orbital elements for the reference orbit and a given value of v,. 

oe, = [42095.0 .818 10" 90" 0 v,]; (17) 



where the format for oe, is given by [u e i w R VI. Knowing oe, we can find the Cartesian state 
defined by r, and v, using the well known transformation described in Va l l ad~ .~  The energy, E, of 
the reference orbit, as well as the remaining three orbits is given by 

E = - -  P 
2a 

For a given value of L, assumed to  be 10 km for this work, we can use Eqs. (1-3) to determine 
a regular tetrahedron about the reference orbit at v, using the relations below. For simplicity we 
denote orbit 1 as the reference orbit. 

A s  an initial guess we assume that the velocities of all four spacecraft are in the same direction a s  
the velocity vector for orbit 1. Hence the velocity direction is 

We now only need to determine the magnitude of the velocity for the last three spacecraft. This is 
done using the vis-viva, equation. 

Now that the velocity magnitudes are known, we can write the velocity vectors for all four spacecraft 
as 

VI = vr 
v2 = v2$ 
v3 = v3$ 

v4 = v4$ 

With Eqs. (19 - 22) and Eqs. (27 - 30) we know the states of all four orbits and simply need to 
convert the Cartesian states to orbital elements to construct the independent variable vector shown 
in Eq. (14). 

Above we have described an algorithm to generate a regular tetrahedron of side length L at a 
desired true anomaly v, of the reference orbit. In the next section we briefly discuss some details 
of the numerical optimization routine we use. 

Optimizer 

There are numerous choices for numerical optimization routines that are applicable for this work. 
Because we have bound constraints on the independent variables, we must choose a method that 



can handle linear constraints. For this work we have chosen to use SQP. The specific package we 
have chosen to use is MATLAB's jhincon function. For details on the fmincon routine, we refer 
the reader to the to the documentation for MATLAB's Optimization Too~~ox.* There are no known 
analytic formulations for the gradient of the performance metric described in Eq. (13) with respect 
to the independent variables described in Eq. (14). Hence, for this work all of the derivatives are 
calculated using finite differencing. 

To pose an optimization problem we must formulate a performance metric and choose a set of 
independent variables, often called the parameterization. If using an iterative approach, we must 
also provide an initial guess. In this section we developed a performance metric that relates the 
orbital dynamics of the four MMS spacecraft to the science return for the mission. We also developed 
an algorithm for generating initial guesses for the orbit configuration given the tetrahedron side 
length and the desired point in the reference orbit where we want a regular tetrahedron to occur. 
We posed a set of bound constraints to ensure that the optimal solutions .have the appropriate 
dimensions for phase I of the MMS mission. We briefly discussed the numerical optimization 
software package we have chosen. In the next section we present the results of the optimization 
process. We discuss several solutions in detail, and then present some general conclusions. 

RESULTS 
Several hundred optimal solutions have been determined, and in this section we present two solutions 
in detail and discuss some general trends seen in all of the solutions. The solutions presented in 
this section are differentiated by the specific limits used in the optimization process. Recall that 
the performance metric seen in Eq. (13) is a function of the region of interest defined by vi, and vj. 
The motivation for casting the performance metric with these limits of integration is to allow us to 
determine which parts of the orbit we can provide the best performance, and allow us to determine 
which portions of the orbit will inevitably result in poor science return. 

Detailed Results 
In the following section we discuss a few solutions in detail. The difference between the solutions 
are the limits of integration, vi, and vj, used in Eq. (13). The intention in presenting a few solutions 
in detail is to provide an intuitive understanding of the relative motion characteristics of different 
optimal soh  tions. 

In Figure 2 we see plots that describe the characteristics of the optimal solution for vi = 160 
and vf = 200. See table 1 in the Appendix for the orbit state information. The vertical lines in the 
plots bound the region of interest for the particular solution. The top plot shows the instantaneous 
performance of the tetrahedron. Recall that the maximum possible performance value at any given 
instant is three. The two curves in the top plot show the evolution of Qc and QGM over one orbit. 
Recall that Qc penalizes a solution when the average side length, L*, is less than 4 km, and greater 
than 18 km. Qc is shown by the solid line. The Glassmeier performance metric, QGM, is shown by 
the dotted line. Note both curves were generated using the same orbital states. The only difference 
in the two curves is the performance metric. The dotted curve gives information about the shape 
of the formation only. The solid curve gives information about both the size and the shape. The 
middle plot in Figure 2 shows the lengths of all six sides of the tetrahedron over one complete orbit. 
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Figure 2: Point Solution One 

Examining the top plot in Figure 2, we see that during the region of interest the performance 
is excellent. The average over the region of interest is 2.94.- The performance between ui = 160 
and vf = 200 comes at the expense of poor performance outside of the region of interest. Rom 
this plot we learn that it is possible to provide excellent performance at orbit apogee for at least 
+/- 20". Notice in the second plot in Figure 2 that the side lengths are all near 10 km during the 
region of interest. Outside the region of interest the side lengths vary between 10 and 60 km. These 
variations in the side lengths are acceptable according to current design requirements for maximum 
and minimum inter-spacecraft separations. 

Another optimal solution is shown in Figure 3. The region of interest for this solution is be- 
tween vi = 45 and vf = 135. The states for this solution are found in table 2 in the Appendix. 
This solution was presented to illustrate the performance of tetrahedrons optimized in regions not 
centered on apogee. We see that during the region of interest the performance is excellent and the 
average is 2.95. As in the previous solution, the performance 'between v, = 160 and uf = 200 comes 
at the expense of poor performance outside of the region of interest. We see that it is possible to 
provide excellent performance for up to at least a 90" band in true anomaly, for off-apogee regions 
of interest. The second plot in Figure 3 shows that the side lengths are all near 10 km during the 
region of interest. Notice that at about v = 145" the lengths of one of the sides of the tetrahedron 
is only about 2 km. This may cause some difficulties and may require some slight redesign once 
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While the two solutions discussed in detail here both demonstrate that we can provide excellent 
performance over significant portions of the orbit, it is not in general possible to provide near 
ideal performance for the entire orbit. In fact there are regions of the orbit where it is more 
difficult to maintain regular tetrahedrons. Also, in different portions of the orbit it is possible to 
maintain regular tetrahedrons for longer periods of time compared to other orbit regions. In the 
next section we discuss some general trends and determine orbital regions where we can provide 
the best performance. 

General Results and Trends 

We demonstrated in the previous section that it is possible to provide near ideal performance for 
significant portions of the orbit. In this section we draw some general conclusions about where in 
the orbit the best performance can be provided, and for how long. 

To aid in the understanding of the results, we employ a simple change of variables described 
below 

v, = (Vf + 4) /2  
nv = vf - vi 

(31) 

(32) 



Figure 4: Definition of v, and Av 

A graphical description of the relationships between v, and Au and vi and vf is shown in Figure 4. 
We have systematically chosen sets of vc and Av and found optimal solutions to the performance 
metric shown in Eq. (13) for each pair. We have picked 324 combinations of v, and AU defined as 
follows. v, is varied from 90" to 270" in increments of 10". For each value of vc we vary Au from 
10" to  180" in increments of 10". 

A contour plot of the optimal average performance vs uc and Av is shown in Figure 5. The 
average performance is defined as the average of the instantaneous performance metric, of the opti- 
mized tetrahedron, over the region defined by u, and Au. Upon inspection of Figure 5 we see that 
for regions of Au < 40" we can provide average performance levels of 2.95 or.better. Recall that 
the ideal performance according to Eq. (13) is 3.0. Hence we can provide near ideal performance 
for Av 5 40" regardless of the value of vc. 

In general, the ability to maintain near ideal performance for long durations degrades as v, 
moves towards apogee. As an example, for v, = 180" and Av = 100" we can provide an average 
performance of about 2.75. However, for v, = 90" and Av = 100" we can provide an average 
performance of about 2.9. An even more pronounced example occurs at v, = 90 and Av = 140". 
In this case we can provide an average performance of 2.8 for a large portion of the orbit. Another 
general trend in the performance is that it tends to degrade as Av increases. For Av = 180" we can 
only provide average performance levels of around 2.65. The regions of poorest performance occur 
at a value of 2.5. These regions occur near Au = 160 for values of vc of about 160 and 200. 

From the contour plot seen in Figure 5 we see that we can provide excellent performance over 
large portions of the orbit. However, there are regions of the orbit where it is more difficult to 
maintain near ideal performance for long durations. In the next section we provide a summary of 
the approach used in this paper, and summarize our results. 

CONCLUSIONS 
In this work we solved for initial conditions that provide optimal formation configurations for phase 
I of the MMS mission. Ideally, the formation should maintain a regular tetrahedron over the entire 
orbit. However, this is not possible under Keplerian motion alone. Hence, the goal of this work was 
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Figure 5: Contour Plot of Formation Performance vs. v, and Av 

to  find the best possible tetrahedron configurations, and identlfy which portions of the orbit we can 
provide near ideal performance for the longest duration. 

We began by discussing some basic properties of tetrahedrons such as the volume and surface 
area. These basic properties were used to develop a performance metric that reflects both the qual- 
ity of the tetrahedron shape, as well as the size of the tetrahedron. The performance metric used 
in this work was a modification of work previously performed by Glassmeier.2 We also developed 
an initial guess algorithm that allows a user to construct a formation of spacecraft in a regular 
tetrahedron configuration about a defined location in the reference orbit. 

Several hundred optimal formations were found by considering different regions of interest in 
the orbit. We presented two solutions in detail to demonstrate that near ideal performance can 
be provided for large regions of interest. At apogee, we can provide average performance levels of 
2.9, where 3.0 is the maximum, for up to 40 degrees in true anomaly. At off apogee positions it 
is easier to provide near ideal performance. For a region bounded by a lower true anomaly of 45" 
and an upper true anomaly of 135", it is possible to provide an average performance of 2.95. Hence 
in general it is more difficult to provide high average performance for large spans of true anomaly 
near apogee. There is also a downward trend as the span of true anomaly increases. 
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APPENDIX 

Table 1: States Associated with Figure 2 
State Variable Orbit One Orbit Two Orbit Three Orbit Four 

a (km) 42556.691 42256.691 42256.6391 42256.691 
e 0.80229 0.80221 0.80214 0.80220 

i (deg.) 10.0481 10.0493 10.0486 10.0426 
w (deg-) 90.2462 90.2623 90.2540 90.2591 

Y (den.) 180.1627 180.1585 180.1634 180.1608 
fl (de&) -0.06204 -0.06873 -0.07096 -0.07084 

Table 2: States Associated with Figure 3 
State Variable Orbit One Orbit Two Orbit Three Orbit Four 

a (W 42102.032 km 42102.032 km 42102.032 km 42102.032 km 
e 0.81776 0.81788 0.8 1766 0.8177 

i (deg.) 9.9805 9.9841 9.9802 10.0023 
w (deg.1 90.0877 90.1032 90.1447 89.9559 
0 (deg.) 0.0332 0.0131 0.0041 0.1843 
Y (den.) 90.0123 90.0236 89.9572 89.9865 


