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Chapter 1 

Introduction 

The ability to design and achieve electromagnetic compatibility is becoming more 

challenging with the rapid development of new electronic products and technologies. 

The importance of electromagnetic interference (EMI) and electromagnetic compati- 

bility (EMC) issues stems from the fact that the ambient electromagnetic environment 

h a .  become very hostile; that is, it increases both in density and intensity, while the 

current trend in technology suggests the number of electronic devices increases in 

homes, businesses, factories, and transportation vehicles. Furthermore, the operat- 

ing frequency of products coming into the market continuously increases. While cell 

phone technology has exceeded 1 GHz and Bluetooth operates at 2.4 GHz, products 

involving satellite communications operate near 19 GHz and automobile radar sys- 

tems involve frequencies above 40 GHz. The concern about higher frequencies is that 

they correspond to smaller wavelengths, therefore electromagnetic waves are able to 

penetrate equipment enclosure through apertures or even small cracks more easily. 

In addition, electronic circuits have become small in size, and they are usually placed 

on motherboards or housed in boxes in very close proximity. Cosite interference and 

coupling in all electrical and electronic circuit assemblies are two essential issues that 

have to  be examined in every design. 

According to IEEE, EMC is defined as "the capability of electrical and electronic 

systems, equipments, and devices to operate in their intended electromagnetic en- 

vironment within a defined margin of safety, and at  design levels of performance 

without suffering of causing unacceptable degradation as a result of electromagnetic 

interference" [2]. According to the same source, EM1 is defined as "any electromag- 



netic disturbance, whether intentional or not, that interrupts, obstructs, or otherwise 

degrades or limits the effective performance of electronic or electrical equipment." 

From the above definitions the strong relation between EMC and EM1 is evi- 

dent. As a matter of fact it is EM1 control along with susceptibility control that 

lead to EMC. EMI and susceptibility control are achieved by emission reduction from 

sources that are controllable, and increase of sensitive equipment immunity, respec- 

tively. Therefore, the focus of today's work in EMC is on standardization. Several 

technical organizations and committees such as the International Electrotechnical 

Commission (IEC), the International Standards Organization (ISO), and the Inter- 

national Telecommunications Union (ITU) are responsible for setting EMC and EM1 

standards for all electronic devices, as well as standards for measurement and test 

methods necessary for repeatable standards. 

EM1 is caused by dynamic factors, such as spurious emissions, space weather, 

or geomagnetic and atmospheric conditions. In other words, electromagnetic distur- 

bances that affect electronic systems equate to EMI. A broader definition of EMI 

would encompass more static causes, such as geographical and man - made obstruc- 

tions. Potential EM1 threats can come from a jamming device, malfunctioning equip- 

ment, or improper system operation. A mountaintop, a clump of trees, or a building 

can also be contributing factors. What occurs much more frequently is interference 

from extraneous navigation and telecommunications systems, and other sources. 

The area of modern technology that EM1 and EMC issues are of particular in- 

terest and importance is aviation. This is because a large number of antennas are 

mounted on various platforms, such as helicopters, airplanes, etc., to support and 

provide crucial operational services, such as video and audio communications, high 

frequency (HF) beyond line - of - sight communications, GPS, radar altimeter, etc. In 

specific applications, very advanced communication systems are required (e.g., com- 

munication systems of helicopters or aircraft). For example, pilots of airplanes (or 

helicopters) depend substantially on guidance systems that check the alignment and 

the position of the airplane (or helicopter) during landing, especially at  night or in 

poor visibility conditions. Consequently, in order to ensure safety, the communica- 

tions instrumentation should be extremely reliable. However, when many antennas 

are placed on the same structure (e.g., helicopter or airplane airframe), the problem 



of interference and coup'ling between transmitting and/or receiving elements can in- 

fluence the operation and integrity of the communication systems. Interference can 

corrupt the signals with noise and deteriorate the quality of the communications. In 

addition, it can cause jamming of the systems, followed by complete interruption of 

already established communications. Therefore, the investigation of mutual coupling 

and the interpretation of coupling mechanisms is of great importance. Understanding 

the behavior of coupling helps us provide guidelines to minimize interference. This 

will significantly contribute to the design of communication systems with improved 

quality and reliability. 

Another critical EMIjEMC issue that is relevant to all aviation, and which has 

lately attracted a lot of attention concerns the penetration of High Intensity Etadiated 

Fields (HIRF) into conducting enclosures via apertures. In numerous occasions it has 

been proven that EM sources external to the aircraft have caused several problems to 

the equipment of airplanes, such as disrupted communications, disabled navigation 

equipment, etc. Sophisticated digital avionics are increasingly used in safety critical 

equipment of all types of modern aircraft. Regardless of digital avionics usefulness 

for critical and essentid aircraft functions, they are susceptible to electronic upset if 

subjected to certain electromagnetic (EM) environments. Additionally, under regular 

flight conditions, the aircraft is exposed to the radiation of numerous EM sources 

covering the entire spectrum. Therefore, for the safety of the flight it is evident 

that aircraft is required to be immune to various EM interferences (EMI) and hence 

operate without adverse effects. EM1 to an aircraft can be created by internal sources 

such as the installed on - board systems and passengers' personal electronic devices, 

as well as by external ones, such as high power communication systems (satellite 

links), radars and other aircraft. Such radiations are of significant interest, and they 

are referred to as HIRF sources. 

More precisely, HIRF encompasses man - made sources of electromagnetic radi- 

ation generated external to the aircraft considered as possible interference toward 

the safety of aircraft flight. The easiest way to distinguish HIRF from other types 

of EM1 is to state what it is not. HIRF does not include interference among on - 

board systems; this type of interference is referred to as an EMC issue. HIRF does 

not include EM1 effects caused by portable electronic devices (PEDs) carried by pas- 



sengers, such as cellular telephones, laptop computers and portable radios HIRF 

does not include the effects of lightning [3] [4], nor the effects of static electricity 

generated on the airplane; this is called Electrostatic Discharge (ESD). HIRF sources 

are only those emitters that intentionally generate emissions. Non - intentional (and 

in some cases non - licensed) emissions in the passband of aircraft navigation and 

communication systems have been known to cause interference problems, sometimes 

with serious consequences, but are not considered HIRF. These types of emissions 

are regulated by Federal Communications Commission (FCC). HIRF sources include 

radio and TV transmitters, airport and weather radar and various military systems, 

both grounded - based and airborne, such as surveillance radar, electronic warfare 

(EW) systems and electromagnetic weapons. The HIRF environment proposed for 

certifying safety critical systems in fixed wing aircraft and helicopters is shown in Ta- 

ble 1.1. As this table suggests, the HIRF frequency spectrum divides into distinctly 

different halves around 400 MHz. Below this frequency, most high - power use of the 

electromagnetic spectrum is by communication and navigation devices which radiate 

signals that are weakly directional and continuously on the air. This includes AM 

and HF or "short wave" broadcasts and FM and TV broadcasts. Most high - power 

use of the spectrum above 400 MHz is by radar, satellites and weapon systems. Ra- 

diation associated with these systems is generally of narrow beamwidth and often 

pulsed. In spite of the much higher peak levels associated with signals in the GHz 

range, experience has shown that the region of greatest sensitivity for electrical and 

electronic systems on aircraft is between a few MHz and a few hundred MHz. 

This research project was primarily intended to develop analytical/numerical tech- 

niques to examine HIRF penetration into cavities. The parameter that was used to 

judge HIRF penetration in a cavity is shielding effectiveness (SE). Our research 

primarily focused on cavities with apertures because they better resemble aircraft 

fuselages while the mechanism of field penetration is the same in both cases. In such 

structures, an external signal penetrates through the apertures and directly couples 

energy into the interior. Although there are many possible mechanisms contributing 

to the penetration of fields into an aircraft, i t  is the windows that allow the greatest 

lRapid increases in the technology of personal communications causes concern about the potential 
EM1 threat posed by PEDs however. 



Table 1.1: HIRF certification environment proposed by the EEHWG [I] 

penetration. 

The drawback of this method is that in high - Q cavities, such as that of an aircraft, 

SE changes rapidly with respect to space and frequency, while the mode density is 

extremely high. As a result, adequate information regarding HIRF penetration in such 

cavities requires that measurements be performed at several points inside them. An 

alternative to this method would be to measure the SE of a single point while varying 

the impinging wave angle of incidence. The aforementioned methods, in addition to 

being time consuming, are also not practically feasible when, for example, the size of 

the equipment under test is of the order of meters. Moreover the methods mentioned 

previously cannot give a reliable estimate of the EM field maximum value, or the 

range over which it  varies, at a specified region of the cavity. The latter may result 

in misjudgments when one wants to properly shield sensitive electronic equipment of 

an aircraft and ensure safe flight conditions. 

The numerical techniques that were developed in this project are based on the 

Finite Difference Time - Domain (FDTD) method, and they were used to predict 

the field penetrating inside a fuselage when the structure is illuminated by an im- 

pinging electromagnetic wave. In addition, simplified experimental models were built 

and measurements were performed in ASU's Electro - Magnetic Anechoic Cham- 



ber (EMAC) in order to compare them with predictions and validate the accuracy 

of the proposed computational methods. Initially, the standard FDTD scheme was 

implemented and shielding effectiveness ( S E )  predictions are performed for small 

conducting boxes with apertures. After successfully completing this task, the same 

numerical technique was used for S E  predictions of a simplified scaled model fuse- 

lage of rectangular cross section. Moreover, for the simplified scaled model fuselage, 

coupling of personal electronic devices was studied and predictions as well as mea- 

surements, were performed. Then a hybrid numerical technique was suggested which 

combines a higher - order FDTD scheme with the standard one. The new method 

was implemented and all the aforementioned problems were studied. In addition, 

reverberation chamber techniques, along with statistical and probabilistic methods, 

were developed to test the statistical properties of the electromagnetic field inside 

cavities. Since the field inside a complex cavity strongly depends on frequency, posi- 

tion, angle of incidence of the impinging wave and other parameters, the need for a 

different approach was recognized in order to better predict it. Both measurements 

and predictions were performed, and the resulting data were statistically processed 

and compared with probabilistic models provided by the theory of statistical electro- 

magnetics. Cumulative density function (CDF) plots are presented for field quantities 

in the fuselage, as well as for its SE.  

The structural documentation of this report is now outlined. In Chapter 2, the 

basic theory of the higher - order FDTD will be presented. The concepts of stability, 

as well as dispersion, will be defined and analyzed. The Perfectly Matched Layer 

ABC will be implemented in the context of the fourth - order FDTD, and its accu- 

racy will be verified through numerical experiments. Fourth - order FDTD will be 

applied initially to the analysis of two simple but interesting 3 - D problems, includ- 

ing array factor and cavity resonances computations. Then, FDTD(2,4) will be used 

for radiation pattern analysis. Boundary conditions in the context of higher - order 

schemes will be discussed, and their limitations and restrictions will be readily out- 

lined. These issues will be numerically examined through simulations of monopole 

antennas mounted on finite ground planes. Moreover, a hybrid technique of fourth - 

order FDTD, with the standard second - order FDTD, will be implemented following 

a subgrid formulation. The accuracy and efficiency of this new hybrid method will 



be verified and validated using again the analysis of coupling between two monopoles 

mounted on ground planes. The calculations of the hybrid method will be com- 

pared to measurements as well as to predictions using the standard second - order 

FDTD method. Finally, a second hybrid method will be formulated between subgrid 

FDTD (2,2) and FDTD (2,4) which provides significant computational savings when 

applied to the analysis of electrically large rectangular enclosures. 

In Chapter 3 the FDTD method is applied to antenna problems. Initially, an 

improved feed model for thin - wire antennas will be examined, and i t  will be com- 

pared with the delta - gap feed model. Furthermore, the discrete Fourier transform 

(DFT) will be compared to the fast Fourier transform (FFT) in the context of the 

FDTD method. Then, cavity - backed slot ('CBS) antennas will be analyzed. FDTD 

will be used to predict various antenna characteristics of such antennas, such as input 

impedance, coupling, and radiation patterns. Different coupling reduction techniques, 

such as inclusion of lossy material superstrates, ground plane discontinuities (slits), 

and disorientation of the elements, will be introduced and compared. Certain corn- 
' putational difficulties concerning the simulation of CBS antennas will be addressed 

and resolved in the context of FDTD. 

In Chapter 4, the penetration of High Intensity Radiated Fields (HIRF) into 

conducting enclosures via apertures will be presented. The FDTD method will be used 

to predict the shielding effectiveness of conducting enclosures with apertures. Several 

techniques that speed the simulation of highly resonant and high quality factor (high - 

Q) structures, such as windowing and acceleration techniques, will also be introduced 

and applied. Also, the penetration through a scaled model fuselage will be examined 

and simulated by the standard FDTD(2,2) and the hybrid of subgrid FDTD(2,2) and 

FDTD(2,4), Finally, the coupling generated by on - board personal electronic devices 

(PEDs) will be analyzed by both methods. In Chapter 5 the penetration through a 

circular cross - section scaled model fuselage will be examined. Measurements were 

performed, and they are compared with FDTD predictions. 

In Chapter 6, a statistical approach for the HIRF penetration problem will be 

presented, As mentioned previously, field penetration and SE of aircraft are issues 

of great importance. Previous studies and experience have shown that in order to 

properly investigate this problem, its statistical nature should be taken into account. 



Therefore a statistical approach is used that utilizes a reverberation chamber tech- 

nique. A reverberation chamber is a measurement facility within which the field is 

uniformly and isotropically distributed. In order to achieve such field conditions, a 

rotatable scatterer, referred to as mode - stirrer, is used. The role of the mode - stirrer 

is to perturb the existing modes in the chamber and give the field a stochastic nature. 

Therefore a mode - stirrer was constructed and installed in the scaled model fuselage. 

Measurements were performed for different mode - stirrer orientations, and the field 

was probed in various locations in the fuselage. The collected data was statistically 

processed and its statistical properties was compared with the theoretical expected 

. ones. Moreover, basic statistical analysis was performed where the maximum and 

mean values of the field over all stirrer positions were plotted versus frequency. Also 

several aspects of reverberation chamber theory will be presented, and an overview 

of their principles of operation will be given. 

In Chapter 7, an additional statistical approach (different from that of Chapter 6) 

to the HIRF penetration problem is presented. This approach is based on the work 

of Price and Davis [5] who state that the power received by a dipole antenna located 

within an overmoded cavity will be distributed exponentially. This exponential power 

distribution occurs when either the frequency is swept while the location of the dipole 

antenna is fixed, or when the frequency is held constant and the dipole is translated 

in position. An improvement on this rigorous theory of exponential power distribu- 

tion within overmoded cavities, developed by Lehman [6], is briefly discussed. The 

Price and Lehman approaches are applied to the "Simplified Fuselage" scale model 

geometry as a function of frequency for the four monopoIe observation points. These 

predicted power distributions compare well with the measured data. 

Finally, in Chapter 8 the frequency stirring technique is presented which is an 

alternate to mechanically stirred reverberation chambers. The technique's theoretical 

principles are presented while afterwards it is applied for the excitation initially of 

a 2-D and then a 3-D cavity. The statistical properties of the electromagnetic field 

inside the cavity are calculated and compared with those of a reverberation chamber. 



Chapter 2 

Fourth-Order Finite-Difference 
Time-Domain 

I. Introduction 

The technological advancements of the last few decades have triggered new engi- 

neering problems and challenges. With the clock speed of all electronic equipment 

increasing, communication systems operate at higher frequencies. Therefore, the an- 

tenna elements become smaller whereas the platforms they operate on, e.g., helicopter 

airframes, become electrically larger. These problems yield large computational do- 

mains and require s igdcan t  computational resources, such as memory and execu- 

tion time. Traditional finite methods (FDTD and FEM) are second-order accurate, 

thereby restricting the size of the domains that can be handled efficiently. 

The standard FDTD method was introduced by Yee [7] in 1966. The classical 

FDTD method as proposed by Yee [7] is second-order accurate both in time and 

space [FDTD(2,2)] thereby requiring many grid points per wavelength to accurately 

model the wave propagation. The FDTD method, as is typical for discrete methods, 

is dispersive; the phase velocity on the FDTD grid is not the same as the phase 

velocity of the physical continuous problem. In order to  reduce dispersion errors, a 

finer discretization is required. On the other hand, finer discretizations demand larger 

memory and increased computational time, thereby restricting yet further the prob- 

lems that can be solved. Consequently, mesh refinement is not an efficient solution 

and sometimes is not even possible. 

Numerous attempts have been made in the field of FDTD research to minimize 



phase errors [8]-[lo]. One of the most promising approaches is based on higher-order 

accuracy schemes [Ill-[17]. Such schemes theoretically exhibit lower dispersion errors 

and can utilize coarser grids as compared to those needed to achieve comparable 

levels of accuracy with a second-order scheme. Moreover, coarser meshes yield smaller 

computational spaces, reduced computational times and require less computational 

resources. Thus, ideally, the implementation of higher-order FDTD schemes will 

enable the efficient analysis of electrically larger problems. 

In this chapter, the theory of FDTD is presented for both second- and fourth-order 

accurate schemes. Their different characteristics, such as dispersion and stability are 

described and compared. The accuracy of the different FDTD schemes is initially 

examined through numerical experiments in one-dimensional (1-D) domains. Then, 

the implementation of absorbing boundary conditions, such as the Perfectly Matched 

Layer (PML), is implemented in the context of a fourth-order accurate FDTD method. 

Furthermore, fourth-order FDTD is applied in 3-D problems including, array analysis, 

cavity resonances and radiation pattern computations, and its accuracy is compared 

to the accuracy of the second-order FDTD. The limitations of fourth-order FDTD 

related to boundary conditions, and thin geometric features are discussed through 

simulations of coupling analysis between two monopole antennas mounted on ground 

planes. 

A hybrid technique of fourth-order FDTD with the standard second-order FDTD 

is implemented following a subgrid formulation. The accuracy and efficiency of this 

new hybrid method is verified, and validated using again the analysis of coupling 

between two monopoles mounted on ground planes. The calculations of the hybrid 

method are compared to measurements as well as results of the standard second-order 

FDTD method. 

Finally, the reverse hybrid of the subgrid FDTD(2,2) with the FDTD(2,4) is for- 

mulated to accommodate simulations of electrically large rectangular boxes. It is 

shown that this new hybrid yields significant memory and/or time savings when ap- 

plied to shielding effectiveness analysis of large fuselages. 



11. Basic Principles 

The relations and variations of the electric and magnetic fields, charges and currents 

associated with electromagnetic waves are governed by physical laws, which are known 

as Maxwell's equations. These equations can be written either in differential or in 

integral form. For a source-free region, the differential form of Maxwell's equations 

can be written as 

where E is the electric field intensity in (volts/meter), H is the magnetic field intensity 

in (amperes/meter), D is the electric flux density in (coulombs/square meter), B 

is the magnetic flux density in (webers/square meter), J is the conduction electric 

current density in (arnperes/square meter), M is the conduction magnetic current 

density in (volts/square meter). I t  should be pointed out that a complete description 

of the fields at  any point (including the discontinuities) at  any time requires not only 

Maxwell" equations in differential form but also the associated boundary conditions. 

The integral form of Maxwell's equations for a source-free region can be written 

as 



In materials with constitutive parameters that are independent of time the electric 

and magnetic flux densities D and B can be related to the electric and magnetic field 

intensities E and H, respectively, using the constitutive relations 

where c is the electrical permittivity in (faradlmeter) and p is the magnetic perme- 

ability in (henrieslmeter). Furthermore, the conduction electric current density J and 

the conduction magnetic current density M are related to the electric and magnetic 

intensities E and H, respectively, using the constitutive relations 

where u is the electrical conductivity in (siemenslmeter) and p is the magnetic 

resistivity in (ohmslmeter). Substituting (2.9)-(2.12) into the differential form of 

Maxwell's equations (2.1) and (2.2), the following two equations are obtained 

Assuming that c ,  p,  u and p are linear and isotropic, (2.13) and (2.14) can be 

written as a system of six coupled scalar equations in Cartesian coordinates as follows: 



The system of six coupled partial differential equations of (2.15)-(2.20) forms the 

basis of the FDTD algorithm for solving problems of electromagnetic wave interactions 

in the three-dimensional (3-D) space. Notice that the FDTD algorithm need not 

explicitly enforce the Gauss's Law relations indicating zero free electric and magnetic 

charge, (2.3) and (2.4), as these relations are theoretically a direct consequence of the 

curl equations (2.1) and (2.2). 

111. FDTD Schemes 

FDTD methods attempt to solve the differential form of Maxwell's equations and 

therefore their implementation consists of finite-difference (FD) approximations to 

spatial and time derivatives. Consequently, the accuracy. of FDTD solutions depends 

on the accuracy of the FD schemes that are used. FD stencils appeared initially 

in the field of mathematics and numerous schemes have been examined exhibiting 

their own advantages and disadvantages. In this section two schemes are considered; 

the standard second-order FD scheme both in time and space [FDTD(2,2)] and the 

second-order in time and fourth-order in space scheme [FDTD(2,4)]. The character- 

istics of the two schemes are presented and compared. 

A. The FDTD(2,2) scheme 

In 1966, Kane Yee presented a set of finite difference equations for the system of 

Maxwell's curl equations for lossless materials [7]. Yee introduced the following no- 

tation for a function of space and time on a Cartesian grid 

F(x,  y, x, t) = F(iAx, jAy, kAx, nAt) = Fn(i ,  j, k) 



where Ax, Ay and Az are the grid sizes in the x, y and z directions, respectively; At 

is the time increment; and i, j ,  k and n are integers. Yee used central finite difference 

expressions for the space and time derivatives that are second-order accurate in space 

and time, respectively: 

FD schemes are commonly visualized using the so called computational molecules. 

The computational molecule corresponding to the second-order central FD of (2.22) 

or (2.23) is illustrated in Fig. 2.1. 

Figure 2.1: Computational molecule of a central second-order FD stencil. 

A representative unit cell of Yee's algorithm with the positions of several field 

components is illustrated in Fig. 2.2. The electric and magnetic components are 

staggered by half-ceIl dimension in each direction within the grid. A similar stagger- 

ing is applied in time. The electric field components are evaluated at  integer time 

steps, nAt, and the magnetic field components at (n + 1/2)At time steps (leapfrog 

algorithm). Moreover, in order to be able to implement the leapfrog algorithm, Yee 

utilized the following time averaging scheme: 

~ ~ + ' ( i ,  j, k) + Fn(i, j, k) 
Fn+f (i, j, k) = 

2 

B. The FDTD(2,4) scheme 

More accurate approximations to derivatives are provided by higher order FD sche- 

mes. Here a second-order in time and fourth-order in space scheme [FDTD(2,4)] is 

described. In this scheme the positions of the electric and magnetic field components 

remain the same with the ones of the FDTD(2,2) scheme. The FDTD(2,4) stencil 



uses central finite differences fourth-order accurate in space and second-order accurate 

in time, respectively: 

aF ( i , j , k )  - Fn+4 (i, j, k) - Fn-+ (i, j, k) + 0 (At2) 

The computational molecule of a central - fourth-order FD stencil corresponding to 

(2.25) is shown in Fig. 2.3. 

C .  Characteristics of the FDTD schemes 
--- 

Any FDTD scheme exhibits its own strengths and weaknesses. The order of accuracy 

of a scheme dominates its characteristics and is directly related to the numerical 



Figure 2.3: Computational molecule of a central fourth-order FD stencil. 

dispersion. Another important characteristic of a scheme is its stability criterion 

which defines the largest time-step that can be used in order for the scheme to be 

stable. Additionally, the memory requirements and computational cost of schemes 

are also used to evaluate their practicality. In the following subsections, the stability 

and the dispersion of the FDTD(2,2) and FDTD(2,4) schemes are described and 

compared. 

1. Numerical stability 

Finite-Difference schemes require that the time increment At has a specific bound 

relative to the spatial discretization, Ax, Ay and Az. This bound is necessary to 

prevent numerical instability, which is an undesirable feature of explicit differential 

equation schemes. Numerical instability can cause the computed results to spuriously 

increase without limit as time-stepping progresses thereby yielding meaningless solu- 

tions. It should be pointed out that many implicit schemes are stable for any choice 

of time-step which is a very advantageous feature. 

An investigation of the numerical stability of Yee's algorithm [FDTD(2,2)] was 

initially presented in [18] and detailed afterwards in [19]. The stability analysis is 

based upon finding the Fourier numerical modes in the grid for both the electric 

and magnetic field components and requiring that each Fourier mode is stable for 

arbitrary angles of propagation through the mesh. Enforcing the stability in the 3-D 

FDTD(2,2) algorithm provides the following constraint on the algorithm's time-step, 

relative to the space grid increments 

where c = 1/m is the speed of light in the homogeneous material being modeled. 

For a uniform grid with equal cell size in all dimensions (Ax = Ay = Az = A),  (2.27) 



reduces to 

The stability criterion for the FDTD(2,4) scheme was derived by Fang [13] who 

based his formulations on the Von Neumann analysis suitable for systems of equations 

and multi-step schemes. This analysis requires the eigenvalues of the amplification 

matrix to be bounded. However, this is only a necessary but not sufficient condition 

for stability. A necessary and sufficient condition for stability is that the norm of 

the amplification matrix is bounded. Therefore, after a stability constraint has been 

obtained by the eigenvalue analysis, it should be checked if the norm of the amplifi- 

cation matrix remains bounded under the same constraint. The stability constraint 

for the FDTD(2,4) scheme derived by Fang is: 

It is apparent that the stability criterion of FDTD(2,4) is more constraining than 

the one of FDTD(2,2). For a uniform grid with equal cell size in all dimensions 

(Ax = Ay = Az = A),  (2.29) becomes 

2. Numerical dispersion 

Numerical algorithms that solve Maxwell's equations using finite-difference approx- 

imations cause dispersion of the simulated wave modes in the computational mesh. 

This dispersion phenomenon originates from the deviation of the phase velocity of the 

numerical wave modes in the FDTD grid from the speed of light in vacuum, in terms 

of wavelength, direction of propagation, and grid discretization. As Taflove suggests 

in [19] "A useful way to view this phenomenon is that the FDTD algorithm effectively 

embeds the electromagnetic wave interaction structure of interest in a tenuous 'numer- 

ical aether' having a permittivity very close to vacuum, but not quite. This 'aether' 

causes propagating waves to accumulate delay or phase errors that can lead to non- 

physical results, such as broadening and ringing of single-pulse waveforms, imprecise 



cancellation of multiple scattered waves, spurious anisotropy, and pseudo-refraction". 

Furthermore, different wave components propagate at different velocities inside the 

numerical domain, and hence the wave is dispersed. Therefore, numerical dispersion 

is an important factor in FDTD modeling that should be taken into account, espe- 

cially for electrically large structures where the accumulation of phase errors can be 

significant. The dispersion characteristic of the FDTD algorithm is readily analyzed 

in [19] and involves the substitution of monochromatic traveling-wave trial solutions 

into the finite-difference equations. This procedure yields an equation that relates 

the numerical wave-vector components, the wave frequency, and the grid space in- 

crements. This equation is usually referred to as the numerical dispersion relation. 

In this subsection the dispersion characteristics of FDTD(2,2) and FDTD(2,4) are 

examined and compared. 

The dispersion equation for FDTD(2,2) was derived in [19] as 

To quantitatively assess the dependence of numerical dispersion upon the FDTD 

grid discretization, Taflove [19] examined a two-dimensional (2-D) TM mode, assum- 

ing for simplicity square cells (Ax = Ay = 6 )  and wave propagation at an angle 0 

with respect to the positive x-axis (k, = kcos8; k ,  = ksin0). The numerical dispersion 

relation in this case simplifies to 

where c is the speed of light in vacuum. Using Newton's method iterative procedure, 

(2.32) can be solved for the wave-vector k at any wave propagation angle 8: 

where ki+l is the improved estimate of k ,  ki is the previous estimate of k, and A, B 

and C are coefficients determined by the wave propagation angle and the FDTD grid 1 



discretization: 

Assuming that the numerical stability criterion, cAt = 612, is used and that the 

wavelength is set to 1 meter, X = 1 m, (2.33) can be used to quantify the numerical 

dispersion. For this case, the normalized numerical phase velocity v, is given by 

where / I f inal  is the final result of Newton's method iterations. Fig. 2.4 shows the 

numerical phase velocity relative to the speed of light in the vacuum versus the 

propagation angle of a plane wave traveling in a 2-D FDTD(2,2) mesh. Evidently, 

the numerical phase velocity is always less than c and the error decreases as the 

discretization becomes finer. 

The dispersion equation for FDTD(2,4) was derived by Fang [13] as 

w At 1 2 [& sin (T)] = (&) [I sin (e) - sin (?)I 
~ , A Y  1 Slc,AY 

2 

+ (&) [ f sin (T) - 24 sin (1)] 
1 + (b; ) [ f .in ( F) - zn sin (?)I ' (2.36) 

Following a similar approach as illustrated before for FDTD(2,2), the numerical 

phase velocity of FDTD(2,4) can be accessed for a 2-D lattice. By choosing the same 

parameters as for FDTD(2,2) ( cAt = 6/2 and X = 1 m ), (2.36) can be solved to 

obtain the numerical phase velocity. Fig. 2.5 shows the computed phase velocity for a 

2-D FDTD(2,4) grid. Fig. 2.6 also illustrates a comparison between the errors in the 

numerical phase velocities of FDTD(2,2) and FDTD(2,4). It is observed, as expected, 

that FDTD(2,4) exhibits substantially reduced dispersion compared to FDTD(2,2). 

Therefore, FDTD(2,4) can be used to accurately model electrically larger domains 

than the ones that can be simulated by FDTD(2,2). Another interesting observation 



1.0 

'3 

3 0.99 
s + . - 
0 

2 0.98 

9 
a 
z 0.97 
A 
PC 

0.96 
.d H 

i 2 0.95 
z 

0.94 
0 10 20 30 40 50 60 70 80 90 

Wave angle, 0, in degrees 
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Figure 2.5: Variation of the numerical phase velocity versus the propagation angle of 
a plane wave for FDTD (2,4). 
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based on Figs. 2.4 and 2.5 is that the numerical phase velocity varies with the angle 

of wave propagation thereby generating a numerical anisotropy which is an inherent 

characteristic of the FD schemes. 



IV. FDTD(2,4) in 1-D Domains 

In this section, numerical experiments are performed in one-dimensional domains 

using FDTD(2,2) and FDTD(2,4) in order to qualitatively access the performance 

characteristics of FDTD(2,4) and compare them with the ones of FDTD(2,2). All the 

H H H H H Y Y Y Y  Y  
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! ! ! ! E ... ....... ......... ........ X 

Figure 2.7: Grid for a 1-D T M z  mode. 

simulations presented here are solving the 1-D T M Z  mode (see Fig. 2.7), and the time- 

step for both FDTD(2,2) and FDTD(2,4) computations is chosen such that cAt = 6/2 

(Ax = Ay = 6). The time-step in the case of FDTD(2,2) was not chosen to be equal 

to the upper limit of the Courant stability criterion because it would correspond to 

the "magic" time-step, and therefore it would yield results equal to the exact solution. 

Initially, the 1-D lattice was excited by a sinusoidal wave a t  the left boundary and was 

terminated using the perfectly matched layer (PML) absorbing boundary condition a t  

the right boundary, The computational domain was twenty wavelengths long (20X). 

Both the FDTD(2,2) and FDTD(2,4) schemes were used t o  analyze this problem and 

the results are compared with the exact solution a t  the last 2X portion of the domain 

in Fig. 2.8. The discretization for both schemes was Ax/10. It  is apparent that the 

phase errors due to dispersion have severely affected the accuracy of the FDTD(2,2) 

computations whereas these errors are still reasonable for the FDTD(2,4) calculations 

considering that the wave has traveled 20 wavelengths through the numerical lattice. 

Also, notice that the FDTD(2,2) predictions are behind the exact solution whereas 

the FDTD(2,4) are ahead of it. Therefore, both predictions are not dispersed since in 

1-D domains the waves propagate only a t  one angle exhibiting no numerical dispersive 

anisotropies. 
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Figure 2.9: Field components around a PEC discontinuity. 



Another important concern related to the performance of FDTD(2,4) is its accu- 

racy in the modeling of discontinuities. Here, two types of discontinuities are exam- 

ined, a perfect electric conductor (PEC) and a dielectric discontinuity, respectively. 

The FDTD(2,4) is expected to fail to accurately model infinitesimally thin PEC films. 

This can be seen in Fig. 2.9 where a 1-D grid is shown with a PEC plane separating 

two regions of free space. The fields on one side of the PEC plane when updated using 

the FDTD(2,4) stencil will couple to the fields on the other side of the plane. This is 

illustrated graphically in Fig. 2.9 for one of the E, components (doubly underlined in 

the figure) located on the left of the PEC plane. This E, component is updated using 

the H, components which are inscribed in a box. It is clearly seen that the stencil 

reaches across the PEC boundary and therefore coupling occurs from one side of the 

PEC boundary to the other. Such coupling is not physical and should not happen for 

a PEC boundary. To investigate numerically this characteristic of FDTD(2,4), a 1-D 

TM mode was again used. The 1-D domain was excited at  the left boundary using a 

Gaussian pulse and was terminated with PML on the right boundary. Also, a PEC 

boundary with no thickness was placed at the  enter of the domain by forcing the 

tangential electric field, E,, to be zero. The pulse initially propagates to the right [see 

Fig. 2.10(a)] until it hits the PEC boundary and is reflected back [see Fig. 2.10(b)]. 

Notice though that the pulse was able to "penetrate" through the PEC plane and the 

fields on the right of the boundary are not zero as they should ideally have been (the 

maximum of the E, field at the right of the PEC boundary was 1% of the maximum 

of the excitation pulse). This agrees with what was discussed above and is due to 

the length of the FDTD(2,4) stencil. Two ways to overcome this problem were ex- 

amined. The first one implements a PEC boundary one-cell thick whereas the second 

one uses image theory to modify the FDTD(2,4) stencil for the fields just beside the 

PEC. Both ways do not allow the fields from one side of the PEC plane to couple 

to the other and this was verified by the numerical computations (see Fig. 2.10(c) 

and 2.10(d), respectively). For details on the use of image theory implementation see 

Haussmann [20]. 

Another type of discontinuity occuring in electromagnetic problems is formed 

between different dielectric materials. To examine the accuracy of the FDTD(2,4) 

scheme around such discontinuities a 1-D domain was used. The left half of the 



Cell Number 

(4 
Cell Number 

PEC 

150 200 250 300 

Cell Number 

(c) 

Cell Number 

(dl 

Figure 2.10: 1-D simulation results: (a) propagating pulse, (b) PEC plane imple- 
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domain corresponded to free space and the right half corresponded to a dielectric 

material thereby creating a discontinuity at the center of the computational domain. 

Again a Gaussian pulse excited the right boundary of the domain and by using the 

reflected and transmitted pulses the numerical reflection and transmission coefficients 

were computed for both FDTD (2'2) and FDTD (2,4). These numerical coefficients 

were also compared to the theoretical values. By the results it was found that the 

accuracy of both schemes was very good and no scheme was particularlymore accurate 

than the other. A sample of the computations is illustrated in Fig. 2.11 were an instant 

of the reflected and transmitted waves are plotted for a dielectric material with E, = 9 
- for both schemes. Note that for' this case the theor~tical reflection and transmission 

coefficient are R = -0.5 and T = 0.5, respectively. 
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Figure 2.11: Dielectric discontinuity analysis: (a) FDTD(2'2) and (b) FDTD(2,4). 
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The FDTD method is based on a quite general formulation as it solves directly the 

differential form of Maxwell's equations, and it can treat arbitrary and elaborate 

problem. However, it should be kept in mind that for a partial differential equation 

(PDE) problem to be well posed an appropriate number of boundary and initial 

conditions need to be specified. This is usually stated in electromagnetic textbooks as 

the requirement of both the Maxwell's equations in differential form and the boundary 

and initial conditions in order to completely describe the fields in a region. In the 
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context of electromagnetic principles this is described by the uniqueness theorem 

that requires the specification of the tangential components of the electric, El or 

magnetic, H, field (or a combination of the two) over the boundary of a domain to 

. suffice a unique solution. Therefore, it becomes clear that the boundary conditions 

are an integral part of a PDE problem and should always accompany the FDTD 

formulation. This inflicts particular concerns when the problem under examination 

is a so called "open" space or unbounded problem , e.g., radiation, scattering, etc., 

meaning that the domain of interest is unbounded in one or more spatial coordinate 

directions. For such problems there are not any exact boundary conditions known. 

In addition, no computer can store an unlimited amount of data, and therefore, the 

computational domain should always be finite in size. 

The correct treatment of such problems is to simulate a computational domain 

large enough to enclose the structure of interest, and truncate it by applying ap- 

propriate artificial boundary conditions on the outer perimeter of the domain, which 

simulate its extension to infinity. These boundary conditions should allow the outward 

propagating wave to exit the domain and suppress spurious reflections of this wave 

to an acceptable level. Depending upon their theoretical basis, outer grid boundary 

conditions of this type have been called either radiation boundary conditions (RBCs) 

or absorbing boundary conditions (ABCs). Initially, ABCs were obtained by applying 

the theory of one-way wave equations derived by Engquist and Majda [21]. Mur [22] 

introduced one of the most popular ABCs for FDTD applications based on the work of 

Engquist and Majda. The major drawback of Mur's ABCs is that the computational 

boundaries must be placed sufficiently far from the sources of scattered waves so that 

the boundary conditions operate on outward propagating plane waves. For example, 

Mur's second-order ABCs generally require approximately one wavelength of compu- 

tational space on all sides of the radiator or scatterer to be accurate. Tirkas, Balanis 

and Renaut [23], based on the work of Lindman [24], Higdon [25], [26], Halpern and 

Trefethen [27], and Renaut and Petersen [28], presented a more accurate higher-order 

absorbing boundary condition (HOABC) which allows the size of the computational 

space from the radiating element or scatterer to be reduced from X to  X/4. 

Recently, a novel and pioneering ABC was introduced by Berenger [29], who used 

a non-physical absorbing (lossy) material adjacent to the computational boundary to 



truncate the domain, and he called this approach Perfectly Matched Layer (PML). 

This method is based upon splitting the electric and magnetic components in the 

PML region. The PML exhibits characteristics that permit electromagnetic waves 

of arbitrary frequency and angle of incidence to be absorbed while maintaining the 

impedance and velocity of a lossless dielectric. Berenger reported reflection coeffi- 

cients for PML in two dimensions significantly better than second- and third-order 

one-way wave equation (OWWE) based ABCs. The PML method was extended to 

three dimensions by Katz et al. [30], who verified that PML is at least 40 dB more 

accurate than second-order Mur ABCs. Andrew et al. [31] compared the PML to 

the HOABCs in both the time and frequency domains. Andrew et al. showed that 

PML significantly reduces reflections from the truncation of the computational grid 

when compared to 7th order Lindman ABCs. Also, higher-order ABCs were proven 

no better than 2nd order Mur ABCs at low frequencies. In the field of the Finite 

Element method (FEM) the PML truncation technique was initially implemented by 

Peke1 and Mittra [32], [33]. 

The initial PML based on the splitting of the field components was followed by 

formulations that properly characterize the PML as a uniaxial& anisotropic medium. 

These formulations were introduced by Sacks et al. [34] in FEM, and extended after- 

wards by Zhao and Cangellaris in [35], [36] and Gedney in [37], [38] in FDTD. They 

have the advantage that they can implement the perfectly matched layer in the FDTD 

scheme without splitting of the fields. The effectiveness of the anisotropic PML in 

FEM was examined by Polycarpou et al. [39], who later presented an optimized 

anisotropic PML for the analysis of microwave circuits [40]. 

As far as higher order FDTD schemes the PML was implemented for the standard 

fourth-order FDTD in [41], [42]. Also, the PML was used along with the modified 

FDTD(2,4) method to truncate both 2-D [17], [43] and 3-D lattices [20]. Here, the 

accuracy of the anisotropic PML technique is examined for both the FDTD(2,2) and 

FDTD(2,4) methods by examining 2-D as well as 3-D domains. 

A. Numerical experiments 

In this section, various numerical simulations are performed to  illustrate the effective- 

ness of PML and they are all based on the same procedure. To judge the effectiveness 



of the method, the procedure used here is the same as the one published in [44] and 

used in most papers introducing and discussing ABCs and consists of the following 

steps: 

a. A test domain !JT terminated by PML is excited a t  its center with a pulse and 

the solution is computed. 

b. A reference domain RR is also excited at its center with a pulse to provide us 

with a reference solution that is free of truncation errors. This is achieved by 

choosing domain RR large enough so that any reflections from its grid truncation 

are totally isolated from all points of comparison between the two solution 

domains. An example of such a configuration is shown in Fig. 2.12. 
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Test Boundary for local Error 

Figure 2.12: The two-dimensional computational domains for numerical testing of 
the effectiveness of PML. 

Then the local error of the computed field in !JT due to reflections from the PML is 

obtained by subtracting the field at any point within flT at a given time step, from 

the field at  the corresponding space-time point in CIR.  Here, the z-component of the 



magnetic field, Hz, is used to define the error 

where c ( i ,  j )  is the magnetic field component in the test domain and Hf(i, j )  
is the magnetic field component in the large reference domain QB. Furthermore, the 

global error was defined by Berenger [29] as the square of the L2 norm of the error as 

Here, the effectiveness of the PML is illustrated by using either the global error as 

defined in (2.38) or the Lw norm.of the error. Recall that the L2 and Lw norms are 

defined as follows for a vector x E Rn : 

In all the cases examined here the excitation is a pulse exhibiting very smooth 

transition to zero as used in [44] and defined as follows: 

a[10 - 15cos(wlf) + Gcos(wzJ) - cos(wsf)] f 5 1 
Hz(at center of domain) = 

0 7  

(2.41) 

where 

This pulse is often called compact smooth pulse and is shown in Fig. 2.13. 

Initially, a 2-D test domain, 100 x 50 cells long, is examined. A square cell is used 

with Ax = Ay = 0.015 meters and the time-step is chosen based to a relaxed stability 

criterion, At  = Ax/2c = 2.5 x 10-l1 sec, where c is the speed of light in vacuum. The 

test grid KIT is terminated by PML with theoretical reflection coefficient backed 

by PEC walls. Three different cases are considered. In the first case, the PML as 



Time (Nanoseconds) 

Figure 2.13: Compact smooth pulse. 

proposed by Berenger [29] is used to  truncate a grid of the FDTD(2,2) scheme. In 

the second and third cases, the anisotropic PML as proposed by Gedney [37] is used 

to  truncate the grid of the FDTD(2,2) and FDTD(2,4) schemes, respectively. The 

global error of the solution caused by the PML in these three cases is illustrated in 

Figs. 2.15 and 2.16, respectively. Evidently, the PML for the FDTD(2,2) scheme as 

proposed by Berenger performs equally well with the anisotropic PML formulated by 

Gedney for both the FDTD(2,2) and FDTD(2,4) schemes. 
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Figure 2.14: Global error in the 2-D test domain caused by the Berenger's PML for 
the FDTD(2'2) scheme. 



Figure 2.15: Global error in the 2-D test domain caused by the anisotropic PML for 
the FDTD(2,2) scheme. 
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Figure 2.16: Global error in the 2-D test domain caused by the anisotropic PML for 
the FDTD(2,4) scheme. 
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Figure 2.17: Global error in the 3-D test domain caused by the anisotropic PML for 
the FDTD(2,2) scheme. 
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Figure 2.18: Maximum error, LO", in the 3-D test domain caused by the anisotropic 
PML for the FDTD(2,2) scheme. 
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Figure 2.20: Maximum error, LW, in the 3-D test domain caused by the anisotropic 
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Furthermore, a 3-D domain test domain, 50 x 50 x 51 cells long, is considered. A 

square cell is used with Ax = Ay = Az = 0.015 meters and the time-step is chosen 

based t o  a relaxed stability criterion, At = Ax/3c sec, where c is the speed of light in 

vacuum. The test grid QT is terminated by PML with theoretical reflection coefficient 

backed by PEC walls. The anisotropic PML again is used to truncate the 

computational domain for both the FDTD(2,Z) and FDTD(2,4) stencils. The global 

error [defined by (2.38)] and the maximum norm of the error [defined by (2.39)] caused 

by the PML on either the FDTD(2,2) or FDTD(2,4) domain are shown in Figs. 2.17- 

2.20. These figures illustrate clearly that the anisotropic PML provides an effective 

termination of an FDTD computational domain for both schemes. Also, it should 

be pointed out that in some of the curves the error of the PML increases a t  certain 

time-steps. This can be attributed to the formation of standing waves between the 

PML truncation and the source. This explanation is supported by the observation 

that the error does not increase in time for all different numbers of PML layers. 

VI. Applications 

Here, the FDTD(2,4) scheme, which is second-order accurate in time and fourth-order 

accurate in space, is initially applied in the analysis of two simple 3-D problems of 

practical interest. The first problem, although simplified to  illustrate the principle, 

consists of the pattern computation of an array whereas the second problem involves 

the calculation of the resonances of a rectangular cavity. Then, FDTD(2,4) is applied 

in radiation pattern analysis of monopoles on helicopter airframes as well as rectangu- 

lar boxes. The accuracy of FDTD(2,4) is compared with the accuracy of FDTD(2,2) 

and measurements. 

A. Array factor 

In this section, an array consisting of two x-oriented current filaments, J,, is con- 

sidered. The geometry configuration is illustrated in Fig. 2.21. The phase difference 

between the two currents is set to zero, whereas their separation distance d is chosen 

according to  the following equation: 



Figure 2.21: Geometry of an array formed by two current elements positioned along 
the x-axis. 

in order for the array to exhibit nulls toward 8 = 0" and 8 = 180". From basic 

antenna theory it  is well known that the total far-zone field of an array of identical 

elements, neglecting coupling, is equal to the product of the field of a single element 

and the array factor of that array [45]. However, in our example the array pattern 

on the yz-plane is solely determined by the array factor because the two current 

elements J, have omni-directional yz-plane pattern. The pattern of our two-element 

array is computed using both the FDTD(2,2) as well as the FDTD(2,4) schemes. 

In all numerical simulations a cell size of A = XI10 is used. The accuracy of the 

finite difference calculations (FD) is affected by the phase errors which are inherent 

in all FD stencils. These phase errors are expected to significantly affect the pattern 

computations of our example in particular toward 8 = 0" and 8 = 180" due to two 

reasons: 

The array factor exhibits nulls toward these directions. 

a The phase difference between two waves emanating from the two current ele- 

ments is larger toward these directions. 



Array pattern computations were performed for three different element separation 

distances: (a) d = 5.5X1 (b) d = 10.5X1 and (c) d = 20.5X. The numerical pattern 

computations of both FDTD(2,2) and FDTD(2,4) are compared with the analytical 

calculations of the array factor in Figs. 2.22-2.24. It is apparent that toward 0 = 

0' and 9 = 180' the pattern accuracy is significantly affected by the phase errors 

especially for the FDTD(2,2) computations. In the case where the distance d between 

the two elements is equal to d = 5.5X the pattern calculated by FDTD(2,2) exhibits 

a peak of -17 dB toward zenith instead of a null (see Fig. 2.22). On the contrary 

the pattern calculated by FDTD(2,4) exhibits a null of -32 dB and is in excellent 

agreement with the analytical results (see Fig. 2.22). In the same way for d = 10.5X 

and toward zenith, the pattern computed by: (a) FDTD(2,2) has a peak of -14 dB, 

and (b) FDTD(2,4) has a null of -30 dB (see Fig. 2.23). Finally, for d = 20.5X 

and toward zenith, the pattern computed by: (a) FDTD(2,2) has a peak of -13 dB, 

and (b) FDTD(2,4) has a peak of -24 dB (see Fig. 2.24). Considering all the 

Analytical 

Figure 2.22: Distance d = 5.5X. Toward zenith: (a) FDTD(2,2) -17 dB, (b) 
FDTD(2,4) -32 dB. 

comparisons between the two FD methods, FDTD(2,2) and FDTD(2,4), and the 

analytical results, it can be concluded that FDTD(2,4) provided excellent accuracy 



Figure 2.23: Distance d = 10.5X. Toward zenith: (a) FDTD(2,2) -14 dB, (b) 
FDTD(2,4) -30 dB. 
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Figure 2.24: Distance d = 20.5X. Toward zenith: (a) FDTD(2,2) -13 dB, (b) 
FDTD(2,4) -24 dB. 



and outperformed FDTD(2,2). The phase errors of FDTD(2,2) are larger than the 

ones of FDTD(2,4) and contribute to the unsatisfactory accuracy of the FDTD(2,2) 

computations. Furthermore, FDTD(2,4) required reduced computational time and 

memory compared to the ones needed by FDTD(2,2) to achieve satisfactory accuracy. 

B. Resonances of a rectangular cavity 

In this section, the resonances of a rectangular cavity are analyzed. The dimensions 

of the cavity are 1 m x 1 m x 1 m. Both FDTD(2,2) and FDTD(2,4) are used 

in the numerical analysis. The resonances are computed by exciting the cavity at a 

point using all three components of the electric field and by Fourier transforming the 

time history of the electric field components at another point. The Fourier transform 

is performed using a discrete Fourier transform (DFT) of 1201 frequency points in 

the range 200-500 MHz yielding a frequency resolution of 0.25 MHz for all numerical 

simulations. Furthermore, the simulation time is t, = 3.656 ps and remains the same 

for all predictions by choosing appropriate number of time-steps. 

The FDTD(2,2) method used three different cell sizes of: (a) Ax = 100 mm or 

X/6 at 500 MHz, (b) Ax = 50 mm or X/12 at  500 MHz, and (c) Ax = 25 mm or 

XI24 at  500 MHz and the time-step was chosen according to the upper limit of the 

stability criterion: 

The computed results are illustrated in Figs. 2.25-2.27 for the three different dis- 

cretization~ and they are compared with the analytically calculated resonances of the 

cavity [46]. Obviously, the coarser mesh of Ax = 100 mrn (or X/6 at  500 MHz)  was 

not able to accurately resolve the resonances of the cavity. Then the finer discretiza- 

tion of Ax = 50 mm (or XI12 at 500 MHz) provides predictions of very good accuracy 

in the lower frequency band and of poor accuracy in the higher frequency band. Fi- 

nally, the finest mesh of Ax = 25 mm (or XI24 at  500 MHz) gives results that exhibit 

excellent agreement with the analytical computations in the entire frequency range. 

In addition, FDTD(2,4) used a cell size of Ax = 100 mm or X/6 at 500 MHz, and 

the time-step was chosen to be smaller than the upper limit of the stability criterion 



Figure 2.25: Resonances of a rectangular cavity predicted using FDTD(2,2) with a 
cell size of 100 mm. 



Figure 2.26: Resonances of a rectangular cavity predicted using FDTD(2,2) with a 
cell size of 50 mm. 



Figure 2.27: Resonances of a rectangular cavity predicted using FDTD(2,2) with a 
cell size of 25 mm. 

Figure 2.28: Resonances of a rectangular cavity predicted using FDTD(2,4) with a 
cell size of 100 mm. 



in order to reduce errors related to time-derivative computations. Specifically, it 

was chosen to be approximately three times smaller than the upper limit of (2.45) 

In this example, where the excitation consists of a Gaussian pulse which varies 

rapidly in time, time-differentiation can introduce large errors. Using a smaller time- 

step than the upper limit of (2.45) was found necessary in order to retain the higher 

accuracy of the FDTD(2,4) stencil, which is fourth-order accurate in space but only 

second-order accurate in time. The numerical calculations from this simulation are 

shown in Fig. 2.28, and they agree very well with the analytical results. 

In summary, it is shown that the fourth-order stencil, FDTD(2,4) provides ex- 

cellent accuracy using a cell size of Ax = 100 mm or XI6 a t  500 MHz, whereas 

the traditional second-order accurate FDTD(2,2) requires 4 times smaller cell size 

(Ax = 25 mm or XI24 at 500 MHz) in order to  accurately resolve all the cavity res- 

onances. Therefore, FDTD(2,4) required reduced computational time and memory 

compared to the ones needed by FDTD(2,2) to achieve satisfactory accuracy. 

C. Radiation pattern analysis 

Here, some radiation problems are examined in order to  investigate and illustrate 

possible advantages of FDTD (2,4) versus FDTD (2,2). Initially, the radiation pat- 

terns of a monopole antenna mounted on the tail of the NASA scale model helicopter 

are computed at 9.18 GHz. The NASA helicopter, which is sometimes called as 

Generic Advanced Attack Helicopter (GAAH), exhibits many common characteris- 

tics of operational full-scale helicopters. In addition, the NASA airframe represents 

approximately a 10:l scale model of full-scale helicopters. Therefore, it can be used 

along with appropriately scaled frequencies to perform scale measurements in an in- 

doors anechoic chamber. Scale measurements are more convenient and cheaper than 

full scale measurements, but their main drawback consists of the difficulty to build 

accurate scaled geometries. However, scale model measurements remain very useful 

as they can provide information about the radiation characteristics of candidate an- 

tennas on the operational helicopter. Moreover, the radiation patterns of a monopole 

antenna mounted on top of a rectangular box are calculated a t  2 GHz. Both problems 



are analyzed using either FDTD(2,4) or FDTD(2,2,) and the numerical results are 

compared with measurements. 

The first problem consists of a quarter-wavelength long monopole at  9.18 GHz, 

mounted on the tail of the NASA scale-model helicopter. The geometry is shown in 

Fig. 2.29. The principal radiation patterns of this monopole on the NASA helicopter 

were measured in the Electromagnetic Anechoic Chamber facility a t  Arizona State 

University. The physical length of the monopole was 8.17 mm (XI4 a t  9.18 GHz), the 

cell size was 4 mm (X/8) and the computational domain was 184 x 440 x 98 cells or 

21X x 51X x 1 1 X  long. Both FDTD(2,2) and FDTD(2,4) were used to  compute the 

principal plane patterns of the monopole. The numerical calculations are illustrated 

in Figs. 2.30-2.32, where the predicted yaw, roll, and pitch plane patterns are com- 

pared with measurements. Considering these computations, it seems that  FDTD(2,4) 

does not provide a significantly better accuracy than FDTD(2,2). The main reason 

for this is that the discretization errors of each method are mixed with staircasing 

errors. The artificial corners that have been created on the simulation geometry 

through staircasing become diffraction points that affect substantially the shape of 

the radiation patterns. This effect becomes more dominant a t  high frequencies, as 

the one used in this simulation. Through a closer examination of the results, it seems 

though that FDTD(2,4) exhibits a slightly better accuracy than FDTD(2,2). This 

improved accuracy of FDTD(2,4) can be observed, for example, on the yaw pattern 

calculations, and on the top, bottom and port side of the roll plane. 

Monopole 

Figure 2.29: Geometry of a monopole mounted on the tail of the NASA scale-model 
helicopter. 
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Figure 2.30: Yaw plane radiation patterns of a monopole mounted on the tail of the 
NASA scale-model helicopter at 9.18 GHz. 
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Figure 2.31: Roll plane radiation patterns of a monopole mounted on the tail of the 
NASA scale-model helicopter at 9.18 GHz. 
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Figure 2.32: Pitch plane radiation patterns of a monopole mounted on the tail of the 
NASA scale-model helicopter at 9.18 GHaS 



Because of the coexistence of discretization and staircasing errors in the previous 

example, it was not clear which method is more accurate. Therefore, another problem, 

which is free of staircasing errors, was chosen to be analyzed. This problem consists 

of a monopole mounted on a rectangular box of dimensions 1 l X  x 5X x 2X at 2 GHz 

(see Fig. 2.33). The physical length of the monopole was 60 mm (X/2.5), the cell size 

was chosen either 20 mm (X17.5) or 5 mm (X/30), and the computational domain was 

92 x 54 x 34 cells or 320 x 168 x 88, respectively. Both FDTD(2,2) and FDTD(2,4) were 

used to compute the principal plane patterns of the monopole. The FDTD(2,2) code 

was run for both cell sizes (20 mm and 5 mm) whereas the FDTD(2,4) code was run 

only for the coarser mesh (20 mm). The predictions of the simulation with the finer 

Figure 2.33: Geometry of a monopole mounted on a rectangular box. 

discretization (5 mm or ,4130) were used as a reference to determine the accuracy of all 

simulations performed with the coarser discretization (20 mm or X17.5). The results of 

FDTD(2,2) and FDTD(2,4) for the coarser mesh are compared in Figs. 2.34 and 2.35 

with the FDTD(2,2) predictions obtained for the finer mesh. From these figures, it is 

obvious that even with such a coarse discretization of X17.5, FDTD(2,4) still predicts 
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Figure 2.35: Pitch plane radiation patterns of a monopole mounted on a rectangular 
box at  2 GHz. 



very accurately all principal patterns, whereas FDTD(2,2) fails to predict some of the 

peaks and nulls in these patterns. This example clearly illustrates that FDTD(2,4) 

outperforms FDTD(2,2) in terms of accuracy. Furthermore, it is expected that as 

frequency increases, the accuracy of FDTD(2,2) will decline even further whereas 

FDTD(2,4) will still provide satisfactory results. Additional simulations at higher 

frequencies were not performed as it was impossible to run a fine enough mesh, such 

as XI30 at a frequency higher than 2 GHz with the available computational resources. 

In the future, measurements in the anechoie chamber may be performed at  higher 

frequencies in order to provide reference for comparison. 

VII . Boundary Conditions 

The modeling of complex structures introduces additional challenges in high-order 

FDTD for the correct formulations of boundary conditions (BCs) and discontinuities. 

Many different approaches for the treatment of boundary conditions have been pro- 

posed in the literature. Most of this work has appeared in the field of computational 

mathematics and physics. The common method of dealing with the two issues of BCs 

and discontinuities is to implement one-sided higher-order finite differences. However, 

such one-sided stencils cause instabilities which are usually very difficult to resolve. 

When boundary conditions are applied, there are two main numerical issues that 

have to be addressed; accuracy and stability. In [47], it was shown that in order to 

retain the formal accuracy of a higher-order scheme, boundary conditions should be 

implemented with either the same accuracy as the one of the interior scheme or at 

least one order less. For Cartesian meshes and for most problems, BCs that satisfy 

the overall accuracy of the interior scheme are usually possible to  derive. However, 

the difficulty is to derive high-order accurate and stable operators. 

When a problem is numerically solved, convergence of the numerical solution t o  the 

exact solution is desired. Lax's equivalence theorem states that a numerical scheme 

is convergent when it satisfies both stability as well as consistency for a well posed 

PDE. Time stability can be defined through two different approaches when dealing 

with time numerical integration of partial differential equations (PDEs). The first 

approach is described by the behavior of the numerical solution as the cell size Ax 

tends to zero for a fixed time T. This procedure defines stability in the classical sense. 



Classical stability is ensured when the Lax's equivalence theorem is satisfied, i.e., the 

numerical solution converges to the analytical solution as the cell size Ax tends to 

zero, and for a fixed time T. This stability definition not only does not exclude 

error growth in time but it  actually permits exponential growth of error in time. 

Therefore, this stability definition can be weak, and not ensure stability especially for 

long simulation times. The second stability definition addresses these issues, and is 

characterized by the behavior of the numerical solution for a fixed cell size Ax as the 

time T tends to infinity. This procedure defines stability in the s t r i c t  sense. Strict 

stability is achieved by requiring that for a fixed cell size Ax, all eigenvalues of the 

differential operator (which is a matrix) have a non-positive real part. Note that the 

stability of a scheme can be significantly influenced by the imposition of boundary 

conditions. 

Carpenter et al. [48] examined the stability characteristics of various compact 

fourth- and sixth-order spatial operators by applying the theory of Gustafsson, Kreiss 

and Sundstrom (G-K-S) [49]. It was shown that many higher-order schemes that are 

G-K-S stable (stable in the classical sense) are not stable in the strict sense. More- 

over, i t  was found later in [50] that most high-order schemes that were strictly stable 

for scalar problems, were unstable for systems of equations. A new method, for de- 

signing higher-order schemes stable both in the classical and the strict sense, was 

also proposed in [50]. This method uses the summation-by-parts (SAT) procedure 

to construct derivative operators that satisfy the summation-by-parts formula. For 

higher-order explicit formulations the work by Strand [51] was used, whereas for 

higher-order compact schemes a new methodology was derived. I t  was proven that 

compact schemes satisfying just the SAT formula are not necessarily strictly stable 

unless a specific procedure of imposing boundary conditions is followed. This ap- 

proach was recently generalized to two-dimensional problems in [52], [53]. Boundary 

conditions in the context of higher-order schemes have also been discussed in [54]-[56]. 

In [57] instabilities caused by one-sided high-order boundary conditions were re- 

solved by using an artificial dissipation. This approach of incorporating an artificial 

dissipation or viscosity is a common way of stabilizing higher-order schemes. In [58] a 

compact higher-order scheme was combined with boundary conditions implemented 

by one-sided differences, and a dissipative temporal integration method (Runge-Kutta 



fourth-order). In [59] the instabilities were eliminated through a filtering approach. 

Additionally, artificially dissipative schemes have been discussed in [60]-[63]. 

A method of dealing with 2-D material discontinuities was presented in [64]. Spe- 

cial one-sided difference operators were derived and applied to both metal and di- 

electric interfaces. However, the analysis was limited to one- and two-dimensional 

examples with metal and/or dielectric interfaces, and a 3-D free-space example. 

All methods that appeared in the papers discussed above, although promising, 

have not yet been verified for complex three-dimensional problems for which bound- 

ary conditions may be required not only on the external boundary of the computa- 

tional space but also in the interior of the domain. Their analysis was restricted to 

one- and two-dimensional free-space problems with boundary conditions needed only 

on the outer boundary of the domain. However, in most practical engineering prob- 

lems, imposition and treatment of boundary conditions is mainly needed inside the 

computational domain for both two- and three-dimensional problems. Such problems 

cannot be solved using methods that have already been proposed in the literature. 

In this section, some of the issues related to boundary conditions, and simulation 

of thin geometric features in the context of FDTD(2,4) are discussed. 

A. Problem definition 

To illustrate the accuracy of FDTD(2,4) in simulation of thin wires, a geometry of two 

monopole antennas mounted on a finite ground plane is analyzed. The specifications 

of the geometry are shown in Fig. 2.36, and the radius of the two monopoles is 

0.60325 mm. The distance between the two monopoles was set to 32 cm so that it 

would be electrical large at the frequencies of interest [i.e., 32 ern is approximately 21 

wavelengths (A) at 20 GHz]. 

The analysis of this geometry addresses two issues. The first issue relates to the 

capability and accuracy of FDTD(2,4) to simulate thin wires. Until today, there are 

not any available thin or subcell models derived for FDTD(2,4) that would be able to 

implement thin geometric features in the computational space. Moreover, the accu- 

racy of thin wire analysis, e.g., input impedance, coupling, etc., depends greatly on 

the radius of the wires under investigation. However, the radius of the wires cannot 

be taken into account in FDTD(2,4) unless higher-order thin wire models are devel- 
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Figure 2.36: Geometry of two monopoles on a ground plane. 

oped. The second issue, related to the analysis of the two monopoles, concerns the 

accuracy of coupling computations. Coupling represents the energy that is coupled 

from one wire to the other. The accuracy of coupling calculations greatly depends on 

the accuracy of simulating the wave propagation from one wire to the other. There- 

fore, it can be very challenging to accurately compute coupling between wires that 

are separated by electrically large distances due to errors from numerical dispersion. 

Especially, when using a low-order scheme, such as FDTD(2,2), dispersion errors can 

degrade the accuracy of the solutions, and provide inaccurate coupling computations. 

In the subsections that follow, the S-parameters of the monopoles illustrated in 

Fig. 2.36 are computed through different ways t o  address all these issues. Also, 

all FDTD (2,4) computations are compared with FDTD (2,2) calculations and mea- 

surements performed in the Electromagnetic Anechoic Chamber facility (EMAC) at 

Arizona State University (ASU). The S-parameters were computed by using the pro- 

cedure described in [65]. To speed the simulation times all sources used a internal 

resistance of 50 ohms [651. All following simulations use a cell size of 1.67 mm (or 

X/9 at  20 GHz). 

B. FDTD(2,4) 

In this subsection, the S-parameters of the monopoles illustrated in Fig. 2.36 are 

calculated using either FDTD(2,2) or FDTD(2,4). The radius of the monopoles is 

taken into account in the FDTD(2,2) simulations both along the wire (using a thin 



wire model) and the excitation (using a source based on the radial electric fields). The 

formulation of the thin wire model will be examined in detail in Chapter 3. However, 

the radius of the wires in the FDTD(2,4) computations are not implemented due to 

the lack of higher-order thin wire models. 

The results of FDTD(2,2) are illustrated in Figs. 2.37-2.43, and they are com- 

pared with the FDTD(2,4) computations, and measurements. Sll and S22  represent 

the reflection coefficients of the 6 mm and 4 mm long monopoles, respectively. S12 

represents the coupling between the two monopoles. The accuracy of Sll and S22 is 

governed by the modeling of each wire and the discretization near each wire. More- 

over, the accuracy -of S12 is governed by the accuracy of the FDTD stencil used to 

simulate the wave propagation from one element to  the other. Figs. 2.37-2.39 illus- 

trate the magnitude of the S-parameters, and Figs. 2.40-2.43 show their corresponding 

phase. It can be concluded that FDTD(2,4) predicted the resonances of Sll and SZ2 

more accurately that FDTD(2,2) due to its reduced dispersion. Also, the magnitude 

and the phase of coupling, i.e., S12, computed using FDTD(2,4) are more accurate 

than the ones calculated by FDTD (2,2). This was expected as FDTD(2,4) simulates 

the wave propagation from one wire to the other more accurately than FDTD(2,2). 

Next, the input impedance of the 6 mm long monopole is computed in order to see 

more clearly the effect of not simulating the radius of the wires in FDTD(2,4). This 

input impedance is represented by the Zll parameter, and it is calculated by con- 

verting the S-parameters to 2-parameters through the well known two-port network 

relations. Figs. 2.44 and 2.45 illustrate the input resistance and reactance of the 6 mm 

long monopole, respectively. I t  can be seen that the computations of FDTD(2,4) are 

not as accurate as the ones of FDTD(2,2). This is expected, since input impedance 

calculations depend strongly on the radius of the wires, and FDTD(2,4) did not sim- 

ulate the radius of the wires. However, FDTD(2,2) took into account the radius of 

the wires using a thin wire model thereby providing more accurate input impedance 

predictions. 



Figure 2.37: Sll of the 6 cm long monopole. 
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Figure 2.38: SZ2 of the 4 cm long monopole. 

Figure 2.39: Slz between the two monopoles. 
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Figure 2.40: Phase of Sll of the 6 cm long monopole. 

Figure 2.41: Phase of S22 of the 4 cm long monopole. 
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Figure 2.42: Phase of Slz between the two monopoles. 
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Figure 2.43: Phase of Slz between the two monopoles. 
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Figure 2.44: Input resistance of the 6 cm long monopole. 

Figure 2.45: Input reactance of the 6 cm long monopole. 



C .  FDTD(2,4) with thin wire model of FDTD(2,2) 

In this subsection, the S-parameters of the monopoles illustrated in Fig. 2.36 are again 

calculated using either FDTD(2,2) or FDTD(2,4). The radius of the monopoles is 

taken into account in the FDTD(2,2) simulations both along the wire (using a thin 

wire model) and the excitation (using a source based on the radial electric fields). 

Also, the radius of the wires is implemented in the FDTD(2,4) computations using 

the FDTD(2,2) thin wire model. 

The results of FDTD(2,2) are illustrated in Figs. 2.46-2.52, and they are compared 

with FDTD(2,4) and measurements. It can be concluded that using the FDTD(2,2) 

thin wire model in conjunction with FDTD(2,4) degrades the accuracy of FDTD(2,4) 

alone [compare Figs. 2.37-2.43, which correspond to the FDTD(2,4) without any 

thin wire model, with Figs. 2.46-2.52, which correspond to the FDTD(2,4) with the 

FDTD(2,2) thin wire model]. 

Figure 2.46: Sll of the 6 cm long monopole. 



Figure 2.47: S22 of the 4 cm long monopole. 

Figure 2.48: SB between the two monopoles. 
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Figure 2.49: Phase of Sn of the 6 cm long monopole. 
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Figure 2.50: Phase of SZ2 of the 4 cm long monopole. 
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Figure 2.51: Phase of Su between the two monopoles. 
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Figure 2.52: Phase of SI2 between the two monopoles. 
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When the FDTD(2,2) thin wire model is used dong with FDTD(2,4) the reso- 

nances of the monopoles, and their coupling, are not predicted as accurately as in 

FDTD(2,4) alone. Actually, the results of this hybrid resemble more the FDTD(2,2) 

computations. This accuracy degradation is due to the fact that the FDTD(2,2) thin 

wire model introduces second-order errors in the FDTD(2,4) solution. Therefore, it 

is seen that by using the FDTD(2,2) thin wire model combined with FDTD(2,4), the 

accuracy of the S-parameters is degraded. 

However, by using the FDTD(2,2) thin wire model combined with FDTD(2,4), 

it is expected that the accuracy of the FDTD(2,4) input impedance results should 

improve compared to the FDTD(2,4) with no consideration of the wires' radius. The 

new input impedance calculations of FDTD(2,4) are illustrated in Figs. 2.53 and 2.54. 

Apparently, the accuracy of the new FDTD(2,4) impedance computations [incorpo- 

rating the FDTD(2,2) thin wire model] is improved compared to the computations of 

the previous subsection (compare Figs. 2.44 and 2.45 with Figs. 2.53 and 2.54) 
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Figure 2.53: Input resistance of the 6 cm long monopole. 



Figure 2.54: Input reactance of the 6 cm long monopole. 

D. FDTD (2,4) with one-sided differences 

One-sided higher-order differences are incorporated in this subsection around each 

wire. All the different one-sided schemes that have been implemented during this 

research were found to be unstable. This finding is supported by the literature review 

of similar work that was discussed in the beginning of this section (Section VII.). 

Other papers that have appeared in the literature have encountered similar instability 

problems when one-sided differences were used. The instability issue stems from the 

interaction of the one-sided difference schemes with the central difference schemes, 

and it is usually difficult to resolve. It should be pointed out that stencils can generate 

parasitic solutions which can lead to instabilities when they are used in conjunction 

with other stencils. Such instabilities can still occur even when the parasitic solutions 

are damped for the individual stencils. Therefore, one-sided differences will not be 

pursued further during this research. 



E. Summary 

In the previous three subsections, FDTD(2,4) was applied to analyze the problem 

of two monopoles on a ground plane. Initially, FDTD(2,4) was applied alone with- 

out being able to simulate the radius of the wires. The S-parameters computed in 

this case by FDTD(2,4) were more accurate than FDTD(2,2). However, the input 

impedance FDTD(2,4) calculations were not as accurate as the ones of FDTD(2,2), 

since FDTD(2,4) did not simulate the radius of the wires. 

Then, FDTD(2,4) was combined with the FDTD(2,2) thin wire model and the 

S-parameters computed for this case were not as accurate as the ones that used 

only FDTD(2,4). In addition, the input impedance calculations exhibited improved 

accuracy in this case compared to the ones that used FDTD(2,4) alone. Basically, 

when FDTD(2,4) was combined with the FDTD(2,2) thin wire model, it provided 

results very similar to the calculations of FDTD(2,2) alone. This can be attributed 

to the fact that the FDTD(2,2) thin wire model is second-order accurate thereby 

degrading the accuracy of FDTD(2,4). 

Also, one-sided differences were applied around each wire, but they were found 

unstable. After long experimentation with various one-sided schemes, it was decided 

to pursue other ways to expand the capabilities of FDTD(2,4). 

In conclusion, it is clear that there is a need for a higher-order method that can 

simulate thin geometric features without loosing its high-order of accuracy. In the 

next section, a method that benefits from the advantages of both FDTD(2,2) and 
, . 

FDTD (2,4) is presented. 

VIII. Hybrid of FDTD (2,4) and Subgrid FDTD (2,2) 

The proposed approach in this section consists of combining a subgridding technique 

with a higher-order scheme. Subgridding techniques have been used in the past in 

the context of the standard FDTD. These methods divide the simulation space into 

two separate grids; a fine one and a coarse one. In [9] the first subgridding technique 

was introduced, and it required two separate FDTD calculations one for the fine and 

one for the coarse grid. Then, Kim et al., [66], derived a subgrid method with a 

4:l resolution such that only one simulation was needed. In 1991, Zivanovic et al., 



[67], developed a method that used a 2:l resolution, and implemented the coupling 

between coarse and fine region through time and space interpolations of both magnetic 

and electric fields. Also, they applied the homogeneous traveling wave equation to 

achieve matching between the coarse and the fine region with a 3:l ratio of cell sizes. A 
more efficient implementation of the approach presented in [67] was discussed in [68]. 

Finally, Chevalier et al. presented in 1691 a new subgridding technique that allows 

the boundary between the coarse and the fine grid to be located in an inhomogeneous 

dielectric region. Moreover, odd integer-cell ratios were used, e.g., 1:3, 1:5, 1:7, etc., 

so that the fields in the coarse and fine grids stay synchronized in time and collocated 

in space. The time and space arrangement of the fields in the fine and coarse domains 

for a 1:3 cell ratio are depicted graphically in Figs. 2.55 and 2.56 respectively. 

Here, the subgridding method of [69] is used in conjunction with the second-order 

accurate in time and fourth-order accurate in space FDTD(2,4). On the fine grid, 

the standard FDTD(2,2) is used to handle any of the fine features of the structure, 

whereas on the coarse grid FDTD(2,4) is used. Thus existing successfully-applied 

techniques in FDTD(2,2) for the incorporation of discontinuities, boundary condi- 

tions, and thin features are available for use on the fine grid. On the coarse mesh, 

away from phenomena associated with the complex structure, FDTD(2,4) is used to 

mainly simulate the wave propagation in homogeneous media. Following, this ap- 

proach, high accuracy is obtained both around fine geometric features, such as thin 

wires, thin slots, etc., as well as in the wave propagation which is simulated by a 

higher-order scheme, i.e., FDTD (2,4). 

A. Method 

The method developed here uses a modification of the subgridding technique of [69]. 

The boundary between the fine and the coarse grid is collocated with electric field 

components instead of magnetic field components. The ratio between the coarse and 

the fine grid cell sizes is chosen to be 1:3 as in [69]. A two-dimensional view of the 

grid is shown in Fig. 2.55. 

To make the method stable, the two types of weighting used in [69] are applied. 
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Figure 2.55: Two-dimensional view of the coarse and fine grids. 
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Figure 2.56: Respective locations in time of the electric and magnetic fields for both 
the coarse and the fine grids. 



First, the electric fields near the coarse-fine boundary are weighted as: 

where e2 is the weighted electric field value of the fine grid just adjacent to the coarse- 

fine grid boundary, ezf i , ,  and e3 are the fields computed by FDTD(2,2) in the fine grid, 

and El is the field computed by time and space interpolation of FDTD(2,4) fields on 

the coarse-fine grid boundary (see Fig. 2.57). The coefficients were empirically found 

in [69]. This type of weighting can be considered effectively as a smoothing of the 

electric field values when transitioning from the coarse to the fine domain. 

The second type of weighting that is used relates to the coarse grid magnetic field 

values adjacent to the coarse-fine domain boundary and inside the fine grid region 

(see Fig. 2.55). It is done using the following equations: 

Figure 2.57: Electric field e2 (near the boundary between the coarse and fine grids) 
that is linearly weighted. 



where the locations of H2 and h2 are illustrated in Fig. 2.55, and the subscripts coarse 

and jine correspond to the coarse and fine field values computed from FDTD(2,4) and 

FDTD (2,2), respectively. 

The time interpolation of the fine grid electric field values on the boundary is 

performed using the following third-order accurate relations: 

The respective locations in time of the electric and magnetic fields for both the coarse 

and the fine grids are shown in Fig. 2.56. 

Also, m order to ensure stability the Courant stability upper limit of the fourth- 

order FDTD was reduced by a factor of 1.25 as follows: 

A brief description of the procedure is given as follows (see also [69]): 

a. Apply FDTD(2,4) on all the main grid points (including the ones inside the fine 

grid) and obtain H"+'/~. 

b. Apply FDTD(2,2) on the fine grid to obtain hnf'l6. 

c. Apply FDTD(2,2) on the fine grid to obtain en+'I3. Update en+'I3 on the coarse- 

fine boundary using space and time interpolation. Apply (2.47) to weight en+'l3 

one cell inside the fine grid. 

d. Apply FDTD (2,2) on the fine grid to obtain hn+3/6. Use (2.48) and (2.49) to 

weight hnt3I6 and fIn+'I2 collocated one coarse grid cell into the fine domain. 

e. Update En+' at the coarse-he boundary using the obtained values for 

from step 4. 

f. Repeat step 3 to obtain e"+2/3, step 2 to obtain hnf5I6, and step 3 again to 

obtain en+'. Correct the coarse-fine grid boundary values of en+l using space 

interpolation of En+'. 



g. Transfer all fine grid e field values to the corresponding collocated coarse grid 

E field values. 

Capital letters E and H represent coarse grid field values, and small letters e and h 

represent fine grid field values. 

B. Results 

To illustrate the accuracy of the hybrid FDTD (2,4)-subgrid FDTD (2,2), the geometry 

of the two monopole antennas mounted on a b i t e  ground plane, shown in Fig. 2.36, 

is analyzed. 

Three test simulations were performed by using: 

a. FDTD(2,2) with a cell size of 4 mm (or approximately X/4 at 20 GHz), 

b. FDTD(2,2) with a cell size of 1.67 mm (or X/9 at 20 GHz), and 

c. The hybrid FDTD(2,4)-subgrid FDTD(2,2) with a coarse grid cell size of 4 mm 

(or approximately X/4 at  20 GHz) and a fine grid cell size 413 mm~1.334  mm 

(or XI11 at 20 GHz). 

These three simulations are labeled 1, 2, and 3 respectively. Notice that in simu- 

lation 3, a fine grid was applied around each wire and the rest of the space used 

a coarse grid. The fine grid extended two coarse grid cells (or six fine grid cells) 

around each wire. The radius of the monopoles was taken into account in all three 

simulations both along the wire (using a thin wire model) and the excitation (using a 

source based on the radial electric fields). The S-parameters were computed by using 

the procedure described in [65]. To speed the simulation times, all sources used an 

internal resistance of 50 ohms [65]. 

The results of the three simulations are illustrated in Figs. 2.58-2.60 where the 

S-parameters of the two monopoles are compared against measurements performed in 

the Electromagnetic Anechoic Chamber facility (EMAC) at Arizona State University 

(ASU). Sll and represent the reflection coefficients of the 6 cm and 4 cm long 

monopoles, respectively. Sa represents the coupling between the two monopoles. The 

accuracy of Sll and Sz2 is governed by the modeling of each wire and the discretization 



Figure 2.58: Sll of the 6 cm long monopole. 

Figure 2.59: SZ2 of the 4 cm long monopole. 
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Figure 2.60: Slz between the two monopoles. 

near each wire whereas the accuracy of SIS is governed by the accuracy of the FDTD 

stencil used to simulate the wave propagation from one element to  the other. 

All S-parameter computations of simuIation 1 [FDTD(2,2) with Aa: = 4 mm] do 

not agree well with the measurements due to the poor discretization (only X/4 at 

20 GHz). However, simulations 2 and 3 provided predictions that are in very good 

agreement with measurements. Simulation 2 used FDTD(2,2) and Ax = 1.67 mm 

(or X/9 a t  20 GHz) which is a good discretization of our structure. Simulation 3 

used the hybrid FDTD(2,4)-subgrid FDTD(2,2) and provided very good results for 

Sll since the discretization of the wires was done with a fine g ~ i d  ( Ax = 413 mm 

or X/11 at  20 GHz). Furthermore, the hybrid FDTD(2,4)-subgrid FDTD(2,2) com- 

putations for SIB were also accurate since the wave propagation from one element to 

the other was performed using the higher-order stencil FDTD(2,4), with Ax = 4 mm 

(or X/4 at  20 GHz). Therefore, it can be concluded that in the hybrid approach the 

field variations around thin geometric features, such as wires, are captured using the 

standard FDTD(2,2) and the available sub-cell models on a fine grid. Moreover, the 



field propagation for large distances is accurately modeled by a higher-order FDTD 

stencil [FDTD(2,4) in our case] on a coarse grid. 

For the computation of S-parameters, two simulations must be performed for 

each of our cases. The simulation times, as well as the memory requirements for each 

simulation, for cases 1, 2, and 3, are depicted and compared in TabIe 2.1. To obtain 

accurate results with FDTD(2,2), a cell size of 1.67 mm had to be used (case 2). 

This case required almost two and a half times more time, and three and a half times 

more memory than the respective time and memory of case 3, which used the hybrid 

FDTD(2,4)-subgrid FDTD(2,2). It should be noted that the computational savings 

will be significantly larger in cases where the computational domain is electrically 

large in all three directions (in our geometry, see Fig. 2.36, the domain is electrically 

large along one direction only). 

Also, to validate the accuracy of the hybrid FDTD(2,4)-subgrid FDTD(2,2) method 

for input impedance calculations, the S-parameters computed above were converted 

to 2-parameters. Specifically, the input impedance of the 6 cm monopole is repre- 

sented by Zll. This input'impedance is compared for the three simulations 1-3 with 

measurements in Figs. 2.61 and 2.62. It is clearly, shown that the hybrid FDTD(2,4)- 

subgrid FDTD(2,2) approach provides very accurate input impedance results due to 

the use of the FDTD(2,2) thin wire model in the fine grid. 

Table 2.1: Simulation times and memory requirements 

C. Conclusions 

Case 
1 

An accurate hybrid method of FDTD(2,4) coupled with FDTD(2,2) on a subgrid has 

been presented. The results indicate great computational savings both in memory 

and time. Moreover, this hybrid approach is very promising for other practical sit- 

uations because of the flexibility for the inclusion of all existing thin and sub-cell 

models with FDTD(2,2). Simultaneously, the method offers the high accuracy of 

Simulation Time (min) 
15 

Memory (Mbytes) 
3.5 



FDTD(2,4) for the propagation of waves over electrically large distances. Finally, 

this hybrid approach was found to be stable after several thousands of time-steps 

when the procedures of 1691 were incorporated. 
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Figure 2.61: Input resistance of the 6 cm long monopole. 
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Figure 2.62: Input reactance of the 6 cm long monopole. 



IX. Hybrid of Subgrid FDTD(2,2) and FDTD(2,4) 

In the previous section, a hybrid formulation of FDTD(2,4) and subgrid FDTD(2,2) 

was presented. The code that was written to implement that hybrid method assumed 

that everywhere in the domain FDTD(2,4) is applied except small areas of the domain 

where subgrid FDTD(2,2) is used. These parts where subgrid FDTD(2,2) is used 

were assumed to be internal to the entire FDTD(2,4) domain. For example, see in 

Fig. 2.63 the domain of the two monopoles that was previously analyzed, and notice 

that subgrid FDTD(2,2) was used only around the two monopoles. The areas where 

subgrid FDTD(2,2) was applied are obviously included in the FDTD(2,4) domain. 

FDTD(2,4) in coarse mesh 
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Figure 2.63: Schematic visualization of the hybrid'method of FDTD(2,4) and subgrid 
FDTD(2,2) presented in the previous section. 

However, there might exist problems where the opposite configuration of meshes 

(coarse and thin) occurs, i.e., the area where FDTD(2,4) is used is contained in 

the subgrid FDTD(2,2) domain. One example of such a case comes from shielding 

effectiveness analysis of electrically large rectangular enclosures. In these cases, the 

largest part of the computational domain is the interior of the enclosures, and the 

problem of boundary conditions arises near the walls of the enclosures. In such 

cases, it is desired to simulate the propagation inside the box using a higher-order 

method, such as FDTD(2,4). In addition, near the walls of the boxes a subgrid 



FDTD(2,4) in a coarse mesh 

I I 
a FDTD(2,2) in a fine mesh I 

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - :  

I 
I 
I 
I 

Figure 2.64: Schematic visualization of the hybrid method subgrid FDTD(2,2) and 
FDTD(2,4) presented in the this section. 

m)TD(2,2) in a fine mesh 

FDTD(2,2) method should be used in order to represent accurately the PEC boundary 

conditions, and successfully simulate the penetration mechanisms. FDTD(2,2) is used 

near the walls instead of FDTD(2,4) since FDTD(2,4) exhibits an inherent artificial 

penetration through thin PEC films. This artificial penetration is attributed to the 

length of the FDTD(2,4) stencil which allows fields from one side of the PEC to couple 

on the other side of the PEC. Also, as discussed in Section VII. stable higher-order 

boundary conditions that would simulate correct PEC discontinuities do not exist and 

they are very challenging to derive. Therefore, subgrid FDTD(2,2) is hybridized with 

FDTD(2,4) to resolve all these issues. Following such a procedure yields tremendous 

savings in memory and/or time depending on the particular problem. A schematic 

representation of such a problem is depicted in Fig. 2.64. In order to implement this 

new type of hybrid, a new code has to be implemented. This new hybrid is named 

subgrid FDTD(2,2)/FDTD(2,4) which is the reverse of the name of the hybrid method 

in the previous section. 



A. Method 

This new hybrid method resembles the hybrid method presented in the previous 

section. The boundary between the fine and the coarse grid is collocated with electric 

field components. The ratio between the coarse and the fine grid cell sizes is chosen 

to be 1:3. 

A two-dimensional view of the grid is shown in Fig. 2.65 which represents a cross- 

section of the computational grid. In Fig. 2.65 several features should be pointed out 

as follows: 

a. The external thick line represents the walls of the conducting enclosure. On 

and outside this boundary only subgrid FDTD(2,2) is used on a fine grid. 

b. The internal thick line represents the boundary between the fine and the coarse 

grid domains. On and inside this boundary only FDTD(2,4) is used on a coarse 

grid. The domain that is described by this boundary is labeled domain #1 for 

reference purposes. 

c. In the area between the two thick lines both subgrid FDTD(2,2) (on a fine grid) 

and FDTD(2,4) (on a coarse grid) are applied. This area is labeled domain #2 

for reference purposes. 

d. The distance between the walls of the conducting enclosure and the coarse- 

fine grid boundary is chosen to be 3 coarse grid cells, so that the standard 

FDTD(2,4) using central finite difference spatial scheme can be applied on the 

coarse-fine grid boundary. 

To make the method stable, the electric fields near the coarse-fine boundary are 

weighted in the same manner presented in the previous section and described by 

(2.47). Also, another weighting that is used relates to the coarse grid magnetic field 

values adjacent to the coarse-fine domain boundary and inside the fine grid region 

(see Fig. 2.65). The locations of the magnetic fields where this weighting occurs is 

illustrated by the black dots shown in Fig. 2.65. It is done using (2.48) and (2.49). The 

time interpolation of the fine grid electric field values on the boundary is performed 

using the same third-order accurate relations, (2.50) and (2.51), used in the previous 

section. 



W d s  of PEC enclosure 

Figure 2.65: Two-dimensional view of the coarse and fine grids. 

Also, in order to ensure stability the Courant stability upper limit of the fourth- 

order FDTD was reduced by a factor of 2 as follows: 

A brief description of the procedure is given as follows (see also 1691): 

a. Apply FDTD(2,4) on all the main grid points (including the ones inside the 

shared area by both the coarse and fine grid, i.e., domains #1 and #2) and 

obtain H ~ + ' / ~ .  

b. Apply FDTD(2,2) on the fine grid to obtain hn+'I6. 

c. Apply FDTD(2,2) on the fine grid to obtain enf'I3. Update en+'I3 on the coarse- 

fine boundary using space and time interpolation. Apply (2.47) to weight en+'I3 



one cell inside the fine grid. 

d. Apply FDTD(2,2) on the fine grid to obtain hn+3/6. Use (2.48) and (2.49) to 

weight hnS3/%nd Hn+'/' collocated one coarse grid cell into the fine domain. 

Transfer all fine grid hn+3/6 field values to the corresponding collocated coarse 

grid H"+'/~ in the area shared by both the coarse and fine grids (domain #2) 

except the fields included in the area described by the black dots (see Fig. 2.65). 

e. Update En+' at the coarse-fine boundary using the obtained values for 

from step 4. 

f. Repeat step 3 to obtain enS2/3, step 2 to obtain hn"5/6, and step 3 again to 

obtain en"'. Correct the coarse-fine grid boundary values of en+' using space 

interpolation of En+'. 

g. Transfer all fine grid e field values to the corresponding collocated coarse grid 

E field values in the area that is commonly shared by the fine and coarse grids 

(domain #2). 

Capital letters E and H represent coarse grid field values, and small letters e and h 

represent fine grid field values. It should be pointed out that the space interpolation 

of the coarse grid values on the coarse-fine boundary is performed using a standard 

second-order accurate interpolation. 

To illustrate the savings that can result in the numerical FDTD analysis of shield- 

ing effectiveness by using this new hybrid method some examples are presented. One 

of the main purposes of this research is to be able to efficiently and accurately analyze 

the shielding effectiveness of a full-scale fuselage. Results for such analyses will be 

presented in Chapter 3 where a simplified scaled model of a Boeing 757 aircraft is 

examined. This scaled model has the following dimensions: 155 cm long by 20 cm 

wide by 24 cm high. In order to accurately simulate this problem with the standard 

FDTD(2,2) up to 9 GHz, a cell size of 2.5 mm (or XI13 at 9 GHz) has to be used. This 

mesh yields a very large computational domain; 620 x 80 x 96 cells. This domain re- 

quires MFDTD(2,2) = 114 Mbytes just for the electric and magnetic field components. 

Therefore, simulating this problem requires a very large amount of computational 

resources, memory as well as time. Especially, the memory issue is more restrictive 



since if the required memory for a simulation is not available, then the simulation 

cannot be performed. 

However, if the new hybrid method of subgrid FDTD(2,2)/FDTD(2,4) is applied 

t o  the same problem, significant savings in memory are achieved. The hybrid applies 

FDTD(2,4) to the entire fuselage but on a coarse grid with a cell size three times larger 

than the one required by FDTD(2,2), i.e., a cell size of 7.5 mm (or ,414 at 9 GHz). 

This FDTD(2,4) part of the hybrid code (domains #1 and #2) requires only 4 Mbytes 

of memory. Furthermore, the subgrid FDTD(2,2) is only applied on a region between 

the wall of the fuselage and the coarse-fine grid boundary (domain #1 in Fig. 2.65) 

and has a thickness of only 9 cells. This subgrid FDTD(2,2) part of the hybrid 

code requires 44 Mbytes of memory. Therefore, the total amount of memory for the 

hybrid subgrid FDTD(2,2)/FDTD(2,4) method is only MhybTid = 4+44=48 Mbytes 

which is 2.5 times smaller than the memory required by the standard FDTD(2,2) 

code (114 Mbytes). This reduction in memory results by not applying FDTD(2,2) 

along with a fine cell size in the part of the computational domain that  solely corre- 

sponds to the coarse domain (domain #2 in Fig. 2.65), which would have required 

~ p " ~  = 70 Mbytes. Instead, the FDTD(2,4) is applied on the coarse domain using a 

coarse cell size allocating only M y S e  = 2.5 Mbytes. The comparison of the specific 

numerics are illustrated in Table 2.2 where MI and M2 are the memory requirements 

for domains #1 and #2, respectively. 

Table 2.2: Memory requirements for the different regions of the computational domain 
.for a cell size of 2.5 mm 

The example that was presented exhibited dimensions that were extremely long 

only in one direction, since the fuselage is a very long rectangular box. However, in 

cases where the geometry is large in two or in all three directions, then the memory 

Memory (Mbytes) 
MI 
M2 

Mtotat 

FDTD (2,2) 
70 
44 
114 

Hybrid subgrid FDTD (2,2) /FDTD (2,4) 

Savings Factor 

subgrid FDTD (2,2) 
- 

44 

114148 -- 2.5 

FDTD (2,4) 
2.5 
1.5 

48 



savings are even more significant. Tables 2.3 and 2.4 show the corresponding memory 

savings achieved by the hybrid method for two boxes with the following dimensions, 

respectively: a) 155 cm long by 155 cm wide by 24 cm high (box #I),  and b) 155 cm 

long by 155 cm wide by 155 cm high (box #2). As expected, the memory savings are 

tremendous when the domains become large in all three directions. 

Table 2.3: Memory requirements for the different regions of the computational domain 
of box #1 for a cell size of 2.5 mm 

Memory (Mbytes) 
MI 
M2 

Table 2.4: Memory requirements for the different regions of the computational domain 
of box #2 for a cell size of 2.5 mm 

L 
- 

Mtota~ 

Savings Factor 

FDTD (2,2) 
678 
207 

The hybrid method of subgrid FDTD(Z,Z)/FDTD(2,4) that was presented in this 

section will be validated and applied in Chapter 4 in the context of shielding effec- 

tiveness analysis. 

Deriving a stable hybrid is a very challenging task. The hybridization procedure, 

which was outlined above, is the result of long experimentation with different time 

and space interpolation schemes. For the results presented in this manuscript, the 

hybrid method was found stable up to several tens of thousands of time-steps for 

different applications. 

I 

Memory (Mbytes) 
MI 
M2 

Mtota~ 

Savings Factor 

Hybrid subgrid FDTD (2,2) /FDTD (2,4) 

885 

subgrid FDTD (2,2) 
- 

207 
240 

FDTD (2,Z) 
5,236 
484 

5,720 

FDTD(2,4) 
25.0 
7.6 

8851240 E 3.7 

5,7201696 -- 8.2 

Hybrid subgrid FDTD (2,2)/FDTD (2,4) 
subgrid FDTD (2,2) -.--- - 

484 

FDTD (2,4) 
194 
18 

696 





Chapter 3 

Applications 

I. Introduction 

The standard second-order accurate FDTD is still a very powerful method especially 

for problems of moderate electrical size. The FDTD method has exhibited a wide 

range of applications due to its robustness, simplicity and ability to simulate complex 

structures. Some of the most important categories of FDTD applications are the 

following: 

Analysis of microwave circuits and devices 1701-[77] 

Analysis of waveguide structures 1781-[84] 

Analysis of electromagnetic wave interactions with biological tissues [85]- [92] 

Scattering and radar cross section analysis [93]-(961 

Antenna analysis and design [97]-[I021 

a Analysis and design of cavity resonators [103]-[I081 

In this chapter, FDTD is applied in antenna problems. Initially, an improved feed 

model for thin-wire antennas is examined, and it is compared with the delta-gap feed 

model. Furthermore, the discrete Fourier transform (DFT) is compared to the fast 

Fourier transform (FFT) in the context of the FDTD method. The pros and cons 

of these two time-to-frequency domain conversion methods are presented through 

examples. 



Then, cavity-backed slot (CBS) antennas are examined. CBS antennas are com- 

monly used in earth-based and space-borne applications. They are relatively easy 

to manufacture, lightweight and often small in size. Here, FDTD is used to analyze 

different antenna characteristics of such elements including input impedance, cou- 

pling, and radiation patterns. Emphasis is given on coupling calculations, especially 

on different methods to reduce coupling. 

Specifically, coupling reduction is attempted using lossy material superstrates or 

ground plane discontinuities, such as slits. Numerical issues concerning the analysis 

of CBS antennas in the context of FDTD are also discussed. Moreover, the effect 

of distance and orientation on coupling is examined through FDTD simulations and 

measurements. All the different coupling reduction techniques are compared through 

their radiation characteristics, such as gain, efficiency and coupling reduction. The 

numerical results are validated by comparison with measurements and few available 

finite element method (FEM) calculations. 

An Improved FDTD Feed Model for Thin-Wire 
Antennas 

A wire antenna is one of the most common radiating eIements. In FDTD, wire 

antennas are usually excited by using a delta-gap. Furthermore, wire antennas exhibit 

radius much smaller than the cell size and a thin-wire model is needed to model it 

correctly. However, until now a thin-wire model has been used to simulate the radius 

only along the wire but not at the feed point. In a recently published paper [log], 

a thin wire model at  the feed point was implemented, and it was illustrated that 

this modeling together with the standard thin-wire modeling along the element gives 

more accurate results. This thin-wire model at the feed-point is examined here and 

compared to the delta-gap source. 

A. Delta-gap source 

The standard delta-gap source imposes a voltage by using the electric field located at 

the feed point which is specified by the following equation (assuming that the wire is 



located along the z-direction) : 

where V(t) is the desirable voltage source and Az is the cell size in the direction 

of the gap. Fig. 3.1 illustrates this type of source. The magnetic fields around the 

Figure 3.1: The delta-gap source model. 

gap are updated using the electric field which imposes the source. For example, 

by substituting (3.1) into the regular FDTD update equations, the magnetic field 

component H, located at the right side of the gap can be written as 

The other magnetic field components surrounding the delta-gap are updated in a 

similar way. 

To examine the accuracy of the delta-gap feed modeling, the input impedance of 

two dipole antennas was computed by FDTD and it is compared with NEC compu- 

tations. Both dipoles had length l? which was varied in terms of wavelength in the 



range XI10 < 4 5 2X. The first dipole had a radius a = 41500 whereas the second 

one had a radius a = 4/150. The radius of each dipole was simulated in FDTD by 

using the thin wire model along each element. FDTD calculations were performed 

for different discretizations A = l/11, 4/21, 4/41, 4/81. The Moment-Method [I101 

(NEC) simulations used, 255 segments along the wire with radius a = 4/500 in one 

case, and 71 segments along the wire with radius a = el150 in the other case. 

The results are compared in Figs. 3.2 and 3.3 for the two dipoles, respectively. It 

can be concluded that the accuracy of the input impedance predicted by using this 

delta-gap source depends on the cell size. Notice also that a finer discretization does 

not always result in higher accuracy. For the dipole with radius a = 4/500, A = l/81 

seems to provide the best agreement with the NEC, whereas for the dipole with radius 

a = 4/150, A = 4/21 gives the best results. This observation will be explained in the 

next section after the presentation of the improved delta-gap feed. 

-1 000t' I I 1 I I I I 

0.25 0.5 0.75 1 1.25 1.5 1.75 2 
Dipole length (wavelengths) 

Figure 3.2: Input impedance of a thin wire dipole with radius a = 41500. 



Figure 3.3: Input impedance of a thin wire dipole with radius a = 41150. 

B. Improved delta-gap source 

In the paper by Watanabe et al. [I091 an improved delta-gap model was proposed 

that takes into account the radius of the wire antenna at  the feed point. Their idea 

is based on the standard FDTD thin wire model. Therefore, before presenting their 

modeling, the thin wire model will be briefly discussed. 

Fig. 3.4 demonstrates a PEC wire of radius a superimposed on a Yee grid and 

aligned with the z-axis. The assumption that the wire radius is much smaller than 

0.5 Ax was made. Furthermore, since Ax must be much smaller than the wavelength 

in order for the FDTD algorithm to be stable, the wire radius should also be smaller 

than the wavelength. This justifies the assumption that the radial electric and cir- 

cumferentialmagnetic fields in the vicinity of the wire exhibit a l / r  dependence. With 

the above assumptions, the spatial dependence of the fields' in the vicinity of the wire 

can be approximated as 



Ax 
Ez(r,3, k) = Ex(&j 'k)T 

Ax 
Ex(r, j, k + 1) - Ex(i , j ,k  + 11% 

E, (i, j, k) = 0 

E, (i + 1, j, k) = constant 

( i j  ,k) node 

Figure 3.4: Field locations and geometry for the sub-cell model of a thin wire. 

Applying the integral form of Faraday's law to the contour path which passes 

through the four electric field locations yields 

0 + LAX E,(i,j,k+l)-dr-E,(i+l,j,k)Az- Ax I*' E~('&37k)-dr Ax 
2r 2r 

After carrying out the integrations, (3.8) reduces to 



Ax 
-In ($) Ex(il j , k  + 1) - -In 

2 
Ax (:) Ex (i, j, k )  - Ez (i + 1 jl k )  Az 
2 

Discretizing the magnetic field time derivative and rearranging the terms gives the 

modified update equations for the Hy field components circulating a z-directed wire; 

i.e.> 

The improved delta-gap feed modeling can be derived by applying again the inte- 

gral form of Faraday's law in a similar way. By noticing that the integration along the 

edge where Ez(i, j, k)  coincides should be equal to the voltage source V [and not zero 

as in (3.8)], the update equation for the magnetic field beside the delta-gap source 

takes the form 

This equation provides a more accurate delta-gap excitation as it takes into account 

the radius of the wire at the feed point. Similar equations to (3.11) can be easily 

derived for the other magnetic field components surrounding the source edge. 

In order to illustrate the accuracy of this source modeling, the same dipoles as the 

ones analyzed in the previous subsection were examined by using the same FDTD 

parameters. Notice that in this case the radius of the wire was simulated along 

the wire using the thin wire model, and also at the feed point using the improved 

delta-gap source described by (3.11). The results of these computations are shown 

in Figs. 3.5 and 3.6 and compared with the NEC predictions. It is apparent that the 

new delta-gap modeling yields input impedances that do not depend on the cell size 

as strongly as the results of the standard delta-gap source, and then agree very well 

with the MOM computations. 



Figure 3.5: Input impedance of a thin wire dipole with radius a = 1/500. 

Dipole length (wavelengths) 

Figure 3.6: Input impedance of a thin wire dipole with radius a = l/150. 



By comparing now the two delta-gap feed models described by (3.2) and (3.11), 

respectively, it is seen that the only difference is the coefficient 2/ln(Ax/a) on the 

denominator of the first fraction of (3.11), which does not exist in (3.2). Therefore, 

this coefficient is assumed to be unity in (3.2), and this condition can give us an 

effective radius that is simulated by the delta-gap model of (3.2) 

Table 3.1 gives the effective radius for the different discretizations. I t  is expected 

that when the effective radius is close to the actual radius of the wire, the most 

accurate results will be obtained. This is versed by the observations made in the 

previous section where the best accuracy in the impedance calculations was observed 

for the cell size A = 1/81 for the wire with radius a = 1/500 and for the cell size 

A = 1/21 for the wire with radius a = 1/150. Therefore, in cases where the improved 

delta-gap source is not used, the cell size should be chosen such that it yields an 

effective radius equal to the actual radius of the wire. 

Table 3.1: Effective radius for the input impedance calculations 

111. Discrete Fourier Transform 

Although it is widely believed that FFT is faster than DFT, this is not always true, 

especially for FDTD applications. The DFT series summation is given by 

where g(nAt) is a time-domain response at  discrete time instantst = nAt, n = 0, .., N, 

G(f)  represents the Fourier transform of g(t) at frequency f, and At is the time-step. 

This summation is updated at every FDTD time-step and is often called "on the fly 



DFT". Therefore, it is not necessary to store the entire time history. On the other 

hand, FFT requires storage of the complete time history of the fields of interested. 

This is a major disadvantage of FFT for some FDTD applications. 

A thorough comparison of the DFT and FFT in the context of FDTD was pre- 

sented in [Ill]. Here, the pros and cons of these two time-to-frequency domain 

conversion methods are briefly outlined. Suppose that the cell size in a FDTD simu- 

lation is chosen according to the rule of thumb of being at least a tenth of wavelength 

at the maximum frequency of interest, Ax = Xmin/10 = c/(lO f,,,) . The time-step is 

taken to  be At = Ax/(2 c) for stability of the algorithm, yielding A t  = 1/(20fma,). 

Therefore, FFT computes the response up to frequencies 20 times larger than the one 

accurately modeled by FDTD. On the contrary, DFT computes the response only at 

the frequencies of interest, thereby eliminating this waste of resources. 

Another important advantage of DFT over FFT is its ability to compute the 

transform at  any frequency whereas FFT is limited to the choice of frequencies. The 

efficiency of FFT is based on the fact that the number of time-domain samples, N, 

must be a power of an integer. In particular, the very popular radix-2 FFT assumes 

that N = 2", and this in a way limits the frequencies that can be obtained. Suppose 

that a monopole antenna is under examination and the frequencies of interest are 

300 MHz and 305 MHz. Therefore, the number of points, N ,  that the FFT will 

use, must be chosen so that the results will exhibit a 5 MHz frequency resolution. 

For a cell size of 25 mm, the time-step is 4.8 ps and N = 4096. The FFT for 

such a discretization gives results at  299.31 MHz and 304.38 MHz approximating 

the frequencies of interest, which are 300 MHz and 305 MHz, respectively. On the 

contrary, DFT provides calculations at the exact frequencies of interest. Furthermore, 

the number of time-steps needed for the FDTD simulation transients to decay to zero 

is usually smaller than the required number of samples by the FFT to give certain 

frequency resolution. For the previous example of the monopole antenna, the required 

FDTD simulation time is 1000 time-steps, and thus the DFT will only use so many 

samples, whereas the FFT, as it was explained above, has to  use a t  least 4096 time- 

domain values for a frequency resolution of 5 MHz. Consequently, the DFT is proven 

again more efficient. 

As far as memory requirements, the DFT as already mentioned above, does not 



need to store the entire time-history of the fields thereby yielding significant saving 

in memory. In order to compute patterns at multiple frequencies, the fields at the 

equivalent surface are needed. For the monopole antenna example discussed previ- 

ously with a computational domain of 50 x 50 x 20 cells, the entire time history (4096 

samples) of the fields at 9000 locations on the equivalence surface is required when 

the FFT is used. This amount of memory is 700 times larger than the one required 

by FDTD and 4096 times larger than the one used by the DFT. Obviously, the FFT 

memory requirements are enormous compared to the memory allocated by FDTD, 

discouraging its use in pattern computations. 

In summary, DFT is more efficient than FFT and requires far less additional 

storage. Moreover, the frequency resolution of the FFT is controlled by the number 

of time samples whereas the DFT can provide results at the precise frequencies of 

interest. 

In order to verify the implementation of the DFT for pattern computations, the 

monopole antenna problem discussed above was analyzed. The length of the monopole 

was 0.25 m or quarter wavelength at 300 MHz. One pulse simulation was executed 

and patterns were calculated using the newly implemented DFT at 300, 450 and 

600 MHz. Also, single frequency simulations were run at each of these frequencies 

to provide a reference for comparison. The results are illustrated in Figs. 3.7-3.9. It 

can be clearly seen that the DFT yielded identical patterns with the single frequency 

calculations. This new feature is very useful and efficient, because it  can compute 

patterns at as many frequencies are needed only in a single simulation. 



- - - -  - FDTD pulse excitation) 
FDTD [slngle frequency)] 

Figure 3.7: Elevation radiation pattern of a monopole mounted on a rectangular 
ground plane a t  300 MHz. 

---.  
- FDTD pulse excitation) 

FDTD [single frequency1 

Figure 3.8: Elevation radiation pattern of a monopole mounted on a rectangular 
ground plane a t  450 MHz. 



- - - -  - FDTD pulse excitation) 
FDTD [single frequency1 

Figure 3.9: Elevation radiation pattern of a monopole mounted on a rectangular 
ground plane at 600 MHz. 

IV. Analysis of Cavity-Backed Slot Antennas 

Cavity-backed slot (CBS) antennas have been widely used in different types of ap- 

plications within the microwave band, including radars, satellite communications, 

mobile telephony, broadcst TV, and aircraft/spacecraft communications. They are 

relatively easy to manufacture, lightweight and often small in size. Their low profile 

is an important characteristic, especially for aircraft, missile and spacecraft applica- 

tions, because they can be flush-mounted on the surface of airborne vehicles without 

affecting the vehicle's aerodynamic profle. 

Coupling is an important factor in today's communication systems which have 

become more complex and use a large number of antennas to support all required ser- 

vices. The reliability and integrity of communication systems can be significantly af- 

fected by coupling between transmitting and/or receiving elements, that are mounted 

on the same structure such as a helicopter or an aircraft airframe. Especially when 

several antennas are collocated on the same structure of finite dimensions, interac- 



tion, referred to as cosite interference, can deteriorate the quality of communications 

and corrupt the signals with noise. This leads to an extremely critical EMI/EMC 

problem. In addition, airborne communications require extremely reliable systems 

that sustain continuous operation without jamming or interruption. In such airborne 

communication systems, the installation of a new antenna appears to be a challenging 

task. Its mounting location is influenced not only by the type of service the antenna 

will provide, but also by the mounting locations of the already existing antennas on 

the airframe. Therefore, the interaction between the new antenna and other radiating 

elements should be analyzed in order to optimize its position, such that coupling sat- 

isfies specific requirements. It  can be concluded that coupling mechanisms are very 

important in the design of reliable communication systems. 

Cavity backed slot antennas have been analyzed in numerous papers using different 

methods. Two of the early efforts to analyze such antennas were presented by Calejs 

in [I121 and by Adams in [113]. The equivalence principle along with the generalized 

network formulation have been used in [I141 to form the integral equation for a CBS 

antenna which was then solved by a method of moments formulation. The finite- 

difference time-domain (FDTD) method was applied to the analysis of a single CBS 

antenna by Omiya et al. [115]. Furthermore, coupling between two CBS antennas was 

examined in [116] using FDTD combined with the Kirchhoff transformation. However 

in this section, although using FDTD, the various issues related to computational time 

and accuracy, are discussed and resolved using appropriate modeling. Furthermore, 

calculations are performed to examine the dependence of coupling on the frequency 

of operation. In addition, coupling reduction techniques are also presented including 

incorporation of lossy superstrates and ground plane slits. 

Lossy materials have been used to suppress the surface currents induced in con- 

ducting bodies and reduce the radar cross section of structures, such as airplanes or 

antennas. In [I171 a lossy coating was used to suppress the undesirable side-lobes of a 

paraboloidal reflector antenna. Also, lossy materials have been used in the design of 

horn antennas to improve side-lobe levels, equalize the E- and H-plane radiation pat- 

terns and reduce the cross-polarized radiation [118]-[121]. In [122] the contour path 
I 

FDTD was used to analyze pyramidal horn antennas with and without composite E- 

plane inner walls. Planar and cylindrical arrays of open-ended waveguides have been I 
I 



analyzed in the presence of a lossy ground in [123]. In [I241 the radiation of a rect- 

angular waveguide mounted on a lossy flange was examined, and it was shown that 

the lossy flange improves the E-plane radiation pattern as well as the cross-polarized 

radiation. Here, lossy superstrates are used to suppress surface currents and reduce 

coupling between antennas that are flush-mounted on a ground plane. Moreover, the 

effect of distance and orientation on coupling is examined through FDTD simulations 

and measurements. All the different coupling reduction techniques are compared 

through their radiation characteristics, such as gain, efficiency and coupling reduc- 

tion. The numerical results are validated by comparison with measurements and few 

available finite element method (FEM) calculations. 

A. FDTD modeling 

FDTD analysis of electromagnetic problems usually involves post-processing that 

transforms the time-domain data to the frequency domain. This transformation is 

performed using a discrete Fourier transform (DFT) procedure. However, in order 

for the DFT to give accurate results, the FDTD simulation time must be chosen 

long enough for all the transient phenomena to decay. This requirement can be 

restrictive, especially in highly resonant and high quality factor (Q) structures where 

the transients may need a prohibitive simulation time to decay. A very effective 

technique that resolves this problem is based on a source with an internal resistance 

which provides the excitation [97], [125], [126]. The basic characteristics of FDTD are 

well documented and will not be repeated here. Instead, the emphasis will be placed 

on the modeling of the cavity-backed slot antennas, their radiation characteristics, 

and coupling reduction techniques. 

In order to illustrate the effectiveness of a voltage source with an internal resis- 

tance, it was decided to compute the input impedance of an air-filled cavity-backed 

slot antenna originally analyzed in [127]. A three-dimensional (3-D) view of the cav- 

ity under consideration is exhibited in Fig. 3.10, and a detailed description of the 

geometry is shown in Fig. 3.11. Notice that the CBS antenna is formed by an open- 

ended standard X-band waveguide. The input impedance of the cavity-backed slot 

antenna was measured in the Electromagnetic Anechoic Chamber facility at Arizona 

State University. In the experiment, the aperture antenna was mounted on a finite 



Figure 3.10: A three-dimensional view of an air-filled rectangular cavity-backed slot 
antenna fed with a probe oriented in the y-direction. 

Figure 3.11: A two-dimensional view of an air-filled rectangular cavity-backed slot 
fed with a probe oriented in the y-direction. 



ground plane of dimensions 24 x 24 in (60.96 x 60.96 cm), and the sharp edges were 

covered with a strip of absorbing material to reduce diffractions (see Fig. 3.12). Ad- 

ditionally, the antenna was rotated at an angle with respect to the principal axes 

and offset, relative to the center of the ground, to direct the edge diffractions away 

from the aperture. Moreover, the input impedance of the same aperture mounted on 

an infinite ground plane was calculated in [I271 using a hybridization of the Finite 

Element Method (FEM) with the Moment Method (MOM) and compared very well 

with measurements. In this report, it was shown that the dimensions of the ground 

plane do not have a profound effect on the value of the input impedance. 

Figure 3.12: A top view of a cavity-backed slot mounted on a ground plane (experi- 
mental configuration). 

In the FDTD simulations, this aperture antenna was mounted on a 9 x 9 cm finite 

ground plane, which is smaller than the one used in the measurements to reduce the 

size of the computational space. In order to determine the input impedance of the 

antenna, the voltage and current at the feeding probe of the cavity-backed slot antenna 

have to be computed. The simulation time should allow the transient effects in both 

the voltage and current to decay, so that they can be accurately Fourier transformed. 

The voltage is a user defined function of time that decays quickly to zero, whereas 

the current may need a long time to decay. Two FDTD simulations were performed, 
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Figure 3.13: Current of the probe exciting the cavity-backed slot antenna for a resis- 
tance R, = 0 
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Figure 3.14: Current of the probe exciting the cavity-backed slot antenna for a resis- 
tance R, = 50 ohms 



and for both the cell size was 1.5 mm. In the first case, the voltage source had zero 

internal resistance (R, = O), and in the second case, R, was set equal to 50 ohms. 

Figs. 3.13 and 3.14 show the computed current at the probe exciting the cavity for the 

two cases, respectively. Obviously, the current in the case with no internal resistance 

(R, = 0) did not decay to zero even after 64,000 time steps, indicating the resonant 

behavior and the high quality factor, Q, of the antenna. On the contrary, in the second 

simulation (Rs = 50 ohms), the source current converged to zero very fast and the 

FDTD calculation time reduced significantly. Based on our experience, the use of an 

internal resistance is essential for efficient simulations of CBS antennas. The internal 

resistance is usually chosen close to the characteristic impedance of the transmission 

line and the larger it is, the faster the transient phenomena decay. However, the 

internal resistance cannot be chosen very large since it may lead to instabilities due 

to the interaction of the source with the numerical scheme or due to the neglect of 

the displacement current through the FDTD cell which includes the source [126]. 

B. Impedance 

In order to examine the accuracy of FDTD results which are computed using a source 

with an internal resistance, the input impedance of the CBS antenna examined in 

Subsection A. was computed for three different cases. In all the cases, the feeding 

probe was excited by a voltage source with R, equal to 50 ohms. In the first case, the 

radius of the probe (0.0635 cm) was not modeled and the cell size was 1.5 rnm. In 

the second case, the radius was taken into account by using the thin-wire model and 

the cell size was 1.5 mm. In the third case, the cell size was 0.6 mm, and the probe 

itself was discretized along with the remaining geometry (see Fig. 3.15). Fig. 3.16 

illustrates the computed input resistance and reactance of the aperture antenna for the 

three different cases. Also, the FDTD calculations are compared with measurements 

as well as with results obtained by the FEM/MoM hybrid formulation reported in 

[127]. Evidently, the accuracy of the FDTD predictions depends greatly on the wire 

modeling of the probe that excites the antenna. Excellent agreement between the 

FDTD computations and measurements is observed in the case where the probe was 

discretized (third case). The improved accuracy of this third FDTD simulation can 

be attributed to the liner discretization and the enhanced modeling of the probe. 
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Figure 3.15: Cross-section of the FDTD mesh of the CBS antenna for a cell size of 
0.6 mm. 

C. Coupling 

The coupling between two identical cavity-backed slot antennas (whose specifications 

are defined in Fig. 3.11) mounted on a rectangular 10 x 6 cm ground plane, 25 mm 

apart from each other, was also analyzed. The geometry of the two cavities along 

with the dimension specifications are shown in Fig. 3.17. FDTD simulated the phys- 

ical dimensions of the finite ground plane whereas the FEM/MoM hybrid method 

simulated an infinite ground plane. 

The S parameters of the two antennas were calculated using both methods; FDTD 

and FEM. Sll and Sz2 correspond to the reflection coefficient of each antenna, and 

they are equal because the two antennas are identical and the geometry is symmetri- 

cal. Furthermore, S12 and S21 correspond to the coupling between the antennas, and 

they are also identical due to  reciprocity. The numerical results of both methods are 

compared with measurements in Fig. 3.18, and they all exhibit very good agreement. 

The discrepancies at  the higher end of the band are attributed to discretization er- 

rors. In these simulations the FEM mesh consisted of 75,874 elements with average 

edge size 0.16 cm whereas the FDTD used a cell size of 0.6 mm and a computational 

domain of 160 x 160 x 142 cells. Notice that two different FDTD methods were used. 

The first one, denoted as FDTD(2,2), represents a second-order accurate FDTD both 
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Figure 3.17: Geometry of two identical cavity-backed slot antennas mounted on a 
rectangular ground plane (for antenna specifications see Fig. 2). (a) 3-D view. (b) 
Top view. 

in time and space. The second one, denoted as FDTD(2,4), represents a second-order 

accurate in time and and fourth-order accurate in space FDTD. I t  can be observed 

that the FDTD(2,4) scheme does not provide a dramatic improvement in accuracy 

compared to the FDTD(2,2) scheme. However, it is expected that as the distance 

between the two apertures becomes large in terms of the wavelength, FDTD(2,4) 

should outperform FDTD (2,2). 

D. Reduction of coupling 

In this subsection, different methods of coupling reduction are examined. The ge- 

ometry under examination is shown in Fig. 3.19. The separation between the two 

apertures of the CBS antennas is 4 cm, and the space between the two apertures is 

covered with a superstrate. Initially, coupling was calculated using FDTD without 

any superstrate, and this case is labeled "blank" for reference purposes. Then a su- 

perstrate of lossy material was placed on top of the ground plane, iilling the space be- 

tween the two apertures. The superstrate was constructed using a number of layers of 

1.5 rnm thick ECCOSORB GDS electric/magnetic composite material. Three differ- 

ent superstrates were used with thicknesses of 1.5, 3.0, and 4.5 mm consisting of one, 

two or three GDS material layers, respectively. Coupling computations were again 
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Figure 3.18: S-parameters of two identical cavity-backed slot antennas mounted on a 
rectangular ground plane (for antenna specifications see Figure 1.4). 
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Figure 3.19: Geometry of two identical cavity-backed slot antennas mounted on a 
rectangular ground plane (for antenna specifications see Fig. 2). (a) Side view. (b) 
Top view. 

performed by FDTD for all three superstrates. Although, the GDS material does not 

have constant material properties along the entire band of interest, its properties do 

not exhibit large variations. Therefore, in the FDTD simulations constant material 

properties (found by averaging the maximum and minimum values) were used. These 

properties are: q = 13.4, a = 0.17 S/m, p, = 1.5, and a* = 95,000 ohm/m, where a 

and a* are the electrical and magnetic conductivities, respectively. 

All the FDTD predictions of coupling for the GDS material are illustrated in 

Fig. 3.20 along with the predictions for the case with no superstrate (blank case), 

and they are also compared with the corresponding measurements. The FDTD cal- 

culations for all cases compare very well with measurements even at  levels below 

-30 dB with maximum discrepancies ranging from 1 to 2 dB. I t  is also observed that 

adding the lossy superstrate substantially reduces coupling. Specifically, the maxi- 

mum coupling decreased 4 dB for the 1.5 mm thick GDS, 6 dB for the 3.0 rnm thick 

GDS, and 7 dB for the 4.5 rnm thick GDS (the maximum coupling for each case is 

defined as the maximum over the entire band of frequencies), This reduction of cou- 

pling can be attributed to the minimization of surface currents on the ground plane 

which couple energy from one CBS antenna to the other. In addition, to examine if 

the blockage created by the physical presence of the superstrate contributes to the 



Figure 3.20: Coupling with and withou superstrate. (a) 1.5 mm thick GDS. 
(b) 3.0 mm thick GDS. ( c )  4.5 rnm 



Figure 3.21: Measured coupling for three different cases. 

coupling reduction, an 1.5 mm thick piece of PEC (perfect electric conductor) was 

placed between the apertures replacing the lossy superstrate. The measured coupling 

for this case is plotted in Fig. 3.21 and compared with measurements of the equal 

thickness GDS superstrate and the case with no superstrate (blank). Apparently, 

the inclusion of the PEC piece does not seem to reduce the maximum coupling even 

though it introduces maximum blockage. Therefore, it can be concluded that the 

reduction of coupling in the case of the lossy superstrate is mainly attributed to the 

minimization of the surface currents and not the blockage. 

To better understand the mechanism of coupling reduction in the case of lossy su- 

perstrates, the induced surface current densities on the ground plane of the two CBS 

antennas were computed for two cases: (a) with a one-layer (1.5 mm thick) GDS 

superstrate, and (b) no superstrate, at  11.92 GHz. In both cases only CBS #1 was 

excited (see Fig. 3.19). Figs. 3.22 and 3.23 illustrate the normalized total surface cur- 

rent densities on the ground plane in dB. It is apparent that in the case with no loss 

(see Fig. 3.22) the surface current densities in the area between the two apertures 

are intense (as high as -15 dB) thereby establishing a strong coupling mechanism. 

However, in the case with the lossy superstrate (see Fig. 3.23) the surface current 

densities in the area between the two apertures have been significantly reduced ex- 

hibiting levels as low as -25 dB. Therefore, it is clear that lossy superstrates weaken 



Figure 3.22: Total surface current density JM in dB, with no lossy superstrate at  
11.92 GHz. 

Figure 3.23: Total surface current density Jtot in dB, with a 1.5 mm thick GDS 
superstrate at 11.92 GHz. 



the coupling mechanism supported by surface current densities. 
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Figure 3.24: Geometry of two cavity-backed sIot antennas on a ground plane with a 
slit. 

Another method of reducing coupling through surface currents is to introduce a 

discontinuity, such as a thin slit, on the ground plane between the two apertures. A 

2 mm wide slit was symmetrically cut at the center of the ground plane as shown in 

Fig. 3.24. The FDTD calculations for this case are plotted against measurements in 

Fig. 3.25(a), and they exhibit excellent agreement. During our coupling studies, the 

width of the original slit (2 mm) was increased to 4 mm and 8 mm, sequentially. The 

FDTD predictions for these cases are illustrated and compared in Fig. 3.25(b). 

It is observed that the wider the slit is, the smaller the coupling becomes. How- 

ever, the reduction of coupling did not change dramatically when the width of the 

slit became two or four times larger than the original 2 mm wide slit. Moreover, it 

appears that as the slit becomes wider the reduction of coupling is larger at higher 

frequencies. This can be possibly attributed to the fact that the slit is electrically 

Iarger at higher frequencies thereby disrupting the surface currents on the ground 

plane for a larger electrical distance. Specifically, the 2 mm and 8 mm slits are XI20 
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Figure 3.25: Coupling with a slit on the ground plane. (a) 2 mm wide slit. (b) FDTD 
predictions for different widths of the slits. 

and X/5 wide, respectively, at 7.5 GHz. However the same'slits, 2 mm and 8 mm are 

approximately A/12 and X/3 wide, respectively, at 12 GH.. The incorporation of a 

2 mm slit caused a 1 dB reduction of the maximum coupling as illustrated in Fig. 3.26 

which presents the comparison of four different cases of measured [see Fig. 3.26(a)] or 

calculated [see Fig. 3.26(b)] coupling. Conclusively, the largest reduction of coupling 

occurs for the thickest GDS superstrate of 4.5 mm whereas the smallest reduction 

happens for the slit. Therefore, a lossy superstrate can be very effective in minirniz- 

ing the coupling between aperture antennas by reducing the surface currents on the 

ground plane. Moreover, superstrates are very practical because they can be flush 

mounted, and they do not affect the mechanical strength of the ground plane as slits 

do. Dis-orienting the two CBS antennas is another technique that can be used to 

reduce coupling. The configuration of the aperture antennas examined above (seen m 

Fig. 3.19) is called E-plane configuration. The H-plane configuration is formed by ro- 

tating both aperture antennas 90° (see Fig. 3.27). Pozar in [I281 examined the mutual 

coupling between two rectangular microstrip patches for both E-plane and H-pIane 

configurations. He demonstrated that the E-plane configuration exhibits the smallest 

coupling for electricalIy small separation distances, while the H-plane configuration 

exhibits the smallest coupling for electrically large separation distances. Therefore, it 



Figure 3.26: Coupling between two CBS antennas. (a) All the measurements. (b) 
All the FDTD predictions. 

Figure 3.27: Top view of the two CBS antennas oriented along the H-plane. 



is expected that coupling of the H-plane configuration of two CBS antennas will be 

much smaller than the coupling of the Eplane configuration, especially for separation 

distances that are not very small in terms of wavelength. This mechanism of coupling 

reduction is also discussed in [45], and it can be explained by comparing the coupling 

of two side-by-side versus two collinear dipoles. Alternatively, the pattern of a CBS 

antenna in the H-plane nearly vanishes along the ground plane due to boundary con- 

ditions. In the Eplane the pattern does not have to vanish along the ground plane 

unless the dimension of the aperture i r ~  that plane is a multiple of wavelength [45]. 

Hence, the mutual effects between two CBS antennas which are oriented along the 

H-plane are less intense because the antennas are placed in the direction of minimum 

radiation. One FDTD simulation was performed to verify this line of thought by 

calculating the coupling between two CBS antennas oriented along the H-plane (see 

Fig. 3.27). The results of this simulation are illustrated in Fig. 3.26(b). I t  is observed 

that the coupling of the H-plane configuration is 20 dB less than the coupling of the 

E-plane configuration (labeled "blank"), which is a substantial reduction. 

Finally, dependence of coupling on the separation distance between two CBS an- 

tennas is examined. Coupling was measured for various separation distances by plat- 

ing the two antennas on a larger ground plane (1 x 1 m). The measured results are 

illustrated in Fig. 3.28(a) for a range of distances from 25 mm to 160 mrn at  incre- 

ments of 15 mm. As expected, coupling decreases as the separation between the two 

antennas becomes larger. FDTD simulations were also performed for few selected 

cases of separation distances (25 mm, 40 mm, and 55 mm), and the computed results 

are illustrated in Fig. 3.28(b). The predictions agreed very well with the measure- 

ments and exhibited similar variation. Also, the measured coupling was plotted at 

four selected frequencies versus the separation distance in Fig. 3.29. The coupling 

decreased following a variation similar to l / r  at all four frequencies exhibiting a total 

reduction of about 14 dB when the separation was increased from 25 mm to 160 mm 

(see Fig. 3.29). 



Figure 3.28: Coupling between two CBS antennas for different separation distances. 
(a) Measurements. (b) FDTD predictions. 

Figure 3.29: Measured coupling versus separation distance at  different frequencies. 



E. Patterns 

In the previous subsection, various methods of minimizing coupling between two CBS 

antennas were investigated. Lossy superstrates, as well as slits, on the ground plane 

were implemented and analyzed. However, these alterations of the physical geometry 

also change the radiation characteristics of the antennas. Especially, the presence 

of composite superstrates introduces losses which can potentially reduce the antenna 

gain. Radiation patterns of the E-plane were computed using FDTD for two cases: 

(a) with a one-layer (1.5 rnm thick) GDS superstrate, and (b) no superstrate, at two 

frequencies of 7.5 GHz and 11.92 GHz. In both cases only CBS #1 was excited (see 

Fig. 3.19). The GDS material properties used in the single frequency FDTD simula- 

tions were picked to be equal to the measured material properties a t  the corresponding 

frequency. These properties are: (a) at  7.5 GHz; c, = 13.4, a = 0.09 S/m, pT = 1.75, 

and a* = 74,000 ohm/m, and (b) at  11.92 GHz; 6, = 13.4, a = 0.25 S/m, pT = 1.35, 

and a* = 110,000 ohm/m. The numerical results are illustrated in Figs. 3.30 and 

3.31, and the predictions are compared with measurements. All radiation patterns 

were calculated as well as measured by exciting only one of the two CBS antennas. 

The agreement between the measurements and the numerical calculations is very sat- 

isfactory and the maximum discrepancy ranges from 1 to 2 dB. Finally, the measured 

gain af the antennas for the cases with and without the lossy superstrate are compared 

for both frequencies of 7.5 GHz and 11.92 GHz in Fig. 3.32. It is observed that the 

introduction of a lossy superstrate causes a reduction of the antenna gain which can 

be as high as 5 dB for some observation angles. Consequently, when incorporating 

lossy materials, there is a trade-off between minimizing the coupling and maintaining 

high efficiency. Furthermore, the E-plane radiation patterns of the two CBS antennas 

on the ground with and without the 2 mm slit are essentially identical (especidly 

when the observation angle is on the top of the ground plane, i.e., for elevation angles 

-90" < 0 5 90") and therefore they are not illustrated and compared through a 

figure. 

F. Summary of coupling reduction methods 

Different coupling redaction techniques were presented and analyzed. Traditionally, 

the most intuitive way to reduce coupling between two antennas is to increase their 



Figure 3.30: Patterns at  7.5 GHz. (a) With no superstrate. (b) 1.5 mm GDS thick 
superstrate. 

Figure 3.31: Patterns at 11.92 GHz. (a) With no superstrate. (b) 1.5 mm GDS thick 
superstrate. 



Figure 3.32: Measured patterns. (a) At 7.5 GHz. (b) At 11.92 GHz. 

separation distance. Measurements and simulations illustrated the decreasing behav- 

ior of coupling for increasing separation distances (see Subsection D.) which was very 

similar to a l / r  variation (see Fig, 3.29). 

Other more novel techniques of coupling reduction were also examined such as 

the introduction of ground discontinuities, e.g., slits, and the use of lossy superstrates 

between the two antennas. Slits were found to be less effective in reducing coupling ' 

than lossy superstrates. However, the incorporation of lossy materials significantly 

influences the radiation characteristics of an antenna. To illustrate the different ad- 

vantages and disadvantages of using lossy superstrates, some of the results are tab- 

ulated and they correspond to the configuration of the two CBS antennas examined 

in the previous subsections. Gain and efficiency computations were performed by 

exciting only CBS #1 (see Fig. 3.19). 

In Table 3.2 the antenna esciency is shown for the three different thicknesses of 

GDS material used in our analysis above at 7.5 GHz and 11.92 GHz. At 7.5 GHz 

the efficiency ranges from 70%-74%, and at 11.92 GHz it ranges from 83%-88%. In 

Table 3.3 the antenna gain at an elevation angle of 8 = -60" (where the minus 

corresponds to the left side of the elevation pattern) is shown for different superstrate 

thicknesses. It is also compared to the antenna gain with no lossy superstrate present 



at 7.5 GHz and 11.92 GHz. The elevation angle of 0 = -60" was used chosen for our 

comparison because at  this angle the gain exhibited the larger decrease when lossy 

materials were used (see Fig. 3.32). When the thickest GDS superstrate (4.5 mm 

thick) was used, the gain decreased 4.6 dB at 7.5 GHz and 6.1 dB a t  11.92 GHz 

compared to the gain with no superstrate. Notice though that the gain toward zenith 

was almost the same for the cases with or without lossy superstrates (see for example 

Fig. 3.32). 

Table 3.2: Efficiency of the two CBS antennas configuration for different thicknesses 
of the GDS superstrate 

Table 3.3: Gain of the two CBS antennas configuration at  elevation angle 8 = -60' 

Frequency 
7.5 GHz 

11.92 GHz 

I1 I I I 1 11.92 GHz 11 5.6 dB 1 1.2 dB I 0.8 dB I -0.5 dB 1 

Thickness of GDS superstrate 

Frequency 
7.5 GHz 

Apparently, the use of lossy superstrates yields a decrease in the antenna gain 

and efficiency but provides a coupling reduction in return. The achieved coupling 

reduction for the different superstrates is depicted in Table 3.4. These coupling re- 

ductions were obtained by comparing the cases with and without lossy superstrates. 

At 7.5 GHz the coupling was reduced by 3.9 dB for the thinest superstrate of 1.5 mm, 

and by 7.8 dB for the thickest superstrate of 4.5 mm. At 11.92 GHz the coupling 

was reduced by 6.1 dB for the thinest superstrate of 1.5 mrn, and by 7.2 dB for the 

thickest superstrate of 4.5 mm. Additionally, the average coupling reduction over the 

entire band of 6-14 GHz was 5.8 dB for the thinest superstrate of 1.5 mm, and 8.2 dB 

for the thickest superstrate of 4.5 mm. A similar table is constructed for the cases 

1.5 mm 
74% 
88% 

No Loss 

5.8 dB 

3.0 mm 
73% 
85% 

4.5 mm 
70% 
83% 

Thickness of GDS superstrate 
1.5 mm 
1.9 dB 

3.0 mm 1 4.5 mm 
2.0 dB 1 1.2 dB 



that incorporated a slit in the ground plane (see Table 3.5). As mentioned earlier, 

the coupling reduction in the cases of the slits is not as significant as in the cases of 

the lossy superstrates. 

Table 3.4: Coupling reduction of the two CBS antennas configuration 

I II I I I 

I Average Coupling Reduction I( 

Freauencv 

Table 3.5: Coupling reduction of the two CBS antennas configuration 

Thickness of GDS superstrate 
1.5 mm 1 3.0 mrn 1 4.5 mm 

11 Width of the mound plane slit 1 
Frequency 
7.5 GHz 

Radiation characteristics, such as coupling, efficiency and gain, are critical to the 

design of an antenna and must be taken into consideration. In a practical configu- 

ration there is always a compromise between coupling reduction and maintenance of 

high efficiency and gain. Decisions regarding a design should take into account the 

communication system operation requirements. 

11.92 GHz 
Average Coupling Reduction 

over the band 6-14 GHz 

G .  Conclusions 

... 

In this section, the analysis of cavity-backed slot antennas in the context of FDTD was 

presented. Different numerical issues related to the modeling of such antennas were 

described. It was found that the use of a voltage source with an internal resistance 

in FDTD is indispensable for efficient computations. Both FDTD and FEM/MoM 

were used to compute the input impedance of a single CBS antenna, and coupling 

2.0 mm 
0.7 dB 

2.4 dB 

2.5 dB 

I 

4.0 mm 
1.0 dB 

0.9 dB 

1.0 dB 

8.0 mm 
1.5 dB 

1.5 dB 

1.4 dB 



between two elements, and they compared very well with measurements. However, 

it was found that for coupling versus distance calculations, the hybrid FEM/MoM 

is faster than the pure FDTD. This is attributed to the fact that FEM/MoM does 

not discretize the space between the two cavities but rather treats the open-space 

interaction within the MOM formulation. Therefore, the FEM/MoM computational 

space remains constant because only the CBS antennas need to be discretized in 

the hybrid methodology. On the contrary, FDTD has to also account for the space 

between the two antennas thereby yielding very large domains especially for large 

distances. 

A very comprehensive study of coupling between two CBS antennas was also 

performed through measurements and simulations. The dependence of coupling on 

the separation distance between the two antennas was investigated. Dis-orienting 

the antennas was also found to be a very effective method of coupling reduction. 

Specifically, the H-plane configuration exhibited significantly smaller levels of coupling 

than the Eplane configuration. Moreover, other alternative methods of reducing 

coupling were examined including incorporation of lossy superstrates as well as ground 

plane discontinuities, such a .  slits. It was illustrated that lossy material superstrates 

can be very effective in decreasing the coupling between two antennas, but they cause 

a reduction of the antenna gain. In Subsection F. some of these trends were reported. 

Therefore, in a practical design there is always a compromise between reduction of 

coupling and maintenance of a sufficiently high gain. 



Chapter 4 

HIRF Penetration and PED 
Coupling Analysis 

In this chapter, the penetration of High Intensity Radiated Fields (HIRF) into con- 

ducting enclosures via apertures is presented. HIRF penetration is an EM1 issue that 

is relevant to all aviation. The stories are numerous, of disrupted communications, 

disabled navigation equipment, etc., due to the effects of EM sources external to the 

aircraft. Here, the FDTD method is used to predict the shielding effectiveness of 

conducting enclosures with apertures, and the numerical results are compared with 

measurements. Several issues related to the FDTD analysis of highly resonant and 

high quality factor (high-&) structures, such as windowing and acceleration tech- 

niques, are examined and described. 

Furthermore, the shielding effectiveness of a scaled model of a Boeing 757 aircraft 

is calculated. Both the standard FDTD(2,2) and the hybrid of subgrid FDTD(2,2) 

and FDTD(2,4) are used for the predictions which are validated by comparison with 

measurements. Finally, the coupling of personal electronic devices (PEDs) is exam- 

ined for the scaled fuselage by modeling the coupling between a PED antenna inside 

the fuselage and an antenna mounted on the exterior skin of the fuselage. Again 

both the standard FDTD (2,2) and the hybrid of subgrid FDTD (2,2)/FDTD (2,4) are 

applied for the predictions which are validated by comparison with measurements. 



HIRF Penetration Through Apertures 

Penetration of High Intensity Radiated Fields (HIRF) into cavities through apertures 

is an important EM1 issue. Electronic equipment that supports communications and 

navigation systems of airplanes is usually shielded in order to increase reliability and 

integrity. Additionally, electronic equipment is commonly housed into boxes that have 

openings. In such structures, an external signal can penetrate through these apertures 

and directly couple energy in the interior. Moreover, the electromagnetic environment 

of electronics consists of multiple friendly and threat signals that can cause problems 

to their operation; e.g., jamming in communication systems. Therefore, the shielding 

effectiveness of boxes with apertures is a crucial issue and should be taken into account 

during an installation. 

In addition, the field penetration into airborne structures, such as helicopters or 

airplanes, is another crucial issue which has lately attracted a lot of attention. The 

design of new generation aircraft, such as the Boeing 777 and the Airbus A320, is 

based on "fly-by-wireJ' technology (FBW), in which the mechanical links between 

the pilot's controls and the airplane's flight surfaces have been replaced by electronic 

links. Digital avionic systems, such as navigation computers, flight data computers, 

engine control computers, digital autopilots, collision avoidance systems, etc., are 

even incorporated on older generation airplanes which are currently built. Future 

designs of airplanes seek the incorporation of electronic avionics that perform even 

more complicated functions, such as stability augmentation, gust load alleviation, 

satellite-guided navigation, etc. All these trends illustrate that safe operation of an 

airplane relies substantially on digital avionic systems. Therefore, the susceptibility 

of such systems to electromagnetic interference (EMI) is of great concern and interest. 

In particular, EM1 generated from man-made radio frequency (RF) sources exter- 

nal to the airplane, such as radars, radio stations, and other radiating sources, need 

to be carefully studied. Such sources are known as HIRF or High Intensity Radiated 

Field sources [129]. While an aircraft is flying, it is subject to HIRF sources which 

can potentially upset its electronic equipment. Although there are many possible 

mechanisms contributing to penetration of fields into an aircraft (including direct 

penetration through composites, penetration through cracks and joints, conduction 

along cabling, etc.), it is usually the windows which allow the greatest. Consequently, 



it is of paramount importance to understand and be able to predict the field pene- 

tration through apertures. The research presented here was instigated and generated 

from projects related to H I W  studies of commercial airplanes [129]. 

In this section, the shielding effectiveness (SE) of cavities with apertures is ex- 

amined. Mendez [130], in 1970, analytically formulated the SE of a cavity using a 

theory that applies at frequencies below the first cavity resonance. The radiation of 

apertures which are mounted on conducting boxes was also derived, based on the 

equivalence principle in [131]. Furthermore, another analytical formulation of SE of 

conducting enclosures has been recently presented in [132], but the results were for 

frequencies below the first cavity resonance. Method of moments was successfuIly 

used in [I331 for SE analysis. As far as FDTD, few papers have applied it in SE 

studies. In [I341 FDTD was applied to sinusoidal steady state penetration problems, 

and a small loss was introduced in the cavities to accelerate the simulation conver- 

gence to steady state. A hybrid Moment Method/FDTD approach was reported in 

[I351 and applied to coupling and penetration into complex structures. Furthermore, 

a subcell model for thin wires was presented in [I361 along with the concept of equiv- 

alent radius which was used to replace bundles of wires. Induced currents on wires 

and multi-conductor bundles placed into cavities were also computed. Additionally, 

in [137], FDTD models for narrow slots and lapped joints were derived. Different 

FDTD subcellural modeling of thin slots were examined and compared in [138]. In 

[I391 the EM1 through perforation patterns in shielding enclosures was investigated 

using the FDTD and compared with measurements. 

The emphasis of this section is to  address various issues related to the FDTD 

analysis of penetration. Specifically, problems related to the Fourier transform of 

time-domain data are discussed, and different techniques that can accelerate a sirnu- 

lation are examined. The procedure of windowing is introduced and applied to FDTD 

computations of shielding effectiveness. Although windowing has been used before in 

the context of FDTD [115], its capabilities were not thoroughly examined. Moreover, 

results are presented and compared with measurements. Finally, various definitions 

of SE are presented and their respective differences are analyzed. 



A. Definition of shielding effectiveness 

In this section, two definitions of electric shielding effectiveness of conducting enclo- 

sures with apertures are considered in the context of FDTD. The first one is based 

on a plane wave excitation and the following procedure: 

a. Excite the cavity with an incident pulse plane wave and record the electric field 

at the position of interest. 

b. Excite an empty space computational domain with the same incident pulse 

plane wave and record the electric field at the position of interest. 

c. Fourier transform the time-domain data. 

d. Compute the shielding effectiveness in dB using the following definition: 

empty space frequency response 
SE = 201og 

problem space frequency response 

where the frequency response is defined as the magnitude of the electric field compo- 

nent of interest. This first definition of SE will be labeled procedure #1 for reference 

purposes. 

The second way of defining SE assumes that the cavity is excited by a probe, and 

follows a similar procedure: 

a. Excite the cavity using a probe and find the time-domain far-field at the obser- 

vation angle of interest using the near to far field time-domain transformation. 

b. Assume that the top of the cavity along with its sides are removed and only 

the bottom part is kept along with the excitation probe (forming essentially a , 

geometry of a monopole on a ground plane). Find its time-domain far-field at 

the observation angle of interest using again the near to far field time-domain 

transformation. 

c. Fourier transform the far-field time-domain data. 

d. Compute the shielding effectiveness using the definition of (4.1) 



For convenience, throughout this section, the case with the top and the sides of the 

cavity present will be referred to as "with the cavity" case, whereas the case without 

the top of the cavity will be referred to as "without the cavity" case. This second 

definition of S E  will be labeled procedure #2 for reference purposes. 

Assuming that the presence of the probe does not significantly affect the field 

distribution in the cavity, and that the field distribution at  the center of the cavity 

is uniform from top to bottom, the two procedures of calculating S E  can be ap- 

proximately considered reciprocal. An incentive for computing SE using the second 

procedure is that this approach is in accordance with the way measurements were 

performed at ASU's Electromagnetic Anechoic Chamber (EMAC) facility. Therefore, 

by simulating in FDTD the actukl experiment, a better agreement is expected. These 

two procedural definitions of S E  will be compared in Subsection F. 

B. Problem definition 

In this section, the SE of three different geometries are examined. The conducting 

enclosure consists of a 30 cm wide, by 30 cm deep, by 12 cm high (inside dimensions) 

box. Three aperture configurations are considered: a single 20 cm x 3 cm [132], a sin- 

gle 10 cm x 0.5 cm [132], and one of each of these apertures. The three geometries are 

illustrated in Fig. 4.1. The analysis presented here involves FDTD SE computations 

of all three geometries at the center of the conducting enclosures, using the two dif- 

ferent definitions of SE described in Subsection A.. When using procedure #1 (plane 

wave excitation), there is no probe in the cavity. In this case, SE is computed at the 

center of the cavity for a.vertically polarized plane wave incident to the aperture at 

an angle $i and Bi [see Fig. 4.2(a)]. Reciprocally, when using procedure #2 (probe 

excitation), a monopole mounted at the cavity's bottom side is present. The probe 

is always located at the center of the cavity and is 3 cm long, which is in accordance 

with the measurement configuration. In this case, the probe will excite the cavity, 

and the vertical electric field component in the far-field zone will be computed at the 

observation angle 4, and 13, [see Fig. 4.2(b)]. Also, note that all FDTD simulations 

presented in this section used a cell size of 2.5 mm (or X/80 at 1.5 GHz), besides the 

windowing studies (shown in Subsection E. which used a cell size of 5 mm (or X/40 

at 1.5 GHz). 
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Figure 4.1: Geometries:(a) Cavity #1; (b) Cavity #2; and (c) Cavity #3. 



Figure 4.2: Definition of: (a) incident angle, +i and Oi, for SE computations using 
procedure #l;  and (b) observation angle, 4, and O,, for SE computations using 
procedure #2. 

C. Measurements 

The conducting enclosure, described in the Subsection B., is constructed of brass 

plates. All the side and top joints were soldered together and then covered on the out- 

side with copper tape. Because more than one aperture configuration was intended, 

the front and back walls were constructed with interchangeable panels containing 

the apertures. The panels and front and back walls were made with matching steps 

machined into their interfacing edges so that the panels installed flush into the front 

and back walls. This is illustrated schematically in Fig. 4.3. A film of uncured silver- 

bearing epoxy was used on the contact surfaces between the wall and the aperture 

panel as a flexible RF gasket. The panel was held in place and further sealed with 

copper tape over the outside seams. 

Four aperture panels were constructed. Two of the panels were blank (no aper- 

ture). One of the blank panels was installed in the back wall for configurations 

consisting of only one aperture. The second blank panel was used with the 5rst to 

verlfy the fidelity of the enclosure. If a significant signal had been measured when 

both blanks were installed, that would signify an incompletely sealed enclosure. Over 

the frequencies measured, the electric field inside the enclosure when both blanks were 

installed was found to be just discernibly above the noise floor, and the enclosure was 

judged to be fiee of significant 'leaks". One of the aperture panels had a 20 cm wide 

by 3 cm high aperture [see Fig. 4.l(a) and (c)]. The final panel had a 10 cm wide by 
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Figure 4.3: To accommodate multiple aperture configurations in the conducting en- 
closure, the front and back walls were constructed to  accept flush-mounted aperture 
panels. 

0.5 cm high aperture [see Fig. 4.1 (b) and (c)]. 

A wire probe (monopole) with a 0.021 in (0.5334 mm) diameter was mounted 

at the bottom of the box in order to measure the electric field inside the box. The 

length of the wire probe started at  slightly more than half the height of the box (ap- 

proximately 7 cm). However, the first resonant frequency of the cavity was measured 

and exhibited a shift (from the theoretical) of approximately 30 MHz. The measured 

resonant frequency increased as the height of the probe was reduced, until the length 

of the probe approached one quarter of the height of the cavity (3 cm). Near that 

height, the first measured resonant frequency seemed to change very little with addi- 

tional changes in the height of the probe, and was in close agreement with the first 

theoretical resonant frequency. 

The procedure for measuring the shielding effectiveness was performed as follows. 

The bottom of the enclosure, with the electric field probe, was mounted on an ex- 

panded polystyrene column inside the anechoic chamber. An auxiliary antenna was 

mounted on another polystyrene support, at a distance of approximately 2.5 m from 

the enclosure. The auxiliary antenna was aligned in height, azimuthal orientation, 

and polarization. The field received by the probe was measured as a function of fre- 

quency. This measurement represents the electric field at  the box location, when the 

box is not present (the incident field). Any effects due to the ground plane formed 

by the bottom of the box are ignored. The remainder of the box (the assembly con- 

sisting of the top and sides) was then fitted onto the bottom. Then, the fields that 



Figure 4.4: A photograph of the bottom of the enclosure, with the probe, and the 
auxiliary antenna inside the anechoic chamber. 

have penetrated into the box were measured. The ratio of the incident fields to the 

penetrated fields is the shielding effectiveness. The bottom of the enclosure with the 

probe is shown in Fig. 4.4, with the auxiliary antenna in the foreground. 

The measurements were performed over 801 frequency points between 250 MHz 

and 1.5 GHz. The three aperture configurations, illustrated in Fig. 4.1, were con- 

sidered. The SE was measured, for each of the three aperture configurations, over 

a number of incidence angles. Two of the aperture cases that were measured are 

identical to those examined by Robinson et al., [132]: the single 10 cm by 0.5 cm, and 

the single 20 cm by 3 cm apertures. Due to the limitations of their facilities, these 

measurements exhibited filled nulls and approximately 5 dB of ripple. The ASU mea- 

surements exhibit a significant improvement in quality, as evidenced by the marked 

reduction in ripple and the deeper nulls. 

D. Acceleration techniques 

In electromagnetic analysis various quantities which describe different characteristics 

of a problem; e.g., gain, input impedance, scattering (RCS), shielding effectiveness, 

etc., are defined in the frequency domain. Therefore, a transformation must be used 

to convert the fields computed by time-domain methods (like the FDTD) into the the 



frequency domain. This transformation is usually performed using a Fourier process 

(either FFT or DFT). The basic requirement for the FFT to  work is to allow sufficient 

simulation time for the transient phenomena to decay. This requirement comes from 

the formula of DFT 

where g(nAt) is a time-domain response at  discrete time instants t = nAt, n = 0, . . , N, 

G(f) represents the Fourier transform of g(t) at  frequency f, and At is the time-step. 

Theoretically, the DFT summation has to be infinite in extent (N = 00). In practice 

though, the DFT summation has to be of finite extent, which introduces errors in the 

computations. For this reason FDTD simulations usually have to allow sufficient time 

for the transients to decay, so that the DFT summation can be accurately truncated 

without introducing large errors. However, one of the main difficulties involved in 

FDTD simulations is that in some applications, e.g., resonant lossless structures, tens 

or even hundreds of thousands of time-steps may be required for the transient fields 

to decay. In the case of SE computations, a prohibitive simulation time may be 

needed for transients to converge to zero, especially for conducting enclosures with 

high quality factor, Q. 

In this subsection, two different techniques that can be used to overcome this 

problem, are proposed. Their respective advantages and disadvantages are also re- 

ported. T O  illustrate the use of these acceleration techniques, the geometry of the 

cavity with the thin aperture (cavity #2) is analyzed due to its higher Q compared 

to the other two geometries. 

1. Artificial Losses 

Here, the SE of cavity #2 is examined using procedure #l .  SE is computed at the 

center of the cavity for a normally incident plane wave ($i = 0°, Oi = 90'). The field 

at the center of the cavity was recorded and Fourier transformed. After executing 

the simulation for 131,000 time steps, the time-domain electric field amplitude at  the 

center of the box has only decayed to a value of 0.03 V/m, as seen in the inset of 

Fig. 4.5(a). Therefore, this electric field cannot be accurately Fourier transformed. 

One possible solution is to introduce some additional loss mechanism into the solution 
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Figure 4.5: The time-domain electric field at the center of cavity #2 for a normally 
incident wave (c$~ = 0" and 19~ = 90") and an artificial conductivity of (a) 0 S/m; and 
(b) 0.0032 S/m. 

space. A sufficiently lossy lumped element inside the enclosure would alter the field 

distribution from that of the empty cavity. Instead, a very small value of loss is 

distributed throughout the solution space by artificially assigning a conductivity to 

the free-space cells of the FDTD mesh. This approach was first published in [134], 

and it was also used in [129]. 

The FDTD prediction for cavity #2 was computed again, but with the free-space 

cells artificially assigned a conductivity of 0.0032 S/m, and the number of time steps 

was reduced to 16,000. In Fig. 4,5(b), the time-domain fields at  the center of the cavity 

are shown versus number of time steps, and the last 3,000 time steps are shown in 

the inset. The late-time fields have now been driven almost to zero within 16,000 

time steps and an FFT can be performed accurately. Therefore, the introduction of 

a small artificial conductivity can resolve the problem of extremely large simulation 

times of high & structures. 

The inclusion of artificial losses in a problem is expected to alter its physical 

response. However, it has been found in our SE studies that this method can provide 

very accurate results for small artificial conductivities. Based on observations from 

these studies, several speculative conclusions can be drawn. When the free-space 

cells are assigned a very low value of conductivity, the loss experienced by the pulse 

is cumulative over a large number of time steps, and the greatest effect is on the 

late-time fields. When the free-space cells are assigned a higher value of conductivity, 



the initial pulse response of the cavity is altered, and the accuracy of the prediction is 

degraded. However, if the conductivity of the free-space cells is increased as a function 

of time steps from an initial value of zero, the initial pulse response of the cavity is 

virtually unaltered from its true free-space response. The artificial loss then increases 

to values that are effective in forcing the late-time fields to zero. The introduction 

of a linearly increasing artificial loss to the free-space cells of an FDTD problem 

consisting of a cavity with apertures was found to greatly reduce the computation time 

of the calculations, reduce the computer memory requirements, enable the solution 

of otherwise possibly intractable problems, and yield results that are in excellent 

agreement with measurements. 

2. Voltage Source with Internal Resistance 

Here, the SE of cavity #2 is examined using procedure #2. Therefore, the cavity 

is excited by a 3 cm probe and the far-field is computed along the normal outward 

direction to the aperture (6, = 0°, 8, = 90"). A very effective technique that reduces 

the simulation time is based on a source with an internal resistance that provides the 

excitation [97], [125], [126], [140]. This source inserts losses in the computational do- 

main by incorporating a resistance in its excitation and thereby forcing the transients 

in a resonant structure to decay rapidly. 

To illustrate the effectiveness of this type of excitation, the time-domain far-field 

is plotted for cavity #2 for a voltage source with internal resistance, R, = 0 and 

200 ohms, in Fig. 4.6. Obviously, the field in the case with no internal resistance 

(R, = 0) has not decayed to zero even after 60,000 time steps, indicating the resonant 

behavior and the high quality factor, Q, of the cavity. On the contrary, in the 

second simulation (R, = 200 ohms), the field converged to zero very fast and the 

FDTD calculation time significantly reduced. The approach that was proposed in 

the previous subsection, inserts artificial losses in the computational domain in order 

to accelerate the simulation and decrease the required time for the transients to decay. 

However, the source with the internal resistance has the advantage of not altering or 

modifying the physical problem by including artificial losses. The only limitation 

of the source with the internal resistance is that it must be attached to a probe 

(monopole or dipole) which exists in the domain. If such a probe does not exist 
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Figure 4.6: Time-domain far-field of cavity #2 at  observation angle, $o = O0 and 
8, = 90°, for (a) R8 = 0 ohms; and (b) R8 = 200 ohms. 

in the computational domain, then this source cannot be used. However, it should 

be pointed out that a cavity can potentially be excited using a infinitesimal dipole, 

which is implemented as a delta-gap source. An internal resistance can be connected 

to this source, in order to accelerate the simulation, without effectively having a probe 

(metallic wire) present in the cavity (see also Subsection F.). Usually, when studying 

SE of cavities, probes are not present in the physical geometry. Although, when 

measurements of SE are performed, a probe should always be used to sample the 

fields in the cavity. 

E. Windowing 

Harmonic analysis, such as the Fourier transform (FT), is based on the projection 

of a signal on a basis set which spans the time interval of interest. In the case of 

FT this basis is formed either by exponential functions alone or by sine and cosine 

functions. The selection of a finite time interval and of the orthogonal basis functions 

over this interval causes one of the main problems of harmonic analysis. The signal 

of interest spans a band of frequencies from which, only those that coincide with the 

basis will project on a single basis function, whereas all other frequencies will have 

non zero projections on the entire basis set. This phenomenon is often called spectral 



leakage [141]. One of the common approaches that at tempts to resolve the problem of 

spectral leakage and which has been extensively used in the field of signal processing is 

windowing. Windows are weighting functions that multiply the signal of interest and 

aim in the reduction of discontinuities at  the boundaries. This is usually accomplished 

by matching as many derivatives as possible at  the boundary. Naturally, the most 

straightforward way to do this matching is by setting the value of these derivatives 

to zero or near zero [141]. Windowing was introduced in FDTD simulations in [115], 

without though presenting a thorough elaboration of its capabilities and drawbacks. 

Let the signal of interest be f (t) and the window w(t) .  Then the windowed signal, 

fw(t), can be written as 

From basic theory of signals and systems, it is well known that the FT of the windowed 

signal, f, (t), is the convolution of the FTs of f ( t)  m d  w(t )  

Fw (w) = F(w)  * W ( w )  

The spectrum of most windows usually resembles a sinc function, i-e., it exhibits 

a main lobe and multiple side lobes. Windowing of a signal causes spectral leakage 

which results in biasing of the amplitude and the position of the harmonic estimate. 

This bias is particularly important in the detection of small signals in the presence of 

nearby large signals [141]. This biasing effect is less severe for windows that exhibit 

low amplitude side-lobes far from the main lobe, and a rapid transition to the low 

side lobes. Another problem that can occur by windowing is masking of resonances 

that are located closely to each other. This happens because the window imposes an 

effective bandwidth on each resonance. The resolution that a window can provide is 

related to its main lobe beamwidth; e.g., a 3-dB beamwidth criterion is commonly 

used in signal processing. This criterion means that two equal strength main lobes 

separated in frequency by less than their 3-dB beamwidths will give a single res- 

onance and will not be resolved as two distinct resonances [141]. Therefore, if a 

particular problem exhibits very sharp resonances, then a window with narrow main 

lobe beamwidth should be used in order to be able to resolve them. It is apparent, 

that there must be a compromise between side lobe level and beamwidth when a 

window is chosen or designed. 



Numerous types of windows, have been used in the field of signal processing, 

such as Hanning, Blackman-Harris, Kaizer, Hamming, etc., [141]. Here, only few of 

the most common windows are examined for illustration purposes. Assuming that 

the windows are centered at time zero and are sampled using N + 1 equally spaced 

samples, i.e., w(n), n = -N/2, ..., 0, ..., N/2, they can be written as 

a. Rectangle window 

This window and its spectrum are illustrated in Fig. 4.7 for N = 10,000. The 

FFT frequency resolution was Af = 1.68 MHz (obtained by zero padding of 

the window so that the total number of time samples would be 216). These 

parameters are also used for the other window illustration examples that follow. 

b. Hanning window 

This window and its spectrum are illustrated in Fig. 4.8. 

c.  Tukey window 

The Tukey window is a tapered cosine. The window as well as its spectrum are 

shown in Figs. 4.9 and 4.10 for a = 0.5 and 0.75, respectively. 

To illustrate the use and application of windowing in the context of FDTD, the 

shielding effectiveness of a cavity #2 [see Fig. 4.l(b)] is examined. To compute 

the S E ,  procedure #2 is used. The observation point in the far-field is along the 

normal outward direction to the aperture (4, = O0 and 0, = 90°). Remember that 

in order to compute the SE two simulations are needed; one in the presence and 
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Figure 4.7: (a) Rectangle window. (b) Its spectrum. 

Figure 4.8: (a) Hanning window. (b) Its spectrum. 
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Figure 4.9: (a) 50% Tukey window. (b) Its spectrum. 

(8) 

Figure 4.10: (a) 75% Tukey window. (b) Its spectrum. 



one in the absence of the cavity. The simulation times for the two cases with and 

without the cavity (for the meaning of the expressions with and without the cavity see 

Subsection A.) were chosen such that the transients would decay to zero and they were 

32,000 and 6,000 time-steps, respectively. These simulation times were achieved using 

a voltage source with internal resistance R, = 200 ohms. The corresponding time- 

domain far-fields Gre illustrated in Fig. 4.11. Notice, that the more time consuming 

simulation is the one with the cavity present, where the Q of the structure is high 

and the transients need a longer time to decay to zero. Using these FDTD results 

SE was computed and this calculation is used as a reference. 
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Figure 4.11: Time-domain far-field of cavity #2. (a) Top and sides of cavity present. 
(b) Top and sides of cavity absent. 

Furthermore, to present the use of windowing, it is assumed that FDTD simu- 

lations were run for both geometries, with and without the cavity, only for 5,000 

time-steps. Obviously, for the case without the cavity there is no impact of chopping 

the time response, because the far-field has already decayed to zero and therefore it 

can be Fourier transformed without significant errors. However, for the case with the 

cavity the far-field after 5,000 time-steps has not decayed to zero yet and is still highly 

oscillatory. As a result, if this response is directly Fourier transformed (equivalent to 

rectangular windowing), then significant error will be introduced in the computation 

of SE. Alternatively, different windowing can be  applied to the far-field response 



before the FFT is used. The length of the window is 10,001 time-steps including both 

the negative- and positive-time samples. However, ~ n l y  the positive-time samples of 

the window are used because it is assumed that the FDTD response is zero for nega- 

tive times. The windowed time-domain FDTD response is formed by multiplying the 

positive time half of the window with the first 5,001 time-domain points (including 

time, t = 0) of the entire FDTD response (see Fig. 4.12). Also, before FFT is used 

the windowed data are padded with zeros to increase the frequency resolution. 
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Figure 4.12: Illustration of windowing procedure. (a) Time-domain far-field along 
with scaled (for plotting purposes) Hanning window (the actual maximum of the 
window is one). (b) Windowed time-domain far-field. 

Fig. 4.13 (a) illustrates the SE computed using the rectangle window. Obviously, 

there are significant oscillations in the response due to the high side lobe level (-13 dB) 

of the rectangle window. The oscillations are so high at  some frequencies that they 

mask the actual resonances of the response. This problem is resolved by using other 

types of windows. Fig. 4.13(b) shows the SE calculated using the Hanning window. 

Figs. 4.13(c) and 4.13(d) illustrate the S E  using the Tukey window for a = 0.5, and 

0.75, respectively. All the figures also compare the results with the reference FDTD 

calculations (labeled as no windowing in the graphs) that used the entire time-domain 

responses. Obviously, a computation performed using one of the windows, besides 

the rectangle, yields better results and gives more reasonable agreement with the 
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Figure 4.13: Shielding effectiveness of cavity #2 computed using (a) Rectangle; (b) 
Hanning; (c) 50% Tukey; and (c) 75% Tukey window. 



actual (reference) FDTD response. This improvement and absence of oscillations in 

the SE computations is due to the reduced side lobe level of the windows. Another 

effect, that is observed in the results computed using certain windows (Hanning), is 

the substantial broadening of the resonances. This is due to the increased beamwidth 

of the main lobe of these windows. For this example, it seems that the Tukey win- 

dow performs the best (especially for a = 0.5). Furthermore, the sharpness of the 

Tukey window is adjustable by the parameter a, providhg additional flexibility. It 

should be pointed out that windowing is a post-processing procedure and therefore 

experimenting with different types of windows, when performing FFTs, is possible. 

It can be concluded that windo*ng can be very helpful when transforming time- 

domain data to frequency domain, especially if the time response has not decayed 

to zero. &om another viewpoint, windowing can contribute in computational sav- 

ings by reducing the simulation time required to obtain accurate Fourier transforms. 

Essentially, in the example presented here it was shown that the shielding effective- 

ness computed using windowing needed only 5,000 time-steps whereas the standard 

approach of FFT (no windowing) required 32,0000 time-steps. The two different ap- 

proaches, provided identical results except at  the resonances. Therefore, it can be 

claimed that windowing provided a savings factor of 6. 

F. Comparison for SE definitions 

In this subsection, the different definitions of SE presented in Subsection A. are 

examined and compared. Fig. 4.14(a) and (b) illustrate the two first procedures #1 

and #2 that were already used above to compute SE. Revisiting the definitions 

of SE following procedures #1 and #2, which were presented in Subsection A., 
two alternative procedures can be defined. The first one, which can be considered 

reciprocal definition of procedure #2, is the same with the one of procedure #1 but 

instead of collecting the data at the center of the cavity, the field is sampled at the base 

of an open-circuited probe existing in the cavity [see Fig. 4.14(c)]. This procedure is 

labeled procedure #3. Similarly, the second alternative definition of SE is reciprocal 

of procedure #1 and is exactly the same with procedure #2 except the fact that the 

cavity is not excited using a probe but rather a delta-gap excitation at its center [see 

Fig. 4.14(d)]. This procedure is labeled procedure #4. 
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Figure 4.14: Illustration of shielding effectiveness definitions (R,=receiving point, 
T,=transmitting point, .=center of cavity). (a) Procedure # 1 (Plane Wave 
excitation-No probe); (b) Procedure #2 (Probe excitation); (c) Procedure #3 (Plane 
Wave excitation-receiving at a probe); and (d) Procedure #4 (Delta-gap excitation 
at the center). 
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Figure 4.15: Shielding effectiveness of cavity #I using (a) Procedure #1 (Plane Wave 
excitation-No probe); (b) Procedure #2 (Probe excitation); (c) Procedure #3 (Plane 
Wave excitation-receiving at  a probe); and (d) Procedure #4 (Delta-gap excitation 
at the center). 



For this study, the SE of cavity #1 is computed for normal incidence (& = 

0" and Bi = 90" when using procedure #1, or 4, = O0 and 19, = 90" when using 

procedure #2). First, procedure #1 is used and the predicted SE is plotted along with 

the measurements in Fig. 4.15(a). The agreement between FDTD and measurements 

is excellent except near 1.4 GHz where the computations do not exhibit the resonance 

that appeared in the measurements. This resonance is attributed to the probe feeding 

the cavity in the measurements which was absent in the FDTD calculations that 

followed procedure #1 [see Fig. 4.14(a)]. Therefore, it is expected that any effects of 

the probe itself will not be predicted by FDTD. However, when procedure #2, which 

uses a probe to  excite the cavity [see Fig. 4.14(b)] as done in the measurements, was 

used to compute the SE, FDTD predicted accurately the resonance at  the higher 

end of the band. The result of this simulation is shown in Fig. 4.15(b). Obviously, 

the presence of the probe has an effect on the SE of a cavity, especially at higher 

frequencies where it is electrically longer and higher-order modes exist in the cavity. 

The two new procedures #3 and #4, were also used t o  predict the SE of cav- 

ity #1, and the results are illustrated in Figs. 4.15(c) and 4.15(d), respectively. I t  

can be concluded that procedures #2 and #3, which include the probe in the simula- 

tion, were able to predict the resonance associated with the probe. On the contrary, 

procedures #1 and #4, which do not include the probe in the simulation, did not 

predict the resonance attributed to the probe. Both types of SE definitions, includ- 

ing or excluding a probe, are useful. The ones including the probe are appropriate 

for direct comparison with measurements (which commonly use a probe). However, 

the ones excluding the probe are advantageous because SE of cavities usually need 

to be evaluated without probes existing in the cavities (unless the probes are in the 

physical geometry). Therefore, in the next results one representative of each type of 

SE definitions (procedure #1 and #2), are used to illustrate the SE of cavities with 

and without the probe. 

Finally, notice the different low frequency variations of SE computed by the four 

procedures. Procedures #2 and #4, which used either a probe or a delta gap excita- 

tion, provided predictions of SE that exhibited deep nulls near DC [see Figs. 4.15(b) 

and (d)]. These nulls can be attributed to either the use of hard sources in the cav- 

ity or artifacts of the FDTD excitation models at low frequencies. On the contrary, 



procedures #1 and #3, which used plane wave excitations, provided SE predictions 

that exhibited peaks near DC [as expected; see Figs. 4.15(a) and (c)]. 

G .  Results 

In this subsection, the SE of the three cavities illustrated in Fig. 4.1 are examined. 

I t  should be pointed out again that the SE of each of these cavities is computed 

following either procedure #1 or #2 presented in Subsection A. 
For cavities #1 and #2, a normally incident plane wave to the aperture is used 

as an excitation for procedure #1 (& = 0°, Oi = 90°), or equivalently the observation 

point in the far-field is along the normal outward direction to the aperture for pro- 

cedure #2 (+o = 0" O0 = 90°). Notice again, the recidrocity of the excitation and 

observation points for the two procedural definitions. The pedictions are compared 

with measurements for cavity #1 in Fig. 4.16. The agreement of the FDTD calcula- 

tions with the measurements is excellent. Also, FEM predictions are plotted in the 

same graph, and they compare very well both with FDTD and measurements. These 

FEM predictions and some other ones have been reported in [142]. The simulation 

based on procedure #1 did not use any atificial conductivity and needed 25,000 time- 

steps for the transients to converge to zero. The simulation based on procedure #2 

and with the cavity, which is highly resonant, needed only 16,000 time-steps for the 

transients to decay. This was accomplished using the probe excitation of the cavity 

with an internal resistance of 100 ohms. 

Similar comparisons are illustrated for cavity #2 in Fig. 4.17. In this case the 

use of either artificial conductivity (when using procedure #I), or a probe excita- 

tion with an internal resistance (when using procedure #2) is indispensable due to 

the high Q of the cavity. This is explained in detail in Subsection D.. In proce- 

dure #1 a linearly increasing artificial conductivity profile was used with a maximum 

of 0.064 S/m reached after 16,000 time-steps. In procedure #2 an internal resistance 

of 200 ohms was used and the simulation time was 62,000. Both procedures gave ex- 

cellent agreement with measurements. The simulation time required for procedure #2 

was significantly greater than the one of procedure #1. Note though, that the voltage 

source with an internal resistance facilitates the examination of structures with high 

quality factor Q, without changing the material properties of the physical geometry. 



Figure 4.16: Shielding effectiveness of cavity #l. 

Figure 4.17: Shielding effectiveness of cavity #2. 
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Finally, for cavity #3, SE is computed for different incident azimuthal angles, 

(pi ,  and for elevation angle Oi = 90° (describing the $9-plane). The FDTD computa- 

tions are shown and compared with measurements for various angles (pi in Fig. 4.18. 

The agreement is again very good. Measurements were performed for every lo0 of 

azimuth angle. Moreover, Fig. 4.19 (a) illustrates the measured shielding effectiveness 

of cavity #3 for different incident angles, &, versus frequency. I t  can be concluded, 

that at most of the frequencies SE is less when the field penetrates in the cavity from 

the front than from the back for symmetric azimuthal angles of incidence, 4i, about 

4 = 90'. This is attributed to the significantly larger aperture located at  the front 

wall compared to the one located at the back wall. Fig. 4,19(b) plots the measured 

SE of cavity #3 versus 4i for few frequencies. Some of these frequencies where se- 

lected to be the ones where the SE exhibited nulls (622, 800, and 1155 MHz). An 

interesting observation is that the maximum of S E  does not occur for all frequencies 

at normal incidence (4i = 90"). 

For all three cavities, the FDTD simulations that used procedure #2 provided 

predictions which exhibited some nulls and peaks at  the lower band of the frequencies 

and a deep null close to DC. These peaks and nulls can be attributed to either the 

effects of the probe in the cavities or artifacts of the FDTD probe excitation model 

at Iow frequencies. 

Summary 

In this section, shielding effectiveness analysis was performed for cavities with aper- 

tures. Various acceleration techniques were presented. The probe excitation by a 

voltage source with an internal resistance enabled the analysis of highly resonant 

structures. Also, the introduction of small artificial loss proved to be very useful 

when analyzing high Q structures using the plane wave excitation. 

Furthermore, issues related to the Fourier transform of time-domain data were dis- 

cussed. Windowing approaches were introduced and applied in FDTD computations. 

Different windows were presented and their advantages as well as their drawbacks 

were reported. Also, general guidelines for choosing windows were analyzed and ex- 

plained in detail. It was found that windowing can be very useful, especially when 

FFTs of time-domain data that have not converged to zero are performed. Win- 



, I , , , , , , . 
- FJJl'D (procedure XI) - 
---- FDTD(pmeedureM)- 

Meeaurementa - 

' ' 4 ' c ' . ( 1 1 1  

260 500 760 1000 1250 1600 
Frequency (MHz) 

250 500 760 lOB0 1250 1680 
Frequency (MHz) 

0 260 600 760 1000 1250 15W 
Frequency (MHz) 

Figure 4.18: Shielding effectiveness of cavity #3 for incident angle (a) 4i = 0°, 
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Figure 4.19: Measured shielding effectiveness of cavity #3 for different incident angles. 
(a) Versus frequency. (b) Versus azimuth incident angle. 



dows reduce the discontinuities at the boundaries of data sets and effectively resolve 

problems associated with spectral leakage. I t  was illustrated that even when severe 

discontinuities occur at  the end of time-domain data sets, windowing can be used and 

provide very accurate results as long as the set of data is sufficiently long to describe 

the response of a structure. Windowing can be particularly beneficial in the analysis 

of both large and high Q structures where the transients need a prohibitive simulation 

time to decay. In such cases windowing is probably the only way that can provide 

predictions of reasonable accuracy. 

Finally, different possible shielding effectiveness definitions in the context of FDTD 

were presented and compared. Their respective pros and cons were analyzed. All nu- 

merical results were cornparedwith measurements and exhibited excellent agreement. 

Shielding effectiveness w&'computed and measured for different incident angles at a 

band of frequencies covering up to 1.5 GHz. 

HIRF Penetration Through a Scaled Fuselage 

By examining the shielding effectiveness of various simple configurations of boxes 

with apertures in the previous section, the FDTD method has been validated and 

proven accurate through comparison of the FDTD predictions with measurements. 

In this section, a more complex and realistic problem of penetration is considered. 

As discussed above, the HIRF problem has been of tremendous interest for airborne 

applications. Penetration of high intensity fields into commercial airplanes is a chal- 

lenging problem, and it has stimulated a significant amount of research. 

Direct analysis of HIRF penetration into a full-scale model of a fuselage is a very 

complicated problem consisting of a plethora of different materials and very complex 

geometric features. In addition, uncertainty for the accuracy of CAD models for 

full-scale airplanes as well as uncertainty of the various measurement parameters in 

full-scale setups makes the modeling and numerical simulation of such geometries 

very challenging. Especially, when numerical results are being validated, a controlled 

geometric setup as well as measurement environment are desired. This is the reason 

that stimulated the construction and analysis of a simplified scaled model of a Boeing 

757 aircraft. 

The geometry of the scaled model was constructed and measured in the ASU 



anechoic chamber thereby providing a completely controlled environment. This model 

will be used for validation of the accuracy of FDTD predictions for HIRF penetration 

into complex models. 

A. Construction and specifications of the geometry 

The simplified fuselage is much larger than the simple boxes that were examined in 

the previous section. Its internal dimensions are 155 cm long by 20 cm wide by 24 

cm high. These dimensions are sufficient to enclose a 1:20 scale model of a Boeing 

757 fuselage that is shortened by 25%. 

The construction plan for the simplified fuselage was to machine six flat panels 

using 0.061" thick aluminum stock, and then assemble the panels into a rectangular 

box. The two side panels would be grooved near the top and bottom edges so as to 

accept the edges of the top and bottom panels. The rectangular tube so formed would 

then be epoxied together as depicted in Fig. 4.20. A photograph of the aluminum 

panels is shown in Fig. 4.21. 

The grooves in the side panels help to accurately locate the top and bottom 

panels, and the parts of the side panels which extend beyond the top and bottom 

would provide surfaces with which the assembly could be epoxied without altering the 

interior of the model. However, it was decided that the model could also be useful for 

scaled measurements of EM1 between passenger carried Portable Electronic Devices 

(PEDs) and antennas mounted on the top of the fuselage if the "rails" extending 

beyond the top of the model were removed. To remove the top "rails," the top 

corners of the model had to be epoxied from the inside. A conservative estimate of 

the epoxy volume needed in the top inside corners of the model is less than 0.21% of 

the total interior volume of the model. Furthermore, the epoxy is a dielectric that will 

be at  locations of relatively low field intensity, so it is expected that this deviation 

from the ideal will have a negligible impact on shielding effectiveness measurements. 

The first step in assembling the fuselage was to clean the aluminum panels. The 

effectiveness of epoxies depends on the preparation of the materials to be joined. 

Considerable effort was expended in cleaning the panels and their grooves. After 

cleaning, sandpaper was used to apply a fine cross hatching into the surfaces on 

which the epoxy was to be applied. The top and sides were clamped together in an 



upside down orientation, as shown in Fig. 4.22, and epoxy was applied to the interior 

corners. Note in the photograph that expanded polystyrene ribs were used to aid in 



Simplified Fuselage 
Cross Section 

/ 
Epoxy (four places) 

Figure 4.20: The construction of the simplified fuselage was conceived as being four 
panels joined together with epoxy applied to outside surfaces, as shown. Instead, the 
protrusions of the side panels beyond the top panel have been trimmed flush with 
the top, and the top panel is epoxied from the inside. This alteration extends the 
usefulness of the model by enabling meaningful scaled measurements of PED coupling 
to top-mounted aircraft antennae. 



Figure 4.21: A photograph showing five of the six aluminum panels which form the 
simplified fuselage. 

keeping the sides and top orthogonal to one another. 

Next, the bottom panel was fitted to the assembly, and was epoxied into place. 

Here the epoxy was applied on the outside surfaces, as was originally envisioned. A 

photograph of the bottom panel being installed is shown in Fig. 4.23. The top "rails" 

were then removed (Fig. 4.24), and the top corners were covered over with aluminum 

tape. 

The top, bottom, and sides were now in the form of a rectangular tube. The front 

and back ends are attached with aluminum tape, enabling them to be removed so 

as to provide access to the inside. A front view of the completed model is shown in 

Fig. 4.25. An sma connector was installed in the bottom panel, 50 cm from the front 

and on the centerline of the fuselage, as a probe for the preliminary measurements. 

The connector has a non-captivated center conductor so that the wire probe can be 

easily removed and replaced. For all the measurements and predictions, the probe 

length was 6 cm. 

B. Measurements 

The measurements were performed in ASU's anechoic chamber in very much the 

same manner as were the SE measurements of the small box. The new shielding 

effectiveness measurement configuration is again a direct illumination of the simplified 

fuselage by an auxiliary antenna. The fuselage was placed equidistantly from the rear 

and side walls of the chamber. The auxiliary antenna was located on the longitudinal 

center of the chamber. This configuration is illustrated in Fig. 4.26. With this 



Figure 4.22: The first step in the assembly of the simplified fuselage was to epoxy the 
top and sides together from the inside. 

Figure 4.23: The bottom panel was then epoxied to the assembly. 



Figure 4.24: The top "rails" were removed using a rotary tool, files and sandpaper. 

Figure 4.25: A front view of the completed "simpIified fuselage" scale model. 



setup, there is no feed spillover. The only sources of asymmetry in this configuration 

are the SPCR, and its feed and feed support tower. The feed tower was concealed 

using carbon loaded foam microwave absorbing material. The auxiliary antenna was 

deliberately oriented so as to place the SPCR reflector in its back lobe. To further 

reduce the illumination of the reflector, an absorber baffle was placed between it and 

the auxiliary antenna. A photograph of the auxiliary antenna and absorber baffle is 

shown in Fig. 4.27. Also, due to the reduced distance between the auxiliary antenna 

and the simplified fuselage, the response of the desired signal path is enhanced relative 

to any undesired scattering from the room as compared to the previous configuration 

using the SPCR reflector. 

At a separation distance of 3.8 m, the simplified fuselage was very much in the 

near field of the auxiliary antenna. However, the illuminating phase-fronts, due to 

their small vertical dimensions, are practically linear (in the vertical plane) over the 

extent of the model's apertures. Therefore, for this particular geometry (in this xy- 

plane), there is no significant difference between its spherical and cylindrical near-field 

responses. Thus, the use of the cylindrical NF/FF transformation is justsable and 

valid. 

The HP8510 network analyzer can acquire 801 frequency points per measure- 

ment. This resolution is insufficient to accurately sample the rapid variations in the 

frequency response of the model. Therefore, 1 GHz bands were measured with 801 

frequency point resolution, up to  11 GHz. An IF averaging factor of up to 1024 

was used to reduce the effects of noise. The synthesizer was phase-locked to each 

measured frequency and produced an output power of +11 dBm. 

However, in order to perform the NF/FF transformation, an increased azimuthal 

sampling rate was required due to the shortened separation distanced between the 

simplified fuselage and the auxiliary antenna. For frequencies up to 2 GHz, the 

angular spacing between measured points was one degree. Between 2 GHz and 6 

GHz, this spacing was reduced to 0.4 degrees. Above 6 GHz, the necessary sample 

spacing was 0.2". This resulted in the collection and processing of over 10.5 million 

complex near-field data points. 
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Figure 4.26: A floor plan view of the anechoic chamber illustrating the relationships 
between the simplified fuselage under test and the auxiliary antenna. This configu- 
ration is symmetric and does not suffer from feed spillover. Due to the small vertical 
dimensions of the apertures, the near-field response of the simplified fuselage in the 
azimuthal plane is the same as it would be in a field of cylindrical waves. 



Figure 4.27: An absorber baffle was used to further reduce the illumination of the 
SPCR reflector by the back-lobes of the auxiliary antenna. The absorber reduced the 
signal scattered by the reflector by an average (over the band of interest) of about 15 
dB, as observed by the monopole reference antenna. 

C .  FDTD (2,2) predictions 

In this subsection, predictions of the shielding effectiveness for the simplified fuselage 

are presented. All the predictions are performed using the standard second-order 

accurate both in time and space FDTD(2,2) method. Three different cell sizes are 

used depending on the frequency range of the predictions. All the predictions are 

compared with measurements. Predictions are also performed for different angles 

of incidence. The computations of shielding effectiveness (SE) are based on the 

definition described by procedure #2 presented in Subsection A.. This procedure is 

in accordance with the measurements. The CAD model of the simplified fuselage is 

illustrated in Fig. 4.28. 

1. Cell size of 10 mm 

Initially, all FDTD predictions are performed using a cell size of 10 mm (or A110 at 

3 GHz). Therefore, it is expected that these FDTD calculations will provide accurate 

results at most up to 3 GHz. The memory required for storing all the field components 



Figure 4.28: Geometry of the simplified fuselage model 

that describe the dimensions of the box is approximately 2 Mbytes. 

First, S E  predictions are computed for an azimuthal angle of incidence of 0' (nose 

incidence). The results of the FDTD(2,2) method are illustrated in Figs. 4.29 and 

4.30. Fig. 4.29(a) depicts SE in the entire frequency range of 0-2.8 GHz, whereas 

Figs. 4.29(b), and 4.30(a) and 4.30(b) provide three zoom views in the bands 0.7- 

1.4 GHz, 1.4-2.1 GHz, and 2.1-2.8 GHz, respectively. It can be seen that the FDTD 

results are in excellent agreement with the measurements up to 2.1 GHz. Discrepan- 

cies between the measurements and the predictions are observed in the last frequency 

band of 2.1-2.8 GHz [see 4.30(b)]. These inaccuracies are attributed to FDTD(2,2) 

dispersion errors. Even though the cell size of 10 mrn corresponds to XI10 at 3 GHz, 

this mesh is proven insufficient for the last frequency band of 2.1-2.8 GHz. This hap- 

pens because the domain of the fuselage is electrically very large causing accumulation 

of dispersion errors which significantly restricts the accuracy of FDTD(2,2). 

The good agreement between FDTD(2,2) calculations and measurements validates 

the accuracy of the FDTD(2,2) method for SE analysis of fuselages of moderate 

complexity. It should also be pointed out that the SE waveform consists of rapid 

frequency variations with multiple peaks and valleys. This is due to the electrical 



dimensions of the simplified fuselage which establish several resonances in the fre- 

quency band of interest. These rapid frequency variations complicate even more the 

analysis of this problem. Already the physical dimensions of the problem make it 

very challenging to analyze due to the memory and time required by the simulations. 

Especially, as the frequency of interest increases, these resources requirements will 

become even more demanding. 

Similarly, FDTD computations are performed for three additional azimuthal an- 

gles of incidence; 45", 90°, and 180°, where 90" is normal to the broad side of the 

fuselage. The results of the FDTD(2,2) method for an incident angle of 45" are illus- 

trated in Figs. 4.31 and 4.32. Fig. 4.31 (a) depicts SE in the entire frequency range of 

0-2.8 GHz, whereas Figs. 4.31(b), and 4.32(a) and 4.32(b) provide three zoom views 

in the bands 0.7-1.4 GHz, 1.42.1 GHz, and 2.1-2.8 GHz, respectively. In a similar 

manner, the computations for incident angles of 90" and 180' are shown in Figs. 4.33 

and 4.34, and Figs. 4.35 and 4.36, respectively. All FDTD predictions agree very well 

with measurements for all the different angles of incidence. This again validates the 

accuracy of FDTD for SE computations. The largest discrepancies between FDTD 

calculations and measurements are exhibited in the last frequency band of 2.1-2.8 GHz 

[see Figs. 4.32(b), 4.34(b), and 4.36(b)]. These inaccuracies are again attributed to 

dispersion errors indicating an insufficiently fine mesh. 
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Figure 4.29: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0" (nose incidence). 
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Figure 4.30: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0" (nose incidence). 
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Figure 4.31: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 45". 
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Figure 4.32: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 4 5 O .  
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Figure 4.33: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 90" (broadside incidence). 
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Figure 4.34: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 90" (broadside incidence). 
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Egure 4.35: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 180° (tail incidence). 
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Figure 4.36: Shielding effectiveness of the scaIed fuselage for azimuthal incident angle 
of 180" (tail incidence). 



2. Cell size of 5 mm 

The inaccuracies of the FDTD computations shown above were attributed to disper- 

sion errors. In order to reduce dispersion errors and expand the accuracy of FDTD 

at higher frequency bands, finer meshes have to be used. Finer meshes provide more 

accurate results but they yield large computational domains which require significant 

computational resources. Here, all FDTD predictions are performed using a cell size 

of 5 mm (or XI10 at 6 GHz). Therefore, it is expected that these FDTD calculations 

will provide accurate results at most up to 6 GHz. The memory required for stor- 

ing all the field components that describe the dimensions of the box is approximately 

14 Mbytes. All the predictions are performed only for nose incidence (azimuthal angle 

of 0"). 

The FDTD computations are shown and compared to measurements in Figs. 4.37 

and 4.38. It can be observed that the numerical results agree very well with measure- 

ments up to 3.5 GHz. However, their accuracy is already degraded in the 3.5-4.2 GHz 

band [see Fig. 4.38(b)], even though the cell size of 5 mm corresponds to XI15 at 

4 GHz. Numerical experiments along with analytical derivations of the phase velocity 

in the discrete space have shown that a cell size of X/10 provides satisfactory accuracy 

for moderate problems when using FDTD(2,2). However, this rule of thumb may not 

be representative for electrically large spaces where the accumulation of phase errors 

due to dispersion becomes significant and deteriorates the accuracy of the FDTD solu- 

tion. The simplified fuselage has electrical dimensions of approximately 31A x 4X x 5X 

at 6 GHz, which make the fuselage an electrically very large domain. This justifies the 

inaccurate results of FDTD(2,Z) in the frequency band of 3.5-6 GHz. Even though, 

the discretization is at  least XI10 at  6 GHz, the accumulation of phase errors through 

the domain make this discretization insufficient. However, the finer mesh of 5 mm, 

that is used here, provides predictions that exhibit better accuracy than the accu- 

racy of the predictions performed for a cell size of 10 mm (presented in the previous 

section). This can be observed by comparing Figs. 4.30(b) and 4.37(b). 
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Figure 4.37: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0". 
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Figure 4.38: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of oO. 



3. Cell size of 2.5 mm 

In the previous section, the FDTD mesh was refined from 10 mm to 5 mm and 

this refined mesh provided results of improved accuracy. In order to reduce even 

further the dispersion error and expand the accuracy of the FDTD predictions at 

higher frequency bands, the mesh is again refined. Here, all FDTD predictions are 

performed using a cell size of 2.5 mm (or XI13 at  9 GHz). Therefore, it is expected 

that these FDTD calculations will provide accurate results at  most up to 9 GHz. The 

memory required for storing all the field components that describe the dimensions of 

the box is approximately 114 Mbytes. For validation purposes, all the predictions are 

performed only for nose incidence (azimuthal angle of OO). 
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Figure 4.39: Shielding effectiveness of the scaled fuselage for azimuthal in~ident angle 
of oO. 

The FDTD computations are shown and compared to measurements in Figs. 4.39- 

4.43. It can be observed that the numerical results agree very well with measurements 

up to 5.6 GHz. However, their accuracy is already degraded in the 5.6-7.7 GHz 

band (see Figs. 4.42 and 4.43). Again, even though the discretization is at  least 

X/13 at  9 GHz, the accumulation of phase errors through the domain make this 



discretization insufficient. Note that the simplified fuselage has electrical dimensions 

of approximately 47X x 6X x 7X at 9 GHz, which make the fuselage an extremely 

electrically large domain. 

Also, it should be pointed out that the refinement of the fuselage's mesh provides 

again results of improved accuracy, as expected. This is attributed to the fact that 

finer meshes exhibit less dispersion errors. However, as mentioned before, as the 

cell size becomes smaller the memory and time requirements grow larger. Therefore, 

refinement is not always the best remedy to dispersion. In the following section, a new 

hybrid method that provides accurate results for shielding effectiveness computations 

is presented. This new hybrid technique requires much less memory to achieve the 

same accuracy as the one of FDTD(2,2). 
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Figure 4.41: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of oO. 
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Figure 4.42: Shielding effectiveness of the scaled fuselage for azimuthal incident 
of 0". 
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Figure 4.43: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of oO. 

D. Hybrid of subgrid I?DTD(2,2) /FDTD(2,4) 

In this subsection, the hybrid method of subgrid FDTD(2,2)/FDTD(2,4), presented 

in Section IX. is applied to compute the shielding effectiveness of the scaled fuselage. 

In Section UC., it was' shown that significant memory savings can result when this 

hybrid method is used. The spatial layout of the methods used by the hybrid in the 

computational domain is depicted in Fig. 4.44. It is seen that the probe exciting the 

cavity is included in the fine region where subgrid FDTD(2,2) is applied. This is done 

in order to simulate the fields near and on the probe very well by representing the 

probe with many cells (fine grid). 

Different cell sizes are used in the analysis presented here. The smaller the cell size 

is the more significant the memory savings are (compared to the memory required by 

the standard FDTD (2,2) for the same fine grid cell size). For validation purposes, all 

predictions are performed for nose incidence. 
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Figure 4.44: Schematic visualization of the hybrid method subgrid FDTD(2,2) and 
FDTD(2,4) applied to the scaled fuselage. 

1. Hybrid 5mm 

Initially, for validation purposes, a cell size of 5 mm (or X/10 a t  6 GHz) for the fine 

grid, and of 15 rnm (or X/3 at 6 GHz) for the coarse grid. Therefore, it is expected 

that these FDTD calculations will provide accurate results at  most up to 6 GHz. The 

memory required for storing all the field components that describe the dimensions 

of the box is approximately 14 Mbytes which is approximately the same as the one 

required by FDTD(2,2) alone when a cell size of 5 mm is used (see Subsection C.). 

For this cell size, no memory savings occur since the cell size of 5 mm does not yield 

a large computational domain. However, the results of this simulation are used as 

validation of the hybrid method, and therefore they are very important. 

By comparing Figs. 4.45 and 4.46 with Figs. 4.37 and 4.38, it is observed that the 

hybrid method gives almost identical results for shielding effectiveness as the ones of 

the standard FDTD(2,2) alone (with a cell size of 5 mm). Notice that even though 

most of the interior of the fuselage is simulated using a very coarse cell size of 15 mm, 

the accuracy is retained as a higher-order scheme is applied [FDTD(2,4)]. This clearly 

proves one more time the effectiveness of higher-order schemes. 
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Figure 4.45: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0" computed by the hybrid method. 
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Figure 4.46: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0" computed by the hybrid method. 



2. Hybrid 2.5mm 

To clearly illustrate the memory advantages of the new hybrid, a refined mesh is 

used in this section. Here, all FDTD predictions are performed using a cell size of 

2.5 rnm (or XI13 at 9 GHz) for the fine grid, and of 7.5 mm (or X/3 at  9 GHz) 

for the coarse grid. Therefore, it is expected that these FDTD calculations will 

provide accurate results at most up to 9 GHz. The memory required for storing 

all the field components that describe the dimensions of the box is approximately 

only 48 Mbytes which is almost 2.5 times smaller than the memory (114 Mbytes) 

required by FDTD(2,2) alone when a cell size of 2.5 mm is used (see Subsection C.). 

This represents a significant amount of reduction in memory attributed to the hybrid 

scheme of subgrid FDTD (2,2) /FDTD(2,4). 
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Figure 4.47: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of O0 computed by the hybrid method. 

By comparing Figs. 4.47-4.51 with Figs. 4.39-4.43, i t  is observed that the hybrid 

method gives very similar results for shielding effectiveness as the ones of the standard 

FDTD(2,2) alone (with a celI size of 2.5 mm). Notice that even though most of 

the interior of the fuselage is simulated using a quite coarse cell size of 7.5 rnm, 



the accuracy is retained as a higher-order scheme is applied [FDTD(2,4)]. Also, 

the predictions of the hybrid method agree very well with the measurements. This 

simulation again verifies the accuracy and efficacy of the hybrid method. 
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Figure 4.48: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0" computed by the hybrid method. 
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Figure 4.49: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0" computed by the hybrid method. 
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Figure 4.50: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0" computed by the hybrid method. 
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Figure 4.51: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of O0 computed by the hybrid method. 

E. Summary 

In this section, the shielding effectiveness of a simplified scaled model of a Boeing 757 

aircraft is modeled. It was shown that this geometry generates very large computa- 

tional domains, especially as the frequency of interest increases and the mesh becomes 

h e r .  For example the simplified fuselage has electrical dimensions of approximately 

47A x 6A x 7A at 9 GHz, which make the fuselage an extremely electrically large 

domain. This domain, discretized with a cell size of 2.5 mm (or XI13 at 9 GHz), 

yields a very large computational domain; 620 x 80 x 96 cells. 

First, the standard FDTD(2,2) was used to compute the SE of the scaled fuselage 

and it was found to be very accurate when the cell size was chosen fine enough for the 

frequency band of interest. However, as the mesh became finer, the memory require- 

ments became significantly larger, i.e., every time the mesh is refined by a factor of 

2, the memory requirements just for the electric and magnetic field components that 

describe the fuselage became larger by a factor of 23 = 8. 



However, when the hybrid method of Subgrid FDTD(2,2)/FDTD(2,4) presented 

in Section IX. was applied to the same problem, significant savings in memory were 

achieved. This happens because the largest part of the computational domain is 

the interior of the fuselage, and the problem of boundary conditions arises only near 

the walls of the enclosures. Therefore, it is desired to simulate the propagation 

inside the fuselage using a higher-order method such as FDTD(2,4). In addition, 

near the walls of the fuselage a subgrid FDTD(2,2) method should be used in order 

to represent accurately the PEC boundary conditions, and successfully simulate the 

penetration mechanisms. FDTD(2,2) is used near the walls instead of FDTD(2,4) 

since FDTD(2,4) exhibits an inherent artificial penetration through thin PEC films. 

This artificial penetration is attributed to the length of the FDTD(2,4) stencil which 

allows fields from one side of the PEC to couple on the other side of the PEC. Also, as 

discussed in Section VII. stable higher-order boundary conditions that would simulate 

correct PEC discontinuities do not exist and they are very challenging to derive. 

Therefore, subgrid FDTD(2,2) is hybridized with FDTD(2,4) to resolve all these 

issues. Following such a procedure yields tremendous savings in memory and/or time 

depending on the particular problem. The memory requirements for both FDTD(2,2) 

and the hybrid method are summarized in Table 4.1 for a cell size of 2.5 mm. For 

Table 4.1: Memory requirements for the different regions of the computational domain 

more examples about the memory savings that result from the application of the 

hybrid method of Subgrid FDTD(2,2)/FDTD(2,4) see Section IX.. Furthermore, the 

results of the hybrid method were found to be very accurate even though the interior 

of the fuselage was always simulated using coarse meshes for the frequency bands of 

interest. This validates the high accuracy of FDTD(2,4) which requires much fewer 

points per wavelength than FDTD(2,2) to accurately simulate the wave phenomena. 

for a cell size of 2.5 mm 

Memory (Mbytes) 
MI 
M2 

Mtotal 

Savings Factor 

FDTD (2,2) 
70 
44 
114 

114148 = 2.5 

Hybrid Subgrid FDTD (2,2) /FDTD (2,4) 
Subgrid FDTD(2,2) 

- 
44 

FDTD(2,4) 
2.5 
1.5 

48 



Personal Electronic Devices (PEDs) 

Besides the penetration of man-made radio frequency (RF) signals external to the 

airplane into the fuselage (HIRF), another very important EM1 issue concerns inter- 

ference that can occur on-board. Such EM1 can potentially be generated by personal 

electronic devices (PEDs), such as laptop computers, cell phones, etc. It is a common 

policy of all commercial airlines to prohibit the use of PEDs during at  least the very 

sensitive phases of take-off and landing, if not for the entire duration of flights. This 

policy has been established because it is believed that radiated emissions from PEDs 

can interfere with on-board electronics and cause problems to their operation; e.g., 

jamming in communication systems. In fact, the policy statement of the Federal Com- 

munications Commission (FCC) and Federal Aviation Administration (FAA) about 

PEDs is as follows: 

"Cellulars, Laptops and Computer Games 

a. The FCC and FAA ban cell phones for airborne use because its signals 

could interfere with critical aircraft instruments. Radios and televisions 

are also prohibited. 

b. Laptops and other personal electronic devices (PEDs) such as hand-held 

computer games and tape or CD players are also restricted to use above 

10,000 feet owing to concerns they could interfere with aircraft instrumen- 

tation." 

Clearly, the investigation of the effects of EM1 caused by PEDs is of paramount 

importance. Especially, as wireless communications become a part of everyday life, 

it is desired that cell phones and other portable electronic devices be allowed at any 

environment, even inside airplanes. However, before the strict policies about PEDs 

change, thorough examination of the effects of EMI, generated by PEDs, to the safety 

and operation of aircraft should be performed. 

One possible mechanism for this PED interference can be established via the 

antennas which are mounted on the fuselage and support different types of communi- 

cation. Electromagnetic fields radiated by PEDs can be transmitted to the exterior of 

an aircraft through the fuselage apertures (windows). Furthermore, these RF fields 



Figure 4.54: The top of the pedestal for the simulated PED screws on to the bottom 
of the pedestal with counter-bored allen head screws. 

A hole was drilled through the bottom of the simplified fuselage through which 

the PED cable passes. To move the PED to another location, a new hole will have to 

be drilled through the fuselage at that location. Since it is desirable to  minimize such 

holes, the existing PED location will be fixed for now. To facilitate the description of 

the PED and external antenna locations, a letter designation is associated with each 

of the cabin windows, as shown in Fig. 4.55. The current PED location is against the 

starboard side wall adjacent to window "C." 

A drawing of the fuselage cross section (Fig. 4.56) illustrates the relationships of 

the simulated PED and the external antenna. In this view, both are at  station C. This 

is the configuration for which measurements are compared with FDTD predictions 

later in this section. Note that both the PED element and the monopole externally 

mounted to the fuselage are 3 cm tall and have a radius of 0.60325 mm. 



Figure 4.55: To more easily describe the locations of the PED and external antenna, a 
letter designation is assigned to the locations of the simplified fuselage cabin windows. 

External Antenna 

Simulated PED 

Figure 4.56: The PED is located against the starboard side wall of the simplified 
fuselage, while the external antenna is mounted on the top of the fuselage, along the 
centerline. Both the PED and external antenna are centered on station C. 



B. Measurements 

Again, due to the highly overmoded nature of this large cavity, the coupling between 

the PED and external antenna exhibit extremely rapid variations as a function of 

frequency. In order to resolve those variations, a large number of frequency points 

were measured. 

The network analyzer is capable of measuring 801 frequency points per measure- 

ment/calibration. The only option available to increase the frequency resolution is 

to decrease the bandwidth of the measurement. To cover the frequency range of 0.05 

GHz to 11 GHz (scaled frequencies of 2.5 MHz to 550 MHz), it is broken into many 

801-point bands. In some cases, 14 calibration/measurements of 800 MHz bandwidth 

were performed. In other cases, seven 1.6 GHz band measurements were used. 

The measurements were performed inside the anechoic chamber, with the instru- 

mentation just outside the door. Originally, 15 and 19 foot long RF cables were used 

to connect the S-parameter test set with the simplified fuselage, but the losses of those 

cables were found to be excessive. Instead, while the source and receiver remained 

outside of the chamber, the test set was relocated to a position immediately under 

the simplified fuselage. This enabled the to use RF cables of four and five feet in 

length, greatly reducing the cable losses. A photograph of the measurement setup is 

shown in Fig. 4.57. 

Measurements were performed for the purpose of validating FDTD predictions of 

coupling between the PED and external antenna. For these measurements, both the 

PED and external antenna were located at station C, as depicted in Fig. 4.56. 

C .  FDTD (2,2) predictions 

Here, the predictions for the coupling between the PED antenna and the antenna 

mounted on the exterior of the fuselage are presented. A cell size of 5 mm (or XI10 

at 6 GHz) is used. The radius of the two monopoles is 0.60325 mm, and it  is taken 

into account in all simulations both along the wire (using a thin wire model) and the 

excitation (using a source based on the radial electric fields). To speed the simulation 

times, all sources used internal resistances [65]. The S-parameters are computed using 

the following procedure described in [65]: 



Figure 4.57: The PED measurements were performed within the anechoic chamber 
with the S-parameter test set located immediately beneath the simplified fuselage, 
the RF cable losses were reduced to an acceptable level. 



a. Augment the system of the two antennas by connecting at their inputs two 

voltage sources with internal resistors. 

b. Calculate the Y-parameters of the entire system including the antennas and 

the load resistors. This is accomplished by two simulations that implement the 

definition of the Y-parameters, i.e., excite one antenna and short circuit the 

other to compute Yll and Y21 and vice versa to compute Y22 and YI2. 

c. From the Y-parameters of the entire system the Y-parameters of the antennas 

can be extracted using the properties of two-port networks connected in cascade 

along with ABCD-parameters [143]. 

d. The Y-parameters of the antennas are converted to S-parameters by taking into 

account the characteristic impedance of the transmission line, e.g., 50 ohms for 

a coaxial cable. 

This procedure results in major computational savings because the internal resistors 

force the input current transients of the two antennas to decay fast. It  should be 

mentioned that the internal resistance of the voltage sources was R, = 100 ohms. 

The complete set of S-parameters of the two antennas is illustrated in Figs. 4.58- 

4.60. Both the PED and external antenna are located at station C (see Fig. 4.56) as 

in the measurements. The FDTD(2,2) predictions are compared with measurements. 

For the Sll and Sz2 parameters which represent the reflection coefficients of the two 

antennas, measurements are available only up to 4 GHz, and they agree very well 

with the FDTD(2,2) calculations. It is observed that there is a shift between the 

measured and predicted resonant frequency of S22  which can be attributed to numer- 

ical dispersion or measurement errors. However, the parameter that is the focus of a 

PED analysis is the coupling between the two antenna elements. Coupling measures 

the amount of energy that a PED antenna can couple to an antenna that belongs to 

the communication system of an aircraft, and it is represented by the S12 and S21 

parameters, which are equal due to reciprocity. 

To illustrate more clearly the variation of coupling as well as the agreement be- 

tween the FDTD(2,2) calculations and the measurements, figures that plot coupling 

in different frequency bands are constructed (see Figs. 4.61-4.65). I t  is observed that 



FDTD(2,2) predicts very accurately the coupling between the PED antenna and the 

antenna mounted on the exterior of the airplane up to 4.5 GHz. 

There are some discrepancies between the predictions and the measurements at 

low frequencies (see Figs. 4.61). This can be possibly attributed to the number of 

time-steps, since the accuracy of the FFT of the FDTD results is greatly affected at 

lower frequencies by the number of time-steps. Also, the discrepancies can be due 

to the low levels of coupling (below -80 dB) at the lower end of the frequency band, 

which make both the measurements and the predictions questionable. 

The levels of coupling exhibit a highly oscillatory behavior due to the large number 

of resonances present inside the fuselage. Also, the maximum level of coupling is 

approximately -30 dB and occurs at several frequencies. This level of -30 dB can 

represent a threat to the communication systems of the airplane. However, the definite 

interpretation of effects of such coupling levels are left to the engineers that deal with 

and design the communication systems of the aircraft. . . 
Also, to illustrate the effects of the location of the receiving external antenna an- 

other coupling configuration is examined. Specifically, the external antenna is moved 

on station A (see Fig. 4.55) along the centerline of the fuselage. Coupling calculations 

are performed again using FDTD(2,2) and the results are compared with measure- 

ments in Figs. 4.66-4.70. Again the predictions agree very well with measurements. 

Also, the coupling computations for stations A and C are compared in Fig. 4.71. 

Obviously, the coupling between the PED antenna and the external antenna is larger 

when the external antenna is located on station C than when it is located on station 

A. This is expected, because as the distance between the two antennas increases the 

coupling between them decreases. 
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Figure 4.58: Reflection coefficient of the PED antenna (station C) 

Figure 4.59: Reflection coefficient of the antenna mounted on the exterior of the 
fuselage (st ation C) . 
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Figure 4.60: Coupling between the PED antenna and the antenna mounted on the 
exterior of the fuselage (station C). 

Frequency (GHz) 

Figure 4.61: Coupling between the PED antenna and the antenna mounted on the 
exterior of the fuselage (station C). 



Figure 4.62: Coupling between the PED antenna and the antenna mounted on the 
exterior of the fuselage (station C). 
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Figure 4.63: Coupling between the PED antenna and the antenna mounted on the 
exterior of the fuselage (station C). 
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Figure 4.64: Coupling between the PED antenna and the antenna mounted on the 
exterior of the fuselage (station C). 
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Figure 4.65: Coupling. between the PED antenna and the antenna mounted on the 
exterior of the fuselage (station C). 

Figure 4.66: Coupling between the PED antenna and the antenna mounted on the 
exterior of the fuselage (station A). 
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Figure 4.67: Coupling between the PED antema and the antenna mounted 
exterior of the fuselage (station A). 
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Figure 4.68: Coupling between the PED antenna and the antenna mounted on the 
exterior of the fuselage (station A). 



Figure 4.69: Coupling between the PED antenna and the antenna mounted on the 
exterior of the fuselage (station A). 
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Figure 4.70: Coupling between the PED antenna and the antenna mounted on the 
exterior of the fuselage (station A). 
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Figure 4.71: Coupling between the PED antenna and the antenna mounted on the 
exterior of the fuselage at stations A and C. 

D. Hybrid subgrid FDTD (2,2) /FDTD(2,4) predictions 

In the previous section, the hybrid method of subgrid FDTD(2,2)/FDTD(2,4) pre- 

sented in Section IX. was applied and validated for shielding effectiveness computa- 

tions. It was shown that great memory savings can be achieved by using this hybrid 

when the fuselage is analyzed at high frequencies. In this section, this hybrid method 

is applied to the analysis of the PED problem for station C. 

The spatial layout of the methods used by the hybrids in the computational do- 

main is depicted in Fig. 4.72. It is seen that both antennas are included in the fine 

region where subgrid FDTD(2,2) is applied. This was done in order to simulate the 

fields near and on the probes very well by representing the probes with many cells 

(fine grid). 

Initially, for validation purposes a cell size of 5 mm (or XI10 at 6 GHz) for the 

fine grid and of 15 mm (or X/3 at 6 GHz) for the coarse grid is used. Therefore, it 

is expected that these FDTD calculations will provide accurate results at  most up 

to 6 GHz. The memory required for storing all the field components that describe 

the dimensions of the box is approximately 14 Mbytes which is approximately the 



same as the one required by FDTD(2,2) alone when a cell size of 5 mm is used (see 

Subsection C.). For this cell size no memory savings occur since the cell size of 5 mm 

does not yield a large computational domain. However, this simulation results are 

used as validation of the hybrid method. 

External Antenna 

, j FDTD(2,4) in a coarse mesh j I , 

. 8 

FDTD(2,2) in a fine mesh __________.________------------------------------------. 

Figure 4.72: Schematic visualization of the hybrid method subgrid FDTD(2,2) and 
FDTD(2,4) applied to the scaled fuselage. 

By comparing Figs. 4.73-4.80 with Figs. 4.58-4.65, it  is observed that the hybrid 

method gives almost identical results for PED analysis as the ones of the standard 

FDTD(2,2) alone (with a cell size of 5 mm). Notice that even though most of the 

interior of the fuselage is simulated using a very coarse cell size of 15 mrn, the accuracy 

is retained as a higher-order scheme is applied [FDTD(2,4)]. This, once again, proves 

the effectiveness of higher-order schemes. 
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Figure 4.73: Reflection coefficient of the PED antenna (station C). 

Figure 4.74: Reflection coefficient of the antenna mounted on the exterior of the 
fuselage (st ation C) . 



Figure 4.75: Coupling between the PED antenna and the antenna mounted on the 
exterior of the fuselage (station C). 

Figure 4.76: Coupling between the PED antenna and the antenna mounted on the 
exterior of the fuselage (station C). 
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Figure 4.77: Coupling between the PED antenna and the antenna mounted on the 
exterior of the fuselage (station C). 



Figure 4.78: Coupling between the PED antenna and the antenna mounted on the 
exterior of the fuselage (station C). 
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Figure 4.79: Coupling between the PED antenna and the antenna mounted on the 
exterior of the fuselage (station C). 
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Figure 4.80: Coupling between the PED antenna and the antenna mounted on the 
exterior of the fuselage (station C). 



E. Summary 

In this section, the problem of EM1 generated by PEDs was examined. Specifically, 

a PED antenna was mounted in the fuselage close to one of the windows whereas the 

receiving antenna was mounted on the exterior of the fuselage. The coupling between 

the PED element and the external antenna simulates the potential EM1 threat signal 

to the communications systems of .the aircraft. This coupling was both predicted as 

well as measured. 

First, the standard FDTD(2,2) was applied and the numerical computations com- 

pared very well with the measurements up to frequencies for which the discretization 

was fine enough. These results validate for first time the ability of FDTD(2,2) to accu- 

rately simulate coupling in a complex geometrical setting. Furthermore, the fuselage 

is electrically very large thereby allowing a plethora of modes and resonances to  be 

established. All these issues make the modeling of ,coupling even more challenging. 

However, FDTD(2,2) was proven very accurate for the analysis of such problems. 

As mentioned in the previous section, the use of the hybrid subgrid FDTD(2,2) 

and FDTD(2,4) method yields significant memory savings. Therefore, the hybrid 

method was also applied here in order to be validated in the context of the PED 

analysis. Again, the hybrid method was found to be as accurate as the FDTD(2,2) 

scheme alone when the same fine grid cell size was used. 



IV. Personal Electronic Devices (PEDs) 

A. Introduction 

In this section modifications to the simplified fuselage are presented. A new method 

is described to cover the upper long corners of the fuselage tube. The new method, in 

contrast to the previous one, results in less field leakage when PED measurements are 

performed with the window apertures covered. Additionally, a series of measurements 

are performed to explore the contribution of individual passenger windows to the 

coupling of fields from a simulated PED to an externally mounted antenna on the 

top of the fuselage, as well as the distribution of the coupled fields along the length 

of the fuselage. 

B. Modifications to the "Simplified Fuselage" 

The Simplified Fuselage was originally constructed by epoxying together four alu- 

minum plates to form a rectangular cross section tube. The four long corners of the 

tube were covered with aluminum tape, and the ends of the tube were closed with 

aluminum plates that were aluminum taped in place. 

This construction worked well for shielding effectiveness and PED measurements 

when all of the apertures were open, but it  was found that the aluminum tape cov- 

ered, epoxied corners were "leaking" when PED measurements were performed with 

the apertures covered with copper tape. Part of the problem was that the epoxy was 

failing, allowing the plates to  separate. Another issue was related to the aluminum 

tape. This particular tape has an adhesive that is not electrically conductive, and 

the aluminum did not contact the body of the fuselage through the adhesive. Mea- 

surements with an ohm meter verified that the tape was not electrically continuous 

(at dc) to the fuselage. While changing to a type of copper tape having conductive 

adhesive may have yielded a significant improvement, the failure of the epoxy was 

still problematic. It  was decided to implement yet another revision to  the design of 

the SimpIified Fuselage. 

The design change is shown schematically in the illustration of Figure 4.81. The 

original epoxied construction is shown on the left. The new construction involves the 

addition of a 1 cm square bar in each of the upper corners to which the top and side 



Simplified Fuselage Modifications 

Old Cross Section New Cross Section 

0.250" thick aluminum 

Figure 4.81: The original epoxied construction of the Simplified Fuselage was found 
to provide imperfect shielding. The new design includes 1 cm square aluminum bars 
in each of the upper corner to which the top and side panels can be screwed, and an 
increase in the thickness of the bottom panel to which the bottom edges of the side 
panels is screwed. 

panels are screwed. The bottom panel was replaced with one having a thickness of 

0.25 inches to which the bottom edges of the side panels is screwed. A photograph 

of one end of the modified fuselage in which the aluminum bars are visible is shown 

in Figure 4.82. The new bottom plate is seen in Figure 4.23. As seen in the pho- 

tographs, the small screws are very close together. Over 900 screws and washers were 

used in the assembly of the fuselage. The nose and tail panels were taped in place 

as before, but using copper tape with conductive adhesive. These modifications were 

also implemented in the CAD model (neglecting the screw heads). 

C .  PED Measurements 

A series of measurements was performed to explore the contribution of individual 

219 



Figure 4.%2: The top and side pllates of the fudage were acrewed %Q two 1 crn spate 
aluminum b m .  

passenger windows to the coupling of fields from a simulated PED to an externally 

mounted antenna on the top of the fuselage, as well as the distribution of the coupled 

fields along the length of the fuselage. 

To better describe this series of measurements, two photographs are shown in 

Figures 4.83 and 4.84. The PED measurement setup is shown in the photo of Figure 

4.83. Notice that the cockpit window is sealed with a brass plate copper taped in place, 

and that all but one of the cabin windows are sealed with copper tape. Superimposed 

on the photograph are letter designations for each of the cabin windows. The window 

closest to the nose of the fuselage is denoted as "I", and the window closest to the 

tail is window "A." The external antenna is a 4 cm long monopole mounted on the 

5 cm square by 1.5 cm high pedestal. The simulated PED is a 3 cm long vertical 

monopole on an aluminum pedestal (as before) located adjacent to window "C." The 

location of the PED is fixed, while the external antenna is moved from one position to 

the next along the top of the fuselage. Coupling measurements were obtained for ten 

external antenna locations, as indicated in Figure 4.84. For each external antenna 

location, S12 data was collected from 0.05 GHz to 20.0 GHz at  4001 frequencies. 

These measurements were repeated with all of the windows sealed with copper tape 



Figure 4.83: For this series of measurements, the cockpit and all but one cabin win- 
dows were sealed. The window that is open is denoted by a letter designation. In 
this photograph, window "I" is open. 

except for individual selected cabin windows on the port side of the fuselage. 

The results are formatted as color contour plots as a function of frequency and 

external antenna location. A typical plot is shown in Figure 4.85. Due to the ex- 

tremely rapid variations in the coupling with frequency, the trends of the data are 

impossible to see. However, if the data is smoothed with respect to frequency by 5%, 

the amplitude contours are made clear, as in Figure 4.86. Consequently, the data in 

all of the following plots has been so smoothed. 

To determine a baseline on the coupling, a measurement was made with all of the 

windows covered with copper tape. The results shown in Figure 4.87 verify that the 

shielding of the modsed fuselage is very effective, with a maximum leakage of -65 

dB from the fuselage end plates. Over the majority of the length of the fuselage, the 

"leakage floor" is below -80 dB. 

The coupling from only windows "D", "F", and "I" being open are shown in Fig- 

ures 4.88, 4.89, and 4.90, respectively. The location at which the maximum occurs is 

not surprisingly adjacent to the open window. More interesting is that the maximum 



Figure 4.84: The SI2 was collected for ten external antenna locations along the top 
of the fuselage, as shown. 
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Figure 4.86: Smoothing the SI2 with respect to frequency by 5% reveals the trends 
of the data. 

values between these four cases differ by less than 6 dB. 

If only the cockpit window is open, the maximum value of the coupling observed 

by the external antenna is 4.3 dB greater than that observed when only the window 

adjacent to the PED is opened, as seen in Figure 4.91. 

Finally, screens of different mesh size are applied to the otherwise only open 

window "F." The screens are comprised of etched brass. The most coarse is shown 

in Figure 4.92. This screen has a mesh size of 3 mm which corresponds to a full-scale 

size of 2.36". The coupling through this screen is shown in Figure 4.93, and exhibits 

a reduction of 27.3 dB in the maximum coupling compared to  the completely open 

window. A 2 mm screen (1.57" full-scale mesh size) was applied to window "F" next, 

as seen in Figure 4.94. The resulting coupling is plotted in Figure 4.95. With this 

screen the coupling was reduced by 33.3 dB. The final screen used had a mesh size of 

0.75 mm (0.59" full-scale). A photograph of the installed screen is shown in Figure 

4.96. The coupling through this screen is reduced to nearly the leakage level of the 

fuselage, as shown in Figure 4.97. These reductions are summarized graphically in 

the plot of coupling versus frequency a t  the external antenna location adjacent to 
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Figure 4.87: With all of the windows covered with copper tape, the "leakage floor" 
measurement shows that the modified fuselage is well shielded. There is some residual 
leakage at the taped-on fuselage end plates, but the leakage along most of the top of 
the fuselage is below -80 dB. 
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Figure 4.88: The SIB between the simulated PED and the external antenna when 
only window "D" is open. 
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Figure 4.89: The Slz between the simulated PED and the external antenna when 
only window "F" is open. 
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Figure 4.90: The SI2 between the simulated PED and the external antenna 
only window "I" is open. 
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Figure 4.91: The SI2 between the simulated PED and the external antenna 
only the cockpit window is open. 
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Figure 4.92: A close-up photograph of a brass screen with a mesh size of 3 mm (2.36" 
full-scale) applied to window "F." 

window "F" shown in Figure 4.98. 



3 mm Screen on "F" Window 

Figure 4.93: The SIS between the simulated PED and the external antenna when 
window "F" is screened with a 3 mm brass mesh, and all other windows are sealed. 
The maximum coupling is reduced 27.3 dB compared to the case of window "F" open. 



I 
Figure 4.94: A close-up photograph of a brass screen with a mesh size of 2 mm (1.57" 
full-scale) applied to window "F." 
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Figure 4.95: The S12 between the simulated PED and the external antenna when 
window "F" is screened with a 2 mm brass mesh, and all other windows are sealed. 
The maximum coupling is reduced 33.3 dB compared to the case of window "F" open. 



Figure 4.96: A close-up photograph of a brass screen with a mesh size of 0.75 mm 
(0.59" full-scale) applied to window "F." 
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Figure 4.97: The SI2 between the simulated PED and the external antenna when 
window "F" is screened with a 0.75 mm brass mesh, and all other windows are 
sealed. The maximum coupling is reduced 36.2 dB compared to the case of window 
'LF" open. 
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Figure 4.98: The coupling observed when external antenna is located at the same 
station as window "F" as a function of frequency for the three applied screens. 





Chapter 5 

Measured Shielding Effectiveness 
of the Cylindrical Fuselage Model 

In addition to the rectangular simplified fuselage model, a cylindrical scale model 

fuselage was constructed, and a series of measurements have been performed. The 

cylindrical model was built to better simulate the fuselage part of an aircraft. The 

shielding effectiveness (SE) of the cylindrical fuselage is compared with that of the 

rectangular cross-section "Simplified Fuselage," and penetration reduction effected 

via aperture screening is explored. 

I t  was found that the shielding effectiveness of the cylindrical fuselage varies in 

the deterministic sense from that of the Simplified Fuselage, but is extremely similar 

in a quasi-statistical sense. 

The application of screens to the apertures reduces the penetration of the fields 

into the cylindrical fuselage by a considerable amount. The SE of the cylindrical 

fuselage was measured for various screen configurations. While some configurations 

produced results that appear to be anomalous relative to other configurations, the 

trends were repeatable. 

I. The Cylindrical Fuselage 

To permit meaningful comparisons with the Simplified Fuselage, the cylindrical fuse- 

lage was designed to have the same length and volume as that previous model. To 

achieve this specific volume, an inside diameter of 24.7 cm is required. A metal 



cylinder of the necessary diameter was not available "off the shelf." Instead, a cus- 

tom fabrication shop was employed to butt weld the edges of a sheet of 0.06" thick 

aluminum to create a tube having the appropriate circular cross-section. This raw 

cylinder is shown in Figure 5.1. 

The same size and number of cabin windows were cut into the sides of the cylinder, 

at approximately the same locations as for the Simplified Fuselage. A photograph 

showing the nine, 2 cm by 5 cm windows is seen in Figure 5.2. The cabin windows 

approximate the same aperture area per fuselage length as those of a Boeing 757 (1:20 

scale). 

Flanged aluminum caps were machined to fit into each end of the cylinder (Figure 

5.3). In one of the end caps, an 8 cm x 18 cm "cockpit" window was cut. The end 

caps not only finish the enclosure but also help to support its circular cross section. 

During measurements, copper tape is applied at the interfaces between the cylinder 

and end caps. 

The physical realization of the cylindrical fuselage deviates somewhat from its 

design. The cylinder is not perfectly circular in cross section due to deformations 

that are nearly inherent to the welding process. It is very nearly circular, but with 

some deviation in the immediate vicinity of the weld, which is located on the starboard 

side. The weld protrudes from the surrounding surface of the metal, both inside and 

out. No attempt was made to blend the weld on the inside of the cylinder, but it  was 

ground down on the outside to be nearly flush with the surface. Unfortunately, some 

errors were made by the ASU metal shop in cutting the cabin windows. In particular, 

one of the windows is located nearly 1 cm from its intended station. Finally, the end 

caps are much thicker than desired. They are as thin as practical according to the 

opinion of the machinist. There is one flaw in the design. The waterline of the 

cabin windows are only a few centimeters above the vertical center of the fuselage, 

as compared to 5 cm in the case of the Simplified Fuselage. However, since the cabin 

windows would be more on top of the cylindrical fuselage than on the sides if they 

were located any higher, the design flaw is more correctly attributed to  the Simplified 

Fuselage's cabin windows being too high. 

For the initial measurements, a 6 cm long wire probe was installed in the bottom 

of the fuselage, 50 cm from the nose. The probe consists of the non-captured center 



Figure 5.1: The cylindrical fuselage began as a sheet of aluminum that was custom 
welded into a tube. 

conductor of an sma flange connector, with a piece of 0.045" diameter brass wire sol- 

dered to it. The body of the connector is silver epoxied to the outside surface of the 

fuselage. This probe configuration conforms to that used in the shielding effectiveness 

measurements of the Simplified Fuselage. 

11. Shielding Effectiveness Measurements 

The methodology of the shielding effectiveness measurements is nearly identical to 

those previously performed, but is described here for completeness. 

The conventional definition of shielding effectiveness is the ratio of the electric 

field strength at a point in free space under plane wave illumination, to the electric 

field strength at that same point in space when surrounded by an enclosure under test 

and while subjected to the same illumination. For low leveIs of field penetration into 

the enclosure, the shielding effectiveness is high. For non-spherically symmetrical en- 

closures, the shielding effectiveness is a function of incidence angle of the illuminating 



Figure 5.2: The cabin windows were designed to be the same number and configura- 
tion as those in the Simplified Fuselage. However, some discrepancies occurred in the 
physical realization. 

Figure 5.3: Aluminum caps were machined to fit within the ends of the cylinder. The 
nose end cap features the same 8 cm by 18 cm "cockpit window" as the Simplified 
Fuselage. 



plane wave, and of the location of the observation point relative to the enclosure. 

The above definition is realizable in the computation realm, but not in the physical 

world. Some sort of probe with which to measure the electric fields is required. 

The presence, frequency response, and radiation pattern of the probe can have a 

profound impact on the resulting shielding effectiveness. Therefore, while the use of 

a probe in the measurements is unavoidable, all of the particulars of the probes used 

must be disclosed. At the ElectroMagnetic Anechoic Chamber (EMAC) facility, the 

probe used for the "free space fields" part of the shielding effectiveness has become 

standardized as a 6 cm long monopole mounted on a 20 cm square ground plane. The 

monopole is oriented parallel to the incident E field (usually vertical), with the edges 

of the ground plane orthogonal to the propagation vector. The radiation pattern of 

this monopole on a ground plane has relative nulls in this direction at  approximately 

0.9, 4.5, and 9.5 GHz, resulting in pronounced dips in the shielding effectiveness at 

these frequencies. Thus the measured shielding effectiveness is not particularly useful 

in the absolute sense of the conventional definition, but is suitable for our purposes 

of relative comparison and verification of numerical predictions (provided that the 

predictions conform to the measurements in the use of the monopole as a reference). 

Similarly, a probe must be employed within the enclosure with which to measure 

the penetrating fields. It is understood that the probe will perturb those fields. 

Furthermore, the necessity of a ground plane and cable imposes limitations on the 

placement of the probe. It is generally convenient to use a monopole for the interior 

probe as well. 

Finally, the shielding effectiveness is redefined to accommodate the necessities of 

the measurements as the ratio of the frequency response of the monopole on the square 

ground plane to the frequency response of the probe located within the enclosure. 

A. Measurements 

The measurements were performed in ASU's anechoic chamber in a direct illumination 

configuration. The cylindrical fuselage was placed on expanded polystyrene supports 

near one end of the chamber, and an auxiliary antenna was placed approximately 5.8 

m from the model and at the same height above the floor as the model, also supported 



with expanded polystyrene. This separation distance satisfies the far-field criterion 

for a 25 cm diameter target up to 14 GHz. A 1.2 m square baffle comprised of carbon- 

loaded foam microwave absorber was placed behind the auxiliary antenna, between 

it  and the compact range reflector to reduce its illumination by the back lobes of the 

antenna. The auxiliary antenna was oriented so that its boresight was in the direction 

of the center of the model, and the model was oriented so that the incident fields from 

the auxiliary antenna were normally incident on the model's "cockpit window." 

For these nose incident measurements, the separation distance between the model ' 

and the auxiliary antenna is minimized so as to maximize the directly incident field 

strength relative to any stray energy scattered from the room. I t  is important that 

the ratio of desired to undesired signal strength be maximized because time-domain 

filtering techniques (gating) cannot be used to remove the unwanted signals on this 

type of a structure. Due to the long ring-down time of this resonant cavity, its 

response is appreciably extended in the time domain. If a time-domain gate is used 

that is small enough to reject the stray signals scattered from the room, then part 

of the time-domain response of the model will also be rejected, thus distorting its 

frequency-domain response. For near oblique (to the length of the fuselage) incident 

angles, near-field to far-field techniques would be required. 

The HP8510 network analyzer can acquire 801 frequency points per measure- 

ment. This resolution is insufficient to accurately sample the rapid variations in the 

frequency response of the model that occur between 400 MHz and 13 GHz. There- 

fore, the measurements were performed in 1 GHz bands of 801 frequency points. Four 

antennas were needed to cover this frequency range: one from 400 MHz to 4 GHz, I 

another from 4 to 6 GHz, one to cover 6 to 8 GHz and a final horn to  provide 8 to 13 

GHz coverage. The microwave source was operated in synthesizer mode at an output 

power of +10 dBm. An IF averaging factor of 4096 was used. 

B. Results 

The first measurement, shown in Figure 5.4, is the shielding effectiveness of the cylin- 

drical fuselage as a function of frequency, from 0.4 to 13 GHz, compared to that of the 

Simplified Fuselage. The SE of the cylindrical fuselage exhibits the same extremely 



rapid variations with frequency that were seen with the Simplified Fuselage. Detailed 

comparison is impossible on this scale. To better see the typical differences between 

the SE of the two models, the scale is expanded in Figure 5.5 to  0.5 to 1.5 GHz. It is 

not terribly surprising that there are no correlations in the peaks and nulls between 

the SEs of the two models. However, if the SE is smoothed by 3% with respect 

to frequency, the SE of the cylindrical fuselage agrees well in this averaged sense to 

that of the Simplified Fuselage (Figure 5.6). One difference between the two is the 

cutoff frequency of the cylindrical model is lower than that of the Simplified Fuse- 

lage. Another difference evident in Figure 5.6 is the depth of the relative nulls. The 

depth of the nulls is related to the overall shape of the shielding effectiveness which 

is dominated by the frequency response of the reference monopole. These relative 

nulls are deeper in the SE of the Simplified Fuselage. The differences are small, but 

it is somewhat interesting to explain them by relating the differences in technique 

used in measuring the frequency response of the monopole. The uninitiated might 

assume that, because i t  is a simple target, the monopole would be easy to accurately 

measure. This is not true. Because the monopole accepts energy almost equally from 

nearly all directions, it is particularly susceptible to error from fields scattered by the 

surrounding environment. Furthermore, it seems to  couple to nearby objects. In fact, 

it is rather difficult to accurately measure the frequency response of the monopole, 

particularly at  low frequencies. A great deal of time was expended in making the 

monopole measurements for the case of the Simplified Fuselage. In those measure- 

ments, no time-domain gating was used. Instead, considerable experimentation was 

made in the placement of the monopole and the auxiliary antenna relative to one an- 

other and relative to the anechoic chamber to control and minimize the environmental 

scattering. Also, the microwave absorber configuration was explored extensively, to 

the extent of borrowing some ferrite tiles with which to line the floor immediately 

beneath the monopole (where the most severe problems were found to reside). In 

contrast, a different approach was used when measuring the monopole for the cylin- 

drical fuselage case. The decision was made to use time-domain gating in this case. 

However, time-domain gating, when the filter is narrow, has the effect of distorting 

the resulting frequency response. In particular, the ends of each frequency band are 

often significantly distorted. To work around the band edge distortion, twice as many 
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Figure 5.4: The shielding effectiveness (relative to a monopole) of the cylindrical 
fuselage (blue) compared to that of the Simplified Fuselage (red), at nose incidence 
and observed at a point 50 cm from the nose. 

overlapping frequency bands were measured of the monopole. For example: 1.0 - 2.0 

GHz, 1.5 - 2.5 GHz, 2.0 - 3.0 GHz, 2.5 - 3.5 GHz, and so on. After applying the 

time-domain gate, the central parts of each of the overlapping frequency bands were 

assembled into a complete frequency response, and the individual band edges were 

discarded. The net effects can be seen in Figure 5.6: the (smoothed) SE of the cylin- 

drical fuselage is smoother that that of the Simplified Fuselage, does not extend quite 

as low in frequency, and the relative nulls are slightly filled or raised in amplitude 

(another result of the narrow time-domain gate used). 

111. Shielding Effectiveness Improvement 

Can the shielding effectiveness of an aircraft fuselage be improved? To explore that 

question, a number of measurements were performed with various treatments on the 

apertures. In the first of this series of measurements, the cockpit window was sealed 

with a brass plate copper taped to the nose of the fuselage, as seen in Figure 5.7. 

The resulting shielding effectiveness is compared to that without aperture treatment 

in Figure 5.8. From this point on, all of the shielding effectiveness plots are smoothed 
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Figure 5.5: A detailed view of the comparison between the cylindrical fuselage and 
the Simplified Fuselage shielding effectiveness between 0.5 GHz and 1.5 GHz. No 
correlation in the peaks and nulls are observed. 
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Figure 5.6: With the shielding effectiveness smoothed by 3% (with respect to fre- 
quency), it is more evident that the SE of the cylindrical fuselage is nearly identical 
to that of the Simplified Fuselage in this averaged, quasi-statistical sense. 



Figure 5.7: Shielding effectiveness wewurements were made with the cockpit window 
sealed with a brass plate and copper tape to observe the relative penetration through 
this aperture, and as a comparison for when the cockpit window is covered with a 
wire screen. 

by 3% to facilitate the comparisons. The improvement in SE effected by sealing the 

cockpit window is pronounced: an increase of approximately 20 dB. We will see that 

the majority of the energy penetrates through the cockpit window. This appears to 

be a statement of the obvious, since all of the cases in this study are at nose incidence. 

However, it was found in previous studies of Portable Electronic Devices (PEDs) that 

the large cockpit window provides the dominant penetration mechanism. When an 

external antenna and simulated PED were located at a station near the rear of the 

fuselage, adjacent to one of the cabin windows, the penetration through the cockpit 

window was found to be much larger than that through the cabin window. 

It has been known for many decades that a mesh or screen having wire spacing 

that is small relative to the wavelength is a very good approximation to a solid sheet 

of conductor. Let us now replace the brass plate with an aluminum wire screen, as 

seen in Figure 5.9. This is standard home window screening which has a center-to- 

center wire spacing of approximately 1.94 mm. Repeating the measurements results 

in the shielding effectives curves of Figure 5.10. Indeed, the screen is only slightly 
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Figure 5.8: The shielding effectiveness increased by approximately 20 dB by sealing 
the cockpit window. 

less effective than the brass plate at reducing the penetration of the fields into the 

fuselage. 

Well, the penetration should be reduced to nearly nothing if all of the apertures 

are screened ... right? A photograph of the cylindrical fuselage with all of the windows 

screened is shown in Figure 5.11. A screened cabin window is seen close up in Figure 

5.12. Again, the shielding effectiveness was measured at nose incidence. While the 

penetration was reduced at frequencies below about 4 GHz, the penetration increased 

for frequencies above 4.5 GHz, as seen in Figure 5.13. 

It is not clear why the penetration increased when the cabin windows were screened. 

However, when the cockpit window is sealed while the cabin windows are screened 

(Figure 5.14), the shielding effectiveness is higher (except above 11.5 GHz) than when 

the cockpit window is sealed and the cabin windows are open, as expected (Figure 

5.15). 

Perhaps the distribution of the residual energy that has penetrated through the 

cockpit screen is altered by the cabin window screens to be higher at the observation 

point than when the cabin windows are open. To test this theory, the window treat- 

ment series of measurements were repeated for an observation point 1.25 m from the 



Figure 5.9: &placing the brass with an aluminum wire screen should still be effective 
at reducing the penetration into the fuselage, if the screen wire spacing is small relative 
to the wavelength. 
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Figure 5.10: As the frequency goes up, the shielding effectiveness of the wire screen 
decreases, but it is just as effective as the brass plate below 4.5 GHz. 



Figure 5.11: Adding the wire screens to the cabin windows should reduce the pene- 
tration into the fuselage still further. 

Figure 5.12: A close-up view of the screen applied to the cabin windows. 
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Figure 5.13: But curiously, at frequencies above 4.5 GHz, the shielding effectiveness 
actually decreases. 

Figure 5.14: The cockpit window screen was replaced with the brass plate, in an 
attempt to better understand this seemingly anomalous behavior. 
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Figure 5.15: Now the shielding effectiveness has increased above that for the case of 
the cabin windows open and the cockpit window sealed, as expected. 

nose (Figure 5.16). The same relative trend is observed at this observation point, as 

shown in Figure 5.17, and the reason why the penetration increased when all of the 

windows were screened as compared to when only the cockpit window was screened 

remains somewhat of a mystery. 

IV. FDTD Predictions 

In this section predictions of the shielding effectiveness for the simplified fuselage are 

presented. All the predictions are performed using the standard second-order accu- 

rate both in time and space FDTD(2,2) method. Three different cell sizes are used 

depending on the frequency range of the predictions. Predictions are performed for 

nose incidence. The computations of shielding effectiveness (SE) are based on the 

definition described by procedure #2 presented in [144]. This procedure is in accor- 

dance with measurements. The CAD model of the simplified fuselage is illustrated in 

Fig. 5.18 through Fig. 5.19 



Figure 5.16: The entire window treatment series of measurements was repeated with 
the observation point moved to 1.25 m from the nose. 
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Figure 5.17: The resulting SE plots demonstrate that the same trends occur as when 
the observation point was at 50 cm from the nose. 



Figure 5.18: Geometry of the cylindrical fuselage 

/ 
20x50m, nine places per side 

Figure 5.19: Side view of the cylindrical fuselage 



Figure 5.20: Front view of the cylindrical fuselage 

Figure 5.21: Probe location in the cylindrical fuselage 



A. Cell size of 10 rnm 

Initially, all FDTD predictions are performed using a cell size of 10 mm (or XI10 at 

3 GHz). Therefore it is expected that these FDTD calculations will provide accurate 

results at  most up to 3 GHz. S E  predictions are computed for an azimuthal angle 

of incidence of 0" (nose incidence). The results of the FDTD method are illustrated 

in Fig. 5.22 through Fig. 5.25. Fig. 5.22 depicts S E  in the entire frequency range of 

0 - 2.8 GHz, whereas Figs. 5.23, 5.24 and 5.25 provide three zoom views in the bands 

0.7 - 1.4 GHz, 1.4 - 2.1 GHz and 2.1 - 2.8 GHz, respectively. I t  can be seen that 

the FDTD predictions are in good agreement with the measurements. Discrepancies 

between the measurements and the predictions are observed in all frequency bands 

but especially in the last one. these inaccuracies are attributed to FDTD dispersion 

errors. Even though the cell size of 10 mm corresponds to A110 at  3 GHz, this 

mesh is proven insufficient for the last frequency band. This happens because the 

domain of the fuselage is electrically large causing accumulation of dispersion errors 

which significantly restrict FDTD accuracy. Another cause for these discrepancies 

is that the curved surface of the fuselage is impossible to be accurately modeled by 

the cubical cells of the standard FDTD scheme. The use of cubical cells results in a 

staircased model geometry which is quite different from the actual one and therefore 

the predicted penetrated field differs from measurements. 
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Figure 5.22: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0°, cell size 10 mm 
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Figure 5.23: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0°, cell size 10 mm 
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Figure 5.24: Shieldmg effectiveness of the scaled fuselage for azimuthal incident angle 
of 0°, cell size 10 mm 
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Figure 5.25: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0°, cell size 10 mm 



B. Cell size of 5 mm 

The inaccuracies of the FDTD computations shown above were attributed to dis- 

persion errors. In order to reduce dispersion errors and improve the accuracy of the 

FDTD predictions at  higher frequency bands, finer meshes have to be used. Finer 

meshes provide more accurate results but they yield large computational domains 

which require significant computational resources. Here, all FDTD predictions are 

performed using a cell size of 5 mm (or X/10) at 6 GHz. Therefore it is expected 

that these FDTD calculations will provide accurate results at  most up to 6 GHz. 

The FDTD computations are shown and compared to measurements in Fig. 5.26 

through Fig. 5.29. It can be observed that the numerical results agree very well 

with measurements up to 3.5 GHz. However their accuracy is already degraded in 

the last frequency band, even though the cell size of 5 mm corresponds to X/15 at 

4 GHz. In an electrically large space such as a simplified fuselage, the accumulation 

of phase errors due to dispersion becomes significant and deteriorates the accuracy 

of the FDTD solution. The simplified fuselage has electrical dimensions of approxi- 

mately 31X x 4X x 5X at 6 GHz, which make the fuselage an electrically large domain. 

This explains the inaccurate results of FDTD in the last frequency band. However, 1 
the finer mesh of 5 mm, used here, provides predictions that exhibit better accuracy I 
than that of the predictions performed for a cell size of 10 mm. This can be observed I 

by comparing Figs. 5.25 and 5.27. Also, it has to be mentioned that the staircasing 

error still exists in this case, which affects the accuracy of the computations. Of 
I 

course, this staircased surface is less rough than the previous but still differs from the 

physical model. 
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Figure 5.26: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0°, cell size 5 rnm 
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Figure 5.27: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of Oo, cell size 5 mm 
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Figure 5.28: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0°, cell size 5 mm 
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Figure 5.29: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0°, cell size 5 mm 
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C. Cell size of 2.5 mrn 

In the previous sections, the FDTD mesh was refined from 10 mm to 5 mm and this 

refined mesh provided results of improved accuracy. In order to reduce even further 

the dispersion error and improve the accuracy of the FDTD predictions at higher 

frequencies, the mesh is again refined. Here, all FDTD predictions are performed 

using a cell size of 2.5 mm (or A/13 at 9 GHz). Therefore, it is expected that these 

FDTD calculations will provide accurate results at most up to 9 GHz. Moreover, the 

new finer cell size, improves the modeling accuracy of the fuselage curved surface, 

therefore a general improvement in all fxequency bands is expected. Of course the 

staircasing error still exists but the discontinuities that it creates are smoother. The 

FDTD computations are shown and compared to measurements in Fig. 5.30 through 

Fig. 5.40. It can be observed that the numerical results agree very well with measure- 

ments up to 5.6 GHz and the agreement in these frequency bands has been improved. 

However, the accuracy is already degraded in the higher frequency bands. Again even 

though the discretization is at least XI13 at 9 GHz, the accumulation of phase errors 

through the domain make this discretization insufficient. Note that the simplified 

fuselage has electrical dimensions of approximately 47A x 6A x 7A at 9 GHz, which 

make the fuselage an exhemely electrically large domain. 
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Figure 5.30: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0°, cell size 2.5 mm 
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Figure 5.31: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0°, cell size 2.5 mm 
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Figure 5.32: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0°, cell size 2.5 mm 
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Figure 5.33: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0°, cell size 2.5 mm 
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Figure 5.34: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0°, cell size 2.5 rnm 
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Figure 5.35: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0°, cell size 2.5 mm 
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Figure 5.36: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0°, cell size 2.5 mm 
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Figure 5.37: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of OD, cell size 2.5 rnm 
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Figure 5.38: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of OD, cell size 2.5 rnm 
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Figure 5.39: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0°, cell size 2.5 mm 
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Figure 5.40: Shielding effectiveness of the scaled fuselage for azimuthal incident angle 
of 0°, cell size 2.5 mm 



V. Conclusions 

The construction of the cylindrical fuselage was successfully completed, with some 

small deviations from its intended design as a circular cross section version of the 

Simplified Fuselage. 

While the shielding effectiveness measurements at a point 50 cm from the cylindri- 

cal fuselage's nose do not correlate in a deterministic sense to those of the Simplified 

Fuselage, the two are very similar in an averaged sense. Thus, a rectangular cross- 

section fuselage model can be a good approximation (in a quasi-statistical sense) to 

a curved fuselage of the same interior volume. 

Application of screens to the cabin and cockpit windows has a pronounced effect 

in increasing the shielding effectiveness of the structure. Shielding effectiveness im- 

provements of 10 to 40 dB were observed when screens having wire spacing of (full 

scale) 1.5" were applied. However, the full scale diameter of the wire in the aluminum 

screens is 0.18". This is obviously much larger than could be used in practice. The im- 

provement in shielding would be lessened in the case of a finer diameter wire. On the 

other hand, the aluminum screen used was simply woven, and the contact impedance 

of aluminum is not particularly low. Screens specifically intended for electromagnetic 

shielding would likely have bonded wires which improves their effectiveness. 

The shielding effectiveness of the structure increased at frequencies below 4.5 GHz 

when screens were added to the cabin windows, as compared to the case of only the 

cockpit window being screened. Oddly, the shielding effectiveness simultaneously de- 

creased at frequencies above 4.5 GHz. While no satisfactory explanation is proposed, 

the same trend was observed when the observation point was moved to the rear of 

the fuselage (at 1.25 m from the nose). 

The standard FDTD scheme was used to compute the SE of the circular cross 

section scale model fuselage. The domain was discretized using three different cell 

sizes, 10 mm, 5 mm and 2.5 mm. Predictions was compared with measurements and 

they were in very good agreement while significant improvement was observed as the 

mesh was refined. Moreover the observed discrepancies were attributed to staircasing 

errors as well as phase error accumulation. 





Chapter 6 

St at ist ics of the Electromagnetic 
(EM) Field Inside the Simplified 
Fuselage 

In this chapter, a statistical analysis is presented of the HIRF penetration problem 

for a simplified scale model fuselage. A reverberation chamber (RC) approach is 

examined. A rotatable scatterer (mode-stirrer) is inserted into the fuselage and mea- 

surements are performed at different locations for different mode-stirrer orientations. 

From the collected set of data, statistical quantities are calculated. Moreover, proba- 

bilistic models that have been derived for RCs are compared with the statistical field 

distributions in the fuselage. 

I. Introduction 

Until now, the problem of calculating the SE of a simplified fuselage model has been 

extensively studied with great success using deterministic methods, although the re- 

sults are sub ject to previously mentioned limitations. To overcome these limitations, 

a statistical approach is recommended. This requires the insertion of a mode stirrer in- 

side the simplified fuselage model. The mode-stirrer, with its four uneven paddles, has 

the capability to rotate and thus to simulate the numerous field configurations/modes 

inside the cavity. 

In the following sections an overview is given of the RC technique for immunity 

tests. The principles of RC construction and operation are described while the prob- 



abilistic model that governs the field distributions is presented. Thereafter, the ASU 

approach is presented where a mode-stirrer was constructed and placed inside the 

fuselage. Measurements were performed for different mode-stirrer orientations and 

the statistical distributions of the selected data were calculated. Goodness-&Fit 

tests are performed between the experimental data distributions and the theoretical 

probabilistic models. 

Reverberation Chambers (RCs) 

A. Principles of Operation 

Conventional immunity tests are performed using anechoic chambers or open-area 

test sites. In anechoic chambers, the equipment under test (EUT) is exposed to 

a controlled EM environment and its coupling with the radiating source is stud- 

ied. However anechoic chambers can simulate only free space environments without 

interferences from external sources, not to mention that the radiated signal is approx- 

imately a plane wave. Moreover, in a real environment, there is no reason to expect 

a specific field configuration and a predetermined type of source. In contrast, in a 

real environment, the direction, polarization and frequency of the incident fields are 

random. Also the evolution of modern communication systems and the plethora of 

electronic devices has resulted in a more "hostile" ambient environment increased in 

density and intensity. 

All the aforementioned factors have resulted in more strict EM1 regulations which 

necessitated the need for testing techniques that resemble realistic conditions. An 

alternative method of EM1 testing is to use a reverberation chamber (RC) (or mode- 

stirred chamber). Although the concept of RCs is rather old [145], recently they 

have been widely accepted from the EMC/EMI community as a valid and reliable 

susceptibility, vulnerability and SE measurement technique. The geometry of an 

RC is shown in Fig. 6.1. As can be seen, RCs are large cavities consisting of metal 

walls along with a metallic paddle, denoted as mode-stirrer, which has the ability to 

rotate. The rotation property of the stirrer, its shape as well as its size are all of 

great importance for the proper operation of the RC. When the stirrer rotates, the 

boundary conditions on the chamber continuously vary and the inevitable standing 



Figure 6.1 : Reverberation Chamber geometry. 

waves that occur inside the chamber are stirred. Therefore the EM energy that is 

injected onto the RC corner, from the transmitting antenna, is allowed to reflect 

off the six faces and the stirrer. So the incident waves at a point in the chamber 

have both continuously changing amplitude and phase. This is because the rotating 

tuner changes the number of reflections and the length of the reflected paths before 

the incident waves arrive at that point. As a, consequence the sharp nulls, of the 

standing wave field configuration smooth out while for the TEST VOLUME part of 

the chamber, the field is characterized by statistical isotropy, random polarization and 

uniformity. At this point it is appropriate to mention that regarding to the stirrer way 

of rotation there are two competing philosophies. The Italian philosophy, supported 

by P. Corona [146], is known as "stirring" and recommends a continuously turning 

paddle. The alternative philosophy, supported by J. Laudbury [146], is known as 

"tuning" and recommends discrete stirrer rotation. 



As mentioned before, the choice of shape and size for the stirrer are very important 

for its effectiveness. It  is recommended [I471 that the shape of the stirrer should be as 

irregular as possible so that the field can be scattered evenly in all directions. Also, 

multiple tuners may be used [148], which are typically mounted on opposite walls to 

improve the stirring of the fields. This is more important in the case of flat tuners 

that they act as scatterers in only one plane. With respect to size, the stirrer should 

be electrically large or greater than $ at the lowest frequency of operation [147]. Also 

Wu and Chang in [I491 examined ways to achieve sufficient eigenfrequency shifting, 

and thus randomness of the field, in a 2-D cavity with an I-D perturbing body. They 

concluded that the key mechanism that causes uniformly random field distribution is 

a form of random modulation, both in amplitude and frequency, that can be achieved 

only if the rotating scatterer is large enough. Concluding, a typical test to determine 

the effectiveness of a mode-stirrer is to measure the ratio of the maximum to minimum 

received power as a function of stirrer orientation. A reasonable guideline for proper 

operation of the tuner is a minimum tuning ratio of 20 dB. 

Among other characteristics, the total possible number of modes in an RC is also 

of great interest. A good approximation for the number of eigenmodes as a function 

of frequency is given by [150], 

where c is the speed of light in free space, while a, b and c are the chamber dimen- 

sions. Note that the first term of (6.1) coincides with Weyl's [151], [I521 asymptotic 

expression which is proportional to the volume abc of the chamber. The second term 

is the "edge term" which modifies Weyl's result, especially in the lower frequencies 

range. It should be noted that (6.1) is applicable in the frequency range 

The efficiency of an RC strongly depends on the number of modes N, existing 

at a specific frequency or in a frequency range. As a matter of fact, the higher 

the N the better is the efficiency of the chamber. Therefore mode degeneracy has 

to be seriously taken into account. Many RC designers [147], [150] suggest that 



the ratio of their dimensions should be as non-rational as possible while a cubical 

chamber should be definitely avoided. As an example, the NBS chamber dimensions 

are 2.74 m x 3.05 m x 4.57717,. The previous remarks reveal an intrinsic limitation of 

RCs. Because N increases with frequency, it  is more difficult to perform immunity 

tests at the lower frequency range since the chamber would not operate properly. 

Therefore EM interference from low frequency threats is difficult to test using RCs. 

Several studies have been reported dealing with the lowest usable frequency (LUF) 

of an RC and suggestions have been made on how to calculate it [I531 and on how to 

perform measurements below the LUF level [154]. 

As mentioned before, the main objective when using an RC is to create a delta 

correlated stochastic electromagnetic field in it, which implies that there are no strong 

elementary sources. Therefore, the transmitting and receiving antennas should be 

properly placed and oriented inside an RC so that there would be no line-of-sight 

between them. In order to achieve that, the following receiving-transmitting antenna 

configurations are recommended: 

a. Position the transmitting and receiving antennas in different corners of the 

chamber, oriented toward the corners 

b. Position one of the antennas in a corner oriented toward the corner, while the 

other one is sufficiently far away and oriented toward the tuner 

c. Position the two antennas with line-of-sight but keep them cross-polarized. 

Although the development of RCs statistical theory requires that there are no dom- 

inating field components, recently new studies have been reported [155], [156], [157] 

that present alternative statistical theories for this RC mode of operation, while also 

their usefulness for immunity testing is discussed. 

B. Statistical Characterization 

In this section, probabilistic models are presented for various field quantities in an 

RC. Probability density functions (PDFs) as well as cumulative density functions 

(CDFs) are derived for the magnitude of the electric field components, the received 

power in each direction as well as the SE of a single spatial point. Moreover, the 



stirrer efficiency is studied with respect to the number of steps that are required to 

obtain uncorrelated field measurements. For the analysis of the next sections, the 

following assumptions are made: 

a. There is no line-of-sight between the transmitting and receiving antennas 

b. In the RC perfect more-stirring has been achieved 

1. General Statistical properties of the EM field in an RC 

The electric field E at location r in the TEST VOLUME of the RC can be represented 

as an integral of plane waves [I581 over all real angles (8, +), or 

where the solid angle R is given by R = sin 8dOd+ while k is the vector wavenumber. 

The angular spectrum A(R) can be written in terms of its orthogonal components, 

as 

A(Q) = l ie  Ag (Q) + d4 A,+ ( a )  

where a. and are the unit vectors along the elevation and azimuthal directions. 

Moreover, each one of AB(fl) and A4(R) is a complex quantity and can be written in 

terms of their real and imaginary parts 

The geometry for a plane wave component is shown in Fig. 6.2. 

For a statistical field, as generated in a reverberation chamber, the angular spec- 

trum is taken to be a random variable which depends on stirrer position. In a typical 

RC measurement, the statistical ensemble is generated by rotating the stirrer. The 

starting point for the statistical analysis is to select statistical properties for the an- 

gular spectrum that are representative of a well-stirred field. Appropriate statistical 
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Figure 6.2: One vector component of the angular spectrum of the electric field. 

assumptions for such field configuration are the following mean values ' : 

( Ae (a)) = (4 (a)) = 0 

= (A0i(Q,) AQi(fi2)) = 0 

lThe mean value or ezpected value of a random variable x is defined as: 

where f,(x) is the probability density function of x. 



and 

where 6 is the Dirac delta function and C is a constant. 

The physical justifications for the above assumptions are as follows. Since the 

angular spectrum is a result of many rays with random phases, the mean value should 

be zero, as indicated in (6.7). Moreover, since multi-path scattering changes the 

phase and rotates the polarization many times, angular spectrum components with 

orthogonal polarizations or quadrature phase have t o  be uncorrelated, as indicated 

in (6.8). Furthermore, since angular spectrum components arriving from different 

directions have taken "very different" multiple scattering paths, they have to be 

uncorrelated as indicated by the delta function on the right hand side of (6.9). 

From (6.8) and (6.9) and after some straightforward manipulations, the following 

relations can be obtained 

where * denotes complex conjugate. 

Now, a number of interesting and useful field properties are derived using all the 



above assumptions. The mean value of the electric field is equal to 

From the last result we conclude that the mean value of the electric field in an RC 

is zero. This is expected because a well-stirred field is the sum of a large number of 

multi-path rays with random phases. 

Another interesting property is obtained if we calculate the mean value of the 

electric field squared, (IE(r)I2). The electric field squared in terms of its angular 

spectrum is given by 

~ E ( T ) / ~  = E(r)  E*(r) 

while its mean value is calculated with the aid of (6.10) and (6.11) which lead to 

2 = 4~ // d 4  = 16nC I E, 
n 

This is the uniformity property of an RC and states that the mean square value of 

the electric field is constant and independent of position. Similarly, it can be shown 

the following property, known as isotropy, or 

All the above properties have been experimentally verified at  the NBS RC [147]. 

Another important quantity that gives insight to the response in an RC is the 

spatial correlation function [159]. It is given by the expression 



where rl and ~2 are two locations in the chamber. The numerator of (6.16) is the 

mutual coherence function, which has been used to describe multiple scattering phe- 

nomena [160]. After some manipulations, it can be shown that the spatial correlation 

function for an ideally operating RC is given by 

sin (klrl - r21) 
~ ( r l r  9-2) = 

klrl - r z l  
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Figure 6.3: Reverberation Chamber: (a) Top view (b) Side view. 



2. Probability distribution of JE,I2 inside a n  RC 

First the PDF of the electric field component E, in an RC is derived. The PDF of 

this quantity is important because it is proportional to power and because in our 

experiments a z-oriented monopole was used as the receiving antenna. In terms of 

its quadrature components, E, is given by 

where E,, = A cos(4) and Ezi = A sin(4). Now, the field Ez is a sum of all possible 

scattered fields inside the RC, as shown in Fig. 6.3; therefore it can be written as 

From the Central Limit Theorem [I611 we have that, given n independent random 

variables xi with mean pi and variance a:, respectively, their sum 

is also a random variable normally distributed with mean and variance 

p = C pi and o2 = a: (6.21) 

respectively. I t  is appropriate to mention that the above theorem is valid regardless 

of the probability distribution of each random variable. 

For completeness, we mention that a random variable x is normally distributed 

with mean value p and standard deviation a when its probability density function 

(PDF) is given by 

or in symbolic form 

The corresponding Cumulative Distribution Function (CDF) of a PDF is given by 



Figure 6.4: Normal/Gaussian distributions: (a) probability density functions (b) I 

cumulative density functions . 

where in the case of a normal distribution the above integral yields 

In Fig. 6.4 there are'the PDF plots of three zero mean Gaussian distributions with 

different standard deviation constants as well as the corresponding CDF plots. 

Provided that for each n all E,,, as well as all E Z i ,  are independent, then we can 

claim that both 

EZT = x E Z T ,  and EzT = x 
are normally distributed. In an RC, the main objective is to create a uniform field 

distribution. Therefore a direct illumination (line-of-sight) of the receiving antenna 

from the transmitting one is avoided so that there will be no dominating field com- 

ponent. Based on that, we can claim that the mean value of both quantities EzT and 

E,, is zero. Moreover, since the scattering mechanism is identical, i t  is reasonable to 

assume that both quantities are characterized by the same standard deviation a. 



In what follows we use the following notation 

where 

Since the quantity of interest is IEZl2, the PDF of random variable x will be derived, 

where 

under the assumption of (6.27). In order to do that, we recall that [161], g' iven n 

independent and identically distributed random variables 3 N JV (0, a2), then the 

distribution of the random variable which equals to the sum of their squares, that is 

is chi-square distributed with n degrees of freedom, or 

The distribution of (6.30) is designated as X2(v). In Fig. 6.5(a) there are the plots of 

chi-square PDFs for three different degrees of freedom while in Fig. 6.5(b) there are 

the corresponding CDFs. When n = 2, the distribution of x 

which is the exponential distribution with parameter a G &. Therefore, we conclude 

that quantity (EzI2 in an RC is exponentially distributed. The same conclusions can 

be drawn for IE,I2 and IEVl2. 

Of great importance is the calculation of the exponential distribution parameter, 

given a set of experimental data x = (xl, 2 2 , .  . . , xN). In order to do that, we make 

use of the maximum-likelihood estimator (MLE) [161]. According to the theory of 



Figure 6.5: Chi-square distributions: (a) probability density functions (b) cumulative 
density functions. 

MLEs, an estimation of a PDF parameters a = (al ,  a2, .  . . , a M )  can be made if the 

quantity 
N 

L (x; a) = fx (xi ; a) (6.32) 
i=l 

is maximized with respect to a, where N is the number of experimental data. In our 

case the above expression becomes 

As mentioned before, the parameter e2 is such that it maximizes the corresponding 

likelihood function. Therefore, for its evaluation we solve 

a 
L (x; 8 2 )  = 0 aa2 

a 
- In [L (x; e2)] = 0 
a82 



since the logarithm is a monotonic function. From the previous equation, we easily 

obtain [I621 

3. Probabil i ty distributions of I E, I a n d  arg [E,] inside a n  RC 

In order to calculate the PDF of IE,I the following property of RVs is used [161]: 

Given the joint probability density function of the RVs x and y ,  f,, (x, y), then 

the joint PDF of z = g(x, y)  and w = h(x, y )  is given by 

where J(xi ,  yi) is the Jacobian of the transformation, defined as 

Recall that, in our case the RV of interest is I E,I which can be written in terms of its 

real and imaginary parts as 

or according to the convention of the previous section 

Hence, given that RVs XI, x2 are independent and identically distributed, with Gaus- 

sian PDF of zero mean value and equal variance a2, their joint PDF is given by 

In order to calculate the PDF of the RV z = d m ,  we write it  in terms of polar 

coordinates, or 

xl = psin4 
2 2  = pcos 4 



Then, from (6.37) and (6.38) we get 

1 
f p m ( ~ ,  4) = p e-& (6.42) 

From the above equation, we can easily obtain the PDFs of RVs p and q5 by calculating 

the following integrals2: 

and 

which lead to 

From the above analysis, the following conclusions can be drawn: 

a. RVs IEzI = p and arg [E,] - q5 are independent since their joint PDF can be 

written as 

b. The PDF of RV IE,I, given by (6.45), is chi-square with 2 degrees of freedom 

~ ~ ( 2 )  which is the same as the Rayleigh distribution. The same result can be 

obtained in several ways3. 

c. The PDF of RV arg [E,], given by (6.46), is uniform over the interval [O,2n] 

'For two independent RVs x and y , we can calculate the marginal PDF of x by intergrating 
their joint PDF with respect to y , i.e fx(x) = fxv(x, y) dy 

31€ RV x is exponentially distributed, or 

f,(x) = e-"/', x > 0 



4. Probability distribution of IEZl2 inside an RC when there is direct 
illumination between the transmitting and receiving antennas 

The case of direct illumination between the transmitting and receiving antennas inside 

an RC has recently been investigated [155], [156], [I571 and probabilistic expressions 

have been derived for the field distributions which are in very good agreement with the 

corresponding measurements. Although in our project such case was not of primary 

interest, a brief analysis will be given and the probabilistic expressions for the field 

distribution will be presented. 

In [I611 it is proven that given two independent normally distributed random vari- 

ables with the same variance but nonzero mean values, then the probability density 

function of the random variable 

is the following 

where p = ,$+pi and is the modified Bessel function of the zeroth-order. Notice 

that in this case, xl and x2 are normally distributed with non-zero mean which is 

due to the dominant electric field component created by the direct illumination of the 

two antennas. Now, in order to calculate the probability density function of x G y2 

we use the following transformation 

then the distribution of the RV 

is given from the following transform 

In our case g(x) = fi and g-l(y) = y2. So the distribution of RV y is 

which is the Rayleigh distribution. 



which is valid provided that 

g i s l - l i n S = { x E I W . :  f (x )>O)  

9-' has continuous first derivative in T = g(S) 

In our case 

where it is obvious that both g and 9-' satisfy the above conditions. Therefore the 

probability density function of random variable y is 

Thus, we conclude that under the assumption that a line-of-sight exists, the proba- 

bility density function of IE,I2 is the one given from (6.54). Notice that the above 

formula has two parameters to be estimated, p and a2. Therefore the calculation 

of their MLEs is a rather complicated and difficult task which involves the solution 

of a system of differential equations with the unknowns being arguments of Bessel 

functions. 

5. Stirrer Efficiency 

In this section the relation between the number of stirrer positions and data indepen- 

dence is studied. It can be proved [161] that for large number of data the estimator 

for the exponential distribution parameter, as given from (6.36), approaches a normal 

distribution with mean and variance 

c4 
mean[b2] = a2 and var[b2] = - 

n 

respectively. Therefore the probability that 62 is within k standard deviations ($) 
of its mean is given by 



The values of gamma correspond to the desired level of confidence. In probability 

theory the most common values for 7 are 0.99, 0.95 and 0.90. From the normal 

distribution tables, we get the values of k  corresponding to the above values for 7. 

These values are listed in Table 6.1, 

Table 6.1: Normal distribution, Pr[x < k ]  = y, x - N ( p ,  g2). 

Therefore, requiring b2 to be within a confidence interval of d dB, we have that 

d dB = 10 log 
1 + k / J n  
1 - k / J n  

The above equation is plotted in Fig. 6.6. As expected, the width of the confidence 

interval approaches 0 dB as the number of independent stirrer positions increases. 

Moreover, in order to evaluate that a stirrer provides independent samples, the 

correlation coefficient is usually calculated. It has to be mentioned that although 

independent data are also uncorrelated, the opposite is not necessarily true unless 

the data are normally distributed [161]. The correlation coefficient po(r) where r is 

the angular distance between two stirrer positions is calculated according to 

where N is the total number of samples and with 7 we denote ensemble average. The 

quantitative significance of a measured correlation coefficient po can be evaluated by 

calculating the probability that N measurements of two uncorrelated variables would 

give correlation coefficients p larger than po. This probability is given by [163], [I641 

where N is the number of stirrer positions. Thus if we obtain a correlation coefficient 

PO for which Pr [Jpl 2 lpol] is small, it is unlikely that our variables are uncorrelated, 



that is, a correlation is indicated. In particular, if Pr  [ ( p (  2 \pol] 5 0.05, the correla- 

tion is called significant, while if it is less than 0.01, the correlation is called highly 

significant [163]. 

In Fig. 6.7 the probability of (6.59) is plotted versus number of stirrer positions 

N. The value of po is equal to e-' because for practical purposes this is the threshold 

for uncorrelated data. As was expected, the probability to get highly significant 

correlated data decreases as N increases. 
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Figure 6.6: Confidence Interval vs. Stirrer Positions. 
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111. Mode-Stirrer Construction and Measurements 

A. Introduction 

In past reports, we have demonstrated the ability to perform shielding effectiveness 

(SE) predictions of the "Simplified Fuselage" scale model using the Finite-Difference 

Time-Domain (FDTD) method which agreed closely to measurements up to approx- 

imately 5 GHz. At higher frequencies, the predictions no longer agreed with the 

measurements in a precise deterministic sense. There are a number of reasons for the 

discrepancies between the predictions and measurements at  the higher frequencies. 

The primary factor is the limited FDTD discretization. It was found that the FDTD 

cell size must be less than X/16 for highly accurate predictions on this type of reso- 

nant cavity. This is due to the accumulation of phase errors associated with the long 

propagation distances of the fields "bouncing around" within the cavity. Because the 

prediction is sensitive to the phaser sum of the reverberating fields, the dispersion 

errors must be held to a higher tolerance than for most other structures. Since the 

computer memory requirements using the FDTD increase at a rate approximately 

proportional to the cube of the cell size (every time the cell size is halved, the solu- 

tion space increases by a factor of 8), the limits of one's computational resources are 

quickly reached. Research conducted at ASU into time-domain windowing and the 

use of sub-cell gridding combined with a hybrid second/fourth-order FDTD has shown 

promise, but the state-of-the-art FDTD methods and computers are still insufficient 

to deterministically predict field penetration into a full-scale airliner at  frequencies 

higher than about 1.5 GHz. However, it was found that while the FDTD predictions 

diverged in the deterministic sense from measured shielding effectiveness at higher 

frequencies, the predictions continued to exhibit trends (average and peak SE) that 

were in close agreement with the measurements at frequencies far beyond the pre- 

viously mentioned 5 GHz. Furthermore, the practical application of High Intensity 

Radiated Fields (HIRF) studies is not dependent on deterministic accuracy. Thus, a 

branch of the HIRF research is directed toward a statistical approach. 

Currently, our statistical approach is being modeled after reverberation chamber 

techniques and associated formulation. Our model of an aircraft fuselage is a highly 

resonant cavity that should be amenable to mode stirring techniques to explore the 



statistics of the penetrated fields. This section of the report relates the experimental 

portion of the mode-stirred shielding effectiveness study conducted with the Simplified 

Fuselage. 

A mode stirrer has been constructed and installed in the Simplified Fuselage. 

Shielding effectiveness measurements have been performed as a function of mode stir- 

rer orientation over a wide range of frequencies for nose-incident illumination. The 

resulting SE measurements exhibit promising variation with respect to mode stirrer 

orientation. These measurements are available for further validation of the FDTD 

predictions, but also represent a substantial resource of data that could be applied to 

an experimental consideration of the statistics of the HIRF penetration. 

B. The Mode Stirrer 

The mode stirrer is comprised of four blades mounted on a "Xn-shaped cross piece 

that is subsequently mounted atop a shaft which passes through the floor of the 

Simplified Fuselage. 

The blades of the mode stirrer are shown in Figure 6.8. They are 0.010" thick brass 

plates which measure 6 x 1 0  cm, 6 x 1 2  cm, 6 x 1 4  cm, and 6 x 1 6  cm. The blades were 

designed to be asymmetrical to enhance their randomizing effects on the penetrated 

fields. The edges of the blades are soldered to short lengths of circular-cross-section 

brass tubing, at 8 cm from one end of each blade. The brass tubing is a tight slip fit 

into the 0.5 cm square brass tubing cross piece shown in Figure 6.9. This construction 

enables each blade to be individually oriented in elevation as seen in Figures 6.10 and 

6.11, in these measurements and predictions however, the blades are oriented parallel 

to the shaft. A flat washer was soldered to the circular cross section shaft (also seen in 

Figures 6.10 and 6.11 at a location along its length which fixes the height of the cross 

piece at  the vertical center of the Simplified Fuselage. A hole was drilled through the 

floor of the Simplified Fuselage through which the mode stirrer shaft passes. This 

hole is located at the port / starboard center, 50 cm from the nose. After the shaft 

passes through the hole in the floor, a spring is passed over the end and is captured 

by a small rod that fits through a hole in the shaft. The spring holds the entire as- 

sembly tightly against the floor of the model. The rod not only captures the spring, 



Figure 6.8: The mode stirrer blades are made from 0.010" thick brass. Their asym- 
metrical dimension are intended to enhance the randomization of the penetrated 
fields. 

but also acts as an external indicator of the mode stirrer's orientation, and as part of 

the interface to the positioner turntable for automation of the mode stirrer orientation. 

C. Measurements 

Yet again, the mode-stirred shielding effectiveness measurements were performed in 

much the same manner as described in previous reports and in the section of this 

report concerning the measurements of the cylindrical fuselage. 

The two significant differences between these and previous measurements are the 

calibration and the use of the mode stirrer. In previous measurements, the results 

could only be formulated in terms of shielding effectiveness because the penetration 

and the frequency response of the reference monopole were not calibrated measure- 

ments. The frequency responses of the feed antennas, cabling, instrumentation, etc. 

were normalized out when the ratio of the monopole measurements to the penetra- 

tion measurements were made to form the shielding effectiveness. In contrast, a set of 

calibration coefficients were computed from measurements of gain standards. These 



Figure 6.9: The brass cross piece is constructed with 0.5 cm square tubing. Short 
lengths of brass tubing soldered to the edges of each blade are tight slip fits into the 
ends of the cross piece. 

calibration coefficients can be applied to the monopole and Simplified Fuselage mea- 

surements to compute absolute fw-field gain values. In other words, if desired, both 

the measurements and predictions can be formulated as the far-field gain, in the nose 

direction, as a function of mode stirrer orientation when the interior probe is excited. 

This is clearly the reciprocal of the penetration observed at the probe l~cation when 

the model is illuminated from the far field and from the nose direction. What is 

not clear is how to relate this far-field gain to penetration field values in volts/meter. 

However, the far-field gain can be computed directly with the FDTD, and it is directly 

proportional to the penetration. 

The other substantial difference is the implementation of the mode stirrer. Changes 

in the mode stirrer orientation were automated by interfacing it with the azimuthal 

turntable of the positioner. One end of a dielectric shaft was connected to the 

turntable, the other end was slotted to accept the metal bar through the brass shaft 

of the mode stirrer. A photograph of the set up is shown in Figure 6.12. The mea- 

surements were performed in one-gigahertz bands up to 13 GHz, where each band 

contains 801 frequency points. 



Figure 6.10: The construction was designed to enable the variable orientation of each 
blade in elevation. 



I 
Figure 6.11: Here, the blades are shown at approximately 45" elevation angle. 



The penetration was measured using 6 cm long vertical wire probes installed in 

the floor of the model. Three of the probes were installed on the port / starboard 

center at  distances from the nose of 25 cm, 100 cm, and 125 cm (designated Probes 

A, C, and D, respectively). A fourth probe was installed at 100 cm from the nose 

and 5 cm to the port of center. This probe is designated as Probe B. All four probes 

were present during the measurements. 

Some examples of the measured variations in relative field penetration as a func- 

tion of mode stirrer orientation are shown in Figures 6.13 and 6.14. The calibrated 

penetration versus frequency at probe B and with the mode stirrer fixed at  0" is 

shown in Figure 6.15. 



Figure 6.12: This photograph shows the expanded polystyrene blocks supporting the 
Simplified Furelage, and the dielectric shaft which connects the positioner to the mode 
stirrer. 
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Figure 6.13: The measured relative variations of field penetration at Probe B with 
respect to mode stirrer orientation. 
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Figure 6.14: The measured relative variations, with respect to mode stirrer orienta- 
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Figure 6.15: The calibrated penetration measured at probe B when the mode stirrer 
orientation is fixed at 0" versus frequency. 



D. Predictions and Comparisons 

In this section, predictions of the shielding effectiveness for the simplified fuselage 

with the mode-stirrer are presented. All the predictions are performed using the 

standard FDTD scheme, and they are compared with measurements. Predictions are 

performed for an azimuthal angle of 0" (nose incidence) and with the mode-stirrer at 

its initial position. Predictions and measurements are compared for probe locations 

A, B, C and D. The CAD model of the simplified fuselage with the mode-stirrer 

along with the four probes is shown in Fig. 6.16 while the measurement setup at  

the ASU EMAC is shown in Fig. 6.17. The comparisons of shielding effectiveness 

(SE) are based on the definition described by procedure #2 presented previously in 

this report. All FDTD predictions are performed using a cell size of 2.5 mm (or 

XI10 at 12 GHz). Therefore it is expected that these FDTD calculations will provide 

accurate results at most up to 12 GHz. Due to the special geometrical features of 

our model (shaft, cross holding the paddles), we were required to use such a fine 

discretization in order to model accurately enough the geometry. The results are 

illustrated in Fig. 6.18 through Fig. 6.33. It can be seen that the FDTD results 

are in very good agreement with the measurements up to 6 GHz for all four points. 

Discrepancies between the measurements and the predictions are observed in the last 

frequency bands [see Figs. 6.21(a) and (b), Figs. 6.25(a) and (b), Figs. 6.29(a) and 

(b), Figs. 6.25(a) and (b)]. These inaccuracies are attributed to FDTD dispersion 

errors. This happens because the fuselage is electrically large causing accumulation 

of dispersion errors which significantly restrict the accuracy of the computational 

method. Also it has to be mentioned that the stirrer geometry is very complicated and 

hence dificult to be modeled accurately. Furthermore, during the measurements, the 

mode-stirrer may not have been totally aligned and set exactly at  its initial position. 

All these are possible reasons that create extra discrepancies between predictions and 

measurements. 



Figure 6.16: Simplified scale model fuselage with the mode-stirrer and the four probes 

Figure 6.17: Measurement setup at  ASU EMAC 
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Figure 6.18: Shielding effectiveness of the scaled fuselage with the mode-stirrer for 
azimuthal incident angle of 0" at probe A 
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Figure 6.19: Shielding effectiveness of the scaled fuselage with the mode-stirrer for 
azimuthal incident angle of 0" at probe A 
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Figure 6.20: Shielding effectiveness of the scaled fuselage with the mode-stirrer for 
azimuthal incident angle of 0" at probe A 
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Figure 6.21: Shielding effectiveness of the scaled fuselage with the mode-stirrer for 
azimuthal incident angle of 0" at probe A 
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Figure 6.22: Shielding effectiveness of the scaled fuselage with the mode-stirrer for 
azimuthal incident angle of 0" at probe B 
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Figure 6.23: Shielding effectiveness of the scaled fuselage with the mode-stirrer for 
azimuthal incident angle of 0" at probe B 
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Figure 6.24: Shielding effectiveness of the scaled fuselage with the modestirrer for 
azimuthal incident angle of 0" at probe B 
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Figure 6.25: Shielding effectiveness of the scaled fuselage with the mode-stirrer for 
azimuthal incident angle of 0" at probe B 
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Figure 6.26: Shielding effectiveness of the scaled fuselage with the mode-stirrer for 
azimuthal incident angle of 0" at probe C 

Figure 6.27: Shielding effectiveness of the scaled fuselage with the mode-stirrer for 
azimuthal incident angle of 0" at probe C 
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Figure 6.28: Shielding effectiveness of the scaled fuselage with the mod-tirrer for 
azimuthal incident angle of 0' at probe 
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Figure 6.29: Shielding effectiveness of the scaled fuselage with the modestirrer for 
azimuthal incident angle of 0' at probe C 
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Figure 6.30: Shielding effectiveness of the 
azimuthal incident angle of 0" at  probe D 
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Figure 6.31: Shielding effectiveness of the scaled fuselage with the mode-stirrer for 
azimuthal incident angle of 0" at probe D 
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Figure 6.32: Shielding effectiveness of the scaled fuselage with the mode-stirrer for 
azimuthal incident angle of 0" at probe D 
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Figure 6-33: Shielding of the scaled f~selage with the modestirrer for 
azimuthal incident angle of 0" at probe D 



IV. Statistical and Probabilistic Analysis of Mea- 
surement s 

A. Introduction 

In this section, data obtained from measurements are st atistically processed and re- 

sults are presented. Initially, a basic statistical analysis is performed where the maxi- 

mum, mean and minimum value of data obtained from measurements are calculated. 

Results are presented in tabular, as well as in graphical form. Moreover, two alterna- 

tive definitions for SE are proposed. The first one, is based on the maximum observed 

cavity response, over all stirrer positions, while the second one is based on the mean 

value, of the measurements over all stirrer positions. The new SE definitions are 

designated as SE,,, and SE,,,,, respectively. The SE for each probe location is 

calculated, using both definitions, and the results are plotted versus frequency. Fur- 

thermore, the mode-stirrer effectiveness is demonstrated. In order to  do that, the SE 

at each probe location is compared, after being calculated with two different ways. 

The first one is according to the standard SE calculation methodology, as described 

in previous chapters, and it is performed without the mode-stirrer installed. The 

second one is based on SE,,, as described above. 

Next, a more advanced statistical analysis is presented, based on probability the- 

ory. Data independency test is performed and from the results the ability of the 

mode-stirrer to create a sufficient reverberant electromagnetic environment is demon- 

strated. Also, the theoretical principles of the independence test are briefly discussed. 

Moreover, elements of RC theory, as presented in the previous section, are used in 

order to test whether our data is distributed according to the theoretical expected 

distributions. Theoretical expected distributions and experimental data distributions 

are compared using a goodness-of-fit test. Results are presented in tabular form while 

a brief description of the goodness-of-fit test theory is given. In addition, the distri- 

bution of SE is investigated. The formula of its distribution is derived and plotted 

along with the distribution of experimental data. 



B. Basic Statistical Processing 

In this section, basic statistical quantities are calculated which give an indication 

of the stirrer effectiveness, as well as the field fluctuation, versus stirrer position 

and frequency, in the fuselage. First the maximum, mean average and standard 

deviation were computed for each probe location, for certain frequencies, over all 

stirrer orientations. For 1, 2, 3, 4, 5, 6, 7 and 8 GHz the results are analytically 

presented in Table 6.2, while in Figs. 6.34 and 6.35 the variations of the maximum and 

minimum electric field values are plotted versus frequency for all probe locations. It is 

really impressive that the maximum field value is almost constant for all frequencies 

that the stirrer is effective enough (greater than 1 GHz). Also, it can be observed that 

for the same probe location, the mean average values differ only a few dBs (< 5 dB) 

between different frequencies, while same observations can be made for the mean 

value variations for different probe locations but fixed frequency. 

In Table 6.3, the mean values of the maximum electric field along with its standard 

deviations are summarized. As mentioned before, the difference between the mean 

values at each point is less than 2 dB. This is an indication that field in the fuselage is 

characterized by the same mean value. Also, notice the standard deviation of the field 

is almost the same at  all four points which is an evidence that the field fluctuations are 

the same at the four different probe locations. Of course this result cannot be used a 

priori for any location in the fuselage. The fuselage geometry is rather asymmetrical 

compared to that of an actual RC; therefore, the uniformity property is not "by 

default" applicable to our case. More probing locations and in different orientations 

may give more information regarding to the behavior the mean value everywhere in 

the fuselage, given that a volume analogous to the RC TEST VOLUME cannot be 

created in the fuselage, strictly speaking. 

C. Shielding Effectiveness: The Statistical Approach 

An intrinsic limitation of the SE, as has been defined so far, is that it is not rep- 

resentative of the overall cavity shielding because it strongly depends on frequency, 

position and angle of incidence. In order to overcome the limitations of position and 

incidence angle, two alternative and more general SE definitions are introduced. The 

first one, is based on the maximum measured electric field value, over all stirrer 
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Table 6.3: Mean average and standard deviation values of the maximum electric field 
value. 

Point 
A 

positions, while the second is based on the mean average value over all stirrer 

positions. The modified SEs  are given from the following formulas: 

empty space frequency response 
SEmax = 20 log 

problem space frequency max response 

mean average (dB) 
5.23 

and 

standard deviation (dB ) 
3.44 

empty space frequency response 
SE,,,, = 20 log 

problem space frequency mean response 

For each probe location, the SE was calculated based on the above formulas and 

corresponding plots are shown in Figs. 6.36 and 6.37. I t  can be observed that for 

certain frequencies the SEmax is 10 dB less than SEmean. This observed difference 

is the advantage that this pair of definitions offers. More precisely, this difference 

between SEmax and SEmean, for a certain frequency, can be used as a benchmark 

for an EMC engineer, in order to have electronic equipment working within a safety 

margin that will assure its immunity. It has to be mentioned that for more accurate 

prediction of this safety margin, a more effective mode-stirrer should be designed 

and used. A mode-stirrer is considered effective when it can scatter fields evenly 

in all directions. Also, the higher maximum field values can be achieved inside the 

cavity the more effective the stirrer is. In what follows, two figures-of-merit regarding 

mode-stirrer effectiveness are presented. As a final comment on the variations of 

the maximum and minimum field values, it can be observed that for low frequencies 

the two values are almost identical which is an indication that the stirrer is not 

that effective in these frequencies. Moreover, all four points exhibit almost the same 

maximum and mean values. 
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Two methods were used to demonstrate the mode-stirrer effectiveness. According 

to the first one, the SE at  all four points was calculated without the mode-stirrer in 

the simplified fuselage. Then, for the same points, their SE was calculated based on 

the SE,,, definition. This test is performed in an attempt to gain more insight about 

the aircraft shielding. The interior of an aircraft, under real conditions of operation, is 

not static. In contrast, inside a real aircraft during flight there are moving passengers 

and stewards, as well as baggages and personal belongings. All these factors increase 

the fuselage geometry complexity, and they are expected to change its SE. With 

the rotating mode-stirrer, we attempt to simulate real life conditions in an aircraft. 

The results are illustrated in Figs. 6.38 through 6.39. It is obvious that the level 

of SE, which is based on the RC approach, is significantly smaller than the one 

which is based on the deterministic approach, for most of the frequencies. The bigger 

differences are observed for 4.5 GHz and 9.5 GHz, and they are around 20dB. For 

the remaining frequencies, the difference is equal or less than 5 dB while for 3.8, 7.2 

and 9.1 GHz the SE based on the deterministic definition is smaller than the SE 

based on the RC approach. The same conclusions can be drawn for all four probe 

locations. Therefore, we can conclude that the more complex the fuselage becomes 

(i.e. mode-stirrer insertion), the smaller is its SE. This can be attributed to the fact 

that random scatterers, scatter the field towards directions where without them the 

field would not have been scattered. 

Another quantity of interest, when working with RCs, is its Stirring Ratio (SR) 

[147]. SR is defined as the ratio of the maximum over the minimum measured field 

value over all stirrer positions for a fixed frequency, or 

In Figs. 6.40 and 6.41 the SR of points A, B, C and D is plotted versus frequency. The 

dashed curve in each plot represents is the 20 dB level above which, effective stirring 

has been achieved [147]. It can be observed that all points above 4 GHz exhibit very 

good SR, which is an indication that the mode-stirrer is sufficiently effective. 
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Figure 6.39: Stirrer effectiveness, points C and D. 
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D. Data St atistical Independence 

Since basic statistical data processing has been completed, we proceed with more 

advanced probabilistic analysis. Prior to any further discussion, some preliminary 

tests have to be performed. The first, and most important test, to be performed 

is a data randomness or data statistical independence test. This is because all the 

theoretical RC probability models that will be employed later assume that the set of 

data to be processed is statistically independent. Therefore, in order to assure the 

models' validity, the above test must be performed. The statistical independence of 

data can be tested using either the run-test or the reverse arrangement test [I651 - 

[166]. For the purposes of this project, the run-test was used. The run-test is based 

on the well known Bernoulli trials, and it is an elegant method to test how fair a 

random event is. According to a run-test, a given set of data (or a sequence of 

events) XI, 5 2 ,  . . . x~ is grouped, with respect to their median, x,, as follows: 

When a set element is greater or equal than the median, it is identified with 

the plus (+) sign, or 

When a set element is lower than the median i t  is identified with the minus (-) 
sign, or 

Then, the set of data is serially processed, and the above rule is applied. This pro- 

cedure is schematically illustrated in Fig. 6.42. A run is defined as "a sequence of 

identical observations (sequential data greater or lower than the median) followed by 

a different observation or no observation at all". The total number of runs r equals 

the number of sign alternations. I t  has been proven that r is a random variable (RV) 

while its distribution is well tabulated. The criterion for data independence is the 

following inequality 

where N is the number of data, a, is the significance level and r~/2;1-(y/2, r ~ / 2 ; ~ / 2  

are obtained from the tables of T distribution. The run-test was performed with our 



data above 5 GHz, and they are clearly independent with 95% confidence level. As 

mentioned before, this was expected because the stirrer becomes more effective as the 

frequency increases and as a consequence, the interior of the fuselage becomes more 

reverberant. 

In order to give a more illustrative representation of data independence, in Figs. 6.43 

and 6.44 the distributions of our data are displayed in scatter-plot form, for point A at 

1 and 8 GHz. It can be observed that at 1 GHz the data is very correlated, which was 

expected since they do not pass the independence test. In contrast, at  8 GHz data 

is significantly less correlated. It should be pointed out that in order to achieve data 

independence, even for lower frequencies, different mode-stirrer geometries should be 

attempted or even multiple mode-stirrers which would scatter the field more evenly 

towards all possible directions in the fuselage. In our case, this scenario is not feasible 

because of the fuselage geometry limitations. 

- - . .  - - 
- +  

(n-1)-th run n-th run (n+l)-th run 

Figure 6.42: Schematic representation of data clustering for the run-test. 



Figure 6.43: Scatter plot for point A at 1 GHz. 



E, CDFs and PDFs of Experimental Data 

In this section, CDFs and PDFs of experimental data are presented. In particular, 

elements of RC theory, as presented in previous section, are employed and empirical 

CDFs are compared with the theoretical expected ones. In order to perform these 

comparisons, the Kolmogorov-Smirnov goodness-of-fit test is utilized. In what follows, 

a brief description of the aforementioned test is given and then the corresponding 

results are presented. Finally, once the preliminary tests have been performed and 

the validity of our statistical assumptions has been assured, PDFs and CDFs of 

various field quantities are presented. 

1. The Kolmogorov-Smirnov (K-S) Goodness-of-fit Test 

Goodness-of-fit tests are performed, in order to check the hypothesis that a set of 

data is distributed according to a particular statistical model. Such tests are the 

Chi-Square and the K-S. In this project only the latter is used. As mentioned before 

the K-S test is used to decide if a sample comes from a population of a specific 

distribution, and its methodology is as follows. 

Let us have a set of N measurements. These measurements in our case correspond 

to some field quantity, and they are a function of stirrer position. Also, let F(x) be 

the hypothesized CDF of these measurements and F*(x) be the actually measured 

CDF. Then, for each of the N measurements, we define the following quantities: 

and 

DN = max d, 
n 

As an intermediate step we introduce the K-S distribution [I671 

Now, if F*(x) is represented by F(x) with 90% confidence, then 90% of the time DN 
will be less than ~/ f l .  For a general confidence level 1 - &(A), the above statement I 



can be written as 

Therefore, if the desired confidence level is known, then by either inverting (6.67) 

or from look-up tables, one can decide whether the measurements are distributed 

according to the hypothetised CDF. 

2. M-S Test Results 

After having performed the K-S test to our data, the corresponding results are pre- 

sented in this section. In our case the experimental data under test is the set of 

measurements collected from all four probes for 180 stirrer positions. The confidence 

level of the test was set to 95%. The quantity whose distribution was tested is JEz)2. 

In our case, F * ( x )  is the empirical CDF of measurements. Moreover, from RC theory 

we recall that, ideally IEZl2 is exponentially distributed with parameter a, or 

where x - IEzI2. Therefore, the hypothetised CDF of F ( x )  is an exponential CDF, 

that is 

Parameter a of F ( x )  has to be estimated and according to maximum likelihood 

estimator (MLE) theory an estimation is given by 

where 2 is the mean average of our measurements. 

The test was performed for data at  1, 2, . . . 8 GHz and the results are shown 

in Table 6.4. It can seen the hypothesis that JEzI2 measurements are exponentially 

distributed was rejected for all frequencies below 6 GHz, while it was not rejected 



for higher frequencies. In the same table, for each frequency the estimated value of 

a, as well s the numbers of modes existing in the cavity, are indicated. They are 

calculated according to Weyl's formula. Also, it has to be mentioned that a more 

relaxed estimation of the exponential distribution parameter leads to a hypothesis 

acceptance for lower frequencies. The fact that experimental data pass the test for 

higher frequencies can be attributed to  the size of the stirrer that becomes electrically 

larger and thus more effective. Moreover, as frequency increases, the number of modes 

in the fuselage cavity increases which is also a requirement for good mode-stirring. 

It can be observed that as the number of modes increases, measurements pass the 

K-S test. This is in accordance with our initial statement that, in order for the RC 

statistics to be reliable, the Central Limit Theorem has to be valid, and this is the 

case only when a large number of modes co-exists in the chamber. 

Table 6.4: Kolmogorov-Smirnov test results. 

Frequency (GHz) 
1 

3. PDFs and CDFs of IEZl2 

In Figs. 6.45 - 6.47 there are in bar-form IEZl2 distributions, based on measirements as 

well as their empirical CDFs along with the theoretical ones. These plots correspond 

to data obtained at 1 and 8 GHz, respectively. It can be observed that a t  1 GHz the 

two curves are in poor agreement while at  8 GHz they agree very well. As mentioned 

before, this behavior is attributed to the fact that the stirrer becomes more effective 

for higher frequencies. The importance of CDF plots is that one can read what the 

probability is that the field value does not exceed a certain level. Also, CDF plots 

are considered as "universal" curves of a cavity's response. Therefore, they can be 

K-S test result 
Fail 

Number of modes 
22 

& 
0.8432 



used as guidelines from EMC engineers when sensitive electronic equipment inside an 

aircraft has to be properly shielded. 

4. PDFs and CDFs of SE 

Another field quantity whose distribution is of great importance for every EMC design 

is that of SE .  In this section, based on the PDF of IE,I2, we derive the PDF of SE. 

In order to do that, the following observations are made. SE ,  as has been defined up 

to now, is proportional to the following quantity: 

Notice that the numerator of the above fraction is constant over all stirrer positions 

while the denominator is a random variable. Using random variable transformations, 

and the methodology described previously, it is straightforward to show that given 

an exponentially distributed random variable or 

then the distribution of c / x  (which is also a random variable), where c is a constant, 

is given by 

Based on the above derivation, the theoretical CDF of SE ,  is plotted along 

with the empirical CDF obtained from measurements. The results are illustrated 

in Figs. 6.49 - 6.52. It is observed that measurements and theory are in very good 

agreement. As mentioned before, SE CDF plots give an indication of the probability 

that a certain SE value exists in the fuselage. The observations that can be made 

from such plots can be used as benchmarks for an efficient EMC/EMI design. 



Figure 6.45: PDF of I E, l2 at 1 GHz. 



Figure 6.47: PDF of I EZl2 at 8 GHz. 
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Figure 6.49: PDF of SE at 5 GHz. 

Figure 6.50: CDF of SE at 5 GHz. 



Figure 6.51: PDF of SE at 8GHz. 
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Chapter 7 

Statistical Properties of an 
Overmoded Cavity as a Function of 
E'requency 

I. Introduction 

A reverberation chamber approach was employed in the previous chapter in order 

to  get more insight into the HIRF penetration problem. It was demonstrated that 

the installation and operation of a rotatable scatterer (mode-stirrer) in the fuselage 

resulted in an electromagnetic field configuration that is stochastic in nature. More 

precisely, it was shown that the value of the electromagnetic field, as a function of 

mode-stirrer orientation, is a random variable which exhibits statistical properties 

that are related to the Chi-square (X2) distribution. 

In this chapter, the field statistics inside the fuselage are examined from a different 

point of view. This investigation is based on the theoretical and experimental studies 

of the field statistical distribution in complex cavities, as presented in Price et al. [5]. 

In their work it is demonstrated that under external continuous wave illumination, 

the power received by a dipole antenna in an overmoded cavity is exponentially dis- 

tributed, whether the observations are made a t  a fixed spatial point while frequency 

is swept or whether the observations are made at  a fixed frequency while the probe is 

translated in position. The work of Price et al. was motivated by the observation that 

field values within cavities vary extremely rapidly. More precisely, if a single mode is 

excited in a cavity and the field power at an arbitrary location within it is measured, 



the result will be a value equal or less than the true mode amplitude at that location 

(less in the case of a lossy cavity). Moreover, if the frequency of operation changes, 

then another mode will be excited and a different mode configuration will be created. 

Consequently, the measurement point will be at a different position relative to the 

peaks and nulls of the cavity. The value of the field power at the new frequency of 

operation will be, as before, equal or less than the mode amplitude but unrelated to 

that of the previous mode. The aforementioned scenario becomes more complicated 

if many modes are excited simultaneously in the cavity and thus the measured power 

is the sum of contributions of all modes. Moreover, if the shape of the cavity is ir- 

regular, the field polarization for a certain mode can be a function of position. It 

becomes obvious that the deterministic approach is not the optimum one for predict- 

ing the field penetration in a complex cavity and therefore, conventional methods to 

characterize the response of a cavity under external illumination, such as shielding 

effectiveness (SE) measurements, are not sufficient. In addition, the computational 

costs of modeling fine geometrical details, which may have significant effects on the 

spatial distributions of the fields within the cavity, are often prohibitive. Further- 

more, it is unrealistic to model the locations and movement of people, for example 

within the cabin of an airliner. 

The pioneering work of Price et al. takes into account the statistical nature of the 

problem and depends only on general properties of the system. Although it  was rec- 

ognized empirically that the cumulative distribution functions (CDFs) of measured 

fields are less sensitive to experimental parameters and were characterized as "uni- 

versal" curves in [168], it was Price et al. that developed the necessary theoretical 

justification for the above assumption. Their work involves a thorough derivation 

of the statistics responsible for the exponential distribution [x2(2) chi-square with 

two degrees of freedom], of the power in a complex cavity. Nevertheless, it is rather 

complicated: it is written using physicist's notation while some errors, which have 

been reported [169], [6], make it  difficult to be followed. A more smooth and detailed 

description of this work has been given by Holland and John [6]. Not only have they 

revised and corrected it, but they have also expanded it. 

In what follows, a brief description wilI be given of the statistical theory of complex 

cavities. Afterward, the Kolmogorov-Smirnov test will be used to test whether data 



obtained from measurements is distributed according to the theoretical expected ones. 

11. Statistical Field Theory of Complex Cavities 

In this section, the principles of the statistical field theory of externally illuminated 

complex overmoded cavities are presented. We describe as complex any irregularly 

shaped or leaky cavity such as the interior of an aircraft or a satellite. An overmoded 

cavity is characterized as one within which several modes are simultaneously excited. 

Another requirement in order for a cavity to be considered as overmoded is that the 

width of each excited mode is larger than the mode spacing [170]. According to Warne 

et al., the degree of spectral overlap is given by the following parameter a: 

where V is the volume of the cavity and Q its quality factor. It  is obvious that 

this parameter is the ratio of the energy stored in the cavity modes over a narrow 

spectral bandwidth (containing many complete modes) to the same energy if the field 

amplitude is fixed at the average peak level. If the cavity is undermoded (discrete 

mode spectrum), a << I; if the cavity is overmoded (overlapping mode spectrum), 

a >> 1. Another way to interpret (7.1) is the following. According to the Rayleigh- 

Jeans law for the equilibrium radiation of an absolutely black body, the density of 

the modes d N  ( f )  excited in the frequency range (f, f + A f )  is given by [I711 

where V is the cavity volume and c is the speed of light. Moreover, the cavity quality 

factor in terms of the operating frequency is given by 

By combining (7.2) and (7.3) we get 

The above quantity is called specific mode density, and it is analogous to (7.1). Al- 

though numerous modes are excited in a cavity by a monochromatic source, the spe- 

cific mode density is a measure of the number of modes which contain the majority 

of the energy in the cavity. 



In order to derive the field distributions inside a complex cavity, we follow the 

Price et al. formulation, as documented in [5] .  According to this formulation the 

electric and magnetic fields in a cavity can be decomposed into contributions from 

each of the cavity's eigenmodes so that the magnetic and electric fields internal to 

the cavity can be written, respectively, as 

Each of the eigenmodes Bi and Ei satisfies Maxwell's equations, within the cavity 

domain, along with the boundary conditions associated with the cavity walls. It has 

to be mentioned that during this formulation, the explicit coordinate system chosen 

is not important since only the general properties of the eigenmodes are important. 

Now, each of the eigenmodes is separated into a product of five functions, each one 

corresponding to a different field property. Consequently, the electric field of the ith 

eigenmode is written as 

,. 
Bi (r , t)  = Boi (w) bi (r) gi (r) fi (r) sin(wt + di) (7.6a) 

Ei (r, t) = Eoi ( w )  Gi (r) gi (r) hi (r) cos (wt + di) (7.6b) 

The first function, Boi(w), is the scalar amplitude of the magnetic field of the ith 

eigenmode averaged over the cavity volume, such that 

where Ui is the total energy in the cavity in the i th eigenmode. The second function, 

Gi(r) ,  is a unit vector which points along the electric field of the ith mode at each point 

in the cavity. The third and fourth functions correspond to the slowly and rapidly 



varying parts of the spatial distribution. Although the product representation of the 

eigenfuctions, as given by (7.6a) and (7.6b), is not of apparent purpose, it is very 

significant for the work of Price. A possible explanation is the one given by Holland 

[6], according to which gi(r) is attributed to slowly varying effects or "trends", such 

as the frequency dependent cavity quality factor. Function gi(r) is defined as the 

amplitude of Bi(r, t )  averaged over time and the phase volume, or 

where Vph(r) is a sphere of radius X/2. 

The fourth function, fi, is as mentioned before, the rapidly varying part of the 

original ith eigenfunction. It is obtained by taking the spatially dependent magnitude 

of the ith eigenfunction and dividing it by Boi(w) and gi(r), as follows 

The overbar in the previous equations indicates mean square average over the tem- 

poral dependence. Finally, the fifth function is just the time dependence of the ith . 

eigenmode including its phase, &. The frequency is determined by the external ex- 

citing field and is the same for all excited modes. 

The properties that the eigenfunctions components must satisfy are the following: 

1. The integral of fi(r) squared over the phase volume is unity, or 

2. The integral of g: over the cavity volume is equal to the volume, or 

3. The eigenfunctions form an orthogonal basis set, or 



Although the reason for imposing the above conditions is not apparent at  this stage, 

they are of great importance for the development of the statistical field theory of 

complex cavities as developed by Price et al. [5]. 

If we measure the electromagnetic field power along the Z direction, at  point r 

in the cavity using a square-law detector, it will be proportional to the following 

quantity 

Using (7.5a) and (7.6a), the right hand side of (7.10) can be written as follows 

From the above equation we see that P is positive definite and of quadratic form. The 

random vector fi, as given by (7.9), is a time-average of a stationary process. The 

central limit theorem assures that the vector has an asymptotic Gaussian distribution. 

The asymptotic distribution of the quadratic form can then be approximated by a I' 

distribution [I721 with probability distribution function 

where a and /3 are parameters to be determined. I t  can be proved that for a large 

cavity, where the specific mode density becomes large, a goes to zero while P is equal 

to the average power over all frequencies. For these specific values for a and /3, f (x) 

reduces to a chi-square distribution with two degrees of freedom [ X 2  (2)]. 



111. Statistical Analysis of Experimental Data 

In this section the empirical cumulative distribution function (CDF) of measurement 

data is compared with the theoretical expected field CDF as developed previously. 

The measurement procedure has been described in detail in a previous chapter but for 

completeness a brief description is also given here. The fuselage geometry is shown 

in Fig. 7.1. The penetrated field was probed at four points designated as A, B, C 

and D, using vertically oriented monopole antennas. During the measurements the 

mode-stirrer was present in the fuselage but was not rotated. The mode-stirrer breaks 

degeneracy and makes the chi-square statistics more applicable. The collected data 

was in the frequency range from 1 GHz up to 8 GHz with 5607 intermediate frequency 

points. 

Probe A 

Robe B 

- Probe D 

Figure 7.1: Fuselage geometry along with the mode-stirrer and the four probes. 

Regarding the measurements setup, the following remarks have to be made. The 

basic assumptions, in order to develop a statistical theory for the field distributions 

inside a complex cavity, are that there are no observation points located where there is 

line-of-sight illuminated by the driving source through a large aperture, and there are 

no small shield rooms inside a big shield room. In our case, the simplified scaled model 

fuselage was illuminated directly through the main aperture. This excitation scenario 

is not a perfect match with the above assumptions. In particular, the entire fuselage 



interior is in direct line-of-sight with the source. Also, the front aperture (cockpit 

window) is so large that the high Q requirement for the analysis of an overmoded 

cavity may not be met. Lastly, the excitation is primarily dominated by the front large 

aperture and secondarily by the small ones located along the sides of the fuselage. 

Despite these violations, the fuselage interior is proved to be characterized by the 

proposed field statistics, as will be demonstrated. 

The measured quantity under test is (EZl2, and according to the previous theoret- 

ical formulation it should be exponentially distributed 

with parameter a. In order to calculate this parameter, the maximum likelihood 

estimator (MLE) theory is employed, according to which an estimation of a is given 

by 

where the over-bar indicates averaging over all frequency points. 

For each of the points A, B, C and D, an estimate for cu was made, and the 

corresponding theoretical CDFs were computed. Then, in order to test if the empirical 

CDFs of measurement data match the theoretical CDFs, goodness-of-fit tests were 

performed. The Kolmogorov-Smirnov goodness-of-fit test was performed to our data 

with a 95% confidence level. Data from all points successfully passed this test. 

In Figs. 7.2 - 7.9, the results of this statistical analysis are presented. For each 

observation point, the IEZl2 variations versus frequency are plotted. The empirical 

CDF based on measured data (solid curve), along with the theoretical expected CDF 

(dashed curve), are also presented. It can be observed that for all points, empirical 

and theoretical CDFs are in very good agreement, although at  the upper and lower 

"tails" there are some discrepancies. In the next section, another statistical model for 

the field distribution inside a complex cavity is presented which gives better agreement 

even at the lower and upper "tails". 
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Figure 7.2: I E, I2 vs. frequency, point A. 

Point A 
1 1 I 

.... .... 

.................. 0 8 -  % .  ...."..."...".,...... 

..................... ................. 0.7 -. .': ." .... 

0.6 -.*. .......,.. ..-.,: ............ .:. .,,+;. . 
U. 
0 0.5 -.. ..‘.............. i .............*...... :.... 
0 

.................. 0.4 -,. :. .......... .;,"..'" <. 

........... .......... 0.3 -..,, ,',.,, .; ; ....... .: ..“ 

.. 0.2 - ......... \. .......... : ..... ' '........... '""' 

......... : ...... ;. ..................... ...................- 
I I 

0 10 20 
l ~ , 1 ~  (dB0 

Figure 7.3: Empirical and theoretical-exponential CDFs at point A. 
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Figure 7.4: IE,I2 vs. frequency, point B. 
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Figure 7.5: Empirical and theoretical-exponential CDFs at  point B. 
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Figure 7.6: IEz12 VS. frequency, point C. 

Figure 7.7: Empirical and theoretical-exponential CDFs at point C. 
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Figure 7.8: J E Z l 2  vs. frequency, point D. 

Point D 

Figure 7.9: Empirical and theoretical-exponential CDFs at point D. 



IV. The Lehman Model 

A great debt for understanding the electromagnetic field statistical behavior of com- 

plex cavities is owed to Lehman [173]. This is because he first observed that the 

interior of a cavity has physical properties that make the electromagnetic power-flux 

density be exponentially distributed. However, he also observed that a leaky enclo- 

sure can be illuminated from three different directions, with two possible quadrature 

polarizations for each different direction. He concluded that the power flux inside an 

externally illuminated leaky cavity, as projected in an internal dipole antenna, should 

also have attributes of a chi-square distribution with six degrees of freedom. There- 

fore he proposed a new distribution for the power-flux density known as the Lehman 

distribution [6]. In what follows, the Lehman distribution is briefly presented. Then 

it is used to perform goodness-of-fit tests and finally the results are presented. 

As mentioned before, it was proposed by Lehman that the field external to a 

leaky cavity can illuminate its apertures from any of three directions having two 

possible polarizations. This will result in inward power leakage which is chi-square 

distributed with six degrees of freedom. Moreover the internal cavity response model 

dictates that the power flux distribution is chi-square distributed with two degrees of 

freedom. Therefore, from the above assumptions, it can be concluded that the overall 

internal cavity response should have a power-flux probability density function which 

is the product of these two distributions, that is 

where x2 is the chi-square with two degrees of freedom variation while 36 is the chi- 

square with six degrees of freedom. The probability density function of x is given 

by [1611 

which after some manipulations reduces to 

where K2(.)  is the second order modified Bessel function of the second kind. Therefore 



the cumulative density function of l(x), or the Lehman distribution, is given by 

where K3 (-) is the third order modified Bessel function of the second kind. It is obvious 

that Lehman is a single parameter distribution. Parameter A can be calculated 

according to the average and standard deviation of the distribution using the following 

formulas 

Goodness-of-fit tests were performed between data empirical CDFs and theoretical 

CDFs as provided from the Lehman distribution. The confidence level was set to 95% 

and measurements from all four points successfully passed the test. In Figs. 7.10 and 

Figs. 7.11 the empirical CDFs of data from all four points are presented along with the 

theoretical expected ones as provided by the Lehman and the exponential distribution. 

It is apparent that the Lehman model is in better agreement with measurements than 

the exponential one. The important achievement is that the Lehman model exhibits 

better agreement with measurements on the upper "tail" of the distribution, because 

this is where harmful effects will occur. Therefore it provides better guidelines for an 

efficient EMC design. 



Figure 7.10: Empirical and theoretical ( exponential and Lehman) CDFs : (a) Point A 
(b) Point B. 

Point C Point D 

Figure 7.11: EmpiricaI and theoretical ( exponential and Lehman) CDFs : (a) Point C 
(b) Point D. 





Chapter 8 

Frequency Stirring for 
Reverberation Chambers 

I. Introduction 

Reverberation Chambers (RCs) are an attractive alternative method to  perform EM1 

susceptibility tests. Their main advantage over conventional immunity test methods 

is that a stochastic in nature field configuration can be established inside them and 

hence model "real-world" EM1 conditions. As has been described in Chapter 6, an 

RC is a large metallic enclosure within which the boundary conditions continuously 

change with respect to time. This is accomplished with the operation of a rotating 

metallic paddle, usually referred to  as mode-stirrer. By perturbing the boundary 

conditions of the RC, the spatial field pattern inside it continuously changes, and 

hence randomness is induced in the field variations. The random field configuration 

inside an RC is characterized by the following properties: uniformity, isotropy and 

random polarization. I t  has to be mentioned that these properties are valid every- 

where inside the RC's cavity except for locations close to the walls and the source. 

Moreover, the aforementioned properties are considered figures-of-merit of an RC's 

performance, while their establishment ensures its successful operation. 

The above conditions make the design of an RC an extremely tedious procedure, 

and in general, not an easy task to perform, therefore several design considerations 

have to be taken seriously into account for a successful RC operation. The most 

important of all is the choice the mode-stirrer's shape and size. Not only has the 

mode-stirrer to be electrically large, in order to create sufficient mode agility, but it has 



also to be irregularly shaped in order to scatter the impinging on it electromagnetic 

waves evenly towards all directions. Crawford and Koepke [I471 have provided useful 

guidelines for the design of a mode-stirrer. For example, they recommend that its size 

should be at least X/2 at the lowest frequency of operation. Nevertheless, in general, 

the design of a mode-stirrer can be described as "a trial-and error, experimental 

process", as has been stated by Wu and Chang [149]. Moreover, RC operation is 

further dependent on the mode-stirrer, since it is required that data be taken over 

many stirrer positions in order to ensure that the test object has been exposed to all 

possible field levels. 

An alternative method to create an RC environment inside a conducting box, 

without the aid of a mode-stirrer is by electronic mode-stirring or frequency stirring. 

It was initially proposed by Loughry [I741 as an alternate to mechanical mode-stirring 

for the conduct of susceptibility tests. The idea behind frequency stirring is to keep the 

boundary conditions of the chamber constant and to inject in it  a proper band-limited 

signal which will evenly excite all the corresponding eigenmodes. This is accomplished 

by properly modulating band-limited white Gaussian noise to microwave frequencies. 

By using band-limited modulated white Gaussian noise, the energy of the signal is 

spread over a narrow frequency bandwidth while the modes of the cavity which lie 

within this bandwidth are randomly excited. 

In what follows, the basic aspects of the frequency stirring technique are presented. 

A review on the properties of noise is given that to emphasize its importance for the 

realization of the frequency stirring technique. Then, the method is used in the case 

of a 2-D as well as a 3-D cavity. For both cases, the cavities' responses are simulated 

using FDTD, when the excitation source is the one mentioned previously. Tests for 

the homogeneity of the electromagnetic field are performed; furthermore its statistical 

properties are presented. 

11. Frequency stirring 

As has been mentioned before, the conventional method of mode-stirring uses a ro- 

tating metallic paddle which either continuously or discretely changes the boundary 

conditions within the RC, while maintaining a constant excitation frequency. In such 

way, at a given point in the chamber, field homogeneity is achieved by averaging 



the contribution of many different eigenmodes. In contrast, according to frequency 

stirring, the boundary conditions are maintained constant while the frequency varies 

over a narrow bandwidth around some center frequency. The obvious advantage of 

frequency stirring over mode stirring is that it ensures the simultaneous excitation of 

many modes in the cavity by utilizing a proper excitation source. 

Before proceeding with more details about the implementation of the frequency 

stirring technique, let us first give a qualitative explanation of how RC operation 

introduces randomness to the field variations. This explanation, apart from giving 

insight to the phenomenon under investigation, it will also reveal the direct connection 

between mechanical mode-stirring and frequency stirring. 

Consider a rectangular cavity with walls of finite conductivity, the geometry of 

which is shown in Fig. 8.l(a). For the case of T E z  modes, i t  is well known that the 

electric and magnetic vector potentials are given respectively by [175]: 

where F, is a solution to the Helmholtz equation, and it is given by 

The corresponding electric and magnetic field components can be expressed in terms 

of F, as: 

In addition, the electric field must satisfy the following boundary condition on each 

of the cavity walls: 



Figure 8.1: Cavity geometries. (a) Empty (unperturbed). (b) With a rotating per- 
turbing body. 

The quantities P,, P, and P, are the wavenumbers along the x, y and z directions, 

respectively. Since the solution space is bounded, the wavenumbers are allowed to 

take only discrete values, while they are subjected to the constraint equation shown 

below: 

where 

pz = "" 
m , n  E Z +  and m = n # O  

Pz = . P EZ; 

Now consider the same cavity with a rotating perturbing body included in it, 

as shown in Fig. 8.l(b). The electromagnetic field expressions can be obtained by 

employing perturbation techniques, as described in [176], according to which the 

presence of the perturbing body in the cavity is dealt as a spatial variation of the 

material properties in it. In principle, the electromagnetic field can be expressed using 

a set of perturbed eigenfunctions. For the new field configuration, the wavenumbers 

can be written in terms of the ones corresponding to the empty cavity as: 



Figure 8.2: Mode distributions. (a) Empty cavity. (b) Cavity including - perturb - body. 

where lc E {x, y, 2). From the above equation, it is obvious that the presence of the 

perturbing body results to an eigenfrequency-shift determined by the quantity Apk. 
The amount of wavenumber shift strongly depends on the size of the perturbing body 

since each mode's configuration is a function of space. Therefore, a large perturbing 

body will result to a pronounced wavenumber (eigenfrequency) shift. Nonetheless, it 

is the overall time-dependent behavior of ADk that creates the desired mode agility 

and certifies an efficient RC operation. More precisely, a wavenumber shift with the 

proper time variation, will be continuously creating new modes. Certainly, in an 

overmoded cavity where mode spacing is small, a properly shaped stirrer makes the 

phenomenon more intense, and under certain conditions it has the ability to introduce 

randomness into the system. 

To better illustrate wavenumber shifting, a pictorial presentation of the phe- 

nomenon is given. In Fig. 8.2(a) there is the mode distribution on a constant p, 
plane of the discrete wavenumber space. For a constant excitation frequency fo, the 



bandwidth of operation is given by 

The cavity Q in the above equation is given by [I771 

where V is the volume of the cavity, S is the surface of the walls, 6 is the skin 

depth and pT the relative permeability of the wall material. For a frequency fo and 

a corresponding bandwidth A f ,  the excited modes are contained in a spherical shell 

of thickness A@, a cross-section of which is the circular section shown in Fig. 8.2(a). 

Now, if a perturbing body is placed inside this cavity, a wavenumber shift of the 

already existing modes will occur. However, if the size of the perturbing body is small, 

the amount of shift will be negligible. Consequently, when the mode-stirrer starts to 

rotate, the excited modes will barely start moving, and hence little mode agility will 

be achieved. In contrast, if the size of the body is large, the wavenumber shift will 

be significant, although this is not enough. For example, a large spherical body will 

definitely create a sufficient shift but its rotation, due to symmetry, will have no 

further effect; i.e. no mode agility will occur. Therefore , in addition the perturbing 

body has to be as irregularly shaped as possible. If all the above conditions for the 

scatterer are satisfied, eigenmodes will start to move in and out from the bandwidth 

zone, as shown in Fig. 8.2(b), resulting to the desired simultaneous mode excitation. 

From the preceding analysis, the following conclusions can be drawn: 

a. The "in-and-out" motion of the eigenmodes, which in a sense resembles a 

random-walk [161], results in the random excitation of the perturbed modes 

which is the key factor in order to introduce randomness in the cavity. 

b. Although the term "randomness" is very common in the RC nomenclature, the 

actual randomness of the fields inside an RC may be questionable. An objection 

could be raised since the calculation of the field variations inside a cavity is a 

purely deterministic procedure that requires, in general, the superposition of 

several wave equation solutions. Therefore, how can the superposition of purely 

deterministic quantities, yield a random one? The answer to this question is 



based on one of the very first assumptions that was made in order to develop 

the RC theory; that is, the perturbing rotating body, apart from being large 

enough, it should also be as asymmetrical as possible. The scatterer's asym- 

metry is equivalent to the height fluctuations of a rough surface that can only 

be described in a statistical sense. As a matter of fact, the height of a rough 

surface z = z(x, y) can be expressed as a 2 - D Fourier series [160] 

where P(m, n) is a zero mean random variable whose values are uncorrelated for 

different spatial frequencies 2. Furthermore, in order to describe the scattering 

field from surfaces such as the above, probability density functions of its arnpli- 

tude and phase are employed [160]. From all the above, the inherent random 

nature of the electromagnetic field involved in such phenomena is apparent. 

111. Stochastic processes and noise 

In this section a brief overview of some basic properties of noise signals is given. Al- 

though the theory of stochastic processes is very documented in classic references such 

as [161], [I781 and [179], for completeness some important details of it are repeated 

here. 

A. Properties of white gaussian noise 

Stochastic processes are random phenomena whose statistical properties are functions 

of time. For instance, the thermal noise voltages generated in the resistors of an 

electronic device is a typical example of a stochastic process. Notice that if several 

voltage measurements are performed, a different waveform will occur each time. Each 

of these voltage waveforms is a sample function while the set of all possible sample 

functions constitute an ensemble of sample functions or a stochastic process [161], 

[180]. 

A more mathematically consistent definition of a stochastic process is the following 

[161]: a stochastic process x(t) is a rule which assigns a function x(t, C) to each 

'L is the side length of a rough surface the height of which is given by z (x ,  y) 
W (m, n) is the spectral density of the rough surface height function 



outcome C of an experiment of luck. Therefore, a stochastic process is a family 

of time functions depending on the parameter C. In Fig. 8.3 there is a graphical 

representation of a stochastic process. As a matter of fact there are three realizations 

of the stochastic process x(t,  C) corresponding, respectively, to parameter values Ck, 
Ck+l and Ck+2. A property of particular interest is that, for a fixed time value to, the 

sequence {x (to, 6))i:; is a random variable. 

For the purposes of this research, our interest was confined to band-limited white 

Gaussian noise, the properties of which are presented below. First of all noise is 

an ergodic random process. Ergodicity is a special case of stationarity. Although 

stationarity is defined in the strict sense as well as in the wide sense, we are inter- 

ested only in the latter because of its attractive properties which are very helpful for 

our study. More specifically, a random process is called wide sense stationary if its 

expected value is constant; i.e., independent of time: 

E {x (t)) = c, V t (8.12) 

and its autocorrelation [or correlation between random variables x(t1, <) and x(t2, C)] 
depends only on T = tl - t2: 

Ergodic are the stationary random processes whose statistical characteristics (n-th 

order moments) can be estimated from time-averages of a single sample function. For 

example, the expected value of random variable x(t),  at any time instant E {x(t)), is 
- 

equal to the time average x(t) or 

Moreover the autocovariance of x(t) [or the covariance of random variables x(tl, [) 

and x(t2, C)] is given by: 

where n (tl) = E {x (tl)) and n (t2) = E {X (t2)). Since we have assumed wide sense 

stationarity (8.15), yields 



Figure 8.3: Three realizations of a stochastic process. 

In addition a stochastic process x(t) is called white noise if the random variables x(ti) 

and ~ ( t j )  are uncorrelated for every ti # tj or 

Furthermore, for a wide sense stationary white noise the following condition holds 

Therefore, from (8.16) and (8.18), we get that 

The above property uniquely characterizes a white noise while its importance will 

become apparent later where the spectral characteristics of noise are presented. 

Finally, it is common to assume, since it is convenient calculation-wise, that the 

random variables x(ti) are distributed according to a zero mean Gaussian distribution, 

or 



B. Filtering and spectral characteristics of band-limited white 
gaussian noise 

A very important property of white Gaussian noise is its delta-correlation, as shown 

in (8.19). In order to demonstrate the importance of this property, let us compute 

the Fourier transform of R( r )  or the power spectral density of white Gaussian noise: 

where we set q - +. In Fig. 8.4(a) there is a graphical representation of the result ob- 

tained in (8.21). As can be observed, power is evenly distributed over all frequencies, 

a feature that perfectly matched to the requirements of frequency stirring. Moreover, 

the uniform distribution of power justifies the use of the term "white". It is used in 

analogy with white light, which is a superposition of all visible spectral components. 

Let us now examine the effect of filtering on noise. Our analysis is similar to 

the one presented in [181]. First, we will demonstrate that if Gaussian noise ni(t) 

is applied to the input of a filter, as shown in Fig. 8.4(b), the output no(t) is also 

Gaussian noise. If the impulse response of the filter is h(t), then its output is given 

by: 

For the purposes of our analysis it is more convenient to rewrite the above equation 

as: 

no(t) = lim ni (kA7) h (t - kAr) A r  
AT+O 

k = - w  

From (8.23) it  is apparent that the filter output is a superposition of impulses, each 

one of strength ni(kAr)Ar. Now, since the input signal is Gaussian noise, a t  two 

arbitrary time instances kAr  and lAr ,  the corresponding noise values ni(kAr) and 

ni(lA7) will be uncorrelated, independent Gaussian distributed random variables with 

zero mean and with the same variance. Consequently, for any time instant to, the filter 

output no(&) is a linear superposition of independent random variables and hence, 

according to the Central Limit Theorem, no(to) will also be Gaussian distributed with 
I 



Figure 8.4: Noise band-pass filtering. (a) Power spectral density of white noise. 
(b) Block diagram of noise filtering. 

zero mean and with variance the same as that of ni(t,), where n,(t) is the output 

noise signal and it will be a Gaussian stochastic process. 

After demonstrating that filtering does not alter the statistical characteristics of 

Gaussian noise, the effect of filtering on its spectral characteristics is further examined. 

In order to do that, first a frequency representation of noise is established. Consider 

a sample function of noise n(t) where from this sample the section corresponding to 

the time interval (-T/2, T/2) is selected. Let %(t) be the periodic expansion of the 

selected section. Then, since ~ ( t )  is periodic, it can be represented as a Fourier 

series expansion: 

$00 

%(t) = C [ax cos (27rkA f t) + bx sin ( 2 ~ k A f  t)I (8.24) 
k = l  

where Af = 1/T. Notice that if we let T + +m (or Af + 0), then nT(t) reverts to 

the actual noise sample function n(t): 

n(t) = lim ~ ( t )  
T-++a 

(8.25) 

= lim [ak cos (27r k A f t) + bk sin (2n k A f t)] 
T-++m 

Given the validity of (8.25), it is expected that when noise is passed through a 

band-pass filter, the transfer function of which is shown in Fig. 8,5(a), it is expected 



Figure 8.5: Noise band-pass filtering. (a) Band-pass filter transfer function. (b) Time 
response of noise band-pass filtering. 

that the output of the filter will be a combination of sinusoids in the frequency range 

( fc - B/2, f, + B/2), while its amplitude will vary randomly [181]. A waveform of 

the output is shown in Fig. 8.5(b) where different frequency components as well as 

random fluctuations of the envelope's amplitude can be observed. Furthermore, Wu 

and Chang [I491 studied the effect of a mode-stirrer in the response of a cavity, and 

they concluded that the "action of a large rotating scatterer in a cavity has the 

same effect as a signal that has been both frequency and amplitude modulated". 

This last comment implies that the system "mode-stirrer cavity" is described by a 

transfer function which randomly modulates both in amplitude and frequency the 

input signal. This conclusion proves that mechanical mode-stirring of cavities is 

equivalent to frequency stirring or to band-limited noise excitation of cavities. Also 

the amplitude modulation effect on electromagnetic fields due to a rotating body has 

been studied in [I821 and [183]. 

Finally, it can be easily proved that if a stochastic process x(t) is applied to the 

input of linear time-invariant filter, then the output is also a stochastic process while 

their power spectral densities are related according to 

where H(f) is the filter's transfer function. The power of the output signal is given 
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Figure 8.6: Two dimensional cavity geometry. 

by: 

Thus, if the input is white Gaussian noise, then the power of the output noise signal 

is equal to: 

P(f) = NoB 

where B is the band-pass filter's bandwidth. 

IV. Two-dimensional cavity excitation 

In this section frequency stirring of a 2-D conducting cavity is studied. A 2-D cavity 

was selected to begin our simulations instead of a 3-D one, because it is a consider- 

ably less complicated problem. In addition, a simple case is also the recommended 

one in order to get familiar with a new technique; i.e., frequency stirring. In what 

follows, initially an overview of the simulation set-up is given while afterwards the 

corresponding results are presented. 

A. Simulation set-up 

The geometry of the cavity that was modeled is shown in Fig. 8.6, and as can be 

seen its dimensions are 4.57 m x 3.05 m while the conductivity of its walls was set 

equal to aluminum's conductivity, that is 3.816 x 107S/m. Notice that the cavity's 



Figure 8.7: Excitation signal generation. 

dimensions are the same as the ones from the RC of NIST [147]. Furthermore, the 

cavity was excited with an infinite line source located 50cm from the left and bottom 

walls. 

Of particular importance for the success of our simulations was the proper choice 

of the excitation signal. Obviously, the latter would be band-limited white Gaussian 

noise; however, the center frequency, as well as the bandwidth, had to be determined 

by us. Based on useful hints from already existing studies on the same topic [174], 

[I841 and [185], it was decided to perform our simulations at an operating frequency of 

1 GHz and 4 GHz and for five different bandwidths of 0 MHz, 1 MHz, 5 MHz, 10 MHz 

and 50 MHz. It  has to be mentioned that the criterion for choosing the operating 

frequency is to create a sufficiently overmoded cavity. In particular the cavity's under 

test electrical size at 1 GHz and 4 GHz is approximately 15X x 10X and 46X x 31X, 

respectively, which based on the 6X empirical criterion [169] is undoubtedly a well- 

overmoded cavity. The reason for choosing several frequency bandwidths was in an 

effort to study the ability to create a homogeneous field configuration as a function 

of frequency bandwidth. 

In order to simulate the electromagnetic field variations inside the cavity, a 2-D 

standard FDTD code [I861 was developed. Since the excitation was a z directed 

infinite in extent current sourde, the TM" (E,, Hz, Hv) field configuration was mod- 

eled. The choice of the discretization cell size was based on the operating frequency. 

Therefore, for the 1 GHz case a 10-mm cell size was chosen, while for the 4 GHz 

one a 5-mm cell size was selected. Based on the XI10 criterion, those cell sizes pro- 

vide sufficiently accurate results up to 3 GHz and 6 GHz, respectively. I t  has to be 

mentioned that all of the performed simulations were computationally intensive. As 

an indication, we mention that for 218 time-steps and a 10-mm cell size, almost half 

a day simulation time was required while for the same number of time-steps and a 



5-mm cell size, the simulation was significantly longer, nearly 5 days. All simulations 

were performed at a four PENTIUM 2.2 GHz processor machine, with 6 Gb of RAM, 

running under LINUX 0 s .  

The excitation signal no(t) was generated following the procedure shown in the 

block diagram of Fig. 8.7. As can be seen, white Gaussian noise ni(t) was first passed 

through a low-pass filter whose bandwidth corresponds to the bandwidth of interest, 

i.e. 0 MHz, 1 MHz, 5 MHz, 10 MHz and 50 MHz. For the implementation of the 

low-pass filter, we used the raised-cosine function [180]: 

sin (.rrt/T) cos (n,Ot/T) 
x(t) = 

nt /T 1 - 4p2t2/T2 

Notice that x(t) is also dependent on the parameter ,O which is referre to as the roll-off 

factor and takes values in the range 0 5 ,O 5 1. By properly choosing the value of P,  
the raised-cosine's spectrum can be adjusted and create nearly ideal low-pass filters 

that do not suffer from the Gibb's phenomenon. The time dependent waveforms of 

a raised-cosine along with the corresponding spectrum for three different values of ,O 

are shown in Figs. 8.8(a)-8.8(b). For our simulations, the roll-off factor was set to 

0.1. 

Afterwards the filtered signal was modulated to the operating frequency of inter- 

est f,. The modulation scheme was double sideband, suppressed carrier, amplitude 

modulated (AM-DSB-SC) [181]. The spectrum of the resulting output signal no(t) 

for an operating frequency of 1 GHz, and four different bandwidths, are shown in 

Figs. 8.9(a)-8.9(d). It has to be mentioned that the creation of the excitation signal 

was performed using MATLAB, and the output was stored in a text file. Then the 

FDTD code, written in FORTRAN, was properly modified so that each time an 

excitation source value was needed it could be obtained from the text file. 

Finally, 135 locations inside the cavity were chosen and the values of the Ez 
component were observed. The probing locations were divided in groups of 45. Each 

group's points were distributed equidistantly along the y = 1.0 m, y = 1.5 m and y = 

2.0 m axis, respectively. In each row the spacing between two successive observations 

points was 10 cm. After the end of each simulation, the following data post-processing 

was performed in order to compute field homogeneity: 

1. Compute the Fourier transform of E, at  an observation point based on the its 



Figure 8.8: Raised cosine pulse. (a) Time waveform. (b) Spectrum. 

time-response as predicted from FDTD. 

2. Select those values of the frequency response which lie within the bandwidth of 

the excitation signal. 

3. Calculate the average square E, frequency response a t  the point of interest for an 

operation frequency fc and a bandwidth BW, using the following formula: 

B. Simulation Results 

In this section results from homogeneity tests are presented. In Figs. 8.10(a)-8.11(d) 

the average electric field frequency response is shown as a frequency of position. In 

particular Figs. 8.10(a)-8.10(d) correspond to excitation signals bandwidths 1 MHz, 

5 MHz, 10 MHz and 50 MHz, respectively, at a center frequency of 1 GHz. Results 

for the same excitation signal bandwidths, but for a 4 GHz center frequency, are 

shown in Figs. 8.11(a)-8.11(d). Notice that the average E, frequency response for 

each bandwidth has been plotted along 

with the response corresponding to a zero-bandwidth excitation signal. The latter 

was chosen as a reference because, according to the frequency stirring methodology, it 

is considered as the worst excitation scenario. Moreover, all the results presented here 
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Figure 8.9: Spectrum of excitation signal. (a) 1 MHz bandwidth. (b) 5 MHz band- 
width. (c) 10 MHz bandwidth. (d) 50 MHz bandwidth. 



correspond to observations made at the group of points distributed along the middle 

row (y = 1.5 m). Finally, it has to be mentioned that all the frequency responses 

have been normalized to their mean value versus position. 

From both groups of figures [Figs. 8.10(a)-8.10(d) and Figs. 8.11 (a)-8.11 (d)] it 

is apparent that field variations versus position significantly decrease as bandwidth . 

increases. As a matter of fact the standard deviation of the field fluctuations for a 

zero-bandwidth excitation signal is 8.7 dB, while for a 50 MHz it reduces to 0.8 dB. 

The standard deviation of the electric field variations decreases gradually and the 

amount of decrease is proportional to the bandwidth of the excitation signal. 

However, when the center frequency increases, from 1 GHz to 4 GHz, it is ob- 

served that relatively good electric field spatial uniformity is established for smaller 

bandwidths of the excitation signal. More precisely, for a 5 MHz bandwidth at 1 GHz 

the standard deviation of the electric field is 3.5 dB while for the same bandwidth 

at 4 GHz it reduces to 1.7 dB. This was expected since as frequency increases the 

number of the excited modes in the cavity becomes larger. For example, for the 

previous excitation scenarios, the modes in the cavity are 5 and 19, respectively. At 

this point it has to be mentioned that the cavity's dimensions have been chosen so 

that the ratio of its sides' lengths is an irrational number. In such a case, mode 

degeneracy is avoided and each mode individually contributes to the field uniformity. 

Consequently, the number of the excited modes in the cavity is an important quantity 1 
I 

which determines the field homogeneity. 1 
I 

Finally, in Figs. 8.12(a)-8.12(b) the average electric field frequency response is I 

plotted for three different y positions. More precisely, in Fig. 8.12(a) for a center 
I 

frequency of 1 GHz and a bandwidth of 50 MHz, the average electric field is plotted 

as a function of x for y = 1.0 m, y = 1.5 m and y = 2.0 m. In Fig. 8.12(b) the same 

curves are plotted for 4 GHz. It is apparent that the three curves, for both frequencies, 

are characterized by the same statistics. This last result is very important because it 

proves that spatial uniformity is not established locally but everywhere in the cavity. 

All the above observations are summarised in Table 8.1. 
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Table 8.1: Standard deviation and number of modes for different bandwidths, exci- 
tation frequencies and positions. 

V. Three- dimensional cavity excitation 

In this section the frequency stirring technique is further investigated by examining its 

implementation for the case of a 3-D cavity. This is a significantly more complicated 

problem to be studied; however its successful modeling is equivalent to the simulation 

of a real RC's operation. This would offer great advantages since a "virtual" RC 

facility will be available 
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Figure 8.10: Electric field homogeneity at 1 GHz for different noise bandwidths. 
(a)O MHz versus 1 MHz. (b) 0 MHz versus 5 MHz. (c) 0 MHz versus 10 MHz. (d) 
0 MHz versus 50 MHz. 
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Figure 8.11: Electric field homogeneity at 4 GHz for different noise bandwidths. 
(a)O MHz versus 1 MHz. (b) 0 MHz versus 5 MHz. (c) 0 MHz versus 10 MHz. (d) 
0 MHz versus 50 MHz. 
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Figure 8.12: Electric field homogeneity for different y positions. (a) Center frequency 
1 GHz and bandwidth 50 MHz. (b) Center frequency 4 GHz and bandwidth 50 MHz. 



for vulnerability testing of various, sensitive to EMI, equipment. As will be shown 

later, the electromagnetic field inside the 3-D cavity, except for its uniformity it 

will also be tested for its isotropy. As has been described in Chapter 6, an elec- 

tromagnetic field configuration is described as isotropic when its energy is equally 

distributed among the three electric or magnetic field components. Uniformity along 

with isotropy are very important properties which uniquely characterize the electro- 

magnetic field inside an RC. In what follows, an overview is given of the simulation 

set-up with a particular emphasis on the radiation element's design, which is of great 

importance for the methods effectiveness. Afterwards, the corresponding test results 

are presented. 

A. Simulation set-up 

The geometry of the cavity that was modeled is shown in Fig. 8.13(a), and as can 

be seen its dimensions are 2.05 m x 1.50 m x 1.30 m while the conductivity of 

its walls was set equal to aluminum's conductivity, that is 3.816 x 107S/m. Notice 

that the cavity's dimensions have been chosen so that the ratio of its sides' lengths 

is an irrational number. As a result degeneracy is avoided and each excited mode is 

distinct. 

In the same figure, it can also be seen the antenna configuration used for our 

simulations, in order to inject electromagnetic energy inside the cavity. A more 

detailed description of the antenna geometry is given in Fig. 8.13(b). The antenna 

consists of a hollow right wedge with a vertical dipole placed in it. The top and 

bottom faces of the wedge are right isosceles triangles whose right edges are 30 cm 

long, as is its height. Both the top and bottom faces of the wedge are parallel to the 

cavity's top and bottom walls. The dipole is 11 cm high [Fig. 8.14(a)] and it has been 

placed 10 cm away from the cavity's right edges [Fig. 8.14(b)]. Notice that the wedge 

has been positioned inside the cavity so that its open face directs the 

electromagnetic energy, emanating from the dipole, towards one of the cavity's edges. 

As has been mentioned previously, the choise of the antenna for the excitation of 

an RC is a very crusial issue, about which several design guidelines have been sug- 

gested [147], [174], [184]. In these references it  is recommended that the appropriate 

transmittimg antennas for an effective RC operation are horn type [45], oriented to- 



(a) Perspective view. 

CAVITY WALLS 

(b) Antenna details. 

Figure 8.13: Three dimensional cavity. 
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Figure 8.14: Dipole details. (a) Front view. (b) Top view. 

wards one of its vertices. In such way the elimination of dominant field compoments 

is ensured (no line-of-sight between the antenna and the observation points) while 

the field is allowed to spread evenly towards all directions inside the cavity and hence 

a random field configuration is established. Given all the above, as well as the in- 

herent limitation of FDTD to accurate model geometries including tilted surfaces (it 

introduces staircasing), the choise of the above radiating configuration is considered 

optimal because it  complies with RC design guidelines and it  can be easily modeled 

using FDTD. 

The excitation signal was band-limited white Gaussian noise; the generation of the 

excitation signal was performed as described for the 2-D cavity. However, simulations 

were performed only for a center frequency of 3 GHz and for bandwidths of 0 MHz, 

10 MHz and 50 MHz. For this particular frequency, the cavity's electrical size is 

20X x 15X x 13X which based on the 6X empirical criterion [I691 it can definitely be 

characterised as well-overmoded. 

In order to simulate the electromagnetic field variations inside the cavity, a 3-D 

standard FDTD code was used.' The choice of the discretization cell size was based on 

the operating frequency, therefore a 10-mm cell size was chosen. Based on the XI10 



Figure 8.15: Observation points. 

criterion, this cell size provides sufficiently accurate results up to  3 GHz. It has to be 

mentioned that all of the performed simulations were computationally intensive. As 

an indication, we mention that for 218 time-steps, the simulation time was nearly 7 

days. All simulations were performed a t  a four PENTIUM 2.2 GHz processor machine 

with 6 Gb of RAM running under LINUX OS. 

Finally, 42 locations inside the cavity were chosen and the values of the E,, E, 

and E, electric field components were observed. All the observation points are along 

the z = 0.80 m plane while they are divided in groups of 14 as shown in Fig. 8.15. 

Each group's points are distributed equidistantly along the y = 0.35 m, y = 0.75 m 

and y = 1.15 m axis, respectively. In each row the spacing between two successive 

observations points is 10 cm. After the end of each simulation, the collected data 

were post-processed and uniformity, as well as isotropy tests, were performed. 

B, Simulation results 

In this section results from homogeneity and isotropy tests are presented. In Figs. 8.16(a)- 

8.16(b) the average IE,I frequency response as a function of frequency is shown, for 

a 10 MHz and 50 MHz excitation signal bandwidth, respectively. Notice that the 

average E, frequency response for each bandwidth has been plotted along with the 

response corresponding to a zero-bandwidth excitation signal. The latter was cho- 

sen as a reference because, according to the frequency stirring methodology, it is 

considered as the worst excitation scenario. Moreover, all the results presented here 



correspond to observations made at the group of points distributed along the middle 

row (y = 0.75 m). Finally, it has to be mentioned that all the frequency responses 

have been normalized to their mean value versus position. 

From both figures it is apparent that field variations versus position significantly 

decrease as the bandwidth increases. As a matter of fact the standard deviation 

for a zero-bandwidth excitation signal is 4.184 dB, while for a 10 MHz and 50 MHz 

bandwidth, it reduces down to 1.182 dB and 0.432 dB, respectively. I t  is apparent that 

frequency stirring is able to create the desired field homogeneity inside the 3-D cavity. 

It can also be observed that the standard deviation of the electric field variations 

decrease gradually and the amount of decrease is proportional to the bandwidth of 

the excitation signal. The same conclusions can be drawn for the electromagnetic field 

homogeneity based on observations made along the lower (y = 0.35 m) and the upper 

(y = 1.15 m) rows. In Fig. B., the average electric field frequency response is plotted 

for the three different rows. It  is apparent that the three curves are characterised by 

the same statistics. This last result is very important because it  proves that spatial 

uniformity is not a local phenomenon in the cavity. 

Finally, in Fig. B. the electric field isotropy is presented. As can be seen, the 

average frequency response of I Ez 1 ,  I EY 1 and I Ez I are plotted as a function of position. 

All three plots correspond to observations made along the middle row (y = 0.75 m) 

for an excitation signal of a 50 MHz bandwidth. It  can be observed that at each 

observation point, along each direction, the electric field is characterised by nearly 

the same average frequency response (differences > 3 dB). This is a clear indication 

that the electromagnetic field is isotropic and consequently, if an equipment under 

test is placed inside it, i t  will be subjected to the same field values in the x, y and x 

directions. All the above observations are summarised in Table 8.2. 
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Figure 8.16: Electric field homogeneity at 3 GHz for different noise bandwidths. (a) 
Center frequency 3 GHz and bandwidth 10 MHz. (b) Center frequency 3 GHz and 
bandwidth 50 MHz. 
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Figure 8.17: Electric field homogeneity for different y positions. Center frequency 
3 GHz and bandwidth 50 MHz. 

1.0 I I 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
position along x (m), y = 0.75 m, z = 0.80 m 

Figure 8.18: Electric field isotropy. Center frequency 3 GHz and bandwidth 50 MHz. 



Table 8.2: Standard deviation and number of modes for different bandwidths, exci- 
tation frequencies,electric field components and positions. 

Field 
Component 

Ez 

41 

Ez 

BW 
(MHz) 

10 
5 0 
10 
50 
10 
5 0 

Number 
of modes 

335 
1675 
335 
1675 
335 
1675 

Lower row 
y = 0.35 m 

STD 

(dB) 
0.95 
0.82 
1.21 
0.62 
1.43 
0.29 

Middle row 
y = 0.75 m 

STD 

(dB) 
1.28 
0.57 
1.39 
0.66 
1.18 
0.43 

Upper row 
y = 1.15 m 

STD 
(dB) 
0.78 
0.55 
1.68 
0.53 
1.39 
0.40 



Chapter 9 

Summary and Conclusions 

One of the main objectives of this research was the investigation and development 

of low dispersion methods that can accurately, as well as efficiently, solve electrically 

large problems. It is of great interest in many applications, such as antenna analysis 

or scattering and penetration, to be able to analyze electrically large problems. Tra- 

ditional finite methods, such as the FDTD and the FEM methods, are second-order 

accurate, thereby significantly restricting the size of the structures that can be han- 

dled. Dispersion is an inherent characteristic of these methods that also corrupts the 

numerical solutions with errors, and it becomes even more important for electrically 

large domains. One way of dealing with these problems is to use higher-order finite- 

difference (FD) methods that exhibit less dispersion and can analyze more efficiently 

such domains. 

Higher-order FDTD schemes were examined and implemented into three dimen- 

sional general codes which can handle arbitrary geometries and can perform numerous 

types of analysis, such as antenna, coupling, and penetration analysis. Specifically, a 

second-order accurate in time and fourth-order accurate in space scheme FDTD(2,4) 

was mainly used throughout this report. In order to solve "open-space" problems 

absorbing boundary conditions (ABCs) had to be formulated and applied in the con- 

text of FDTD(2,4). The perfectly matched layer (PML) was chosen as ABCs due 

to its excellent performance compared to  other types of ABCs. Various difficulties 

of the implementation of higher-order schemes, such as boundary conditions and 

discontinuities, were extensively discussed and resolved. Additionally, two different 

hybrid methods between the subgrid FDTD(2,2) and FDTD(2,4) were developed and 



formulated. 

The second main objective of this research was to analyze three very important and 

complex practical problems. The first problem concerned analysis of cavity-backed 

slot (CBS) antennas with particular emphasis on different coupling reduction tech- 

niques. The second problem involved shielding effectiveness analysis of conducting 

enclosures with apertures, and it related to penetration of High Intensity Radiated 

Fields (HIRF) into airplane fuselages. Finally, the third problem consisted of the 

analysis of EM1 generated by personal electronic devices (PEDs) in the cabin of fuse- 

lages. In the following paragraphs, the conclusions of this research are presented in 

more detail. 

This research was initiated by examining the basic characteristics of FDTD(2,4). 

Dispersion as well as stability characteristics of both FDTD(2,2) and FDTD(2,4) 

were analytically formulated, numerically computed, and compared. It  was shown 

that FDTD(2,4) outperforms FDTD(2,2) in terms of dispersion errors. Therefore, 

FDTD(2,4) can be used to accurately model electrically larger domains than the ones 

that can be simulated by FDTD(2,2). Then, one-dimensional domains were analyzed 

using both FDTD (2,2) and FDTD (2,4) to qualitatively access the performance char- 

acteristics of FDTD(2,4) and compare them to the ones of FDTD(2,2). In free space 

simulations, it was found that a 20 wavelengths long domain was simulated accurately 

by FDTD(2,4) when a discretization of a tenth of a wavelength (Ax/10) was used. 

However, this discretization of the domain (Ax/lO) yielded inaccurate results in the 

case of FDTD(2,2) due to large dispersion errors of FDTD(2,2). 

Furthermore, FDTD(2,4) was applied to perfect conductor discontinuities (PEC) 

analysis, and it  was found that FDTD(2,4) exhibits an inherent artificial penetration 

through thin PEC films. This is attributed to the length of the FDTD(2,4) stencil 

which allows fields from one side of the PEC to couple on the other side of the PEC. 

Two ways to resolve this problem were proposed in the one-dimensional formulation. 

These two ways were found to be effective for most two-dimensional problems but un- 

stable or ineffective for most practical three-dimensional problems where PEC planes 

are not infinite in extent. As far as dielectric discontinuities, numerical analysis on 

one-dimensional domains illustrated that FDTD(2,4) was able to accurately simulate 

the transition from one dielectric to the other. 



In order to solve unbounded problems, such as radiation, scattering, etc., ab- 

sorbing boundary conditions had to be implemented in FDTD(2,4). The perfectly 

matched layer (PML) method was chosen. Specifically, the anisotropic PML tech- 

nique was used to terminate FDTD(2,2) and FDTD(2,4) lattices. The anisotropic 

PML does not use the split formulation of the fields presented in the original PML by 

Berenger thereby being more consistent with the Maxwell's equations. It was found 

that PML is a very effective truncation technique, and it performs equivalently on 

either FDTD(2,2) or FDTD(2,4) for two- and three-dimensional computational grids. 

Moreover, the FDTD(2,4) method was used to solve two simple 3-D problems 

of engineering interest. It  was shown that FDTD(2,4) was far more accurate in 

predicting the pattern of an array consisting of two elements and calculating the 

resonances of a rectangular cavity. A discretization with cell size of X I 1 0  was found to 

be adequate for domains as large as 20 wavelengths. Also, radiation pattern analysis 

of monopoles on helicopter airframes, as well as rectangular boxes, was performed 

by FDTD(2,4). The accuracy of FDTD(2,4) was again better than the accuracy of 

FDTD(2,2). 

Boundary conditions in the context of higher-order schemes were also discussed. 

Boundary conditions represent one of the most important challenges in higher-order 

methods. An extensive literature review of this issue was presented, and most of 

the existing research has been generated in the fields of computational physics and 

mathematics. This line of research, which is related to boundary conditions and 

higher-order schemes, supports the fact that it is very challenging to design accu- 

rate as well as stable higher-order boundary conditions. In particular, stability is 

the most difficult problem. Even though many efforts to formulate stable schemes 

have been attempted, only few and simple one- and two-dimensional problems have 

been analyzed using higher-order boundary conditions. However, when the analysis 

is extended to systems of equations which are multi-dimensional (especially three- 

dimensional), higher-order boundary conditions, that can be applied in a stable way, 

do not exist. In addition, most of the known research has dealt with boundary condi- 

tions on the exterior boundary of computational domains whereas in most practical 

engineering problems boundary conditions have to be applied to the interior of the 

domain. This makes the problem of boundary conditions even more difficult. 



One very important issue related to boundary conditions is the ability of a method 

to simulate thin geometric features, meaning features that are much smaller in size 

than all other dimensions of the geometry, and they cannot be discretized using a 

reasonable cell size. The issues of boundary conditions and thin geometric features 

in the context of FDTD(2,4) were illustrated through simulation of two monopole 

antennas on finite ground planes. 

Initially, FDTD(2,4) was applied alone without being able to simulate the radius 

of the wires. The S-parameters computed in this case by FDTD(2,4) were more 

accurate than FDTD (2,2). However, the input impedance FDTD (2,4) calculations 

were not as accurate as the ones of FDTD(2,2) since FDTD(2,4) did not simulate the 

radius of the wires. Then, FDTD(2,4) was combined with the FDTD(2,2) thin wire 

model and the S-parameters computed in this case were not as accurate as the ones 

that used only FDTD(2,4). In addition, the input impedance calculations exhibited 

improved accuracy in this case compared to the ones that used FDTD(2,4) alone. 

Basically, when FDTD(2,4) was combined with the FDTD(2,2) thin wire model, i t  

provided results very similar to the calculations of FDTD(2,2) alone. This can be 

attributed to the fact that the FDTD(2,2) thin wire model is second-order accurate 

thereby degrading the accuracy of FDTD(2,4). Also, one-sided differences were ap- 

plied around each wire but they were found unstable. After long experimentation 

with various one-sided schemes, it was decided to pursue other ways to expand the 

capabilities of FDTD(2,4). In conclusion, it was clear that there was a need for a I 

higher-order method that can simulate thin geometric features without loosing its I 
high-order of accuracy. 

Furthermore, a method that benefits from the advantages of both FDTD(2,2) 

and FDTD(2,4) was presented. The new method is a hybrid of FDTD(2,4) with a 

subgrid FDTD(2,2). Subgrid techniques utilize two grids; a fine one and a coarse 

one. The ratio between the coarse and the fine grid cell sizes was chosen to be 1:3. 

All odd integer-cell ratios have the advantage of exhibiting fields in the coarse and 

fine grids which stay synchronized in time and collocated in space. On the fine grid, 

the standard FDTD(2,2) is used to handle any of the fine features of the structure, 

such as thin wires, thin slots, etc, whereas on the coarse grid FDTD(2,4) was used. 

Therefore, existing and validated thin (subcell) models, that have been developed in 



the context of FDTD(2,2), can be used on the fine grid to simulate such thin geometric 

features. In addition, on the coarse mesh, away from phenomena associated with the 

complex structure, FDTD(2,4) is used to mainly simulate the wave propagation in 

homogeneous media. Following this approach, high accuracy is obtained both around 

fine geometric features, such as thin wires, thin slots, etc., as well as in the wave 

propagation which is simulated by a higher-order scheme, i.e., FDTD(2,4). 

The new hybrid technique was applied to the analysis of two monopoles on a 

ground plane. The results were compared to FDTD(2,2) computations and mea- 

surements. It  was illustrated that great computational savings both in memory as 

well as execution time are achieved when the hybrid FDTD(2,4)/Subgrid FDTD(2,2) 

method is used. Moreover, this hybrid approach is very promising for other practical 

situations because of the flexibility for the inclusion of all existing thin and sub-cell 

models with FDTD(2,2). Simultaneously, the method offers the high accuracy of 

FDTD(2,4) for the propagation of waves over electrically large distances. 

Besides the first hybrid method of FDTD (2,4) with a subgrid FDTD (2,2), a second 

hybrid technique was presented. The new hybrid method combined FDTD(2,4) and 

subgrid FDTD(2,2) in a reverse fashion. Therefore, its name [subgrid FDTD(2,2)/ 

FDTD(2,4)] was the reverse of the name of the original hybrid technique [FDTD(2,4)/ 

subgrid FDTD(2,2)]. After completing the formulation of the hybrid technique, it  was 

shown that its use yields tremendous memory savings when domains become large in 

all three directions. This new hybrid method was also applied to practical engineering 

problems and the conclusions related to that analysis will be presented later in this 

section. 

Applications of both FDTD(2,2) and FDTD(2,4) were also presented. Initially, an 

improved thin wire model was discussed and compared to the delta-gap feed model. 

The improved thin wire model was found to be far more accurate than the delta-gap 

feed model for input impedance calculations. The discrete Fourier transform (DFT) 

was also compared to the fast Fourier transform (FFT). I t  was shown that for certain 

applications such as computations of patterns at multiple frequencies, DFT is far 

more efficient than FFT. 

Moreover, analysis of cavity-backed slot (CBS) was performed. Different numer- 

ical issues related to  the modeling of such antennas were described. It  was found 



that the use of a voltage source with an internal resistance in FDTD is indispensable 

for efficient computations. Both FDTD and FEM/MoM were used to compute the 

input impedance of a single CBS antenna, and coupling between two elements, and 

they compared very well with measurements. However, i t  was found that for coupling 

versus distance calculations, the hybrid FEM/MoM is faster than the pure FDTD. 

This is attributed to the fact that FEM/MoM does not discretize the space between 

the two cavities but rather treats the open-space interaction within the MOM for- 

mulation. Therefore, the FEM/MoM computational space remains constant because 

only the CBS antennas need to be discretized in the hybrid methodology. On the 

contrary, FDTD has to also account for the space between the two antennas thereby 

yielding very large domains especially for large distances. 

A very comprehensive study of coupling between two CBS antennas was also 

performed through measurements and simulations. The dependence of coupling on 

the separation distance between the two antennas was investigated. Disorienting 

the antennas was also found to be a very effective method of coupling reduction. 

Specifically, the H-plane configuration exhibited significantly smaller levels of coupling 

than the E-plane configuration. Moreover, other alternative methods of reducing 

coupling were examined including incorporation of lossy superstrates as well as ground 

plane discontinuities, such as slits. It was illustrated that lossy material superstrates 

can be very effective in decreasing the coupling between two antennas, but they cause 

a reduction of the antenna gain. Therefore, in a practical design, there is always a 

compromise between reduction of coupling and maintenance of a sufficiently high 

gain. 

Shielding effectiveness analysis was also performed for cavities with apertures. 

Various acceleration techniques were presented. The probe excitation by a voltage 

source with an internal resistance enabled the analysis of highly resonant structures. 

Also, the introduction of small artificial loss proved to be very useful when analyzing 

high Q structures using the plane wave excitation. 

Furthermore, issues related to the Fourier transform of time-domain data were dis- 

cussed. Windowing approaches were introduced and applied in FDTD computations. 

Different windows were presented and their advantages as well as their drawbacks 

were reported. Also, general guidelines for choosing windows were analyzed and ex- 



plained in detail. It was found that windowing can be very useful, especially when 

FFTs of time-domain data that have not converged to zero are performed. Win- 

dows reduce the discontinuities at the boundaries of data sets and effectively resolve 

problems associated with spectral leakage. It was illustrated that even when severe 

discontinuities occur at the end of time-domain data sets, windowing can be used and 

provide very accurate results as long as the set of data is sufficiently long to describe 

the response of a structure. Windowing can be particularly beneficial in the analysis 

of both large and high Q structures where the transients need a prohibitive simulation 

time to decay. In such cases windowing is probably the only way that can provide 

predictions of reasonable accuracy. 

Moreover, different possible shielding effectiveness definitions in the context of 

FDTD were presented and compared. Their respective pros and cons were ana- 

lyzed. All numerical results were compared with measurements and exhibited ex- 

cellent agreement. Shielding effectiveness was computed and measured for different 

incident angles at a band of frequencies covering up to 1.5 GHz. 

After validating the accuracy of FDTD(2,2) for shielding effectiveness (SE) cal- 

culations, SE analysis was extended to more complicated problems. Specifically, SE 

analysis was performed for a simplified scaIed model of a Boeing 757 aircraft. It  

was shown that this geometry generates very large computational domains especially 

as the frequency of interest increases and the mesh becomes finer. For example, 

the simplified fuselage has electrical dimensions of approximately 47X x 6X x 7X at 

9 GHz, which make the fuselage an extremely electrically large domain. This do- 

main, discretized with a cell size of 2.5 mm (or XI13 at 9 GHz), yields a very large 

computational domain; 620 x 80 x 96 cells. 

First, the standard FDTD(2,2) was used to compute the SE of the scaled fuselage, 

and it was found to be very accurate when the cell size was chosen fine enough for the 

frequency band of interest. However, as the mesh became finer the memory require- 

ments became significantly larger, i.e., every time the mesh is refined by a factor of 

2, the memory requirements just for the electric and magnetic field components that 

describe the fuselage become larger by a factor of 23 = 8. It  should also be pointed 

out that the SE waveform consisted of rapid frequency variations with multiple peaks 

and valleys. This is due to the electrical dimensions of the simplified fuselage which 



establish several resonances in the frequency band of interest. These rapid frequency 

variations complicate even more the analysis of this problem. The levels of the SE 

varied from as low as -50 dB to as high as 50 dB. Low levels of SE represent a high 

amount of penetration into the fuselage which can potentially affect the operation of 

the aircraft's electronic systems. 

Then, the second hybrid method of subgrid FDTD(2,2)/FDTD(2,4) was applied 

to the analysis of HIRF penetration into the scaled model of a Boeing 757 aircraft. 

Significant memory savings were achieved when the hybrid formulation was used 

compared to the memory requirements of the standard FDTD(2,2) alone. This hap- 

pens because the largest part of the computational domain is the interior of the 

fuselage, and the problem of boundary conditions arises only near the walls of the 

enclosures. Therefore, it is desired to simulate the propagation inside the fuselage 

using a higher-order method such as FDTD(2,4). In addition, near the walls of the 

fuselage a subgrid FDTD(2,2) method should be used in order to represent accurately 

the PEC boundary conditions, and successfully simulate the penetration mechanisms. 

All these features are implemented by the hybrid approach. The accuracy of subgrid 

FDTD(2,2)/FDTD(2,4) was the same with the accuracy exhibited by the FDTD(2,2) 

scheme alone when the same fine grid cell size was used. 

Another very important EM1 problem for all commercial aviation is interference 

that can be generated on-board by various personal electronic devices (PEDs). This 

research examined the EM1 produced by a PED antenna mounted inside a scaled 
I 

I 
model of a Boeing 757 near one of the windows, and received by an antenna mounted 1 

on the top exterior of the scaled model's fuselage. This type of interaction corresponds 

to interference that can be potentially generated by a passenger's cellular phone 

and can be received by antennas belonging to the communication and/or navigation 

systems of airplanes. Initially, FDTD(2,2) was applied to  predict this EM1 and the 

numerical computations compared very well with the measurements up to frequencies 

for which the discretization was fine enough. These results validate for first time 

the ability of FDTD(2,2) to accurately simulate coupling in a complex geometrical 

setting. Furthermore, the fuselage is electrically very large thereby allowing a plethora 

of modes and resonances to be established. All these issues make the modeling of 

coupling even more challenging. However, FDTD(2,2) was proven very accurate for 



the analysis of such problems. In addition, the hybrid method was also applied to 

this problem. As mentioned above, the use of the hybrid subgrid FDTD(2,2) and 

FDTD(2,4) method yields significant memory savings. Therefore, the hybrid method 

was used in order to be validated in the context of the PED analysis. Again, the 

hybrid method was found to be as accurate as the FDTD(2,2) scheme alone when the 

same fine grid cell size was used. As far as the PED coupling levels, they exhibited 

a highly oscillatory behavior due to the large number of resonances present inside 

the fuselage. Also, the maximum level of coupling was -30 dB and occured at several 

frequencies. This level of -30 dB can represent a threat to the communication systems 

of the airplane. However, the definite interpretation of effects of such coupling levels 

are left to the engineers that deal with, and design the communication systems of the 

aircraft. 

In addition to the rectangular simplified fuselage model, a cylindrical scale model 

fuselage was constructed, and a series of measurements were performed. The cylin- 

drical model was built to better simulate the fuselage part of an aircraft. In addition, 

the standard FDTD scheme was used to compute the SE of the cylindrical scaled 

fuselage. FDTD predictions were found to be very accurate when the cell size was 

chosen fine enough for the frequency band of interest. Three different cell sizes, of 

10, 5 and 2.5 mm were used. The 2.5 mm cell size gave results which were in bet- 

ter agreement with measurements for all frequency bands. I t  has to  be mentioned 

that even for the finest cell size, discrepancies were observed which were attributed 

to  staircasing errors as well as phase error accumulation due to the electrically large 

geometry. 

Finally, a statistical approach was investigated for the HIRF penetration problem 

for the simplified scale model fuselage. This statistical approach utilized a reverbera- 

tion chamber (RC) technique. A mode-stirrer was constructed and inserted into the 

fuselage. Measurements were performed while the mode-stirrer was rotating and the 

field inside the fuselage was probed at different locations. Thereafter, the collected 

data was statistically processed. Initially a basic statistical analysis was performed. 

The maximum, minimum and mean average values of the electric field over all stirrer 

positions were calculated versus frequency for all probe locations. It  was discovered 

that measurements from all probes exhibit similar statistical properties. Furthermore, 



another interesting observation was that, for each point, the maximum electric field 

value was almost constant versus frequency, while the maximum electric field level 

was on average, the same for all probes. 

Moreover, two alternative S E  definitions were proposed which are based on the 

maximum and the mean average observed value over all stirrer positions. It  was ob- 

served that S E  values obtained from the new definitions were smaller that the ones 

that the traditional definition provides. Moreover the stirrer effectiveness was studied 

using two different methods. The fist method is based on the ability of the stirrer to 

create higher electric field values than the one that can be established in the empty 

fuselage. The second one is based on stirring ratio, which is an RC figure-of-merit. 

Both methods showed that the mode-stirrer was very effective. Afterwards a more 

advanced statistical analysis was performed which utilized elements of probability and 

RC theory. Data statistical independence, as well as goodness-of-fit tests, were per- 

formed. The run test was employed in order to test data randomness. Measurements 

were found to provide independent data for frequencies higher than 6 GHz with a con- 

fidence level of 95%. As regards to the goodness-of-fit test, the Kolmogorov-Smirnov 

(K-S) test was used. Empirical cumulative density functions (CDFs) for experimental 

data were proven to be in very good agreement with theoretical expected CDFs as 

provided from RC theory. Measurement data above 5 GHz clearly passed this test 

with a 95% confidence level. Furthermore, the K-S test was used to test if S E  CDFs 

of experimental data match theoretical SE CDFs as provided from probability and 

RC theories. The confidence level was again set to 95%, and i t  was shown that ex- 

perimental S E  CDFs were in excellent agreement with the theoretical expected S E  

CDFs. As a concluding remark, the cavity of a simplified fuselage, along with the 

mode-stirrer, exhibit statistical properties very similar to those of an actual RC. This 

is of great importance because electronic systems of an aircraft can be tested for their 

immunity individually inside an RC. Therefore it is not necessary to construct large 

anechoic chambers where a entire aircraft needs to be inserted into the facility. 

The statistical properties of the penetrated fields were investigated with frequency 

the independent variable. CDFs were computed using the scale model penetration 

measurements collected a t  the four monopole locations within the "Simplified Fuse- 

lage." This empirical data was tested using the Kolnogorov-Smirnov criterion, which 



demonstrated that it is exponentially distributed with a 95% confidence level over 

the frequency range of 1 to 9 GHz. The measured CDFs were compared to the the- 

oretical CDFs of Price and Lehman. While both are in very good agreement with 

measurement, it was found that the Lehman distributions are the more accurate of 

the two, particularly at the upper ends of the curves at which the peak power levels 

are described. 





Chapter 10 

Conclusions 

In this project the penetration of High Intensity Radiated Fields (HIRF) into general 

aviation aircraft was investigated. Several methods and techniques were studied and 

implemented and much progress was made in the understanding of the behavior of 

the penetrated electromagnetic field. In what follows the skeleton of the research 

procedure and tactics that were followed is presented. For each of the step of this 

procedure comments are made regarding its importance and its contribution to the 

achievement of the final result. Also, several "hints" are given that could serve as a 

valuable source of information for anyone interested in EMC and EM1 of aircrafts. 

Finally, it should be mentioned that the purpose of the following presentation is 

twofold. First of all it is an overview of a rather large and full of details technical 

report. Second, it is a L'navigator" for someone who wishes to conduct research in 

the same or related areas. 

For the purposes of this research both deterministic and statistical approaches 

were attempted. The main objective of the deterministic part was to demonstrate 

that the penetrated electromagnetic field inside an aircraft fuselage can be predicted 

using some numerical technique, which in our case was the Finite Difference Time 

Domain (FDTD) . In order to do that the cavity under test is placed inside an anechoic 

chamber where it is illuminated by a plane wave and the field penetrated inside the 

cavity is measured. Afterwards the same scattering scenario is modeled using FDTD 

and predictions of the penetrated electromagnetic field are made. The ability to 

match measurements with the corresponding predictions will validate the accuracy 

of the numerical technique and consequently the accuracy of its predictions. Prior 



to any measurements or predictions, the measured quantity has to be chosen. In our 

case, it was the cavity's shielding effectiveness (SE) and since there are many ways 

to define it, we chose the one which was in accordance with the measurements. 

As an introductory stage, measurements and predictions were performed in simple 

geometries such as small conducting boxes with apertures. The advantage of working 

with such geometries is that they can be both easily measured and modeled. There- 

fore, several experiments were performed within a reasonable period of time while 

much knowledge is gained about the HIRF penetration problem, and hence prepared 

us in order to study more complex geometries such that of an aircraft. The second 

step of the deterministic approach was to construct a simplified scale model fuselage. 

The construction of the simplified fuselage is a very important issue because the less 

its imperfections the closer the FDTD modeled geometry will be to the real one. Such 

imperfections can be misalignment of the fuselage walls or cracks along the joints of 

the walls which may result in field leakage. Once the simplified fuselage was con- 

structed measurements were performed as well as predictions, and they were found to 

be in excellent agreement through a wide frequency range and for different incidence 

angles. From this first part of our research, it was shown that FDTD is able to predict 

the SE of a complex cavity very accurately. The importance of this accomplishment 

is that there is no need to use large testing facilities, wherein an aircraft can fit, in 

order to perform immunity tests. Instead, a simple FDTD simulation is sufficient to 

give all the information needed about an aircraft's SE. From our studies it was also 

shown that a X/10 discretization, at the maximum frequency of interest, is sufficient 

for accurate results. Moreover, it became apparent that dispersion errors are unavoid- 

able when FDTD predictions are performed at electrically large geometries, resulting 

in degradation of the results accuracy. Finally it has to be mentioned that the nu- 

merical simulation of such problems is computationally consuming. As a benchmark, 

the time required to run the entire simplified fuselage (1.55 x 0.24 x 0.20 m3) with 

a uniform discretisation in all directions using a 2.5 mm cell size for 100,000 time 

steps requires almost 3 days at  a 2 processor (PENTIUM 2.2 GHz), 6 GB of RAM, 

LINUX machine. 

During the first part of our research a simplified scale model fuselage was con- 

structed. I t  is a rather oversimplified model of an aircraft but sufficient for our pur- 



poses. Of course if somebody wants more realistic results about the penetrated field 

in an aircraft, a more detailed and refined scale model has to be constructed. Unfor- 

tunately, if one tried to model the geometry of a fuselage taking into account all the 

details of a real aircraft's interior it would be concluded that it  is an unrealistic task 

to perform. This is because modeling of fine geometrical features requires small cell 

sizes which result in huge computational domains. Furthermore, even if it was possi- 

ble to model an aircraft exactly it would be impossible to model the time dependent 

geometrical features of an aircraft interior such as moving passengers, the existence 

of which significantly affects the spatial pattern of the field inside the fuselage. 

Therefore it is obvious that another approach should be followed which will take 

into account all the factors that the deterministic approach cannot. Also, since the 

field value inside a fuselage cavity changes rapidly with respect to space, it would be 

more useful to know its mean average value and its variance. So, we concluded that 

a statistical approach is the appropriate one to  be attempted. The first requirement 

in order to perform a statistical approach is to create inside the scale model fuselage 

the randomly varying environment of a real aircraft. In order to do that,  a rotatable 

scatterer (mode-stirrer) was constructed and inserted in the fuselage. The scatterer 

consists of four uneven paddles and its purpose is to scatter field in all directions and 

hence create in the cavity all the possible field configurations. Measurements were 

performed and while the scatterer was rotating, the field was measured a t  four differ- 

ent locations. In order to statistically process the collected data, a certain theoretical 

background was necessary. This theoretical background is provided by the reverber- 

ation chamber (RC) theory. RCs are large metallic cavities within which a stochastic 

in nature electromagnetic field can be established. The stochastic electromagnetic 

field inside RCs has been studied and probabilistic models have been derived that 

govern the field distribution. So, based on this theory, we investigated whether the 

fields inside the fuselage are similarly distributed. 

The first set of data to be examined consisted of single point measurements over 

all stirrer positions for a fixed frequency. As a matter of fact, measurements from all 

four probe locations were grouped in order to average their contributions and create 

a large amount of data. It  has to be mentioned that the mode-stirrer was rotating 

stepwise with a 2" step resulting in 180 data values per obsrvation point. Other ways 



to  increase the number of data and have a more reliable statistical analysiswould be 

to use multiple stirrers or just increase the number of probes. RC theory has been 

developed based on the assumption that the field distribution in them is random 

or delta correlated. This is a very important condition because it makes possible 

the employment of probability theory theorems (central limit theorem) with the aid 

of which field probability models can be derived. Therefore a preliminary test is 

to examine our data for their randomness-independence. There are many tests for 

such purpose, but we chose the run-test which is based on Bernoulli trials. It was 

shown that the collected data pass this test for frequencies greater than 4 GHz. The 

independence test, apart from setting the foundations for the following statistical 

analysis, gives us also an indication of how effective the mode-stirrer is. Afterwards a 

goodness-of-fit test has to be performed on the collected data in order to test how good 

they match with the field probability models that  RC theory suggests. In our case the 

Kolmogorov-Smirnov goodness-of-fit test was employed, and it was found that our 

data are distcibuted according to the theoretical expected distributions. Therefore, 

cumulative distribution function plots can be created for the field variations within 

the cavity. Based on these plots the probability that the field value will exceed a 

certain level can be calculated and hence provide guidelines for effective EMC/EMI 

design. 

Apart from the probabilistic analysis an elementary statistical analysis was also 

performed. Field quantities, such as the maximum, minimum and mean average over 

all stirrer positions, can be easily computed and give an indication of the field fluc- 

tuations within the fuselage. Moreover, another figure-of-merit of the mode-stirrer's 

effectiveness is the calculation of the stirring ratio. Stirring ratio is defined as the 

maximum over the minimum over an stirrer positions observed value. Values of the 

stirring ratio above 20 dB correspond to a well stirred electromagnetic environment. 

General observations from this analysis are that for higher frequencies better field 

uniformity is obtained. Also, the average value of the penetrated field varies with re- 

spect to  the frequency of the impinging wave and the maximum field value is almost 

constant with respect to  frequency. 

Furthermore the statistical properties of the penetrated electromagnetic field were 

studied as a function of frequency. Changes of the excitation frequency result in dif- 



ferent field spatial patterns in the cavity. It has been proved that inside a complex 

cavity field measurements at a single point over a wide frequency range should be X 2  

distributed. FDTD predictions were made for the penetrated field at several points 

inside the fuselage over a wide frequency range. Goodness-of-fit tests were performed 

to our data, and it was found to be in excellent agreement with the theoretical ex- 

pected distributions. Also it  was found that different positions inside the fuselage are 

characterized by the same statistical properties and hence predictions from one point 

can provide information for the field distribution in the entire fuselage. Moreover, a 

parametric study was performed for different cockpit windows and different angles of 

incidence and it was found that the statistical properties of the penetrated field were 

varying. 

Finally, the excitation of conducting cavities using band-limited white Gaussian 

noise was examined. This technique is also known as frequency stirring. The method 

was validated by implementing it for 2D and 3D cavities. As a matter of fact the 

method's effectiveness was tested for different bandwidths and center frequencies of 

the excitation signal. It was concluded that, using frequency stirring, i t  is possible to 

create inside a cavity a spatially uniform electromagnetic field distribution similar to 

the one inside reverberation chambers. Also, as the excitation frequency increases, 

the statistical properties of the electromagnetic field are closer to the ones of an 

ideally operating reverberation chamber. Finally, it has to be mentioned that a 

great advantage of this method is that it allows the accurate vulnerability testing of 

any EM1 sensitive equipment inside a reverberation chamber using solely numerical 

techniques. Consequently, an actual reverberation chamber does not have to be built. 

Moreover, numerical simulations are easier to control and repeat several times and 

hence give flexibility to the investigation. 

As a concluding remark we could say that, although deterministic methods are 

very accurate, they are subjected to many limitations that make them impractical. 

On the other hand, statistical methods are more appropriate for the modeling of the 

HIRF penetration problem because they provide with results which are subjected to 

less constraints. More specifically, there is not a general statistical theory that can 

describe the field variations inside any type of cavity. The existing statistical theories 

are applicable only to cavities with certain geometrical specifications. Therefore, 



in the case of an externally illuminated aircraft cavity it is unlikely to develop a 

statistical model that would describe the field distribution at any spatial point inside 

it, for any frequency of the impinging wave and any angle of incidence. 
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