
Synthesizing 3D Surfaces from Parameterized Strip Charts

Petx I. Robinson (NASA Ames/QSS Group) probinson@mail.arc.nasa.gov
Julian Gomez (NASA Ames/RIACS) jgomez@mail.arc.nasa.gov
Michael Morehouse (Scecor Graphic Arts) mmorehouse@,scecor.com
Yuri Gawdiak (NASA Headquarters) ygawdiak@hq.nasa.gov

INTRODUCTION .. 1

INFORMATION FLOW CHALLENGES IN COMPLEX SYSTEMS 2

FROM STRIP CHARTS TO SURFACES ... 3

NASA STRIP CHARTS .. 4

THE TRL SURFACE - FOR NASA PROGRAM MANAGEMENT 4

THE FRAME COUNT SURFACE - FOR ISS CDH FDlR 6 .

DISCUSSION ... 7

IMPLEMENTATION .. 12

CONCLUSION .. 14

ACKNOWLEDGEMENTS .. 15

REFERENCES ... 15

Introduction
We believe 3D information visualization has the power to unlock new levels of
productivity in the monitoring and control of complex processes. Our goal is to provide
visual methods to allow for rapid human insight into systems consisting of thousands to
millions of parameters. We explore this hypothesis in two complex domains: NASA
program management and NASA International Space Station (ISS) spacecraft computer
operations. We seek to extend a common form of visualization called the strip chart from
2D to 3D. A strip chart can display the time series progression of a parameter and allows
for trends and events to be identified. Strip charts can be overlayed when multiple
parameters need to visualized in order to correlate their events. When many parameters
are involved, the direct overlaying of strip charts can become confusing and may not
fully utilize the graphing area to convey the relationships between the parameters.

-

We provide a solution to this problem by generating 3D surfaces from parameterized
strip charts. The 3D surface utilizes significantly more screen area to illustrate the
differences in the parameters and the overlayed strip charts, and it can rapidly be scanned
by humans to gain insight. The selection of the third dimension must be a parallel or
parameterized homogenous resource in the target domain, defined using a finite, ordered,
enumerated type, and not a heterogeneous type. We demonstrate our concepts with
examples from the NASA program management domain (assessing the state of many
plans) and the computers of the ISS (assessing the state of many computers). We identify
2D strip charts in each domain and show how to construct the corresponding 3D surfaces.
The user can navigate the surface, zooming in on regions of interest, setting a mark and
drilling down to source documents from which the data points have been derived. We
close by discussing design issues, related work, and implementation challenges.

Information Flow Challenges in Complex Systems
Behind complex systems as diverse as NASA program and spacecraft management is a
pyramid of information. This information pyramid exists so that humans and machines
responsible for determining and controlling the state of complex systems will not be
overwhelmed by the numerous lower-level details. On the other hand, these details are
important, for without the lower-level information, higher management is more likely to
making d o n n e d decisions. For instance, accident reports from the NIAT[2] and
CAIB[3] report cited lack of information flow as a significant factor in the failure of both
Space Shuttle and Mars spacecraft. In addition, as mission controllers of ISS and future
missions start to rely on fewer people to monitor and control more subsystems (e.g.
spacecraft built in stages) {4], a need will grow for tools that provide a systems wide view
and as well as the relevant details.

For NASA program management, information rises through a managerial hierarchy,
progressively concerned with strategic issues over timescales of quarters and fiscal years,
rather than tactical issues occurring over timescales of days to weeks. Similarly, in the
NASA spacecraft operation domain, the information concerning the spacecraft operation
rises through a hierarchy of data processing, from the onboard computers and astronauts
to ground computers and mission controllers to the spacecraft operations head. In the
program management domain, a lack of understanding of root causes for meeting andor
slipping milestones might result in incorrect funding decisions. In the spacecraft
operation domain, arisk for incorrect spacecraft operation decisions exists when the root - . . -

causes and ramifications for low-level events are not understood.
.

Therein lies our challenge, providing decision makers with a high-level view that will not
flood them with details, but at the same time, allowing them access to the details in case
they need the data. These constraints conflict. Our solution is a derivative of the ancient
saying, “A picture is worth a thousand words.’’ In our case, a 3D surface is worth ten
thousand data points. Presenting ten thousand words to the user map will swamp the user,
but providing a single picture enables the user to scan, for a high-level view, and to
search and drill down for relevant changing details

I
~ ,
I

From Strip Charts to Surfaces
Strip charts are a common method for displaying data over time. By plotting data over
time, trends and events can be identified. Overlaying strip charts is a way for discovering
when events on multiple strip charts correlate. Below are a few examples for displaying
3D strip chart data over time. In Figure 1, Methods 1-4 demonstrate the use of graphing
3D strip chart data. None of the methods connects the strip chart elements to create a
single strip chart surface. That's because to construct a single 3D surface from strip
charts, first an order of the strip charts must be defined.

Method 1 Method 2 Method 3 Method 4
Figure 1 A survey of four 3D methods for visualizing strip chart data.[tS]
By introducing an order among strip chart elements, an extruded surface connects values
of strip charts at points in time. The third dimension is often a discrete enumerated type
over which an ordering relationship can be defined

LllU

lsi Mr 2nd Otr 3rd Mr 4th Qtr 3rd 4thP1

Figure 3 Overlayed Strip charts Figure 2 Strip-chart surface.
For example in Figure 3, four
representative parameterized strip charts are overlayed in 2D where in the third quarter
all of the signals have a maximum. In Figure 2, given a domain-specific method of
ordering the same four strip charts are displayed as a set of surfaces, where the third
quatter-maxiinaare can also be observed. Now the surface CGI be used to add fourth and
fifth dimensions for color and texture. This approach to surface generation is useful if the
strip charts are of homogenous type (e.g. set of pressures, set of temperatures, set of
pldmilestone Technology Readiness Levels (TRLs)[I]. set of processor fi-ame counts).
The surface may lose its semantics if the types are heterogeneous (e.g. pressures and
temperatures).

By transitioning from an overlayed strip chart 2D visualization to a 3D strip chart surface,
we have increased the portion of the display that is related to the content, namely the
comparisons of the quantities over time. For example, in Figure 3, where we show the
overlayed strip charts, the contendfi-me ratio (ratio of full plotting area to that used to

.

display content) is much less than the content/fiame ratio for the surface in Figure 2. In
addition we increase the data density of the visualizations when we use the surface to
represent parameters that are mapped to color and texture.

NASA Strip Charts
We illustrate strip charts for both the NASA program and spacecraft management
domains and proceed to develop surfaces fiom the strip charts.

For program management monitoring and
control, parameters measured over time
could include funding levels, TRL[l], risk
level, and status information. In the NASA
program management domain, the TRL
levels of a single program plan can be
plotted as TRL vs. time over the lifetime of
the three-year plan (Figure 4). The TRL
parameter is a very important parameter by
which the maturity of NASA technology is
measured [11. The change in TRL over time
is a strong indicator of whether technology
research and development is proceeding
according to plan.

For spacecrafi monitoring and control in the
ISS Command and Data Handling (CDH)
computer domain, monitored parameters
could include the fiame count heartbeat fiom
the onboard computers[5], as well as the
flow of information through the computer
buses and memory. In the NASA spacecraft
management domain, we model the frame
count of single computer onboard ISS as
frame count vs. time (Figure 5) , each saw-
tooth cycle requiring ten seconds. The frame
count parameter is the measure of the
“heartbeat” parameter whjch each ISS
computer is required to have for nominal

Stripchart: Program Plan
TRL vs time

7
6

4 4
A 3

1
0

q 5

E 2

Y

Figure 4 TRL Strip chart <time, TRL>

Stripchart: Computer
framecount vs time

. c -

9 0 1 2 3 4 5 6 7 8 9 0 1 2

time (sec) .

Figure 5 Frame count Strip chart : <time,
Frame count> . ..

operations. Other parameters are program state and an onboard global shared memory
called the Current Value Table (CVT)[9].

The TRL Surface - For NASA Program Management
For the NASA program management domain, we have selected the plans parameter as
the third dimension for the construction of the TRL surface. Together with the strip chart
axes of time and TRL (Figure 4), we can define our 3D space by introducing the plans
axis. We map each 2D data point <time, T R D to 3D data points of the form <time,
plan, TRL> (Figure 7 and Figure 6). The TRL surface is then constructed by defining a
gnd over the set of 3D data points (see Implementation section). The grid is constructed

from line segments in both the plans and time dimensions. The line segments in the time
dimension correspond to the original strip charts which model how a single plan’s TRL
changes over time (Figure 4). While the line segments i? the plans dimension model the
TRL state of all plans at a point in time. The surface generated can be seen in Figure 6.
Methods for choosing the order of the strip chart’s slices along the plans dimension rely
on domain specific information. For the TRL surface in Figure 6, the order of the plans
has been defmed by the Level 2 AVsP plan[6]. A Level 2 plan is made up of a set of
Level 3 plans such that the Level 3 milestones are “rolled-up” to define Level 2
milestones. The values in the plans dimension for the AVsP plan are discrete, finite, and
enumerated: 2.1.1, 2.1.2, 2.1.3, and 2.1.4. The rollup relationships in the Level 2 plan
provide the dependencies to order the Level 3 plans. The upward slope of the surface
over time indicates that the Level 2 plan expects the milestones of the Level 3 plan to
increase in TRL as time passes. The color of the surface indicates the amount of funds
spent at each point in time. In fact, the slope increases front-to-back through the time
dimension as well as left-to-right through the plans dimension. The fiont-to-back
increase is due to the passage of time. The right-to-left increase is attributed to milestones
in a later plan being dependent upon milestones in earlier plans.

Figure 7 TFU 3D Axes. Figure 6 TRL Surface: <time. ulan. TRL>

The TRL surfaces provide a way to quickly recognize trends in large data sets by
mapping surface height change to changes in plan TRL level, and color saturation change
to changes in plan funding level. We believe that by scarining the surface, it will rapidly
convey information to the program manager concerning the strategy for maturing and
monitoring technology as well as provide, through data dependencies, an entry point to
source material.

-

Many extensions to the TRL surface are required to increase its utility. The TRL surface
does not reflect the reality of the facts on the ground. The TRL surface must incorporate
realtime information in the form of monthly and quarterly status update information in
order that the traditional red, yellow, green status indicators can be compared against plan
expected progress. (e.g. [7]). The color and texture of the TRL surface will be used to
incorporate this knowledge and will allow comparison of how well the research and
development plan wadis able to achieve the actual TRL levels. In addition, once the
dependency mappings are constructed between the TRL surface and source documents,

the user can navigate the TRL surface to proiect plans and access to monthly and
quarterly reports when more detailed knowledge is required.

The Frame Count Surface - For ISS CDH FDlR
For the NASA spacecraft domain, we have selected the processors parameter as the third
dimension for the construction of the frame count surface. Together with the strip chart
axes of time and frame count (Figure 5), we can defme OUT 3D space by the processors
axis. We map each 2D data point <time, frame count>, to 3D data points of the form
<time, processor, frame count> (Figure 9 and Figure 8). The TRL surface is then
constructed by defining a grid over the set of 3D data points. The grid is constructed from
line segments in both the processor and time dimensions. The line sepents in the time
dimension correspond to the original strip charts which model how a single processor’s
frame count changes over time (Figure 5). While the line segments in the processors
dimension model the frame count state of all processors at a point in time. The surface
generated can be seen in Figure 8.

frame

Figure 9 Frame count 3D Axes. Figure 8 Frame count Surface: <time, CPU, frame
count>

The saw-tooth nature of the surface over time indicates that the processors are operating
in a nominal manner. The change in the sawtooth pattern is caused by the absence of
telemetry due to a dropout in the data for all of the processors. The root cause for such a
dropout could be a variety of software and hardware components in the information train
from onboard processor to ground-based telemetry storage and access[lo]. Over 1000
data points are used to represent the surface. We will extend the frame count surface to
utilize color to reflect processor status a d other information. In addition, by annotating
the surface with dependencv information the user can navigate to source information
related to the state of each processor’s operation and design. -

Methods to choose the order of the strip charts slices along the processors dimension
must rely upon information specific to ISS CDH domain. For the frame count surface in
Figure 8, the order of the processors has been selected to correspond to the pyramid
hierarchy of processors utilized onboard ISS. The hierarchy of the processors identifies
the physical dependencies that exist between the computers. We have ordered the
processors according to their location in the ISS three-tiered computer hierarchy. Top
level computers control the ISS state, mid-tier computers control subsystems, and lower
tier computers perform the actual sensing and control of ISS. The source of the data is the

ISS telemetry downlinked to Earth[8] once a second. The values in the processors
dimension are alpha-numeric parameters known as device process unique identifiers
(PUIS) [9] 3. For example the frame count PUIS for upper tier CCS-Primary and Backup
computers have: alpha-numeric values LADPO 1 MDZZO 1 U and LADB02MDZZO 1 U
respectively.

Discussion
To ensure effective use of the 3D surfaces we address several criteria: 1) interactivity
and navigation - By what principles and how will the user interact with the 3D surfaces
in order to gain insight and navigate to proper sources? 2) surface features and definition
- How to define relationships between surface features and the quantities of interest?
How are they are implemented? 3) “escaping flatland” - How to use surfaces to
maximize the number of dimensions which can be shown on a flat two dimensional
screen. Below we address these three areas.

strip-
charts

T dependency screen I

Figurelo. Information processing flow of a model-viewer-control (MVC) architecture for
interactive 3D surface visualization. System accepts sets of strip charts as well as dependency
information and presents 3D views to the user, allows user to drill down to source documents.

Interactivity and Navigation. We employ the classic model-view-control (MVC)
methodology (Figure 10). MVC is based on the feedback control principles which
underlying modem control theory and AI-based methods. In MVC, the user can
iteratively control the view of a model. For example, the user can fly over the surface or
fly through the surface to drill down to source documents. In addition, the model and the
data represented by the model are separate such that both static data as well as the
dynamic data (e.g. telemetry) can be viewed. The control of the view allows the user 1)
access to the data 2) manipulation of the model objects and 3) navigation of the views
1141.

The iterative process of viewing and controlling the 3D visualization must address what
Andrew Lippman[l6] has defined are the five criteria of interactivity required to fulfill
“the give and take of two participants [computer and human]”:

0

interruptibility: both the human and computer can intermpt the process
granularity: what is the smallest unit of control or viewing which supports
intermptibility

limited lookahead: avoid pre-computing of surfaces - instead derive from database
of data and source documents especially when visualizing realtime data.
graceful degradation: when the system cannot control in a manner desired by the
user, provide methods to check-point back to previous known good state as well as
record unsuccessful control requests for analysis by system developers.
the appearance of infinitude: give “the impression of an infinite database” of
possible directions for navigation and exploration (e.g. surface of sphere: finite
surface, infinite extent).

We implement the interactivity principles in the commands which are available for the
system. Tufte suggests that “the number of computer commands immediately available
(more the better), if clearly but minimally displayed” [15]. We partition control of the
system is into four areas: 1) control of the view 2) set point/mark 3) drilling down to
sources and 4) preferences.
0

0

0

0

Control of the view so the user can navigate the surface to zoom idout on regions of
interest, pan, rotate, scale and fly through (could also export to VRML which has
extensive fly through capabilities).
Set point/mark on regions of data selected for analysis. Users will be able to rubber-
band regions of the surfaces (Figure 11). Users can select: 1) time slices (show all
slices @ time) 2) strip chart slices (show a slice
@ all times) and 3) arbitrary regions of time. In
the future, the point/marks will be available
across all displays of the system to ensure
consistency and parsimony of navigation.
Drill down to source documents from which the
data points were derived. The surface is a visual
metaphor for a set of low level data. The data is
dependent upon a vast set of more detailed source
material. For example in the TRL domain, the
surface represents the Level 2 plan milestones
made up of a set of Level 3 milestones plans
which are made up of all the product generated by time 0
the execution of the plans. While in the fiame Figure 11 3D Set ~ o h d m ~ k also 3d
count surface example, the surface represents the surface points to be selected in a

of groups. coordinated fi-ame count execution of all the Tier
1 and Tier 2 computers, themselves defining the execution of a vast set of multiple
programs executing with thousands of variables. We will provide capabilities which
allow navigation between “a broad overview to the fine structure”[l5]. Navigation
will be accomplished by encoding underlying dependencies between data points and
source documents in a domain specific manner. In the implementation section we
illustrate how to augment the 3D data structures to support dependency information.
Preferences. User can select colors, axes, orders of strip charts in order to scale, and
reorder surfaces as necessary.

Surface Features and Abstract Quantities. In “Discovering Visual Metaphors”[1 11
Gershon and Page state: “Unlike scientific visualization, information visualization

focuses on information that is often abstract, thus lacking natural and obvious physical
representation.” We have faced this challenge by limiting our physical representation to
that of a coloredtextured 3D surface. The dimensions for the 3D coloredtextured surface
are then defined by developing domain specific mappings between 3D surface features (x,
y, z, color, texture) and the abstract quantities of interest (e.g. funding levels, TRL[l],
risk level in the program management domain and status information, frame count,
program state in the ISS CDH spacecraft domain).

Encodings

Tufte also provides guidance in d e h g how to visualize quantities. He states that
quantities can be visualized in three different ways: direct labels, encodings and self-
representing scales. He provides a guide to their use through a strategy of using the
smallest effective difference: make all visual distinctions as subtle as possible, but still
clear and effective[171 by:

Direct labels are defined with respect to the grid axes, the 3D points for each
parameter preserving the “relative difference” between the values of quantity, as
represented by “relative distances” on the 3D surface.
Encodings map a quantity to either the color or texture of the surface. When using
color we do not use multi-color representations as Tufte cautions against (see Sea of
Japan example[17]), instead define a value scale which progresses from light to dark,
(e.g from light blue to dark blue) and suggests the use of organic colors from nature.
Self-representing scales identify portions of the visual display which are duplicated
across the visual field. Since each replicated image corresponds to an instance of
quantity, the difference in the size of the replicated images allows for comparison of
the quantities. On our surfaces, the replicated images we utilize are the individual
strip charts themselves. The slope of the 3D surface highlights the change in the
shapes of the replicated strip charts and supports comparison of quantities across the
replicated parallel images.

In the table below we summarize the quantities in the two NASA domains:
Self-
representi l D o m a i n I Direct Labels

defied using the methods of visualizing quantities of parameters.

“Escaping Flatland”[l8]. Tufte observed as many have, that visualizations are trapped
in two dimensional “flatland” even though the state vector for most visualization domains
is far greater than two dimensions. Over the ages “flatland” has consisted of the walls
of the Lascaux Caves, the stone tablet, papyrus, paper and now the computer screen.
Menard’s 2D visualization of Napolean’s Russian Waterloo demonstrates [181 (Figure 13)
how to model six dimensions without the use of 3D figures. By incorporating Menard’s
lessons together with the use of perspective drawing to model 3D shapes, we can
develoD 3D metaDhors which can model even more than Menard’s six dimensions.

I

-_I---

Figure 13. Menard’s 2D Visualization of Napolean’s 1812 Waterloo - 6 dimensions modeled in
“flatland”: 1) line color: direction or army @rown/grey: to MOSCOW, black retreat froln Moscow), 2)
line thickness: quantity of troops, 3’4) line position: (<x,y> location on map of Poland), 5,6)
temperature @time: vertical drop to temperature on its own scale @time.

Perspective drawing provides the fust three dimensions for our surfaces. For example in
Figure 14 two 3D surfaces are defined that analyze presidential election year data from
1956 and 1960. The three axes are, one continuous axis and two discrete axes: x) party
identification: [Democrat (strong, weak), Independent, Republican (weak, strong)], y)
religious identification: [Protestant(strong,weak), Catholic(weak, strong)] , z) democratic
percentage of the two-party vote: [0..100]. The 3D surfaces show a marked upward trend
in the maxima of all three dimensions and other changes as well on the surface. These

--- strong weak weak strong
lcm- Democrat I Republican Pm-

Figure 14 3D Surfaces Representing Comparison of Voting patterns between 1956 and 1960 [27].

two examples through changes in the shape of the surface, allows the viewer to grasp the
effect that candidate John F. Kennedy, who became the United States’ first Catholic
president, had on voter participation. Comparing the two surfaces is easy, comfortable,
and rapid.

As we stated earlier perspective drawing provides the first three dimensions. The fourth
dimension is defined by surface color (e-g. light to dark blue) while surface texture (e.g.
rough to smooth) provides the fifth dimension. Sixth and higher dimensions are
represented by the addition of landmarks and terrain features on the landscape surface.

Mldntght

Figure 15 3D pollution data overlaved on map of from Santa Barbara to greater Los Angeles 1261
The use of features on landscapes can be seen Figure 15, a map showing Southern
California as the foundation surface for visualization of pollution data. Peaks correspond
to localized levels of nitrogen oxide emissions (many other compounds were also
visualized) 1261. Similar to Menard with Poiand, the designers have used the physica€
geography to define the surface over which features are presented.

The relationship between 3D surfaces and landscapes is natural. As such, humans enjoy
the visual landscape metaphor and seek out known landmarks and features which defme
it. Landscapes[l2] are an organic visual representation for both artificial surfaces (Figure
14) and natural/geographical landscapes (Figure 15). While the landscape surface
changes with the underlying data, the user will be able to easily scan and detect the
changes. Effective visual “scanning” of surfaces depends on the quality of the graphic
design, which ought to resonate with a user’s psychophysical landscape. For surfaces,
changes in the surface height, the color saturation or texture can be easily visually
detected.

The scanning of the artificial surface representing upwards of six dimensions driven by
data from a realtime feed is an example of visual data exploration. “Visual data
exploration seeks to integrate humans in the data exploration process, applying their
perceptual abilities to the large data sets I?OW available. The basic idea is to present the
data in some visual form, allowing data analysts to gain insight into it and draw
conclusions, as well as interact with it. The visual representation of the data reduces the
cognitive work needed to perform certain tasks.” [13]. Keim outlines the four theorems
for landscape perception:
0 “Theorem 1: People seek prospect and refuge as a basic framework for landscape

visualization” - A visual baseline is learned by humans through learning the
“nominal” landscape.
“Theorem 2: A landscape is seen to have character through discovery of the details.”
-Level of Detail (LOD) is defined through links to data dependencies in addition to
finer grain views of surface.

0

“Theorem 3: Landscapes are viewed as pictorial compositions” - Our first five
dimensions are devoted to the landscape surface itself, only when we address the
sixth and higher dimensions do we address pictorial compositions.
“Theorm 4: Visual images of landscape contribute to geographical awareness through
cognitive mapping” - When a consistent mapping is defined between the surface
features and the visualization domain, then metaphorical geographic awareness will
result. The key is to keep the mapping consistent so that humans can learn it and seek
refuge in it.

Implementation
We use the Java 3D API [20] to implement a model-viewer-controller (MVC) system for
3D surface creation and navigation [141. We have chosen Java 3D because it is the only
major, openly available scene graph system. It allows us to dynamically change the
models in response to changes in the data and user requirements. In addition it can
compile the scene graph into either DirectX or OpenGL for compiled execution.

v m

-‘”--- vE--s -ob@-

Figure 16 Java3D Scene Graph Model [20]. User must specifiy, View,
Model(Shape3D) and control (Behavior Node).

The top of the scene graph (Figure 16) defines a virtual universe which is made up of a
local object which contains the set of branch nodes required of the models and the view.
Each branch group consists of a transform group which contains a Shape3D node.

<virtual-universe> : := <locale-objece
<local-object> ::= <branch_group> +

<branch_group> : := <transform_group>
<transform_group> ::= <shape3D>

Shape3D nodes are made up of a geometry and appearance. For our purposes, an
appearance is made up of a material, texture, coloring, transparency and rendering. The
geometry is defined as a geometry arrayhdexed face-set made up of a dictionary of
coordinates. The face sets are defmed for point, line, triangle and quad arrays (Figure 17).

cshape3D node> : := <geometry-object>+<appearance>
<appearance> ::= [material][texture] [coloring][transparency][rendering]
<geometry-object> ::= <geometry-amay>
<geometry_array> : := <coordinate>+
<geometry-array> : := (point-array 1 line-array I triangle-arraylquad-may)

-Y -Y Trj=.@eAnraY Q-Y

Figure 17 Java3D Geometry Array Types[l]. We utilize both quad and triangle array.

The surface element displays are defined using quad-arrays. Quad arrays are natural for
parameterized strip charts because the data for each slice is regular. We will also use
triangle arrays for efficiency and minimality. In Figure 17 we illustrate the different types
of geometry array that can be created from the point arrays.

The Shape3D constructs ensure that each vertex has a position, color and texture. To
create the surfaces we must interpolate the
values at each vertex to calculate a
position, color and texture for all
intermediate points which make up the
surface. In Figure 18 we illustrate this
challenge by defining the bi-linear
interpolation methods for constructing the
color and texture of point Pn. This will
allow us to define areas and surfaces
between the points. Height is taken care of
by intersection of quad or triangles with
lines while the color and texture of P n are
computed as a function of the four
surrounding points:

~ n (~ n , t n) = C ; = l f , (~ i (~ z 7 t z))

Figure 18. The color and texture of point P,
inside of a quad array, defined using bilinear
interpolation function.

Each coordinate is defined as a tuple and a set of dependencies. Each 3D tuple has
attributes for its (x, y, z, color, texture and normal) position. In the program management
domain, <x,y,z> ::= <time, plan, , while in the ISS spacecraft management domain,
<x,y,z> ::= <time, processor, frame count>. Color is defined as a range between [0..1],
and a texture array (u,v) is defined for each texture attribute (e.g, roughness, shininess,
reflection).:

<coordinate> : := <tuple> <doc-dependency>*
<tuple> : := <x> <y> <z> [<color>] [<texture>] [<normal>]
<x,y,- ::= <time, plan, TRL> ;;for TRL domain
<x,y,z> ::= <time, processor, frame count> ;;for frame count domain

The dependencies between 3D tuples and source documents are defmed by a grammar
which maps 3D surface features to source documents. The dependencies are used to
query a document management system such as Netmark[22] for access to source
documents, or a set of web pages (e.g. ISS ECWA eventsC291). An additional paper
entitled “Realtime Knowledge Management (RKM) - from an International Space Station
(ISS) Point of View” E251 addresses the issues of defining the dependency grammar.:

cdoc-dependencp : := <document identifier> <page>+

Conclusion
“A 3D surface is worth ten thousand data points”

The use of 3D information visualization methods will help NASA program managers and
spacecraft mission controllers gain insight into the complex systems they monitor and
control. These methods will also help in advanced mission control concepts. One such
concept is Gemini at NASA Johnson Space Center, whereby just a few people, who are
responsible for all mission control console positions at once, monitor the whole of ISS[4].
Recent and past reports analyzing NASA failures highlight the fact that NASA did know
about the root causes of its failures, but that the relevant information did not flow to
those people in position of authority to use it. Our task: how to present an abstract view to
filter unnecessary details and at the same time allow for access to relevant details? These
two criteria work against each other.

Our approach is to develop 3D surfaces from ordered homogenous strip charts. We note
that both program management and spacecraft management domains measure
performance by monitoring parameters over time in the form of strip charts. The
timescale of the strip charts can vary through orders of magnitude, whether it is monthly
status reports, or once a second telemetry downlink. Strip charts are very important
because they unite symbolic and numeric reasoning systems by time-stamping each type.
The 3D surface defines an abstract view over the low-level data points in the strip charts.
This abstract view can be can be rapidly searched by the viewer due in part to the fact
that 3D surfaces devote a greater percentage of the screen area for parameter differences
than overlayed 2D strip charts. A drawback of the 3D surfaces to note is that the strip
charts for the surface must be ordered; if no order can be found the value of the approach
may be questionable. Still, the 3D surface provides opportunities not available for over-
layed strip charts by enabling the mapping of additional domain parameters to 3D
surface color and texture.

’

We utilize Java 3D to model the system using a model-viewer-controller paradigm. We
have augmented the standard scene graph models with dependencies. The underlying
dependency mechanism will relate scene graph primitives to document and source
material indices stored in systems such as Netmark. In related work in the ECS Iron Bird
Workshop we explore more fully the grammar for document dependencies [25]. In future
work, we seek to extend the number of dimensions we can model and still maintain
cognitive coherence for the information consumer. In addition we will develop methods
to play realtime telemetry and diagnoses through the visualizations.

Acknowledgements
This work funded by the Intelligent Systems (IS) and Engineering for Complex Systems
(ECS) programs. We would also like to thank Daryl Fletcher (SAIC) of the NASA Ames
Code IC Mobile Systems Lab for help in acquiring the ISS computer fiame count data,
Linda Timucin (RIACS) for her leadership on the ECS Infoviz project and Beth Minneci
(ASANI) of the NASA Ames Code IC Outreach Group for technical editing.

References
[11 Mankins, J. C. Technology Readiness Levels - A White Paper April 6 1995 NASA
HQ - http://www.advtech. i sc .nasa. gov/downloads/TRLs.pdf
[2] “NASA Integrated Action Team (NIAT) Report” - December 2 1 2000,
ftp: //ftp.hq .nasa. aov/pub/pao/reports/200 1 /NIAT.pdf
[3] “Columbia Accident Investigation (CAB) Report”
http://www.caib.us/news/report/pdf/voll/full/caib reDort volume 1 .pdf
[4] Koerner, S., Mission Operations (MOD) Gemini Operations Concept - Baseline
Release 3/03
[5] International Space Station (ISS) Command and Data Handling Manual CDH TM
2 1 109 - Mission Operations Directorate Space Flight Training Division 2/10/2003
[6] Gawdiak, Y. NASA Aviation Safety AvSP Program 2000
[7] Gawdiak, Y NASA AVSP Monthly Report September 2000
[8] Fletcher, D. P., Alena, R. “A Scalable, Out-of-Band Diagnostics Architecture for
International Space Station Systems Support”, IEEE Aero 2003
[9] D684-10056-01K ISS Prime Contractor Software Standards and Procedures
Specification 12/00
[lo] Robinson, P., Shirley M. Fletcher, D.,Alena, R.,Duncavage, D., Lee, C. “Applying

Model-Based Reasoning to the FDIR of the Command & Data Handling Subsystem of
the International Space Station,” iSAIRAS 03 2003
[1 11 Gershon, N., Page, W. “Discovering Visual Metaphors” Special Issue of
Communications of the ACM - Visualize Everything August 200 1 - Volume 44,
Number 6
[121 Jakle, J. A. “The Visual Elements of Landscape” The University of Massachusetts
Press Amherst 1987
[131 Keim, D. “Visual Exploration of Large Data Sets” Special Issue of Communications
of the ACM - Visualize Everythmg August 2001 - Volume 44, Number 6
[141 Barrileaux, J. “3D User Interfaces with Java 3D - A Guide to computer-human
interaction in three dimensions” Manning Publications 2001
[151 Tufte, E. The Visual Display of Quantitative Information Graphics Press Cheshire
Connecticut 1983
[161 Brand, Stewart “The Media Lab: Inventing the Future at MIT. Andrew Lippman on
Interactivity”, New York: Viking, 1987.
[171 Tufte, E. Visual Explanations Graphics Press Cheshire Connecticut 1997
[181 Tufte, E. Envisioning Information Graphics Press Cheshire Connecticut 1990
[19] Introduction to Java 3D (1) Class Notes: 240-302, Computer Engineering Lab IV
(Software) Dr.AndrewDavison HTUdandrew@,ratree.psu.ac.thUTH

