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Analysis tools are needed to guide the development and evaluate the performance of 
multigrid solvers for the fluid flow equations. Classical analysis tools, such as local mode 
analysis, often fail to accurately predict performance. Two-grid analysis tools, herein 
referred to as Idealized Coarse Grid and Idealized Relaxation iterations, have been 
developed and evaluated within a pilot multigrid solver. These new tools are applicable to 
general systems of equations and/or discretizations and point to problem areas within an 
existing multigrid solver. Idealized Relaxation and Idealized Coarse Grid are applied in 
developing textbook-efficient multigrid solvers for incompressible stagnation flow problems. 

Nomenclature 
arbitrary constants 
forcing functions 
normal 
pressure 
solution vector 
residuals in u, v, and p equations 
residual 
Cartesian velocity components 
coordinates in physical domain 
variable in complex coordinates 
unknown in Poisson equation 
leading edge angle (see figure 10) 
coordinates in computational domain 
viscosity 
variable in transformed complex coordinates 

I. Introduction 
LY elliptic equations can be solved using multigrid methods at a cost comparable to a few (<lo) residual F" evaluations. This performance is termed Textbook Multigrid Efficiency the descriptor refers to the 

efficiencies that are now widely available in textbooks for various model  problem.^.^.^ A long-standing goal of 
computational fluid dynamics (CFD) is to obtain efficiencies in solving the Navier-Stokes equations that are 
comparable to those obtained in solving fully elliptic problems. The Navier-Stokes equations are a coupled set of 
non-linear equations of mixed type. Each obstacle on the way to TME for the Navier-Stokes equations needs to be 
identified, analyzed, and overcome. The process starts with simple problems and proceeds to increasingly more 
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complex problems. Analysis methods are needed to understand and repair the cause of each deficiency. Classical 
analysis methods generally have simplifying assumptions (periodicity, constant coefficients, etc.) that limit their 
applicability in complex problems. 

A pilot multigrid code has been developed to explore attainment of TME for fluid flow equations. The 
underlying framework is based on a full multigrid (FMG) algorithm using the full approximation scheme (FAS) 
multigrid to converge each succeeding grid level.* The FMG-k employs k FAS cycles on the current grid before 
proceeding to the next finer grid. The infrastructure required to implement the algorithm is dependent on the type of 
discretization scheme (unstructured, cell-centered, etc.); the current capability is limited to a finite difference 
discretization, with provisions for multiple blocks connecting point-wise across an interface. Within this 
discretization type, it is rather straightforward to implement different equation sets. The focus to date has been on a 
Pressure-Poisson formulation of the incompressible Navier-Stokes (INS) equations'."; other model equations 
(elliptic, convection, convection-diffusion) have been implemented to investigate issues associated with separate 
component operators of these equations. Different boundary conditions are implemented in a modular fashion 
through a local mapping from global to local coordinates. Several relaxation techniques, including point and line 
Gauss-Seidel applied to one or more equations, are incorporated along with a direct solve of the linearized equations 
on coarse grids. The relaxation process is divided into two stages, a global relaxation and a locallboundary 
relaxation. The global relaxation is motivated by the observation that in  many cases an efficient treatment of the 
interior discretization can be found. The local relaxations are intended to account for coupling between the equations 
that occur in special regions, such as near discontinuities and boundaries. For the particular problems investigated 
here, these regions typically are near block boundaries. 

Previous studies with the Pressure-Poisson formulation showed fast convergence for inviscid flows including 
stagnation points,'0,"." although the convergence was noticeably slower than that expected for TME solvers. The 
understanding of the differences is difficult because the flow solver does not generally provide indication of the 
cause of the degraded performance and the problems do not show up when the limitations of classical local mode 

are satisfied. Two new analysis tools, termed Idealized Coarse Grid (ICG) and Idealized Relaxation 
(IR), were developed to analyze convergence of multigrid solvers. These tools are counterparts to those in classical 
analysis methods but are applicable to a larger class of problems. These tools have been incorporated into the pilot 
multigrid code and used to identify and overcome convergence difficulties. This paper defines the capabilities of the 
pilot multigrid code, including the new analysis tools, and demonstrates their use in application to stagnation flow. 

11. Pilot Full Multigrid Flow Solver 

The pilot full multigrid (FMG) flow solver is coded in FORTRAN 90 to take advantage of the recursive 
subroutine feature. dynamic memory allocation, and structured programming constructs. The design follows closely 
the implementation of Thor Gjesdal for a one-dimensional multigrid code.I8 The program framework allows for 
different equation sets and discretizations. Infrastructure exists for the full three-dimensional equations; so far, 
however, the implementations are restricted to two dimensions. Currently, only a node-centered, finite-difference 
scheme for structured grids has been implemented. Multi-block computational grids are supported with three block- 
to-block interfaces types (periodic, C", and C"). All three interface types require the grid points to match at the 
interface. The periodic and C" interface types also require the derivative of the grid metrics to be continuous at the 
interface. Three equation sets are available: a scalar elliptic equation, scalar convection equation, and the Pressure- 
Poisson formulation of the incompressible Navier-Stokes equations. All the equation sets are implemented with non- 
zero forcing functions to enable the use of user-specified (i.e., manufactured) solutions to assist in the verification 
and validation process. Restriction to the next coarser mesh uses direct injection for the variables and full weighting 
for the residuals. Prolongation of the coarse grid correction from the coarse mesh to the fine mesh uses bilinear 
interpolation; prolongation of the coarse grid solution uses bicubic interpolation. 

A. Equation sets 

the Poisson equation defined as follows: 
The three equation sets are described along with the available boundary conditions. The scalar elliptic equation is 

Edge conditions defined for the elliptic equation are: Dirichlet, Neumann, and the three block-to-block interface 
types. 
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The scalar nonlinear convection-diffusion equation is defined as follows: 

Edge conditions defined for the convection-diffusion equations are: inflow, outflow, and periodic block-to-block 
interfaces. Linearized and constant coefficient versions of the convection-diffusion equation are also available. 
These capabilities are implemented as debugging tools. 

The Pressure-Poisson formulation of the incompressible Navier-Stokes equations is defined as follows: 

uu, +vu, -pALf+p,  = f, 
uv, +vv, -@v+p,, = f, (3) 

2 2 u,  +2u,v, + v ,  +Ap= f p  

"hcsc eqi.iations are referred herein as the u-momentum. v-momentum, and pressure equations. Edge conditions 
defined for the incompressible Navier-Stokes equations are: Dirichlet, inflow. outflow, solid surface, and the three 
block-to-block interface types. The viscous terms in the convection-diffusion operators are included in the 
implementation but are neglected for simplicity in this presentation. 

B. Discretizafions 
Details regarding the discretization for each equation set are described below. Second-order, finite difference 

expressions in generalized coordinates are used whenever possible. 
For the scalar elliptic equation, second-order central differences are used in the interior, corresponding to the 

usual 5-point Laplace operator on a rectangular grid. Boundary points may have edge conditions of Dirichlet, 
Neumann, or block-to-block interface type. For Dirichlet boundary conditions, 9 is set to the user-specified value 
(1$=4,,~). For Neumann boundary conditions, there are two options.. In the first option, referred to as a strong form, 
the discretized normal derivative is set to the user-specified value (&=+,,,b,,@). The discretized derivative uses a 
three-point. one-sided, second-order accurate difference approximation. In the second option. referred to as a weak 
form, the Poisson equation at the boundary is discretized by a finite-volume scheme with the flux along the 
boundary evaluated using the user-specified normal derivative; the fluxes on the other faces are determined by 
central differences or by one-sided differences for non-orthogonal grids. On a uniform grid, this weak form is 
identical to solving the elliptic equation at the boundary with the virtual (ghost) point outside the domain eliminated 
through central differencing of the Neumann boundary condition. 

Block-to-block edge interior and endpoints are treated differently. For interior points on periodic and C" block- 
to-block interfaces, the discretization is the same as that used in the interior of the grid. For interior points on c" 
block-to-block interfaces, the Poisson equation is discretized by combining the fluxes across the faces of a control 
volume that straddles the grid point on the interface. The flux on each face is determined using central differences. 
For endpoints, there are two possibilities: all endpoints at the node in question are block-to-block interfaces or at 
least one endpoint is not. If all endpoints are block-to-block interfaces, the discretization is the same as that used in 
the interior of the block, otherwise, the discretization is determined by the different physical boundary conditions at 
the endpoint using a hierarchy of dominance for each boundary type. 

For the scalar convection equation, three-point, upwind, second-order difference approximations are used for the 
derivatives at all interior points except those adjacent to an inflow boundary. Since there is only one upstream node 
for a grid point adjacent to an inflow boundary, either a second-order central difference or a first-order, upwind 
difference is used. Boundary points may have edge conditions of inflow, outflow, or periodic interface type. At 
inflow boundaries, the velocity is given as the user-specified value. At outflow boundaries or periodic interfaces, 
there are no boundary conditions required and the interior discretization can be applied. 

For the Pressure-Poisson formulation of the incompressible Navier-Stokes equations, the interior discretization 
consists of three parts: (1) convective terms in the momentum equations differenced as for the scalar convection 
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equation; ( 2 )  the Laplacian in the pressure equation differenced as for the scalar elliptic equation; and (3) the 
remaining derivatives differenced with second-order, central differences. The boundary conditions for the Pressure- 
Poisson formulation are similar to those used for the primitive-equation formulation (momentum and continuity 
equations) with the additional condition that continuity is enforced at inflow. The continuity equation is not 
enforced explicitly in the interior, but the residual of its discrete central-difference approximation is monitored to 
ensure it converges to zero as the mesh is refined. Four types of boundary conditions are implemented: Dirichlet, 
inflow, outflow, and solid surface. A number of different implementations have been examined; typical examples 
are described below. At Dirichlet boundaries, all values are set to the user-prescribed values. At inflow boundaries, u 
and v are specified; continuity is enforced weakly through the Neumann condition for the normal pressure derivative 
evaluated from the momentum equations. In the weak form of this Neumann condition, the velocity derivative terms 
in the pressure equation are discretized as one-sided differences. At outflow boundaries, p is specified and the 
standard u-momentum and v-momentum equations are discretized with one-sided, second-order differences for the 
pressure gradient terms normal to the boundary. At an inviscid solid-surface boundary, flow tangency is imposed 
(zero normal velocity). The tangential and normal momentum equations are solved by centering the discretization at 
a location shifted half a mesh size into the domain from the body surface. Further details of these boundary 
conditions are available elsewhere.” 

* 

C. Relaxation 
Relaxation consists of at most three phases: optional local relaxation over a part of the domain (typically near a 

boundary), then a global relaxation over the entire domain, and finally a second optional local relaxation. The pilot 
code contains many options to configure the relaxation phases. Relaxations are configured by specifying the groups 
of equationdvariables to be solved during various phases. The appropriate matrices during each phase are 
assembled from equations of the full linearization; this approach to assembly is not optimal from a performance 
standpoint but does allow rapid assessment of different relaxation schemes. Within a given phase, the equations are 
solved for corrections 6(6q) with contributions from previous phases updated through Sq. 

where (f-R(q)) denotes the residual vector evaluated at the solution vector q and %is the Jacobian. Normally, 

dl? =a is the full linearization of the differential operator. However, when marching the momentum equations into 
aq 39 

the stagnation region, a modification to the full linearization has been used; this modification (referred to as a 
diagonally dominant form) is more stable for marching toward stagnation.” This modification is used for the 
parabola computations that follow. At the start of relaxation, 6q is initialized to zero; at the end of relaxation, q is 
updated (qne*’=q+6q), and a new nonlinear residual is calculated. Optionally, nonlinear residuals and q can be 
updaied after each relaxation phase. Four direct solvers are available: a sparse equation solver, a full-bandwidth 
Gaussian elimination, and block tridiagonal and block pentadiagonal solvers. 

Several global relaxation schemes are available, including point and line Gauss Seidel relaxation. Each scheme 
allows for the relaxation of one or more equations/unknowns at each point (or line of points). For point Gauss 
Seidel relaxation, all eight possible sequences through a two-dimensional mesh are available. Point relaxation can 
also be done in a multi-color order in which several relaxation passes are performed, each pass relaxes only the 
points of one color. For instance, in a two-color scheme, commonly referred to as redhlack or checkerboard, the 
first pass would relax the unknowns at every (red) node with an odd sum of grid indices; the second pass would 
relax the unknowns at every (black) node with an even sum of grid indices. For line Gauss Seidel relaxation, the 
unknowns on a line of grid points (a sequential group of points with a common grid index) are relaxed in a sequence 
on the structured mesh. All four possible sequences for a two-dimensional mesh are available, including multiple 
colored relaxations. The combination of a line and a block relaxation can account for a stronger coupling among 
the equations near the boundary than in the interior. This proved necessary for robustness in viscous simulations but 
was not important for the applications here. 

Local or boundary relaxations are needed near boundaries when the boundary condition equations are different 
from the interior equations. Combinations of different discrete equations may easily result in a local coupling of the 
equations that can be solved only by simultaneous solution. Local relaxations are also useful in avoiding inaccurate 
residual transfers in the vicinity of the boundary during restriction. They may be implemented as multiple relaxation 
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passes throughout the local region or as the direct solution of the equations. Relaxation passes may be either point or 
line Gauss Seidel. Direct solution is used for all the local relaxations for the cases presented herein. The width of the 
local relaxation region typically encompasses all grid points associated with the discrete boundary condition 
equations as well as the grid points for the interior discretization that share data with the boundary condition 
equations. 

D. Unified Implementation of Boundary Conditions 
To unify the evaluation of the equations to be solved at a block boundary or edge, the data along and near that 

edge (grid coordinates, metrics, and unknowns) are rotated to a temporary computational coordinate system with the 
5 coordinate aligned with the boundary tangential direction, the q coordinate oriented into the interior, and the 
boundary point mapped to the point at &l and ~ 1 . 2 '  Both the periodic and the C- block-to-block interface edge 
conditions map additional grid points, metrics, and unknowns from the connecting periodic or C edge to the points 
below the q=l line. This provides a repeating edge condition for the periodic edge or a continuous mesh across 
blocks with a C" edge. All residual evaluations and matrix coefficient assemblies use the same routine; common 
routines, coded once, perform the conversion to and from this temporary coordinate system. 

For each equation set, companion modules are coded for each interior equation and each edge condition: one for 
the residual evaluation and the other for the implicit matrix assembly. Except for a C" block-to-block interface point 
or the comer point (end of a boundary), all information is available locally. For a c" block-to-block interface point, 
these operations are divided into two steps, one for each side of the interface. On each side the interface, the 
contributions are accumulated from the three interior faces of a control volume. The contribution from the edge 
along the interface is not calculated since its contribution is cancelled by the contribution from the abutting 
interface. Tiir cuniribudoiis fium eA~h side of the iiiteifiice are siiiiiiied io 02'tii the i~tzl .  Fai a ca;;;e; point, each 
boundary evaluation provides the contribution on the boundary face and the face normal to the boundary. The 
boundary contributions are summed to obtain the total. 

III. Analysis Tools 
The development of a multigrid flow solver involves the implementation of various functional capabilities. 

Debugging and verification of each capability as it is integrated can greatly simplify the debugging and verification 
of the final product. This pilot code incorporates all components required for an FMG code: residual evaluations, 
restriction to a coarser grid, relaxation or direct solution on a grid, and prolongation of the coarse grid correction to a 
finer grid. Tools are available to analyze the linearizations that are used in the direct solution and relaxation 
schemes as well as residual and discretization error reductions with grid refinement, on the entire grid or its subsets. 
Verification (or benchmark) problems have been prepared to support testing specific features of the code. The 
efficiency of various relaxation schemes can be checked by comparison with ICG iterations; ICG iterations are two- 
grid iterations, in which the coarse-grid correction is replaced with an idealized imitation that assuredly reduces 
smooth errors. Similarly, the performance of the coarse-grid correction can be checked by IR iterations that are two- 
grid iterations, in which parts of the relaxation are replaced with explicit error-averaging procedures. These built-in 
tools are supplemented by the typical stand-alone tools used to analyze the performance of a solver, such as local 
mode (Fourier) analysis. 

A. Check of Solution Process 
A library of verification problems has been included in the code to test various features. Separate libraries are 

available for each equation set. Each library is organized as a series of problems, each building on the verified 
features from the previous problems. Each verification problem is designed to test a specific feature of FMG 
development and/or implementation. Typical tests check the physical boundary conditions, multigrid process, block 
partitions, block-to-block interfaces, etc. Results from each test problem are saved in separate directories to serve as 
a reference for future tests. When changes are made in the code, each test in the library is repeated and the results 
compared to those in the reference directories. 

A linearization check has been incorporated into the code to check for consistency of the linearizations used in 
the matrix assembly. The residual is evaluated for each equation at each point on the grid. Sequencing through the 
mesh, the value of each unknown is perturbed by a small amount and the residuals at all points are reevaluated. The 
Jacobian entries are computed numerically by divided differences and are compared to analytical values. Warnings 
are given when there is not a one-to-one correspondence in the occurrence of non-zero Jacobian entries. The 
maximum and L2-norm differences between the analytical and calculated Jacobians are listed to provide simple 
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indicators of consistency. An additional check for coarse grids is that the residuals converge quadratically when 
applying Newton's method. 

B. Error evaluations 
Three types of errors are considered: residual errors, discretization errors (differences between the exact 

differential and exact discrete solutions), and algebraic errors (differences between the approximate and exact 
discrete solutions). As mentioned previously, each equation set is implemented with a non-zero forcing function so 
that arbitrary manufactured solutions can be used to check the discretization error reduction with grid refinement. 
Provisions are also made to obtain an exact solution to the discrete equations for each FMG level; thus the algebraic 
error reduction can be checked. The exact discrete solution can be supplied from an analytical function or from files 
storing the fully converged solutions obtained on each FMG level. 

Two discretization checks have been incorporated into the code: one utilizing the residuals and the other utilizing 
the discretization errors. In the FMG process, the residuals are calculated using the current solution. The code 
provides an option to sequence through each finest grid in the FMG process, initializing the solution on each grid 
from the exact solution to the differential equations. These norms (Lm, L,, and L,) of the residual are calculated for 
each grid. The domain for the residual calculations can be the entire grid, the interior, or selected block edges. The 
ratio of the residual norm on one grid level to the residual norm on the next finer grid level is used to check that the 
implementation of the discretizations has the intended order reduction of the residuals with grid refinement. For a 
second order discretization with uniform halving of the mesh size, the factor should approach 4 as the grid is refined. 
The reduction factor can be different for those discrete equations where interior equations and boundary conditions 
are combined, as in the weak boundary condition implerncntation discussed earlier for the elliptic equation. Using 
the option to restrict the domain to the interior of the grid, the order of the residual reduction for the interior 
discretization can be checked. Similarly, restricting the domain to one edge allows the residual reduction on that 
edge to be checked. In the FMG process, the three norms of the discretization error are calculated from the 
converged solutions. The reduction factors for the discretization error between each succeeding pair of grids in the 
FMG process check consistency with the intended order of accuracy. In order to check boundary condition 
implementations, the equations along a boundary can be solved with the exact values in the interior; the 
discretization errors should then converge according to the intended order property of the discretization. 

At the end of each FMG cycle, the residual error, the discretization error (if an exact solution to the differential 
equations is available), and algebraic error (if an exact solution to the discrete equations is available) are written to 
separate disk files for subsequent analysis. The L2-norms of the residuals before and during multigrid cycles on each 
block and on the entire domain are used to evaluate the spectral radius of the convergence. When the solution has 
converged on the current grid or when the specified number of cycles has been completed, the three norms of the 
residual and the discretization error are written to separate disk files along with the reduction factors from the 
previous grid. 

C. Multigrid Solver Analysis 
The efficiency of a multigrid cycle can be tested through analyzing two-grid cycles. A two-grid cycle includes 

four parts: relaxing the fine-grid equations, restriction of the residuals and current solution to the coarse grid, 
solution of the coarse-grid equations, and prolongation of the corrections to the fine grid. The current restriction and 
prolongation operators are considered suitable for efficient multigrid. Two analysis tools have been developed to 
diagnose problems with relaxation and coarse-grid correction. The analysis tools are applied to an available, 
imperfect solver dealing with a practical problem. The purpose of the analysis is to isolate, identify, and improve 
parts of the solver responsible for the less than optimal performance. Detection of inefficient parts of the solver is 
achieved by comparing the performance of the actual two-grid cycle with idealized (IR and ICG) iterations. 

In IR iterations, the actual relaxation scheme is replaced with full-weighted averaging of algebraic errors; the 
coarse-grid correction scheme is the same as in the actual two-grid cycle. The smoothing rate of this idealized 
relaxation is 0.5, matching the rate of the point Gauss-Seidel relaxation for the Laplace equation. The idealized 
relaxation scheme does not depend on the discrete equations solved in the actual cycle. It guarantees reduction of the 
high-frequency components of the algebraic error function. If IR iterations converge much faster than the actual 
cycle, then the actual relaxation scheme is not a good smoother. 

In ICG iterations, the actual relaxation scheme is used and the coarse grid correction is replaced with the 
following idealized imitation: first the full-weighting averages of the fine-grid algebraic errors are computed at the 
coarse-grid nodes; then the computed averages are prolonged to the fine grid by bilinear interpolation and subtracted 
from the initial algebraic errors. The idealized coarse-grid correction is also independent of the discretizations used 
on the fine and coarse grids. This procedure efficiently reduces smooth algebraic errors. If convergence of the ICG 
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iterations is much better than convergence of the actual cycle, then the actual coarse-grid correction is not sufficient 
to reduce smooth error components. 

Idealized parts of IR and ICG iterations directly address the fine-grid algebraic errors. An exact discrete solution 
is needed to evaluate the algebraic errors. An exact solution can be obtained by selecting a manufactured solution to 
the discrete equations or by using a solver to provide a converged solution on the fine grid of the two-grid scheme. 

IV. Applications 
The new analysis tools have been applied to the multigrid solution schemes for two problems: flow against an 

infinite flat plate (plane stagnation) and flow about a parabolic arc (forward portion of an airfoil). The equation set 
chosen is the Pressure-Poisson formulation of the incompressible Navier-Stokes equations, Eq. (3). The equations 
are nonlinear with highly variable coefficients near the stagnation point so that conventional analysis techniques are 
of limited use. (See details of the limitations using local mode analysis in reference 19). The inviscid form of the 
equations is used in these applications to highlight the difficulties encountered in the full set of Navier-Stokes 
equations at high Reynolds number." 

A. Plane stagnation 
Multigrid convergence is often degraded in the region near a stagnation point. Plane stagnation flow was selected 

for investigation because the plane-flow solution characterizes the behavior near the stagnation point in general 
geometries. The model problem involves flow directed towards an infinite flat plate at x = 0. Analysis of this 

ex&.iicc of az cxac. SOlU .-- *,. t+ -1,....3 c.trrnnot.r\ r89rt .91 A; f fPm"t ;9 l  P""clt;GfiS 

shown below: 
is siipporLed by 1"f;"rr L U  L, c ~ I ~ . I L - o L u ~ . . L I I ; " I :  y L U L 1 -  ",*lr*r..Llu. "'YYUU , 

u=-x  

v =  y (5 )  

p=-+(.' + y 2 ) + c  

where the constant c corresponds to the total pressure. Note that a second-order accurate discretization has no 
discretization errors for this plane-stagnation solution. We typically use second-order, one-sided, upwind 
discretizations for the convection terms in momentum equations, the second-order five-point discretization for 
Laplacian in the pressure equation, and second-order central differences for the pressure gradient in the momentum 
equations and the velocity derivatives in the pressure equation. Two stagnation flow regions, the regular stagnation 

region and the deep stagnation region, are shown in 
Figure 1. The deep stagnation region is a unit square 
with the center of the right face at the origin (stagnation 
point). The computational domain for the deep 
stagnation flow region is shown in Figure 2. The regular 
stagnation region is a unit square shifted far away from 
stagnation; the center of the right face is located at 
(-10, 10). 

The regular stagnation flow region is governed by 
nonlinear equations with relatively small variations 
across the domain. The flow for this case is 
approximately directed from the lower left corner to the 
upper right comer of the domain. Inflow conditions (u, 
v, and p n  specified) are enforced at the left and bottom 
boundaries and outflow conditions (p specified) are 
enforced on the top and right boundaries. The relaxation 
scheme utilizes a vertical-line, Gauss-Seidel relaxation 
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of the pressure equation from left to right, downstream 
marching of the u- and v-momentum equations, and local 
relaxation of all three coupled equations on 3-nodes- 

Figure 1. Plane stagnation flow streamlines and 
location of studied regions. 

wide bands along the inflow- boundaries. 
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The equations were solved for the regular stagnation 
region with the pilot code using a FV( 1,2) cycle with a 
5x5 coarsest mesh for each FMG level. The convergence 
of the L2-norm of the residuals on a series of finer grids 
is shown in Fig. 3. As expected, the residuals for the 
momentum equations are significantly less than those for 
the pressure equation because they are reduced by 
marching after the pressure relaxation; the residual 
convergence of the system of equations is always 
dominated by the convergence of the pressure equation. 
The results show that the convergence of the pressure 
equation is about 0.08 per cycle and the asymptotic rate 
is grid independent. As a point of reference, the local 
mode analysis for the five-point Laplace operator 
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Figure 3. Residual convergence of the FMG solver 
for regular stagnation flow. 

cycle 

Figure 4. Two-grid analysis (fine-grid 65x65) for 
the regular stagnation region for the pressure 
equation. 
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Figure5 Residual convergence of the FMG 
solver for the deep stagnation region. 

cycle 
Figure 6. Two-grid analysis (fine grid 65x65) for 
the deep stagnation region. 

The deep r t . g o & ~  reginn is gcvemed by equatisns with i i~diiicx cwfficieiits that v z y  stitisiaildaliy au=vss iiie 
domain. Inflow conditions (u, v, and px specified) are enforced at the left boundary, outflow conditions (p specified) 
are enforced on the top and bottom boundaries, and tangency conditions ( u s )  are specified on the right boundary. 
A uniform mesh with 65 x 65 nodes was selected for the finest grid in the FMG process. The relaxation scheme is 
similar to the relaxation scheme for the regular stagnation flow with the local relaxations applied to the inflow (left) 
and tangency (right) boundaries. The equations were solved for the deep stagnation region with a FV( 1,2) cycle that 
proceeded down to a 5x5 coarsest mesh for each FMG level. The convergence of the Lz-norm of the residuals on a 
series of FMG levels is shown in Figure 5.  The results show that the convergence of the pressure equation is about 
0.14 per cycle and the asymptotic rate is grid independent. 

The results of IR and ICG analyses are shown in Figure 6. The iterations were performed on a 65x65 fine mesh. 
The same four cases described above were run, again starting with a random distribution of errors in all variables. 
The convergence rate for the actual multigrid solver degrades to a maximum value of about 0.21 per cycle with an 
asymptotic value of about 0.14 per cycle. The asymptotic convergence rate is only slightly slower than that of the 
ICG iterations, indicating that the relaxation scheme provides adequate smoothing. The convergence rates for the 
IR(uvp) iterations are again much slower than for other iterations because the marching element of the actual solver 
is neglected. The convergence rate for the IR(p) iterations degrades to a maximum value of about 0.29 per cycle 
before improving to an asymptotic rate 0.18 per cycle. IR and ICG analyses performed on finer grids (results are not 
shown here) confirms that the convergence rates of all iterations are grid independent with asymptotic rates for 
IR(uvp) iterations approaching 0.75 and the actual cycle providing error reduction of 0.1 to 0.2 per iteration. 

B. Parabolic arc stagnation 
The plane-stagnation flow represents a flow in a simple geometry; a uniform Cartesian grid was used. To 

demonstrate applications of the IR and ICG analyses on more realistic, body-fitted grids, the stagnation flow over a 
parabolic arc was selected. A parabolic arc was chosen to represent the forward portion of an airfoil. A uniform 
mesh in transformed complex coordinates, 6 = 6 + i q, is transformed into a parabolic mesh in complex coordinates, 
z = x + i y, by the conformal mapping 6=z2. The physical grid is determined from a square grid in the transformed 
complex plane, extending from q=qo to q=ql and centered about 5 s .  The solid surface (parabolic arc) corresponds 
to the line qFconstant. Like the flat plate stagnation flow case, an exact solution to the differential equations exists. 
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The exact solution, given in terms of ( 5 , ~ )  is: 

77077 u = l -  c2 +?I2  
V =  7705 

t2 + ? I 2  
p = p m  ++(l-u 2 4) 

where: x = c2 + q2 and y = 2577. 
The solid surface, q0 = ya, is the parabola with a leading edge radius of 0.5 centered at the origin. A body- 

fitted mesh with 129x129 nodes and q1 = 15qo was selected for the finest grid in  the FMG process. The 
computational domain for the parabolic arc region is shown in  Fig. 7. Inflow conditions (u ,  v, and p n  specified) are 
enforced at the left boundary, outflow conditions (p specified) are enforced on the upper and lower boundaries, and 
tangency conditions ( V . E = 0 ) are specified on the solid surface. 

X 

10-'20 10 20 30 40 50 
cycle 

Figure 7. Computational mesh for the parabolic 
arc region. Every 4" node shown. 

The relaxation scheme consists of a global relaxation pass with point Gauss-Seidel relaxation of the pressure 
equation (the relaxation proceeds from the upper outflow boundary to the lower outflow boundary, starting at the 
inflow edge and ending at the solid surface), marching using the diagonally-dominant modifications of the u- and v- 
momentum equations (collective line Gauss-Seidel relaxation proceeds from the inflow boundary to the solid 
surface), and a local relaxation for the three equations on a 3-nodes-wide band along the inflow boundary and a 4- 
nodes-wide band along the tangency boundary. The equations were solved with the pilot FMG code using a FV(2,l) 
cycle that proceeded down to a 9x9 coarsest mesh for each FMG level. The convergence of the L2-norm of the 
residuals on a series of FMG grids is shown in Figure 8. The initial convergence on the two coarser grids is good but 
degrades rapidly to about 0.88 per cycle after the initial high frequency errors are smoothed. On the two finer grids, 
convergence rates are about 0.12 per cycle. The IR and ICG analyses are applied at a mesh with poor convergence 
( 1  7x 17) and at a mesh with good convergence (1 29x 129). 

Figure 8. Residual convergence rate of the 
FMG solver for the parabolic arc region. 
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X X 

Figure 10. Details of the coarsest grid (9x9) used 
for the parabolic arc Figure 9. Two-grid analysis (fine grid 17x17) 

for the parabolic arc for the pressure equation. 

The IR and ICG analyses (actual cycle, ICG iterations, and IR(p) iterations) were performed on the 17x17 grid 
and the results are shown in figure 9. The asymptotic convergence rate of the actual two-grid cycle for the pressure 
equation residuals is about 0.88 per cycle, the same case as the 17x17 fine mesh shown in figure 8. The asymptotic 
convergence rate for the IR(p) is 0.94 per cycle, slightly poorer than the actual cycle rate. However, the ICG 

convergence rate is typically less than 0.10 per 
cycle, solving the equations in 5 iterations. The slow 
convergence of IR(p) iterations and fast 
convergence of ICG iterations indicate that the 
corrections prolonged from the 9x9 grid are poor, 
but the relaxation scheme provides adequate 
smoothing. Examination of the 9x9 mesh, shown in 
Figure 10, suggests the cause of the poor coarse-grid 
correction. Whereas the 9x9 mesh appears to 
represent reasonably the whole computational 
domain, there is insufficient resolution of the 
leading edge region. To obtain reasonable 
discretization accuracy in the vicinity of the leading 
edge, one would expect to have at least a few nodes 
defining the leading 90" arc sector. With the studied 
9x9 grid, the solid surface effectively introduces a 
very sharp leading edge, with an angle, W l " ,  
defining 8 as the angle between the tangent to 
Parabola at the leading edge and the effective grid 
line; we will refer to this angle as leading edge 
angle. As the grid is refined, leading edge angle 

becomes smaller and the leading edge bluntness is better resolved resulting in a more accurate discrete 
approximation. The accuracy of the discrete solution on the 9x9 mesh is so poor that the coarse-grid correction 
provided to the finer grids is irrelevant. One possible solution to this problem is to use stretching to cluster 
additional points near the leading edge. 

The IR and ICG analyses (actual cycle, ICG iterations. and IR(p) iterations) were also performed on the 129x129 
grid and the results are presented in figure 11. The actual two-grid cycle shows good convergence rates, with an 
average of about 0.15 per cycle. The convergence rates for the Idealized Relaxation and Idealized Coarse Grid are 
similar to those for the actual two-grid cycle. Thus, on this fine mesh (129x129), both the relaxation scheme and the 
coarse grid correction are adequate. 

- Actualcyde - ICG 

CY- 
Figure 11. Two-grid analysis (fine grid 129x129) for 
the parabolic arc for the pressure equation. 
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C. Efficiency Evaluation 
Stagnation flow against parabolic arcs was selected to assess the efficiency of the developed multigrid solvers. 

Domains of three sizes are considered: a large domain (ql=15q0), a reduced domain (ql=8qO), and a leading-edge 
domain (7,=1.25qO). Sketches of these domains are shown in Figure 12. FMG-1 and FMG-2 solvers with three 
levels were tested on each domain 

The FMG-1 and the FMG-2 solvers were evaluated on the large domain covered by a 129x129 parabolic mesh. 
According to the analysis results, the coarsest mesh was chosen as 33x33 with the leading edge angle 8 -12", a 

X 
Figure 12. Computational domains for stagnation 
flows against parabolic arcs. 

reasonable representation of the blunt leading 
edge. The Lz-norm of the discretization error, the 
Lz-norm of the algebraic error, and their ratio are 
listed in Table 1. The FMG-1 solver was able to 
provide solutions with the algebraic errors below 
the level of the discretization errors. The algebraic 
errors of FMG-2 solutions are about 10% of the 
discretization errors. Results (not presented 
herein) for the four-level FMG-1 cycle (with the 
coarsest grid 17x17) showed some degradation in 
performance with algebraic errors slightly above 
discretization errors. This reinforces the 
conclusion that convergence deteriorates when too 
coarse (incapable of providing a reasonable 
approximation accuracy) grids are involved. 

The FMG-1 and the FMG-2 solvers were 
evaluated on the reduced domain with a 65x65 
mesh. The size of the reduced domain and the 
finest mesh were chosen to provide the same 
leading edge resolution (identical leading edge 
angle 8) as in the experiments on the large 
domain. Results, presented in Table 2, are very 

similar to the results obtained for the large domain, documented in Table 1. Algebraic errors were reduced below 
discretization errors by the FMG-1 solver. The FMG-2 solver was able to reduce the algebraic errors to the 10% 
level of the discretization errors. 

Using a finer 129x129 mesh on the reduced domain while maintaining three multigrid levels improves the 
leading edge resolution on each mesh. The leading edge angles ranged from about 2" to 6". Results from the FMG-I 
and FMG-2 solvers on the reduced domain with the refined 129x129 mesh are presented in Table 3; they are similar 
to the results obtained on 65x65 mesh. This similarity suggests that the coarsest meshes used on the large domain 
(33x33) and on the reduced domain (17x17) provide adequate resolution for fast convergence. 

Finally, the FMG- 1 and the FMG-2 solvers were evaluated on the leading edge domain with a 33x33 mesh. The 
resulting mesh spacing is finer than those used on the large and reduced domains, with the leading edge angles all 
less than 1". Results, presented in Table 4, demonstrate excellent performance with the FMG-1 cycle reducing the 
algebraic error to about 10% of the discretization error and the FMG-2 cycle reducing the algebraic error by another 
order of magnitude. The total computational cost of the FMG-1 solver is less than cost of ten residual evaluations; 
thus, TME has been attained in all tests. 
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Table 1 . L2-norms of the errors for the parabolic arc on the large domain (q~/q,,=lS), 

FMG- 1 FMG-2 
I ~~~~ ~ 

Variable I Disc. Error I Algeb.Emor I Algeb. Error/ I Algeb.Error I Algeb. Error/ 

U 0.00083 0.00060 0.7 0.00011 I 0.1 
V 

D 

0.00106 0.00067 0.6 0.00012 0.1 
0.00069 0.00059 0.9 O.ooOo9 0.1 

Variable Disc. Error 

Table 4. L2-norms of the errors for the parabolic arc on the leading edge domain, (ql/q~1.25), 

FMG-1 FMG-2 
Algeb. Error Algeb. Error/ Algeb. Error Algeb. Error/ 

Disc. Error Disc. Error 
U 

V 

P 

V. Conclusion 
General analysis tools are needed to evaluate the performance of solvers of the fluid flow equations. Novel 

analysis tools, Idealized Coarse Grid (ICG) and Idealized Relaxation (IR), have been developed and built into a pilot 
multigrid solver. These tools were applied to two stagnation flow problems. The new analysis tools were able to 
analyze convergence in deep stagnation regions that were inaccessible through classical analysis. They also 
successfully identified coarse-grid correction as the reason for poor convergence of multigrid solvers for parabolic 
stagnation flows on very coarse meshes. The factor limiting the coarse-grid correction and degrading performance 
proved to be an underresolution of the leading edge The analysis tools were instrumental in development of TME 
solvers for stagnation flow problems. 

0.00133 0.00045 0.3 o.Ooo10 0.1 
0.001 82 0.00047 0.3 0.00010 0.1 
0.001 10 0.00043 0.4 0.00009 0.1 
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