Toroidal tank development for upper-stages

- Tom DeLay ED34 MSFC
- Keith Roberts ATK Thiokol SEHO
Background

• Past interest in upper stages
 – Orbit transfer vehicle programs; toroidal tanks were under study
 • Compact LOX Feed System Study AFRL TR-86-045

• Current interest
 – SLI architecture studies
 – JPL satellites

• Potential Benefits
 – Packing efficiency
 – Weight savings

• Challenges
 – Manufacturing methods
 – Fluid acquisition
Why are we building toroidal tanks?

- **CDDF (Center Director’s Discretionary Fund)**
 - SLI 2nd and 3rd gen programmatic interest
 - Manufacturing hurdles challenged before architecture is defined
- **Joint IR&D**
 - New pressure vessel technologies developed by MSFC
 - Conformal CNG tank technology developed at THIOKOL
 - Combined effort to leverage results
MSFC IR&D Effort

• Development of tank and pressure vessel concepts for upper stages
 – Address permeation issues with pressurant gasses (Helium)
 – Develop processes adaptable to conformal tanks
 – Consider lined and unlined composite tank concepts
 • Liner development based on contained fluids
 – Produce ultra-light vessels that are suitable for satellites and scalable to upper stages
 – Develop technology that may be transferred to industry
MSFC IR&D Effort
THIOKOL Conformal Tank Technology Development
Aluminum Propane Tank Product Overview

- Cylindrical tanks provide near-optimum pressurized fuel storage
- Cylinders often do not fit well within the available vehicle space
- Conformable concepts adapt to the available vehicle space
- New technology propane fuel storage tanks
 - Interlocking aluminum extrusions reduce the number and criticality of longitudinal welds in the assembly
- Unit cost is more than cylindrical tank, but offers significant advantages
 - Extends vehicle range: up to 50%
 - Reduces weight: aluminum construction
 - Reduces system complexity:
 - Eliminates “ganged cylinders”
 - Lowers overall system cost
- Complete family of ASME certified tanks available as commercial products
Composite Tank Product Overview

- Composite tank development has been completed using Department of Energy funding
 - Both tanks are for gaseous fuel storage
 - CNG at 3,600 psig
 - Hydrogen at 5,000 psig
 - Both tanks are made using aluminum polar bosses, plastic liners, and TCR composite over wrap
 - Both tanks have been designed to fill Ford P2000 envelope (13 in. x 22 in. x 28 in.)
- Tanks are in the process of certification to industry standards
 - CNG tank has completed commercial NGV2-1998 certification testing
 - Hydrogen tank will also complete all certification testing by June 01 to modified NGV2-1998 standard
 - Next step is to address specific OEM test criteria
- Significant interest in both CNG and hydrogen tanks from after market and OEM customer base
Approach To Producing Toroids

• Continuous circular toroid
 – Tooling
 – Materials
 – Design
 – Advantages and challenges

• Conformal/segmented toroid
 – Tooling
 – Materials
 – Design
 – Advantages and challenges
Continuous Composite Toroidal Tank fabrication

• Several methods approached to consider:
 – Scalability
 • What is the representative size that may be needed
 • Are the processes adaptable
 – Manufacturability
 • Tooling methods to be developed
 • Automation vs. hand-layup
 – Operational environment
 • Operational pressures
 • Fluid management, slosh
 • Chemical compatibility of fluid and permeability of gasses
Continuous Composite Toroidal Tank fabrication

- Tooling, materials, design
 - Rotationally molded thermoplastic liner/mandrels
 - Liner pressurized while over-wrapped and cured
 - Lower temperature cured graphite epoxy over-wrap
 - Nylon end fitting machined and bonded
 - 1/3 scale version of what could fit in delta 4 fairing
Continuous Toroidal Tank fabrication
Continuous Toroid Traits

- 60 inch outside diameter, 16 inch cross section
- 5 inch diameter port 180 degrees on the opposite side of 1 inch port
- The composite toroid weighed less than 40 lbs.
- It contained 120 gallons of water, 27,793 cubic inches
- Total weight slightly more than 1,000 pounds, full
- Predicted burst pressure 375 psi
- Actual burst pressure 425 psi
- Area of highest strain, inner radius
- Packing efficiency (38% more volume than multiple spheres constrained by the same space)
Inspection and test of continuous toroid

• Vessel was inspected with thermography
 – No surface wrinkles, very minor de-bonds
• Triaxial strain gauges used to help predict burst
Inspection and test of continuous toroid
Segmented Composite Toroidal Tank fabrication

• Several methods approached to consider:
 – Scalability
 • What is the representative size that may be needed
 • Are the processes adaptable
 – Manufacturability
 • Tooling methods to be developed
 • Automation vs. hand-layup
 – Operational environment
 • Operational pressures
 • Fluid management, slosh
 • Chemical compatibility of fluid and permeability of gasses
Segmented Composite Toroidal Tank fabrication

- Tooling, materials, design
 - Machineable wax mandrel outfitted with end fittings and copper plated
 - Graphite epoxy over-wrap
 - Each segment filament wound with graphite/epoxy
 - Conformal tank geometry proprietary
 - Slightly less volume than continuous toroid; however, higher pressure applications likely
 - Process being scaled and modified
 - Sub-scale assembly useful for demonstrating concept
Segmented toroid
Segmented toroid
Segmented toroid
Segmented toroid
Segmented toroid
Potential advantages of segmented toroid

- Management of fluid acquisition
 - Slosh modes unique to toroids
- Packaging of oxidizers and fuels
 - Alternate tanks to control center of gravity
 - 10-20% more efficient than cluster of cylindrical tanks
- Replacement of damaged unit in the assembly
- Adaptable to very long toroid assemblies
- Customize to propulsion system requirements
 - Pressure fed system vs. pump fed
Where next?

• Continue development of segmented toroid
 – High cycle testing of assembly
 – Investigate application to SLI architecture or commercial applications

• Fabrication of additional circular toroids
 – Consider additional burst test or flow studies
 – Investigate slosh management
 • Positive expulsion bladder

• Consider partnerships if appropriate