
Toward Synthesis, Analysis; and Certification
of Security Protocols
- Position Paper -

Johann Schumann
RIACS / K-4S-4 Ames, h4offett Field, C-4 94035

schumann@email.arc.nasa.gov

1 Introduction

Implemented security protocols are basically pieces of software which are used to (a)
authenticate the other communication partners, (b) establish a secure communication
channel between them (using insecure communication uiediaj , a d (c) transfer data
betweel? the comrnmication pxtners in such a way that these data only available to
the desired receiver, but not to anyone else. Such an implementation usually consists
of the following components: the protocol-engine, which controls in which sequence
the messages of the protocol are sent over the network, and which controls the as-
sembly/disassembly and processing (e.g. , decryption) of the data. the cryptographic
routines to actually encrypt or decrypt the data (using given keys), and t,he interface to
the operating system and to the application.

For a correct working of such a security protocol, all of these components must
work flawlessly. Many formal-methods based techniques for the analysis of a security
protocols have been developed. They range from using’ specific logics (e.g.: BA4X-logic
[4!) or higher order logics [12] to model checking :2] approaches. In each approach, the
analysis tries to prove t.hat no (or a t least not a modeled intruder) can get access to
secret data. Otherwise, a scenario illustrating the &tack may be produced. Despite the
seeming simplicity of sec-wity pmtacds (“oiily” 8 few messages are sent between the
protocol partners in order to ensure a secure communication), many flaws have been
detected.

Unfortunately, even a perfect protocol engine does not guarantee flawless working
of a security protocol, as incidents show. Many break-ins and security vulnerabilities
are caused by exploiting errors in the implementation of the protocol engine or the
underlying operating system. Attacks using buffer-overflows are a very common class
of such attacks. Errors in the implementation of exception or error handling can open
up additional vulnerabilities. For example, on a website with a log-in screen: multiple
tries with invalid passwords caused the expected error message (too many retries). but
let the user nevertheless pass.

Finally, security can be compromised by silly implementation bugs or design deci-
sions. In a commercial VPN software, all calls to the encryption routines were inciden-
tall?; replaced by stubs, probably during factory testing. The product worked nicely.

and the error (an “open“ VPN) would have gone undetected, if a team member had not
inspected the low-level traffic “out of curiosity”.

Also, the use “secret” proprietary encryption routines can backfire, because such
algorithms often exhibit weaknesses which can be exploited easily (see e.g.. DVD en-
coding).

Summarizing, there is large number of possibilities to make errors which can com-
promise the security of a protocol. In today‘s world with short time-to-market and the
use of security protocols in open and hostile networks for safety-critical applications
(e.g., power or air-traffic control), such slips could lead to catastrophic situations.

Thus, formal methods and automatic reasoning techniques should not be used just
for the formal proof of absence of an attack, but they ought to be used to provide an
“end-to-end” tool-supported framework for security software. With such an approach
all required artifacts (code, documentation, test cases) , formal analyses, and reliable
certification will be generated automatically, given a single, high level specification. By
a combination of program synthesis, formal protocol analysis, certification; and proof-
carrying code, this goal is within practical reach. since all the important technologies
for such an approach actually exist and only need to be assembled in the right way.

2 The Ingredients

In such an envisioned end-to-end solution for security protocols; a number of tasks must
be performed upon the input specification. In the following sections, we will briefly
discuss the required steps and present existing approaches which can provide a basis.

The input to such a tool will be a detailed specification of the protocol. Typically,
a security protocol is specified as a sequence of messages which are sent between the
different protocol participants. Thus, scenarios: sequence diagrams, or STDs are suitable
for specifying security protocols (cf. [13, 91). Due to its widespread use and the existence
of (commercial) tools, UA4L might be a good choice. Its various ways of modeling
systems allows the protocol designer a flexible way of specifying all aspects of the security
protocol. Besides the “raw” protocols, there will be annotations (e.g., in BAN logic),
scenarios for failures and exception handling (“don‘t-do use-cases”): as well as definitions
and interfaces regarding the actuai data to be communicated and the connection with
the underlying operating system. Also attack scenarios could be specified within UML.
Such a UML specification provides the basis for all analyses and synthesis tasks.

2.1 Protocol Analysis

A first and important step during protocol design is the automatic analysis of the proto-
col. Here, properties about authentication, secrecy, confidentiality, etc. are proven in a
formal way, or attack scenarios are generated. For this task, a large body of approaches
and tools exist. Counter examples which represent a successful attack on the proto-
col should be converted into UML sequence diagrams for easy human readability and
simulation. Positive proofs should be, where possible, represented in a formalism un-
derstandable for the protocol designer/analyzer. For example, the tool BAN-SETHEO
[15] uses a first-order ATP to find the proofs, and then converts and typesets the proofs
as proofs in the BAN-logic. Alt.hough, in many cases; an ”OK” might be sufficient, such

2

3

‘ b

praofs should be kept in such a way that they can be checked (manually or automati-
cally) by an independent certification authority.

2.2 Analysis of Cryptographic Routines

Traditional protocol analysis (as discussed above) assumes that implementation and the
encryption routines are correct. Due to their mathematical complexity; encryption rou-
tines need to be checked with regard to their encryption strength and other properties.
This task is probably the most difficult part in the entire scenario, and, within the fore-
seeable future, off-line manual development of such proofs will be the only option. For
practical purposes: libraries of standardized and certified cryptographic routines can be
used.

2.3 Protocol Software Synthesis

Up to this stage. all analysis steps have been performed on a high-level specification of
the security protocol. This specification now needs to be implemented as real code. -4s
discussed earlier; this coding phase is very error-prone. ?&le are therefore proposing the
automatic generation cf the protocol s o b a r e using techniques of automatic program
synthesis. Based on the protocol specification and guided by required properties, an
implementation of the protocol software can be synthesized automatically. By using a
formal-methods based approach, it can be guaranteed (or certified, see below) that the
implementation does not violate any of the security properties established and proven
during the protocol analysis.

There is a number of interesting approaches toward automatic synthesis of security
protocols. e.g., [14], 1201. or [5]. A main goal of these approaches is to automatical-
ly generate a secure and efficient protocol. given a property-based specification. In
our framework. however, we can be much less ambitious. We already have a detailed
specification of the protocol (as set of sequence diagrams). Therefore. we can -me an
approach like [19] which takes a set of annotated UML sequence diagrams and generates
highly structured statecharts fiom them. From statecharts, traditional code-generation
techniques can be used to yield the final executable code.

In this application, correctness of the generated artifacts is paramount. Therefore,
traceability between specification and synthesized code, as well as the generation of
the appropriate documentation is important. Here; work from program synthesis. e.g..
[lS. 171 can be adapted.

2.4 Automatic optimization of protocols

In application x-ith small bandwidth (e.g.. aircraft-ground communications). it is im-
portant that the execution of the security protocol does not unnecessarily burden the
communication channels. Thus. a security protocol with a minimal number of protocol
steps should be preferred. Also important is the ratio T of the size of actual (secure)
user data vs. the transmitted data. In the traditional layered protocol architecture.
each layer is adding its own wrapper and control information around the data. leading
to small values of T . Some protocols. for example. will send a 1024 byte package. even if

3

only a few bytes need to be transmitted. Optimizing such a behavior manually, howev-
er, is extremely error-prone. Furthermore, optimization goals for security protocols can
contradict those for traditional protocols (e.g., replacing f - l (f (D)) by D is not legal
i f f is a cryptgraphic routine). Techniques for formal protocol optimization (e.g., [lo])
could be of high value here.

2.5 Automatic Certification of Protocol Software

Once the protocol software has been synthesized, it should be ready to be deployed.
However, a protocol synthesis tool is an extremely large and complex piece of software
itself, so its formal verification is not practical. In order to overcome this problem,
the approach of product certification can be used: instead of verifying of the synthe-
sizer, each synthesized program is certified individually. Certificates are automatically
generated proofs that the program fulfills certain properties. These certificates can be
checked independently (e.g., by a certification authority).

We have developed a program synthesis system (AvTOBAYES/AvTOFILTER) with
such a certification extension [16, 71. During synthesis, the program is automati-
cally adorned by annotations. Then, a Hoare-style verification generator produces a
number of first-order logic proof obligatioris. After simplification, these proof obliga-
tions are processed by an automated theorem prover. With this approach, traditional
language-specific properties (e.g., array-bounds, variable initialization) can be proven;
also domain-specific properties can be handled by this system. Such a system can be
used to certify all important properties of synthesized security software. For additional
security, this approach can be combined with the proof-carrying code techniques 16, 11; 13
to provide tamper-proof certificates when the code is used in mobile applications.

In addition to the tasks discussed above, the specific characteristics of security pro-
tocols must be threaded through the entire software lifecyle. For example, the software
process (in particular the parts dealing with V&V) needs to be augmented specifically
to handle security protocols in a proper way (cf. [3]) . Also testing of a security protocol
is somewhat different from testing ordinary software. Finally, the successful operation
of a security protocol substantially relies on its correct use: the best security protocol
is of little use if users write the passwords on sticky notes and place them next to the
cornpter; c?r if passwords are “reused” [8].

The design, development, and deployment of a reliable and secure security protocol
has to address many issues which go beyond the analysis of the core security protocol.
Tremendous progress in this field has been accomplished by using automated reasoning
techniques (e.g., theorem proving, model checking) for the analysis task. The potential
for automated reasoning techniques in the area of security protocols is by far not exhaust-
ed: during practically every life-cycle step of a protocol development, formal-methods
based techniques can-and must-be applied. By combining existing approaches to
protocol analysis, program synthesis, logic-based optimization, automated certification,
and proof carrying code, it will be possible to develop a powerful and practically useful
framework and tool for safe and secure ”end-to-end” protocol design.

References

[l] A. W. ilppel and -4. Felty. -4 semantic model of types and machine instuctions for
proof-carrying code. In Proceedings of the 27th A CM SIGPLAN-SIGACT Sympo-
sium on Prin,ciples of Programm.ing Languages (POPL-OO), pages 243-253. ACM
Press, 2000.

[2] A. Armando, D. Basin, M. Bouallagui, 1'. Chevalier, L. Compagna, S. Maersheim,
M. Rusinowitch, M. Turuani, L. Vigan, and L. Vigneron. The ,4VISS Security
Protocol -4nalysis Tool, systems. In E. Brinksma and K. G. Larsen, editors, CAV,
vohrne 2404 of LNCS, pages 349-353. Springer, 2002.

[3] R. Breu, K. Burger, M. Hafner, J. Jiirjens, G. Popp, G. Wimmel, and V. Lotz.
Key issues of a formally based process model for security engineering. In ICSSEA
2003 - Sixteenth International Conference 'isoftware Systems Engineering B their
Applications", 2003.

[4] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. In ACM
Operating Systems Review 23(5) / Proceedings of the Twelfth ACM Symposium on
Operating Systems Principles, 1989.

[5] Hao Chen, John Clark, and Jeremy Jacob. Automated design of security protocols.
In Proceedings of the 2003 Congress on Evolutionary Computation, volume 3, pages
2181-2188. IEEE Press, 2003.

[6] C. Colby, P. Lee, G. C. Necula, F. Blau, M. Pleslio, and K. Cline. A certifSring
compiler for Java. ACM SIGPLAN Notices, 35(5):95-107, 2000.

[7] E. Denney. B. Fischer, and J. Schumann. Using automated theorem provers to
certify auto-generated aerospace software, 2004. Accepted for IJCAR'04.

[8] B. Ives. K. Walsh: and H. Schneider. The domino effect of password reuse. Com-
m.-m%cntion.s of the -4 CA[> 47(4):75-73> 2004.

[9] J. Jiirjens and G. Wimmel. Formally testing fail-safety of eiectronic purse protocols.
In 16th Iniernational Con.feren.ce on -4utom.ated Software En.gineering (ASE 2001),
pages 408-411, 2001.

[lo] C. Kreitz, M. Hayden, and J. Hickey. A proof environment for the development of
group communication systems. In C. Kirchner and H. Kirchner, editors, Proceedings
of the 15th International Conference on Automated Deduction (CADE-15), volume
1421 of Lecture ATotes in Artifical Intelligence: pages 316-332. Springer Verlag, 1993.

[ll] G. C. Necula and P. Lee. Efficient representation and validation of logical proofs.
In Proceedings of the 13th -4nnual Symposium on Logic in Gom.puter Science
(LICS'98). pages 93-104. IEEE Computer Society Press, 1998.

[la] L. Paulson. The inductive approach to verifying cryptographic protocols. J. Com-
puter Security, 6:85-128. 1998.

[13] G. Popp: J. Jurjens, G. Wimmel, and R. Breu. Security-critical system development
with extended use cases. In 10th Asia-Pacific Software Engineering Conference
(APSEC 2003), 2003.

[14] H. Saidi. Towards automatic synthesis of security protocols. In Logic-Based Pro-
gram Synthesis Workshop, A A A I 2002 Spring Symposium, Stanford University,
California, 2002.

[15] J. Schumann. Automatic Verification of Cryptographic Protocols with SETHEO.
In Conference on Automated Deduction (C-4DE) 14, LNAI, pages 87-100. Springer,
1997.

[16] J. Schumann, B. Fischer, M. Whalen, and J. Whittle. Certification support for
automatically generated programs. In In Proceedings of the Thirty-Sixth Annual
Hawaii International Conference on System Sciences (HICSS-36). IEEE, 2003.

[17] J . Schumann and P. Robinson. [I or success is not enough: Current technology and
future directions in proof presentation. In Future Trends in Autom,ated Deduction
(during IJCAR 2001): 2001.

[l8] J. van Baalen. P. Robinson. M. Lowry, and Th. Pressburger. Explaining synthesized
software. In D. F. Redmiles and B. Nuseibeh, editors, Proc 13th IEEE Conference
on Automated Software Engineering, pages 240-218, 1998.

[19] J. Whittle and J. Schumann. Generating Statechart Designs From Scenarios. In
Proceedings of International conference on Softwar e Engineeering (ICSE 2000),
pages 314-323, Limerick, Ireland, 2000.

(201 H. Zhou and S. Foley. Fast automatic synthesis of security protocols using backward
search. In Proc. FMSE (Formal Methods in Security Engineering), 2002, 2002.

6

