Radiation-Induced transient effects in near Infrared focal plane arrays

Agenda

- Background/Problem
- Testing Goals and Strategy
- Test Data and Discussion
- Conclusions
Ionizing Particle Impacts to FPA

+ Secondaries and delta electrons are time coincident with primary and have limited range
- But, not all deltas are spatially correlated with primary

Even Small Transients can be Problematic for NIRCAM

- Read noise requirement is very low
- Essentially every primary particle and every secondary particle causes a transient that exceeds noise level
- Cosmic ray rejection algorithms can tolerate limited number of hits within integration time
- Problem is exacerbated by:
 - Crosstalk (charge spreading to neighboring pixels)
 - Multi-pixel hits (e.g., hit detector and ROIC in different pixels)
 - Secondary particles that are not spatially correlated to primary
TESTING GOALS, STRATEGY AND APPROACH

Transient Test Objectives

- Characterize proton single events as function of energy and angle of incidence
 - Pulse height distributions provide information for model calibration
- Measure charge spread (crosstalk) to adjacent pixels
 - Key parameter for determining number of disturbed pixels
- Assess transient recovery time
 - Look for long transients (collection of ionization-induced charge or persistence of radiation-induced dark current)
 - Characterize reset after hit
Devices Tested

- Test ROIC without detectors and test SCA (detectors plus ROIC) to separate effects
- Test 1024x1024 versions (H1RG and SB291)
 - Subset of identical circuitry on 2048x2048 versions

<table>
<thead>
<tr>
<th>Device</th>
<th>Test Date</th>
<th>Energies</th>
<th>Angles</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1RG ROIC</td>
<td>5-16-02</td>
<td>30, 63</td>
<td>0</td>
<td>Single event and dose</td>
</tr>
<tr>
<td>H1RG SCA</td>
<td>10-16-02</td>
<td>30, 63</td>
<td>0, 45, 67</td>
<td>Single event, dose and secondaries from Al</td>
</tr>
<tr>
<td>SB291 ROIC</td>
<td>2-11-03</td>
<td>30, 63</td>
<td>0, 45, 67</td>
<td>Single event and dose</td>
</tr>
<tr>
<td>SB291 SCA</td>
<td>3-31-03</td>
<td>30, 63</td>
<td>0, 45, 67</td>
<td>Single event, dose and secondaries from Al</td>
</tr>
</tbody>
</table>

Transient Test Strategy

- Use 30 and 63 MeV protons
- Use 0, 45 and 67 degree incidence
- Use low flux for single events
 - 1e3 to 1e5 p/cm²-s range
- Use quill-mode readout of 20x100 subarray
- Multiple samples at 10 Hz (100 ms) using variable integration time Fowler-mode integrations (reset, read, read, ... read, reset)

<table>
<thead>
<tr>
<th>Mode</th>
<th>#Reads</th>
<th>Time Between Reset (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>F2</td>
<td>4</td>
<td>400</td>
</tr>
<tr>
<td>F5</td>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td>F10</td>
<td>20</td>
<td>2000</td>
</tr>
</tbody>
</table>

- Designed to capture transient recovery
20' x 100 Subarray Used for Single Event Testing

*Effectively 3408 pixel includes 2 reference columns on each side

TEST DATA AND DISCUSSION

June 21-25, 2004
Presentation at SPIE Astronomical Telescopes Conference in Glasgow, Scotland by Robert Reed
Typical Proton-Induced Pulses

H1RG SCA 30 MeV

<table>
<thead>
<tr>
<th>0 Degrees</th>
<th>67 Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>5321</td>
<td>770</td>
</tr>
<tr>
<td>5222</td>
<td>558</td>
</tr>
<tr>
<td>5123</td>
<td>555</td>
</tr>
<tr>
<td>5221</td>
<td>558</td>
</tr>
<tr>
<td>5122</td>
<td>555</td>
</tr>
<tr>
<td>5222</td>
<td>558</td>
</tr>
<tr>
<td>5123</td>
<td>555</td>
</tr>
<tr>
<td>5221</td>
<td>558</td>
</tr>
<tr>
<td>5122</td>
<td>555</td>
</tr>
<tr>
<td>5222</td>
<td>558</td>
</tr>
<tr>
<td>5123</td>
<td>555</td>
</tr>
<tr>
<td>5221</td>
<td>558</td>
</tr>
<tr>
<td>5122</td>
<td>555</td>
</tr>
</tbody>
</table>

SB291 SCA 30 MeV

<table>
<thead>
<tr>
<th>0 Degrees</th>
<th>67 Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow, Scotland by Robert Reed
Hit Size Expected to Scale With Proton Energy and Angle of Incidence

- \(\text{dE/dX} \) (Linear Energy Transfer (LET)) is function of energy and material - lower at 63 MeV than 30 MeV
 - HgCdTe: 8.43 keV/\mu m at 30 MeV; 4.91 keV/\mu m at 63 MeV (\times 0.58)
 - InSb: 7.08 keV/\mu m at 30 MeV; 4.09 keV/\mu m at 63 MeV (\times 0.58)
 - Si: 3.42 keV/\mu m at 30 MeV; 1.92 keV/\mu m at 63 MeV (\times 0.58)
- Charge generated ~ LET * Path
- Path through device scales as cos(angle)
 - \(\times 1.41 \) at 45 degrees
 - \(\times 2.56 \) at 67 degrees

PULSE HEIGHT DISTRIBUTIONS

- Difference between first read after reset and final read
- Data histogramed into 100 e bins
- Analysis for two types of distributions:
 - Distribution of pixel charges
 - Some charge from hit pixels counted in neighboring pixels
 - Distribution of total hit charges
 - Hits identified and all charge from neighboring pixels added
SCA Pulse Height Distribution

Distribution of pixel charges

SCA Comparison at Various Angles

30 MeV

- SCA pulses are larger than ROIC pulses
- Pulses scale with angle of incidence
- H1RG pulses are larger than SB291 pulses

June 21-25, 2004
Presentation at SPIE Astronomical Telescopes Conference in Glasgow, Scotland by Robert Reed
TOTAL CHARGE DISTRIBUTIONS

Total Charge: Charge to hit pixel and affected neighbors summed
Peak Charge: Charge to hit pixel only

June 21-25, 2004
Presentation at SPIE Astronomical Telescopes Conference in Glasgow, Scotland by Robert Reed
Total Charge Peaks Scale With Angle and Energy as Expected

H1RG SCA pulses are somewhat larger than SB291SCA pulses

Measured Proton Crosstalk in H1RG SCA

- Hits randomly distributed across pixel but all at same angle
- Hits are stacked by registration to hit pixel, not to hit centroid
- In some cases, charge is still above noise even at 2 pixels out from hit pixel
Measured Proton Crosstalk in SB291 SCA

- Hits randomly distributed across pixel but all at same angle
- Hits are stacked by registration to hit pixel, not to hit centroid
- In some cases, charge is still above noise even at 2 pixels out from hit pixel

Observations

- Pulses generally scale with energy and with angle as expected
- Unipolar pulses in SB291 (same polarity as detector)
- Bipolar polarity pulses in H1RG ROIC
- Pulses are smaller in ROIC than SCA for both H1RG and SB291
- Pulses with same polarity as detector have comparable size for H1RG ROIC and SB291 ROIC
- Pulses are larger in H1RG SCA than SB291 SCA
- Crosstalk is larger in SB291 ROIC than H1RG
- Crosstalk is larger in H1RG SCA than SB291
- Hit pixel recovery <100 ms or upon reset
General Conclusions

- Whatever technology chosen, JWST will have to live with cosmic ray hits
- Overall transient responses are similar at SCA level
 - ROIC hits are larger for SB291 than H1RG
 - H1RG SCA hits are larger (apparently due to detector)
 - H1RG proton crosstalk is worse (probably related to smaller pitch)
- Note that smaller pixels would have lower hit probability in space environment but more crosstalk