Vortex Core Size in the Rotor Near-Wake

Larry A. Young

June 2003
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320
Vortex Core Size in the Rotor Near-Wake

Larry A. Young
Ames Research Center, Moffett Field, California

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

June 2003
Vortex Core Size in the Rotor Near-Wake

Larry A. Young
NASA Ames Research Center
Moffett Field, CA

Abstract

Using a kinetic energy conservation approach, a number of simple analytic expressions are derived for estimating the core size of tip vortices in the near-wake of rotors in hover and axial-flow flight. The influence of thrust, induced power losses, advance ratio, and vortex structure on rotor vortex core size is assessed. Experimental data from the literature are compared to the analytical results derived in this paper. In general, three conclusions can be drawn from the work in this paper. First, the greater the rotor thrust, the larger the vortex core size in the rotor near-wake. Second, the more efficient a rotor is with respect to induced power losses, the smaller the resulting vortex core size. Third, and lastly, vortex core size initially decreases for low axial-flow advance ratios, but for large advance ratios core size asymptotically increases to a nominal upper limit. Insights gained from this work should enable improved modeling of rotary-wing aerodynamics, as well as provide a framework for improved experimental investigations of rotor and advanced propeller wakes.

Nomenclature

A Rotor disk area, $A=\pi R^2$

b Fixed-wing semispan length, (m)

c Nominal blade chord length, (m)

C_{pi} Induced power coefficient, $C_{pi}=P/\rho AV_T^3$

C_p Rotor power coefficient, $C_p=P/\rho AV_T^3$
\(C_T \quad \text{Thrust coefficient, } C_T = \frac{T}{\rho A V_T^2} \)

\(E \quad \text{Vortex filament kinetic energy per unit length, (N)} \)

\(E_r \quad \text{Total kinetic energy of a vortex ring, (N-m)} \)

\(k \quad \text{Induced power constant (Nondim.)} \)

\(n \quad \text{Vortex tangential velocity profile parameter} \)

\(N \quad \text{Number of rotor blades} \)

\(P_i \quad \text{Rotor induced power, (N-m/sec)} \)

\(r_c \quad \text{Vortex core radius, (m)} \)

\(r_i \quad \text{Radii interpreted using flow visualization as vortex core size} \)

\(R \quad \text{Rotor radius, (m)} \)

\(T \quad \text{Rotor thrust, (N)} \)

\(V \quad \text{Freestream velocity, (m/sec)} \)

\(v \quad \text{Inflow velocity through the rotor disk plane, (m/sec)} \)

\(v_\theta \quad \text{Vortex tangential velocity (m/sec)} \)

\(V_T \quad \text{Tip Speed, (m/sec)} \)

\(\gamma \quad \text{Vortex circulation strength, (m}^2/\text{sec)} \)

\(\lambda \quad \text{Rotor inflow ratio, } \lambda = \frac{v}{V_T} \)

\(\mu_z \quad \text{Rotor axial-flow (or climb) advance ratio, } \mu_z = \frac{V}{V_T} \)

\(\rho \quad \text{Atmospheric density, (kg/m}^3) \)

\(\sigma \quad \text{Rotor solidity, } \sigma = \frac{N_c}{\pi R} \)
Rotor collective (Deg.)

\(\psi \) Wake age (Deg.)

Introduction

Rotor vortex core size, and overall vortical structure, have a profound influence on rotor performance, noise, blade structural loads, and rotorcraft vibration. Community and passenger acceptance, safety, and economics of rotorcraft are dependent, in part, upon satisfactory and cost-effective solutions to these design and operational considerations. In turn, this requires that the estimation of rotor vortex structure and core size embody a more rigorous analytical or computational treatment than the trial-by-error or empirical approaches often used currently for rotorcraft. This paper will attempt to partially address this problem for rotors in hover and climb.

Prandtl employed a conservation of kinetic energy approach to derive an analytical relation between trailed vortex core size and a fixed-wing's semispan length (Ref. 1). Prandtl's analysis assumed an elliptic loading for the fixed-wing and that, further, the trailed tip vortex structure was a Rankine line vortex. The result was a fixed-wing vortex core size expression of \(r_c = 0.171b \) (where \(b \) is the wing semispan length). Later authors including Betz, Kayden, and Pullin (Ref. 2) proposed alternate analytical expressions for vortex core size for fixed-wing aircraft by modeling the vortex sheet roll-up process. The work on rotary-wing aircraft for vortex core size estimation, on the other hand, is limited and predominately empirical in nature.

This paper will employ a conservation of kinetic energy approach (an analogous methodology to that applied in the Prandtl fixed-wing solution) to derive a first-order set of vortex core size analytical expressions for rotorcraft. The derived analytical expressions will be limited to tip vortex core size estimates in the rotor near-wake.

The rotor "near-wake" can be defined in number of ways. It can represent a nominal completion of the vortex sheet roll-up process. It can describe reaching a certain cut-off limit in wake contraction or
rotor slipstream acceleration. It can be defined in terms of the first blade passage. It can be defined in terms of a certain convection distance downstream of the disk plane. Or, it can be defined in terms of certain wake age, ψ_w, limit. As discussed in Refs. 3-4 -- or, alternatively, Refs. 5-6 -- rotary-wing trailed vortex filaments have time-dependent behavior in the mid- to far-wake regions of the rotor slipstream where vortex circulation and core size change with wake age or time. The kinetic energy of the rotor vortices is conserved (the theoretical underpinning of the analysis in this paper) only in the near-wake, prior to the onset of vortex filament decay, or wake evolution. Therefore, definition of the near-wake in terms of a wake age limit is important. The near-wake will be assumed in this paper to be generally within the range of $5 < \psi_w < 125$ degrees -- i.e., after completion of vortex sheet roll-up but before vortex filament decay begins.

Review and Assessment of Experimental Results from the Literature

Several authors (for example, Refs. 6 - 18 for hover, and Refs. 19 - 24 for axial-flow flight) have attempted to either directly measure rotor vortex core size via various velocimetry techniques or indirectly estimate core size through interpretation of flow visualization results. A wide variety of rotor configurations have been studied: from single-bladed, untwisted, rectangular planform rotors all the way to multi-bladed, advanced propellers with large amounts of twist, taper, and sweep. A wide spectrum of operating conditions have also been studied: small-scale rotors operating at low tip Reynolds and Mach numbers with low disk loading, to full-scale rotors at moderate to high Reynolds and Mach numbers at high disk loading. Finally, several different experimental techniques have been used to study the near-wake rotor trailed tip vortex structure: laser light sheet smoke flow visualization, wide-field shadowgraphy, hot-wire anemometry, particle image velocimetry (PIV), and laser-doppler velocimetry (LDV), among others. In many cases, in fact, the primary emphasis has been on the development and demonstration of the experimental technique being employed and less on the rotor configuration and operating condition being used as the test case. All of the above factors have made it extremely difficult to gain a
comprehensive, rigorous understanding of the rotor trailed vortical structures (including tip vortex core size) as influenced by rotor characteristics and operating conditions.

It should also be noted that interpretation of flow visualization results for estimating vortex core size can be fraught with potential errors. To discuss this issue further it is necessary to make the distinction between r_c, the vortex core size measured via velocimetry techniques, and r_i, a vortex “image” radii interpreted using various flow visualization technologies as being the vortex core size. (The measurement r_i is sometimes known as a “particle void” for some smoke flow visualization results and the “outer core” as seen in wide-field shadowgraphy results.) Generally, for very small values of wake age, as $\psi \to 0$, the vortex core size and an image radius can be considered approximately equal (to the first-order, at least), i.e. $r_c \approx r_i$. However, as $\psi \to \infty$, then generally there are substantial differences between the two measurements (by a factor of two/three or greater), i.e. $r_c \neq r_i$. Thus flow visualization techniques can be used to gain a first-order sense of the vortex core size for the rotor near-wake, but provides completely unacceptable results for the rotor mid- and far-wakes.

Without making any prejudgments as to measurement accuracy and the relative merits of the experimental techniques employed, it is hoped that examining data (Refs. 5-24) from the literature will yield insights into vortex core size trends that relying on the individual study results can not. Tables 1 and 2 summarize some key details from the individual literature studies, for the hover and axial-flow conditions, respectively. Figure 1 presents vortex core size measurements from various different sources. Because of the wide spectrum of experimental techniques employed (and their accuracy), the diverse rotor configurations tested, and the necessary inference/estimation of rotor operating conditions in some cases, the vortex core size trend noted in Fig. 1 can be considered only qualitative, but highly illuminating, in nature. (As a point of information, an alternate analysis of rotor vortex trends based upon a survey of experimental data from the literature can be found in Ref. 25. This analysis focuses on blade geometry and Reynolds number scaling effects on rotor vortex properties, principally observed trailed vortex strength relative to maximum rotor bound circulation.)
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Exp. Tech.</th>
<th>Rotor Description</th>
<th>Data Reduction/Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cook</td>
<td>Hot-Wire</td>
<td>Single-bladed rotor: NACA 0012 blade airfoil; $\sigma=0.016$; $M_{\text{tip}}=0.54$</td>
<td>Thrust & r_c given</td>
</tr>
<tr>
<td>Heineck</td>
<td>3-D PIV</td>
<td>Same rotor as McAlister: two-bladed, untwisted, rectangular planform rotor</td>
<td>Thrust, Power, & r_c (at wake age = 210 Deg.) given</td>
</tr>
<tr>
<td>Han</td>
<td>3-D LDV</td>
<td>Single-bladed, untwisted, rectangular planform rotor: NACA 2415 blade airfoil; $C_T=0.29$ & $Re_{\text{tip}}=250,000$</td>
<td>C_T & r_c given</td>
</tr>
<tr>
<td>Martin</td>
<td>3-D LDV</td>
<td>Single-bladed untwisted rotor: NACA 2415 airfoil; $\sigma=0.035$; different tip shapes studied</td>
<td>C_T & r_c given; measurements for different wake ages</td>
</tr>
<tr>
<td>McAlister (2001)</td>
<td>LDV</td>
<td>Two-bladed untwisted, rectangular planform rotor: rotor: NACA 0012 airfoil outer 50% span & linear transition to NACA 0020 for inboard 50%</td>
<td>C_T & r_c given</td>
</tr>
<tr>
<td>Muller</td>
<td>"Flow Visualization Gun" (Burning Tungsten projectile pellets)</td>
<td>Two-bladed rotor; 33 Deg. twist; $\theta=10$ Deg.; "rotor in a box," i.e., ceiling/floor & walls less than $2R$ from rotor blade tips; $M_{\text{tip}}=0.14$</td>
<td>C_T & γ estimated by knowing max vortex tangential velocity, γ, core size, & assuming Scully vortex</td>
</tr>
<tr>
<td>Pouradier</td>
<td>2-D LDV</td>
<td>Three-bladed, rectangular planform rotor; -12.1 Deg. linear twist; Aerospatiale SA 13106, 13109, & 13112 (12% thick)</td>
<td>$C_T r$/σ and C_p/σ given; core size estimated from reported vortex tangential velocity profiles</td>
</tr>
<tr>
<td>Seelhorst</td>
<td>3-D LDV</td>
<td>Four-bladed untwisted rotor; $\sigma=0.135$; NACA 0015 blade airfoil; $\theta=15$ Deg.; wake induced velocity = 7m/sec.</td>
<td>C_T "range" estimated based on induced/convection velocity measurement of vortex & using $k=1$ to $k=1.2$</td>
</tr>
<tr>
<td>Swanson</td>
<td>Wide-Field Shadowgraphy</td>
<td>Three-bladed 7/38-scale "JVX" tiltrotor proprotor; -34 Deg. twist; $\sigma=0.1144$; $M_{\text{tip}}=0.69$; XN-09, -12, -18, & -28 airfoils</td>
<td>Range of C_T, C_p, and r_c (“outer core” image) values; k estimated from thrust/power polar</td>
</tr>
<tr>
<td>Thompson</td>
<td>Laser Sheet Smoke flow visualization and 3-D LDV</td>
<td>Single-bladed, untwisted, rectangular planform rotor: NACA 0012 blade airfoil; $M_{\text{tip}}=0.094$ & $Re_{\text{tip}}=269,000$</td>
<td>C_T & r_c given</td>
</tr>
<tr>
<td>University of Maryland</td>
<td>Shadowgraphy</td>
<td>Four-bladed rectangular planform rotor; -13 Deg. twist: RC(3)10 & RC(4)10 blade airfoils</td>
<td>C_T, C_p, & r_c given</td>
</tr>
</tbody>
</table>
It should be noted that most of the Refs. 19-24 axial-flow data has been derived from advanced propeller studies for high-speed subsonic flight. In many cases a vortex core size estimate had to be gleaned from published vortex velocity time histories rather than being directly noted in the study itself. This is noted in Table 2. Further, in some cases, key rotor operating conditions had to be inferred from available information in the individual study reports. This is noted in both Tables 1 and 2.

Table 2 – Near-Wake Axial-Flow Vortex Core Size Measurements

<table>
<thead>
<tr>
<th>Ref.</th>
<th>(\mu_*)</th>
<th>Exp. Tech.</th>
<th>Rotor Description</th>
<th>Data Reduction/Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deppe</td>
<td>0.05</td>
<td>Ultrasonic anemometer</td>
<td>Two-bladed, tapered wind turbine operating as propeller: blade lift mismatch with two different resultant core sizes cited</td>
<td>Power, (y_*) & (r_c) given for each rotor blade tip vortex; Thrust & (C_t) inferred.</td>
</tr>
<tr>
<td>Hanson</td>
<td>0.28</td>
<td>Hot-Wire</td>
<td>SR-3 (Two-bladed) Adv. Propeller; helical tip Mach # = 1.17</td>
<td>Wake velocity measurements reported; regression analysis using Scully profile performed & (r_c), (y_*), (\sigma) estimated using tangential velocities</td>
</tr>
<tr>
<td>Querin</td>
<td>0.04 & 0.08</td>
<td>Smoke flow visualization</td>
<td>Four-bladed, untwisted, untapered rotor: NACA 0012 blade airfoils; (\sigma = 0.154; \theta = 10 \text{ Deg.}; Re_{tip} = 129,000 & 172,000)</td>
<td>"Particle void" core sizes given; motor power max rating cited; linear power relationship assumed for specified operating conditions; Thrust inferred from power estimate</td>
</tr>
<tr>
<td>Lavrich</td>
<td>0.29</td>
<td>Hot-Wire</td>
<td>Three-bladed (single) CR-9 Adv. Propeller at simulated take-off condition; (\theta = 35 \text{ Deg.})</td>
<td>Power, Thrust, & (r_c) given; wake velocities provided</td>
</tr>
<tr>
<td>McAlister (2002)</td>
<td>0.005</td>
<td>PIV</td>
<td>Two-bladed 1/7-scale OLS rotor, axial-flow configuration in 7x10 settling chamber</td>
<td>Wake age survey measuring wake vorticity and velocities with estimates for (r_c), (y_*), and particle "void" size for one (C_t) and collective condition</td>
</tr>
<tr>
<td>Tillman</td>
<td>0.91</td>
<td>Hot-Wire</td>
<td>(Single) five-bladed CRXP-1 Adv. Propeller</td>
<td>Wake velocity measurements reported; regression analysis using Scully profile performed & (r_c), (y_*), (\sigma) estimated using tangential velocities</td>
</tr>
</tbody>
</table>
The data shown in Fig. 1 collapses surprisingly well onto a single curve for the $ln(r_c/R)$ versus $1/\sqrt{C_t}$ trend, with the exception perhaps of one or two outlying points. Thompson (Ref. 9) cites three different data points: two points using smoke visualization of the vortex particle void and a LDV measurement of core size. The Ref. 9 LDV core size measurement is the principal outlying point shown in Fig. 1. Smearing of the vortex core velocity profiles - because of the ensemble averaging techniques used in the Ref. 9 LDV work - could be the reason for the overly large estimate of the vortex core size. This apparent functional dependence of $ln(r_c/R)$ with respect to $1/\sqrt{C_t}$ is not coincidental, as will be discussed in the analytical treatment later in the paper.

Fig. 1 – Rotor Hover Near-Wake Vortex Core Size Trend (Experimental Data from the Literature)
Vortex Core Size as Influenced by Rotor Thrust and Induced Power

In this study, the overall rotor induced power is assumed equal to the trailed vortex filament kinetic energy, as seen in Eq. 1. This equation is the kinetic energy conservation law applied to a rotor and its trailed tip vortices.

\[P_i = NEV_r \]

(1)

\(P_i \) is the rotor induced power. The rotor induced power is equal to the product of the number of blades (and the number of trailed tip vortices), \(N \), the kinetic energy per unit length of each trailed rotor tip vortex, \(E \), and the rotor tip speed, \(V_T \). The rotor induced power is also given by momentum theory. The key to the application of Eq. 1 is the definition of a suitable vortex model for the wake -- and the associated kinetic energy estimate -- of a rotor in hover or axial-flight (climb).

Deriving a kinetic energy expression for the helical vortex filaments of a rotor is not analytically tractable. Vortex rings, on the other hand, have been used previously in the literature to model axisymmetric rotor wakes (Ref. 4) and have simple analytic expressions for induced velocity and kinetic energy. For first-order analytical estimates of near-wake vortex core size, the use of vortex rings to model the rotor wake is often an acceptable and convenient compromise.

The analysis presented in this paper does not actually require modeling the complete rotor wake with a semi-infinite and regularly spaced vortex rings. Instead, the key modeling argument of this paper is the hypothesis that the rotor tip vortices trailed \textit{per unit time} can be represented with reasonable accuracy by small segments, or arcs, of a vortex ring instead of helical curved elements (Fig. 2). This approximation has more validity for lightly loaded rotors than those with high disk loading. This is because the helical pitch angles of the rotor vortex filaments are proportional to rotor thrust.
Kinetic energy expressions for vortex rings (assuming various forms of finite-cores) can be found in the literature or readily derived. Reference 26 summarizes the derivation of a kinetic energy expression for a vortex ring having a uniform core (Eq. 2).

\[
E_T = \frac{\rho \gamma^2 R}{2} \left\{ \ln \left(\frac{8R}{r_c} \right) - \frac{7}{4} \right\}
\]

(2)

A vortex ring having a uniform core has a core with a constant rate of angular rotation. This is analogous to the two-dimensional Rankine vortex. Given Eq. 2, Eq. 3 directly follows, wherein the kinetic energy per unit length of one of N (Rankine) vortex ring segments can be found.

\[
E = \frac{\rho \gamma^2}{4\pi N} \left\{ \ln \left(\frac{8R}{r_c} \right) - \frac{7}{4} \right\}
\]

(3)
Equation 3 can now be substituted into Eq. 1 and solving for r_c/R gives.

$$r_c/R = 8e \left[\frac{7}{4} \frac{4\pi}{\rho f^2} \right]$$

(4)

From momentum theory, the rotor induced power (Refs. 27 and 28, for example) is

$$P_i = T(V + v)$$

(5a)

and where the induced inflow velocity through the rotor disk is

$$v = -\frac{V}{2} + \sqrt{\frac{V^2}{2} + \frac{C_T}{2} k^2 V_f^2}$$

(5b)

The induced power or inflow correction factor, k, is generally empirically defined. For ideal induced power, $k=1$.

From classic rotor vortex theory (Ref. 28), the trailed circulation is

$$\gamma = \frac{4\pi RV_f}{V_f} (V + v)$$

(6)

Substituting Eqs. 5a-b and 6 into Eq. 4 and simplifying gives the following non-dimensional expression for vortex core size (Eq. 7).

$$r_c/R = 8e \left[7 + \left(\frac{C_T}{\lambda^2 [\mu_2 + \lambda]} \right) \right]$$

(7a)

Or
\[
\ln\left(\frac{r_i}{R}\right) = \ln 8 - \frac{1}{4} \left\{ 7 + \frac{C_{T}}{\lambda^2 (\mu + \lambda)} \right\}
\] \hspace{2cm} (7b)

Where the mean rotor inflow, \(\lambda\), is given by \(\lambda = \omega / \Omega = v / v_r\) and the axial-flow advance-ratio, \(\mu\), is given by \(\mu = V / V_r\). Correspondingly, the induced power constant, \(k\), for hover is used to estimate the induced power coefficient and the rotor inflow.

\[C_{n_i} = k_1 \sqrt{\frac{C_T}{2}} \] \hspace{2cm} (8)

\[\lambda = k_1 \sqrt{\frac{C_T}{2}} \] \hspace{2cm} (9)

For hover (\(\mu = 0\)), substituting in the above expression for rotor wake mean inflow, \(\lambda\), the relationship between vortex core size and rotor thrust is

\[\ln\left(\frac{r_i}{R}\right) = \frac{a}{\sqrt{C_T}} + b \] \hspace{2cm} (10)

where \(a\) and \(b\) are constants. This linear vortex core size to rotor thrust relationship, Eq. 10, is consistent with the experimental trend observed in Fig. 1. Figure 3 provides a more detailed examination of the experimental data as compared to the predictions from Eq. 7 (and, later, results from Eq. 17a for a Scully-type vortex). A family of curves of different values of induced power constants is provided in Fig. 3. As can be readily seen the vortex core size is dependent upon the induced power losses, as represented by the induced power constant, \(k\), and the vortex velocity profile/structure. This will be discussed in more detail later in the paper. Also to be examined is the influence of axial-flow advance-ratio on the rotor vortex core size.
Equation 7 also predicts the effect of axial-flow flight advance ratio on core size. Increasing the advance ratio (or climb speed) reduces the vortex core size, as per the Eq. 7 predictions. This is a largely unexplored research area for rotorcraft. Very limited experimental data exists for vortex core size for rotors, or propellers, in axial-flow flight. Clearly, the asymptotic limit with respect to increasing advance ratio of Eq. 7 is physically unrealistic: the vortex core size can not become infinitesimally small as $\mu \to \infty$. Instead, perhaps, the $\mu \to \infty$ asymptotic limit should approach the Prandtl fixed-wing core size estimate (i.e., $r_c/R \to 0.171$). It would seem sensible to expect that the trend of decreasing vortex core size with advance ratio as
predicted by Eq. 7 would at some point be reversed. This will be discussed in more detail later in the paper.

The analytical methodology that led to the derivation of Eq. 7 will now be extended to different types of assumed rotor trailed tip vortex structure.

Influence of Vortex Structure on Core Size

Several models have been proposed to describe the vortical structure of rotor vortices. The objective of the discussion in this section is not to advocate or justify the viability of one model of rotor vortex structure over another. Instead, the influence of vortex structure on vortex core size will be examined. It will be found the vortex structure affects from a small to modest degree the vortex core size. In order to accomplish this demonstration it will be necessary to employ more generalized expressions for vortex kinetic energy and velocity profiles than the expressions (Rankine/uniform-core) so far used.

From Ref. 2, for a vortex ring of arbitrary tangential velocity distribution, \(v_\theta \), the kinetic energy per unit length of a vortex ring is given by Eq. 11.

\[
E = \frac{\partial \gamma^2}{4\pi} \left[\ln\left(\frac{8R}{r_c}\right) - 2 + \left(\frac{2\pi}{\gamma}\right)^2 \int_0^{r_c} v_\theta^2 r dr \right]
\] (11)

In Eq. 11, and the following discussion in this section, \(r \) is a local radial coordinate with respect to the vortex center. This local radial coordinate describes the vortex tangential velocity profile. For a uniform core vortex, where \(v_\theta = \gamma r / 2\pi r_c^2 \) for \(r < r_c \), Eq. 11 reduces to Eq. 3.

Vatistas (Ref. 6) derived a general expression that encompasses a series of tangential velocity profiles for vortex structure. Alternate kinetic energy and vortex core size expressions will now be derived.
based on the Vatistas vortex model. The new vortex core size predictions will be compared to the earlier results noted in this paper for a uniform, or Rankine, vortex model.

The tangential velocity profile of a Vatistas vortex is given by the expression:

$$v_\theta = \frac{\gamma r}{2\pi (r_c^{2n} + r^{2n})^{1/n}}$$ \hspace{1cm} (12)

where \(n\) is an arbitrary integer and \(r\) is the local radial coordinate for the vortex tangential velocity profile.

The Vatistas vortex model, Eq. 12, as discussed in Ref. 6, is a generalization of several well-known vortex velocity profiles. When \(n=1\), then the Scully vortex profile model (Ref. 28) is reproduced. Correspondingly, when \(n=2\), then the Vatistas model gives the Bagai-Leishman vortex profile model (Ref. 6). Finally as \(n \to \infty\), then the Vatistas model reduces to a Rankine vortex velocity profile.

Substituting Eq. 12 into 11 yields a kinetic energy expression for vortex profiles based on the Vatistas model.

$$E = \frac{\rho \gamma^2}{4\pi} \left[\ln \left(\frac{8R}{r_c} \right) - 2 + \int_0^R \frac{r^3}{(r_c^{2n} + r^{2n})^{3/2n}} \, dr \right]$$ \hspace{1cm} (13)

Making the integration substitutions

\[
x = r^{2n} \quad r = x^{1/2n} \quad dr = \frac{1}{2n} x^{1/2n - 1} \, dx
\] \hspace{1cm} (14a-c)

Equation 13 becomes
For $n = 1$ or 2, $2/n$ is an integer, and integral formulas from standard handbooks can be employed to complete the following analytical derivations for the vortex kinetic energy per unit length for the two well-known vortex structure models:

\[
E = \frac{\rho \gamma^2}{4\pi} \left[\ln \left(\frac{8R}{r_c} \right) - 2 + \frac{1}{2n} \int \frac{x^{3n-1}}{(r_c^2 + x)^{\frac{3n}{2}}} \, dx \right]
\]

(15)

Substituting Eqs. 16a-b into Eqs. 1, 5a-b, and 6 yields the following expressions for vortex core size for the $n=1$ and $n=2$ vortex structure models.

\[
E = \frac{\rho \gamma^2}{4\pi} \left[\ln \left(\frac{8R}{r_c} \right) - 2 + \frac{1}{2} \left\{ \ln \left(\frac{r_c^2 + r^2}{r_c^2 + r^2} \right) \right\} \right]
\]

(for $n=1$) \hspace{1cm} (16a)

\[
= \frac{\rho \gamma^2}{4\pi} \left[\ln \left(\frac{8R}{r_c} \right) - \frac{9}{4} + \frac{1}{2} \ln 2 \right]
\]

\[
E = \frac{\rho \gamma^2}{4\pi} \left[\ln \left(\frac{8R}{r_c} \right) - 2 + \frac{1}{4} \int \frac{dx}{(r_c^2 + x)} \right]
\]

(for $n=2$) \hspace{1cm} (16b)

\[
= \frac{\rho \gamma^2}{4\pi} \left[\ln \left(\frac{8R}{r_c} \right) - \frac{9}{4} \ln \left(\frac{r_c^4 + r^4}{r_c^4 + r^4} \right) \right]
\]

\[
= \frac{\rho \gamma^2}{4\pi} \left[\ln \left(\frac{8R}{r_c} \right) - 2 + \frac{1}{4} \ln 2 \right]
\]

Substituting Eqs. 16a-b into Eqs. 1, 5a-b, and 6 yields the following expressions for vortex core size for the $n=1$ and $n=2$ vortex structure models.

\[
\ln \left(\frac{r_c}{R} \right) = \ln 8 - \frac{1}{4} \left\{ 9 - 2 \ln 2 + \frac{C_r}{\lambda^2 (\mu + \lambda)} \right\}
\]

(for $n=1$) \hspace{1cm} (17a)
\[\ln\left(\frac{r}{R}\right) = \ln 8 - \frac{1}{4} \left\{ 8 - \ln 2 + \frac{C_t}{\lambda^2 (\mu + \lambda)} \right\} \quad \text{(for } n=2) \quad (17b) \]

Figure 4 is a comparison of the Refs. 6-18 data with the new predictions. Equation 7, and alternatively Eqs. 17a-b, as noted before capture the general trend of the experimental data.

The compilation of experimental data in Fig. 1 -- and the analytical work of this paper as represented by Eqs. 7 and 17a-b and Figs. 3 and 4 -- are compelling demonstrations of the influence of rotor thrust and induced power on vortex core size.

Figure 5 shows the predicted influence of vortex structure on core size using Eqs. 7 and 17a-b (assuming, in this case, \(k=1 \)). As the parameter \(n \) increases, the core size also increases. However, vortex structure is clearly not a major driver in the determination of vortex core size. Induced power losses, and overall rotor efficiency, have more impact on core size than does vortex structure. This is actually a relatively positive outcome with regards to the application of the results of this paper. An accurate analytical/computational
representation of the velocity profiles for rotor vortices is still an active area for rotorcraft research.

Fig. 5 - Influence Vortex Structure on Core Size for Hovering Rotors (n=1 - Scully model; n=2 - Bagai-Leishman; n→∞ - Rankine; Eqs. 7, 17a-b, and k=1)

Parametric Assessment

The influence of the induced power constant, k -- which empirically accounts for induced power losses due to the nonuniformity of the rotor wake, blade count, and other factors -- is shown in Fig. 6. As can be seen in Fig. 6, rotor induced power, as represented by k, has a profound influence on the vortex core size prediction. One of the difficulties of correlating vortex core size predictions with the available experimental data is that, with a few exceptions, each data point is for a unique rotor configuration, which correspondingly has a unique (and often unknown) induced power constant, k, associated
with it. Given the wide range of rotor configurations comprising the experimental data for vortex core size trends (Tables 1 and 2) it should not be unreasonable to anticipate a wide range of induced power constants for those rotors. In particular, small-scale rotors with untwisted blades and low tip Reynolds numbers will likely have fairly high induced power constant, k, values, therefore explaining some of the variability in vortex core sizes seen in the experimental results, as demonstrated in Figs. 1, 3, and 4. This issue will need to be studied in further detail in future experimental investigations.

![Graph](image)

Fig. 6 – Influence of Rotor Induced Power Losses on Rotor Near-Wake Vortex Core Size in Hover

The derived vortex core size expressions, Eqs. 7 and 17a-b, are also applicable to rotor axial flow conditions for small μ_z. Figure 7 shows the predicted trend of vortex core size with C_T and μ_z (assuming, in this case, $k=1$). Predictions from Eqs. 7 and 17a-b suggest that, for
small μ_r, that as axial-low advance ratio increases, core size decreases. Implicit, though, in the derivation of these vortex core size analytical expressions is the assumption that the rotor disk loading is low and, correspondingly, the trailed vortex filament helical pitch angles are small. Clearly, as axial-flow advance ratios become fairly large this helical pitch angle assumption will at some point become invalid.

Figure 7 - Influence of Rotor Disk Loading and Advance Ratio on Vortex Core Size (Eq. 7 and $k=1$)

Figure 8 summarizes axial-flow vortex core size measurements from the literature. For large values of $C_t/\lambda^2(\mu_r+\lambda)$ there is a significant divergence of the predicted trend as compared to the limited experimental data. It is clear from Fig. 8 that the vortex filament helical pitch angle assumption does indeed break down, and at fairly low advance ratios at that. Further, as previously noted, the high advance ratio vortex core size trend seems to asymptotically
approach r_c/R values of the magnitude estimated (Prandtl, as cited in Ref. 1) for trailed fixed-wing tip vortices.

Figure 8 data suggests an approximation (Eq. 18a-d) that seems to capture the general trend for vortex core size with respect to the complete range of axial-flow advance ratios. The core size estimates from this approximation are shown in Fig. 9.
\[\ln \left(\frac{r_c}{R} \right) = \left(a - \frac{1}{4} \frac{C_T}{\lambda (\mu + \lambda)} \right) \cos \varphi + b \sin \varphi \]

where

\[\varphi = \text{atan} \left(\frac{\mu + \lambda}{\lambda} \right) \]

And, where assuming a Rankine-type vortex structure, the constants \(a \) and \(b \) can be found from Eq. 7 and Prandtl's fixed-wing work summarized in Ref. 1.

\[a = \ln 8 - \frac{7}{4} \]

\[b = 0.171 \]

Fig. 9 – An Approximate Relationship for the Complete Axial-Flow Advance Ratio Range
The results from Eq. 18a-d are promising. It is important to stress, though, that Eq. 18a-d is not derived from first principles; it is only an approximation. Further, a more methodical set of experiments targeted to rotor/propeller measurements of vortex core size and overall vortex structure is clearly called for so as to refine the observations and analysis, in part, detailed in this paper.

Conclusions

It is generally recognized that high fidelity modeling of the rotor wake is crucial to the accurate estimation of rotor performance, acoustics, and blade structural loads. The vortical structure and size and strength of the trailed tip vortices from the rotor blades are key considerations for modeling of rotor wakes. A number of empirical and semi-empirical models have been employed to date to define rotor tip vortex core size. In many cases the vortex core size is often adjusted on a trial and error basis in even fairly sophisticated comprehensive rotor analyses models to improve overall rotor prediction correlation with experimental data.

The paper began with a survey of existing literature related to experimental measurements of near-wake (trailed vortices close to the rotor disk, i.e. at early wake ages) rotor vortices in hover and axial-flow flight. The focus of most of the investigations in the literature have been on the development/refinement and demonstration of various experimental techniques employed to image and/or directly measure the rotor vortex velocities and structure. Further, in many cases, the rotor operating conditions are not fully defined, or cited, and must therefore be inferred. Very few individual studies attempted systematic parametric investigations of the effect of rotor characteristics and operating conditions on vortex structure, strength, and core size. However, by compiling data from multiple sources, and with some reasonable inferences/assumptions, a clearer picture of rotor near-wake vortex core size trends was revealed. The chief and foremost observation from this compilation of experimental data from the literature is that vortex core size (scaled relative to the rotor radius) in the near-wake of hovering rotors is indeed a function of rotor thrust and induced power losses. Vortex core size is not, as has been previously suggested, invariant
with thrust (i.e. $r_c/R = \text{constant}$, for all C_T), nor is it directly/simply an artifact of rotor blade/tip geometry (i.e. $r_c/c = \text{constant}$, for all C_T and R). These obsolete empirical rules stem primarily from experimental investigations of rotors with low disk loading and, in some cases, large induced power losses.

Using a kinetic energy conservation approach, a number of simple analytic expressions were derived for estimating the core size of tip vortices in the near-wake of rotors in hover and axial-flow flight. The influence of thrust, induced power losses, advance ratio, and vortex structure on rotor vortex core size was assessed. The analytical predictions were correlated with the experimental data from the literature. For hovering rotors good agreement was found between the predictions and the experimental trends. For the rotor/propeller axial-flow flight data, not unexpectedly given the analytical modeling assumptions, good agreement existed only for low advance ratios; poor agreement was seen for large advance ratios. An alternate approximate expression was suggested for rotor near-wake vortex core size trends under axial-flow flight conditions. This approximate expression provided substantially improved agreement (over the purely analytic expressions) with the vortex core size data for the complete advance ratio range.

In general, three conclusions can be drawn from the work in this paper. First, the greater the rotor thrust, the larger the vortex core size in the rotor near-wake. Second, the more efficient a rotor, or propeller, is with respect to factors that affect induced power losses, the smaller the resulting vortex core size. Third, and lastly, vortex core size decreases in magnitude from hover values for small axial-flow advance ratios; but, as advance ratio increases to moderate and large values, rotor vortex core size asymptotically increases to a large trailed vortex core size.

References

Title and Subtitle
Vortex Core Size in the Rotor Near-Wake

Author(s)
Larry A. Young

Performing Organization Name(s) and Address(es)
Ames Research Center
Moffett Field, CA 94035-1000

Sponsor/monitoring agency name(s) and address(es)
National Aeronautics and Space Administration
Washington, DC 20546-0001

Distribution/availability statement
Unclassified — Unlimited
Subject Category 2
Availabilty: NASA CASI (301) 621-0390

Abstract
Using a kinetic energy conservation approach, a number of simple analytic expressions are derived for estimating the core size of tip vortices in the near-wake of rotors in hover and axial-flow flight. The influence of thrust, induced power losses, advance ratio, and vortex structure on rotor vortex core size is assessed. Experimental data from the literature is compared to the analytical results derived in this paper.